首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

曲线积分中对称性的研究论文

发布时间:

曲线积分中对称性的研究论文

1、第一型曲面积分:又称对面积的曲面积分

定义在曲面上的函数关于该曲面的积分。第一型曲线积分物理意义来源于对给定密度函数的空间曲面,计算该曲面的质量。

2、第二型曲面积分是关于在坐标面投影的曲面积分,其物理背景是流量的计算问题。

第二型曲线积分与积分路径有关,第二型曲面积分同样依赖于曲面的取向,第二型曲面积分与曲面的侧有关,如果改变曲面的侧(即法向量从指向某一侧改变为指另一侧),显然曲面积分要改变符号,注意在上述记号中未指明哪侧。

必须另外指出,第二型曲面积分有类似于第二型曲线积分的一些性质。

3、数学上,对称性由群论来表述。群分别对应着伽利略群,洛伦兹群和U(1)群。对称群为连续群和分立群的情形分别被称为连续对称性和分立对称性。德国数学家威尔(Hermann Weyl)是把这套数学方法运用於物理学中并意识到规范对称重要性的第一人。

4、积分轮换对称性是指坐标的轮换对称性,简单的说就是将坐标轴重新命名,如果积分区间的函数表达不变,则被积函数中的x,y,z也同样作变化后,积分值保持不变。

扩展资料:

1、对称操作:

当分子有对称中心时,从分子中任意一原子至对称中心连一直线,将次线延长,必可在和对称中心等距离的另一侧找到另一相同原子,即每一点都关于中心对称。依据对称中心进行的对称操作为反演操作,是按照对称中心反演,记为i;n为偶数时in=E,n为奇数时in=i

反轴:

反轴In的基本操作为绕轴转360°/n,接着按轴上的中心点进行反演,它是C1n和i相继进行的联合操作:I1n=iC1n; 绕In轴转360°/n,接着按中心反演。

映轴:

映轴Sn的基本操作为绕轴转360°/n,接着按垂直于轴的平面进行反映,是C1n和σ相继进行的联合操作: S1n=σC1n;绕Sn轴转360°/n,接着按垂直于轴的平面反映。

2、第一型曲面积分和第二型曲面积分的区别

1、第一类没方向,有几何意义和物理意义;第二类有方向,只有物理意义。

2、一类曲线是对曲线的长度,二类是对x,y坐标.例已知一根线的线密度,求线的质量,就要用一类.已知路径曲线方程,告诉你x,y两个方向的力,求功,就用二类.二类曲线也可以把x,y分开,一二类曲线积分之间就差一个余弦比例。

一二类曲面积分区别,一类是对面积的积分,二类是对坐标的.如已知面密度,求面质量,就用一类.已知x,y,z分别方向上的流速和面方程,求流量,就用第二类.同理,x,y,z方向也是可以分开的。

参考资料:百度百科-第一型曲面积分

参考资料:百度百科-第二型曲面积分

参考资料:百度百科-对称性

参考资料:百对百科-积分轮换对称性

就是各个变量替换后值依然不变……你这个可以用变量替换来解答的∮(x^2+y^2)= (2/3)x∮(x^2+y^2+z^2)ds,直接将曲面方程中的球方程带入就可以了……然后就是求周长……

你好!答案如图所示:

这里先要注意一点:

第一类 曲线/曲面 积分 具有 偶倍奇零 性质

第二类 曲线/曲面 积分 具有 偶零奇倍 性质

所以这两类的 奇偶性 是相反的,因为第二类积分涉及方向性的问题

第一类曲线积分:

第二类曲线积分:

第一类曲面积分:

第二类曲面积分

很高兴能回答您的提问,您不用添加任何财富,只要及时采纳就是对我们最好的回报

。若提问人还有任何不懂的地方可随时追问,我会尽量解答,祝您学业进步,谢谢。

如果问题解决后,请点击下面的“选为满意答案”

学习高等数学最重要是持之以恒,其实无论哪种科目都是的,除了多书里的例题外,平时还要多亲自动手做练习,每种类型和每种难度的题目都挑战一番,不会做的也不用气馁,多些向别人请教,从别人那里学到的知识就是自己的了,然后再加以自己钻研的话一定会有不错的效果。所以累积经验是很重要的,最好的方法就是常来帮别人解答题目,增加历练和做题经验了!

曲面积分的性质研究论文

你好!答案如图所示:

这里先要注意一点:

第一类 曲线/曲面 积分 具有 偶倍奇零 性质

第二类 曲线/曲面 积分 具有 偶零奇倍 性质

所以这两类的 奇偶性 是相反的,因为第二类积分涉及方向性的问题

第一类曲线积分:

第二类曲线积分:

第一类曲面积分:

第二类曲面积分

很高兴能回答您的提问,您不用添加任何财富,只要及时采纳就是对我们最好的回报

。若提问人还有任何不懂的地方可随时追问,我会尽量解答,祝您学业进步,谢谢。

如果问题解决后,请点击下面的“选为满意答案”

学习高等数学最重要是持之以恒,其实无论哪种科目都是的,除了多书里的例题外,平时还要多亲自动手做练习,每种类型和每种难度的题目都挑战一番,不会做的也不用气馁,多些向别人请教,从别人那里学到的知识就是自己的了,然后再加以自己钻研的话一定会有不错的效果。所以累积经验是很重要的,最好的方法就是常来帮别人解答题目,增加历练和做题经验了!

考研数学被大多数考生列为重点逃避对象,究竟考研数学复习过程中,有没有更好的方式方法?选择怎样的参考资料,做哪种类型的练习题才能在短期内提高成绩。很遗憾的告诉大家,基本没有。考研数学是由不同的知识点组合起来,成绩的高低并不仅仅是喜欢数学就能够解决的。勤加练习,熟能生巧,方法公式就摆在课本上,希望考生在日常联系中夯实基础,在考场上才能运用自如。以下是小编为考生们梳理的2018考研数学复习:第二类曲面积分的计算方法相关内容,希望大家坚守初心,尽全力备战2018考研。第二类曲面积分也称为对坐标的曲面积分,常常是针对数一同学考查的重点。且第二类曲面积分有时常常需要转化为三重积分的计算,甚至有时会和空间解析几何结合起来一起进行考查 . 在研究综合问题之前,我们首先要搞清楚第二类曲面积分的计算的常用方法. 根据题目的信息然后再选用合适的方法进行解决.

微分几何学是运用数学分析的理论研究曲线或曲面在它一点邻域的性质,换句话说,微分几何是研究一般的曲线和曲面在“小范围”上的性质的数学分支学科。 微分几何学的产生和发展是和数学分析密切相连的。在这方面第一个做出贡献的是瑞士数学家欧拉。1736年他首先引进了平面曲线的内在坐标这一概念,即以曲线弧长这以几何量作为曲线上点的坐标,从而开始了曲线的内在几何的研究。 十八世纪初,法国数学家蒙日首先把微积分应用到曲线和曲面的研究中去,并于1807年出版了它的《分析在几何学上的应用》一书,这是微分几何最早的一本著作。在这些研究中,可以看到力学、物理学与工业的日益增长的要求是促进微分几何发展的因素。 1827年,高斯发表了《关于曲面的一般研究》的著作,这在微分几何的历史上有重大的意义,它的理论奠定了现代形式曲面论的基础。微分几何发展经历了150年之后,高斯抓住了微分几何中最重要的概念和带根本性的内容,建立了曲面的内在几何学。其主要思想是强调了曲面上只依赖于第一基本形式的一些性质,例如曲面上曲面的长度、两条曲线的夹角、曲面上的一区域的面积、测地线、测地线曲率和总曲率等等。他的理论奠定了近代形式曲面论的基础。

微分几何学是运用数学分析的理论研究曲线或曲面在它一点邻域的性质,换句话说,微分几何是研究一般的曲线和曲面在“小范围”上的性质的数学分支学科。 微分几何学的产生和发展是和数学分析密切相连的。在这方面第一个做出贡献的是瑞士数学家欧拉。1736年他首先引进了平面曲线的内在坐标这一概念,即以曲线弧长这以几何量作为曲线上点的坐标,从而开始了曲线的内在几何的研究。 十八世纪初,法国数学家蒙日首先把微积分应用到曲线和曲面的研究中去,并于1807年出版了它的《分析在几何学上的应用》一书,这是微分几何最早的一本著作。在这些研究中,可以看到力学、物理学与工业的日益增长的要求是促进微分几何发展的因素。 1827年,高斯发表了《关于曲面的一般研究》的著作,这在微分几何的历史上有重大的意义,它的理论奠定了现代形式曲面论的基础。微分几何发展经历了150年之后,高斯抓住了微分几何中最重要的概念和带根本性的内容,建立了曲面的内在几何学。其主要思想是强调了曲面上只依赖于第一基本形式的一些性质,例如曲面上曲面的长度、两条曲线的夹角、曲面上的一区域的面积、测地线、测地线曲率和总曲率等等。他的理论奠定了近代形式曲面论的基础。 1872年克莱因在德国埃尔朗根大学作就职演讲时,阐述了《埃尔朗根纲领》,用变换群对已有的几何学进行了分类。在《埃尔朗根纲领》发表后的半个世纪内,它成了几何学的指导原理,推动了几何学的发展,导致了射影微分几何、仿射微分几何、共形微分几何的建立。特别是射影微分几何起始于1878年阿尔方的学位论文,后来1906年起经以威尔辛斯基为代表的美国学派所发展,1916年起又经以富比尼为首的意大利学派所发展。 随后,由于黎曼几何的发展和爱因斯坦广义相对论的建立,微分几何在黎曼几何学和广义相对论中的得到了广泛的应用,逐渐在数学中成为独具特色、应用广泛的独立学科。 微分几何学以光滑曲线(曲面)作为研究对象,所以整个微分几何学是由曲线的弧线长、曲线上一点的切线等概念展开的。既然微分几何是研究一般曲线和一般曲面的有关性质,则平面曲线在一点的曲率和空间的曲线在一点的曲率等,就是微分几何中重要的讨论内容,而要计算曲线或曲面上每一点的曲率就要用到微分的方法。 在曲面上有两条重要概念,就是曲面上的距离和角。比如,在曲面上由一点到另一点的路径是无数的,但这两点间最短的路径只有一条,叫做从一点到另一点的测地线。在微分几何里,要讨论怎样判定曲面上一条曲线是这个曲面的一条测地线,还要讨论测地线的性质等。另外,讨论曲面在每一点的曲率也是微分几何的重要内容。 在微分几何中,为了讨论任意曲线上每一点邻域的性质,常常用所谓“活动标形的方法”。对任意曲线的“小范围”性质的研究,还可以用拓扑变换把这条曲线“转化”成初等曲线进行研究。 在微分几何中,由于运用数学分析的理论,就可以在无限小的范围内略去高阶无穷小,一些复杂的依赖关系可以变成线性的,不均匀的过程也可以变成均匀的,这些都是微分几何特有的研究方法。 近代由于对高维空间的微分几何和对曲线、曲面整体性质的研究,使微分几何学同黎曼几何、拓扑学、变分学、李群代数等有了密切的关系,这些数学部门和微分几何互相渗透,已成为现代数学的中心问题之一。 微分几何在力学和一些工程技术问题方面有广泛的应用,比如,在弹性薄壳结构方面,在机械的齿轮啮合理论应用方面,都充分应用了微分几何学的理论。

对称性在积分中的应用毕业论文

设Ω为空间有界闭区域,f(x,y,z)在Ω上连续; 如果Ω关于xOy(或xOz或yOz)对称,且f(x,y,z)关于z(或y或x)为奇函数,则:∫∫∫f(x,y,z)dv=0.Ω 如果Ω关于xOy(或xOz或yOz)对称,Ω1为Ω在相应的坐标面某一侧部分,且f(x,y,z)关于z(或y或x)为偶函数,则:∫∫∫f(x,y,z)dV=2∫∫∫f(x,y,z)dvΩ Ω1 如果Ω与Ω’关于平面y=x对称,则:∫∫∫f(x,y,z)dv=∫∫∫f(y,x,z)dvΩ Ω’1

对称性是对某个参考物而言的。在空间中呈现大小相同但位置不同的特点即几何性质相同

1 先可以说一下对称性在生活中的应用2 再说说目前你知道的数学理论,包括国外的(这是研究导向)3 在中学数学中就主要是简单几何的本身对称和空间对称,还有就是函数中对称点,图的问题,抓住每个问 题具体分析一下,图文并茂,记得好好翻翻中学数学书啊 一定自己写出来,对你的思维有莫大的帮助

因为第一类曲线积分是与方向无关的,所以第一类曲线积分的对称性与被积函数本身的对称性是一致的,当然,所有对称性都是建立在积分域对称的前提下的.也就是说被积曲线需要关于x轴和y轴对称,这是使用对称性的前提.具体的用法是:如果积分区域关于x轴对称,函数关于y是奇函数,则积分为零,如果被积函数是偶函数,则积分为对称区域上(一半)的两倍.其余依次类推.

定积分的性质毕业论文

学位申请者为申请学位而提出撰写的学术论文叫学位论文。这种论文是考核申请者能否被授予学位的重要条件。学位申请者如果能通过规定的课程考试,而论文的审查和答辩合格,那么就给予学位。如果说学位申请者的课程考试通过了,但论文在答辩时被评为不合格,那么就不会授予他学位。有资格申请学位并为申请学位所写的那篇毕业论文就称为学位论文,学士学位论文。学士学位论文既是学位论文又是毕业论文。学术论文是某一学术课题在实验性、理论性或观测性上具有新的科学研究成果或创新见解的知识和科学记录;或是某种已知原理应用于实际中取得新进展的科学总结,用以提供学术会议上宣读、交流或讨论;或在学术刊物上发表;或作其他用途的书面文件。在社会科学领域,人们通常把表达科研成果的论文称为学术论文。 学术论文具有四大特点:①学术性 ②科学性 ③创造性 ④理论性一、学术性学术论文的科学性,要求作者在立论上不得带有个人好恶的偏见,不得主观臆造,必须切实地从客观实际出发,从中引出符合实际的结论。在论据上,应尽可能多地占有资料,以最充分的、确凿有力的论据作为立论的依据。在论证时,必须经过周密的思考,进行严谨的论证。二、科学性科学研究是对新知识的探求。创造性是科学研究的生命。学术论文的创造性在于作者要有自己独到的见解,能提出新的观点、新的理论。这是因为科学的本性就是“革命的和非正统的”,“科学方法主要是发现新现象、制定新理论的一种手段,旧的科学理论就必然会不断地为新理论推翻。”(斯蒂芬·梅森)因此,没有创造性,学术论文就没有科学价值。三、创造性学术论文在形式上是属于议论文的,但它与一般议论文不同,它必须是有自己的理论系统的,不能只是材料的罗列,应对大量的事实、材料进行分析、研究,使感性认识上升到理性认识。一般来说,学术论文具有论证色彩,或具有论辩色彩。论文的内容必须符合历史 唯物主义和 唯物辩证法,符合“实事求是”、“有的放矢”、“既分析又综合” 的科学研究方法。四、理论性指的是要用通俗易懂的语言表述科学道理,不仅要做到文从字顺,而且要准确、鲜明、和谐、力求生动。1.表论文的过程 投稿-审稿-用稿通知-办理相关费用-出刊-邮递样刊一般作者先了解期刊,选定期刊后,找到投稿方式,部分期刊要求书面形式投稿。大部分是采用电子稿件形式。 2.发表论文审核时间一般普通刊物(省级、国家级)审核时间为一周,高质量的杂志,审核时间为14-20天。 核心期刊审核时间一般为4个月,须经过初审、复审、终审三道程序。 3.期刊的级别问题 国家没有对期刊进行级别划分。但各单位一般根据期刊的主管单位的级别来对期刊划为省级期刊和国家级期刊。省级期刊主管单位是省级单位。国家级期刊主管单位是国家部门或直属部门。

定积分的性质:

1、当a=b时,

2、当a>b时,

3、常数可以提到积分号前。

定积分的正式名称是黎曼积分。用黎曼自己的话来说,就是把直角坐标系上的函数的图象用平行于y轴的直线把其分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。实际上,定积分的上下限就是区间的两个端点a,b。

定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系。

定积分的性质论文答辩

定积分内容是研究曲边梯形、变速行程等问题的有力工具,在对定义加深理解的基础上,我们还应了解一些定积分的基本性质.(由于这些性质的证明联系到大学《数学分析》的一些内容,所以对证明过程不作要求.) 一、定积分基本性质 假设下面所涉及的定积分都是存在的,则有 性质1 函数代数和(差)的定积分等于它们的定积分的代数和(差).即 . 这个性质可推广到有限多个函数代数和的情形. 性质2 被积函数的常数因子可以提到积分号前,即 ( 为常数). 性质3 不论 三点的相互位置如何,恒有 . 这性质表明定积分对于积分区间具有可加性.

定积分 众所周知,微积分的两大部分是微分与积分。微分实际上是求一函数的导数,而积分是已知一函数的导数,求这一函数。所以,微分与积分互为逆运算。 实际上,积分还可以分为两部分。第一种,是单纯的积分,也就是已知导数求原函数,而若F(x)的导数是f(x),那么F(x)+C(C是常数)的导数也是f(x),也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x),C是无穷无尽的常数,所以f(x)积分的结果有无数个,是不确定的,我们一律用F(x)+C代替,这就称为不定积分。 而相对于不定积分,就是定积分。 所谓定积分,其形式为∫f(x) dx (上限a写在∫上面,下限b写在∫下面)。之所以称其为定积分,是因为它积分后得出的值是确定的,是一个数,而不是一个函数。 定积分的正式名称是黎曼积分,详见黎曼积分。用自己的话来说,就是把直角坐标系上的函数的图象用平行于y轴的直线把其分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。实际上,定积分的上下限就是区间的两个端点a、b。 我们可以看到,定积分的本质是把图象无限细分,再累加起来,而积分的本质是求一个函数的原函数。它们看起来没有任何的联系,那么为什么定积分写成积分的形式呢? 定积分与积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的内容是: 若F'(x)=f(x) 那么∫f(x) dx (上限a下限b)=F(a)-F(b) 牛顿-莱布尼兹公式用文字表述,就是说一个定积分式的值,就是上限在原函数的值与下限在原函数的值的差。 正因为这个理论,揭示了积分与黎曼积分本质的联系,可见其在微积分学以至更高等的数学上的重要地位,因此,牛顿-莱布尼兹公式也被称作微积分基本定理。

定积分性质是:和差的定积分等于它的定积分的和差;积分中的常数因子可以外提;定积分的积分区间具有可加性。

定积分是把函数在某个区间上的图象[a,b]分成n份,用平行于y轴的直线把其分割成无数个矩形,再求当n→+∞时所有这些矩形面积的和。

习惯上,我们用等差级数分点,即相邻两端点的间距是相等的。但是必须指出,即使不相等,积分值仍然相同。

定积分的定理:

设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。

定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。

相关百科

热门百科

首页
发表服务