首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

生物遗传与变异论文参考文献汇总

发布时间:

生物遗传与变异论文参考文献汇总

1、通过遗传学研究人类起源2、在遗传学的指导下通过生物工程开发转基因作物3、基因治疗

遗传和变异是生物的基本特征之一。遗传通常指在传种接代过程中亲子代之间性状表现相似的现象。在遗传学中,遗传是指遗传物质的世代相传,亲代性状通过遗传物质传给子代的能力,称为遗传性。

变异一般指亲子代之间及其子代个体之间的性状差异。由遗传物质改变引起的性状变异,能够遗传给后代。生物体产生性状变异的能力,称为变异性。

生物的亲代能产生与自己相似的后代的现象叫做遗传。遗传物质的基础是脱氧核糖核酸(DNA),亲代将自己的遗传物质DNA传递给子代,

而且遗传的性状和物种保持相对的稳定性。生命之所以能够一代一代地延续的原因,主要是由于遗传物质在生物进程之中得以代代相承,从而使后代具有与前代相近的性状。

扩展资料:

遗传从现象来看是亲子代之间的相似的现象,即俗语所说的“种瓜得瓜,种豆得豆”。它的实质是生物按照亲代的发育途径和方式,从环境中获取物质,产生和亲代相似的复本。

遗传是相对稳定的,生物不轻易改变从亲代继承的发育途径和方式。因此,亲代的外貌、以及优良性状很有可能在子代重现,甚至酷似亲代。而亲代的缺陷和遗传病,同样也可能传递给子代。

遗传是一切生物的基本属性,它使生物界保持相对稳定,使人类可以识别包括自己在内的生物界。变异是指亲子代之间,同胞兄弟姊妹之间,以及同种个体之间的差异现象。俗语说“一母生九子,九子各异”。世界上没有两个绝对相同的个体,包括挛生同胞在内,这充分说明了遗传的稳定性是相对的,而变异是绝对的。

参考资料:百度百科-遗传变异

鱼会说话吗? 您相信鱼会说话吗?这是一个耐人寻味的事,我想知道鱼是否会说话? 我家买了两条小金鱼,一条是全黑的,黑的叫乐乐,因为它很快乐。一条红白相间的名字叫欣欣,因为它懂得欣赏,很好玩吧!他俩生活在鱼缸里,这个鱼缸可“非比寻常”。里面有山、花、树、贝壳、彩色石头……。很美吧!让我们一起来观察它! 9月23日凌晨五点左右,我正要去喂食,我看见这么一个现象,我把鱼食撒到鱼缸里,乐乐吃了一点就不吃了。 9月23 日傍晚5 点15分,我看见鱼缸里的贝壳反过来了,小欣欣看见了,好像以为它——这个小贝壳要死了,连忙游过去,用它的头去抵,抵了近三、四分钟,它就不抵了,它游到乐乐旁边,用自己的尾巴扫了扫乐乐,然后互相碰了一下头,乐乐和欣欣一起游过去,把那块贝壳一起弄回原样了,这一点证明了“团结力量大”。 通过两次的观察,让我知道了人类有人类的表达方式和交流语言,动物也有自己王国的表达方式和交流,这也告诉了我们,如果你不团结,那么你将一无所有,朋友之间的友谊真伟大。同时,我们也要多观察,多发现,但是不能因为你在动物身上作试验,就伤害小动物,因为动物是人类的朋友。 蚂蚁为什么不会迷路? 蚂蚁,相信大家都很熟悉。那又有谁能真正地了解蚂蚁呢?蚂蚁为什么不会迷路呢? 带着这个问题,我查阅了一些书籍。书上说,蚂蚁从蚁穴出发到达目的地后,沿途会留下一些气味,返回蚁穴。用触角相互碰一下,通知其他的蚂蚁。科学家曾经就这个问题作了一个试验。科学家先确定一只蚂蚁,将他沿途到达目的地的地方用力擦干净。当这只蚂蚁返回时,在被擦去气味的地方突然间停了下来。原地边转圈边寻找着什么。从而得到蚂蚁是靠气味来辨别方向的。 我为了证实这个结论,我做了个试验。我首先准备了一个十厘米左右的细小树枝,在树枝的一头放上一个诱饵——小糖果。我把这个装置放在一个蚁穴附近。不一会儿,有一只蚂蚁出来探路了。我把他引上木棍后,他到达了糖果的地方,仿佛在闻一闻、嗅一嗅。我趁此机会将木棍的中断部分截下一厘米的木棍。当这只蚂蚁返回的时候,就在被截去的地方左转右转,就是找不到回家的路。 过了一会儿,我又重复了上面的试验,蚂蚁仍然没有找到回家的路。 通过这两次实验,我终于知道蚂蚁为什么不会迷路的秘密了。原来蚂蚁是根据气味来辨别方向的。 知道了蚂蚁的这一秘密后,我在想:是否我们可以制作一种蚂蚁报警器呢?当蚂蚁走到报警器附近时,报警器就能“闻”出蚂蚁的气味,然后发出鸣叫声,让我们知道蚂蚁跑到橱柜里了或其他地方 “同学们,蛋壳都带来了吗?”老师问。“带来了!”我们异口同声地回答。 为了今天的科学课,老师让我们带蛋壳来。带蛋壳做什么呢?是做不倒翁吗?我们都很好奇。 “今天,我们要用这两个半截蛋壳做一个小实验。做之前,请大家先猜猜,我用这枝铅笔朝着蛋壳垂直往下刺,是口朝上的蛋壳先破呢,还是口朝下的蛋壳先破?”“当然是口朝下的先破!”大多数同学都抢着回答。“口朝上的先破!”同桌偏要和大家作对。老师微笑着说:“那好,下面我们就来做做实验,看谁的答案才是正确的。” 老师叫了一名同学上讲台,让他用铅笔对准自己手上口朝上的蛋壳。老师一声令下,同学手一放,铅笔刺到了蛋壳上,蛋壳没有破。老师又让他试了几次,铅笔第三次刺下的时候,终于刺破了蛋壳。接着,老师又让他用铅笔刺口朝下的蛋壳。“一下、两下、三下……”我们一起数着;但那半个蛋壳就像穿了盔甲一样,被刺了十几下还是不破。 “耶!我猜对了!”同桌高兴得手舞足蹈。虽然我们都不服气,但经过多次试验,我们发现,同样的两个半边蛋壳,用铅笔垂直去刺,的确是口朝上的比较容易破。老师告诉我们,这是因为口朝上的蛋壳受力比较集中,而口朝下的蛋壳受力分散,所以就比较坚固。难怪建筑工地里的工人叔叔们都戴着口朝下的安全帽,原来就是这个道理啊!

树干为什么是圆的在观察大自然的过程中我偶然发现,树干的形态都近似圆的——空圆锥状。树干为什么是圆锥状的?圆锥状树干有哪些好处?为了探索这些问题,我进行了更深入的观察、分析研究。 我查阅了有关资料,了解到植物的茎有支持植物体、运输水分和其他养分的作用。树木的茎主要由维管束构成。茎的支持作用主要由木质部木纤维承担,虽然木本植物的茎会逐年加粗,但是在一定时间范围内,茎的木纤维数量是一定的,也就是树木茎的横截面面积一定。接着,我们围绕树干横截面面积,假设树干横截面长成不同形状,设计试验,探索树干呈圆锥状的原因和优点。 经过实验,我发现:1.横截面积和长度一定时,三棱柱状物体纵向支持力最大,横向承受力最小;圆柱状物体纵向支持力不如三棱柱状物体,但横向承受力最大;等质量不同形状的树干,矮个圆锥体形树干承受风力最大;2.风是一种自然现象,影响着树木横截面的形状和树木生长的高矮。近似圆锥状的树干,重心低,加上庞大根系和大地连在一起,重心降得更低,稳度更大;3.树干横截面呈圆形,可以减少损伤,具有更强的机械强度,能经受住风的袭击。同时,受风力的影响,树干各处的弯曲程度相似,不管风力来自哪个方向,树干承受的阻力大小相似,树干不易受到破坏。 以上的实验反映了自然规律、自然界给我们启示:横截面呈三角形的柱状物体,具有最大纵向支持力,其形态可用于建筑方面,例如角钢等;横截面是圆形的圆状物体,具有最大的横向承受力,类似形态的建筑材料随处可见,如电视塔、电线杆等。 在我的观察、试验和分析过程中,逐渐解释、揭示了树干呈圆锥状的奥秘,增长了知识,把学到的知识联系实际加以应用,既巩固了学到的知识,又提高了学习的兴趣,还初步学会了科学观察和分析方法。

遗传与变异论文1500字

遗传与变异 ---新形式下的基因突变 ( 2005动物科学院 X X X ) 摘要:染色体:1、染色体的结构 有丝分裂中期,每一染色体都具有两条染色单体,称为姐妹染色体。两单体之间由着丝粒连接,着丝粒处凹陷缩窄,称初级缢痕。着丝粒将染色体划分为短臂(p)和长臂(q)。在短臂和长臂的末端分别有一特化部位称为端粒。某些染色体的长、短臂上还可见凹陷缩窄的部分,称为次级缢痕。人类近端着丝粒染色体的短臂末端有一球形结构,称为随体。2、染色体的类型 人类染色体分为三种类型:中着丝粒染色体、亚中着丝粒染色体和近端着丝粒染色体。3、染色体的数目 人类体细胞(二倍体细胞,2n)染色体数目为46条(23对,2n=46),其中22对为常染色体,1对为性染色体(女性的两条性染色体为形态相同的XX染色体;男性只有一条X染色体,另一条是较小的Y染色体);正常生殖细胞(单倍体细胞,n)是23条染色体(n=23)。 关键词:遗传;变异;基因突变 遗传从现象来看是亲子代之间的相似的现象,即俗语所说的“种瓜得瓜,种豆得豆”。它的实质是生物按照亲代的发育途径和方式,从环境中获取物质,产生和亲代相似的复本。 遗传是相对稳定的,生物不轻易改变从亲代继承的发育途径和方式。因此,亲代的外貌、行为习性,以及优良性状可以在子代重现,甚至酷似亲代。而亲代的缺陷和遗传病,同样可以传递给子代。 遗传是一切生物的基本属性,它使生物界保持相对稳定,使人类可以识别包括自己在内的生物界。 变异是指亲子代之间,同胞兄弟姊妹之间,以及同种个体之间的差异现象。俗语说“一母生九子,九子各异”。世界上没有两个绝对相同的个体,包括挛生同胞在内,这充分说明了遗传的稳定性是相对的,而变异是绝对的。 生物的遗传与变异是同一事物的两个方面,遗传可以发生变异,发生的变异可以遗传,正常健康的父亲,可以生育出智力与体质方面有遗传缺陷的子女,并把遗传缺陷(变异)传递给下一代。 遗传和变异的物质基础 生物的遗传和变异是否有物质基础的问题,在遗传学领域内争论了数十年之久。 在现代生物学领域中,一致公认生物的遗传物质在细胞水平上是染色体,在分子水平上是基因,它们的化学构成是脱氧核糖核酸(DNA),在极少数没有DNA的原核生物中,如烟草花叶病毒等,核糖核酸(RNA)是遗传物质。 真核生物的细胞具有结构完整的细胞核,在细胞质中还有多种细胞器,真核生物的遗传物质就是细胞核内的染色体。但是, 细胞质在某些方面也表现有一定的遗传功能。人类亲子代之间的物质联系是精子与卵子,而精子与卵子中具有遗传功能的物质是染色体,受精卵根据染色体中DNA蕴藏的遗传信息,发育成和亲代相似的子代。 一、遗传与变异的奥秘 俗话说“种瓜得瓜,种豆得豆”,这是生物遗传的根本特征。人类与其他生物一样,在世代的交替中,子女(子代)总是保持着父母(亲代)的某些基本特征,这种现象就是遗传。但子代又会与亲代有所差异,有的差异还很明显。子代与亲代的这植钜炀褪潜湟臁R糯�捅湟焓巧��淖罨�咎卣髦�唬�ü��镆淮��姆敝程逑殖隼础?遗传和可以遗传的变异都是由遗传物质决定的。这种遗传物质就是细胞染色体中的基因。人类染色体与绝大多数生物一样,是由DNA(脱氧核糖核酸)链构成的,基因就是在DNA链上的特定的一个片段。由于亲代染色体通过生殖过程传递到子代,这就产生了遗传。染色体在生物的生活或繁殖过程中也可能发生畸变,基因内部也可能发生突变,这都会导致变异。 如遗传学指出:患色盲的父亲,他的女儿一般不表现出色盲,但她已获得了其亲代的色盲基因,她的下一代中,儿子将因获得色盲基因而患色盲。 我们观察我们身边很多有生命的物种:动物、植物、微生物以及我们人类,虽然种类繁多,但在经历了很多年后,人还是人,鸡还是鸡,狗还是狗,蚂蚁、大象、桃树、柳树以及各种花草等等,千千万万种生物仍能保持各自的特征,这些特征包括形态结构的特征以及生理功能的特征。正因为生物界有这种遗传特性,自然界各种生物才能各自有序地生存、生活,并繁衍子孙后代。 大家可能会问,生物是一代一代遗传下来,每种生物的形态结构以及生理功能应该是一模一样的,但为什么父母所生子女,一人一个样,一人一种性格,各有各自的特征。又如把不同人的皮肤或肾脏等器官互相移植,还会发生排斥现象,彼此不能接受,这又如何解释呢?科学家研究的结果告诉我们,生物界除了遗传现象以外还有变异现象,也就是说个体间有差异。例如,一对夫妇所生的子女,各有各的模样,丑陋的父母生出漂亮的孩子,平庸的父母生出聪明的孩子,这类情况也并不罕见。全世界恐怕很难找出两个一模一样的人,既使是单卵双生子,外人看起来好像一模一样,但是与他们朝夕相处的父母却能分辨出他们之间的微细差异,这种现象就是变异。人类中多数变异现象是由于父母亲遗传基因的不同组合。每个孩子都从父亲那里得到遗传基因的一半,从母亲那里得到另一半,每个孩子所得到的遗传基因虽然数量相同,但内容有所不同,因此每个孩子都是一个新的组合体,与父母不一样,兄弟姐妹之间也不一样,而形成彼此间的差异。正因为有变异现象,人类才有众多的民族。人们可以很容易地从人群中认出张三、李四,如果没有变异,大家全都是一个样子,社会上的麻烦事就多了。除了外形有不同,变异还包括构成身体的基本物质--蛋白质也存在着变异,每个人都有他自己特异的蛋白质。所以,如果皮肤或器官从一个人移植到另一个人身上便会发生排斥现象,这就是因为他们之间的蛋白质不一样的缘故。 还有一类变异是遗传基因的突变,这类突变往往是由环境中的条件所诱发的,这种突变的基因还可以遗传给下一代。许多基因突变的结果会造成遗传病。 变异也可以完全由环境因素所造成,例如患小儿麻痹症后遗的跛足,感染大脑炎后形成的痴呆等这些性状都是由环境因素所造成的,是因为病毒感染使某些组织受损害,造成生理功能的异常,不是遗传物质的改变,所以不是遗传的问题,因此也不会遗传给下一代。 总之,遗传与变异是遗传现象中不可分离的两个方面,我们有从父母获得的遗传物质,保证我们人类的基本特征经久不变。在遗传过程中还不断地发生变异,每个人又在一定的环境下发育成长,才有了人类的多种多样。 二、遗传变异的科学理论 1.1遗传的分子基础 (一)遗传物质的存在形式 (1)染色体是遗传物质的载体,遗传信息以基因的形式蕴藏于DNA分子中; (2)每个人体体细胞含两个染色体组,每个染色体组的DNA构成一个基因组; (3)广义的基因组包括细胞核染色体基因组和线粒体基因组; (4)人类细胞核染色体基因组中90%左右为DNA重复序列,10%为单一序列; (5)多基因家族是真核基因组中重要的结构之一。 (二)基因的结构及其功能 1.2、真核生物基因的分子结构 (1)、基因的DNA序列由编码序列和非编码序列两部分构成,编码序列是不连续的,被非编码序列分隔开,形成镶嵌排列的断裂形式,因此称为断裂基因;编码序列称为外显子,非编码序列称为内含子; (2)、在每个外显子和内含子的接头区存在高度保守的一致序列,称为外显子-内含子接头,即在每个内含子的5’端开始的两个核苷核为GT,3’端末尾是AG,特称之为GT-AG法则; (3)、真核生物基因的大小相关悬殊,外显子和内含子的关系也不是固定不变的; (4)、DNA分子两条链中,5’→3’链称为编码链,其碱基排列序列中储存着遗传信息;3’→5’链称为反编码链,是RNA合成的模板; (5)、每个断裂基因中第一个外显子和最后一个外显子的外侧都有一段不被转录的非编码区,称为侧翼序列,其上有一系列调控序列,对基因的表达起调控作用。这些结构包括: ①启动子:位于基因转录起始处,是RNA聚合酶的结合部位,能启动基因转录。 ②增强子:位于基因转录起始点的上游或下游,能增强启动子转录,提高转录效率; ③终止子:位于3’端非编码区下游的一段序列,在转录中提供转录终止信号。 1.3、基因的复制 (1)、基因的复制是以DNA复制为基础的,每个DNA分子上有多个复制单位(复制子); (2)、每个复制子有一个复制起点,从起点开始双向复制,在起点两侧各形成一复制叉; (3)、DNA聚合酶只能使DNA链的3’端加脱氧核苷核,故复制只能沿5’→3’方向进行; (4)、与复制叉同向的新链复制是连续的,速度也较快,称为前导链;与复制叉反向的新链复制是不连续的(先要在RNA引物存在下合成一个个冈崎片段,然后在DNA连接酶作用下补上一段DNA),速度也较慢,称为后随链;故DNA的复制是半不连续复制; (5)、复制后的DNA分子都含有一条旧链和一条新链,故DNA的复制又是半保留复制。 1.4、基因的表达 基因表达是DNA分子中所蕴藏的遗传信息通过转录和翻译形成具有生物活性的蛋白质或通过转录形成RNA发挥功能作用的过程。 (1)、转录:是在RNA聚合酶催化下,以DNA为模板合成RNA的过程。 ①新合成好的RNA称为不均一核RNA(也叫核内异质RNA,hnRNA); ②hnRNA要经过“戴帽”和“加尾”以及剪接等加工过程才能形成成熟的mRNA。 (2)、翻译:是以mRNA为模板指导蛋白质合成的过程。 ①mRNA分子中每3个相邻的碱基为三联体,能决定一种氨基酸,称为密码子; ②翻译后的初始产物大多无功能,需经进一步加工才可成为有一定活性的蛋白质。 1.5、基因表达的调控(了解操纵子学说) 1.6、基因的突变 (1)、基因突变的概念:基因突变是DNA分子中的核苷核序列发生改变,导致遗传密码编码信息改变,造成基因表达产物蛋白质的氨基酸变化,从而引起表型的改变。 (2)、基因突变的方式 ①碱基替换 也叫点突变,包括转换和颠换两种方式。其后果可以造成同义突变、错义突变、无义突变或终止密码突变(延长突变)等生物学效应。 ②移码突变 是DNA分子中某一位点增加或减少一个或几个碱基对,造成该位点以后的遗传编码信息全部发生改变。 ③动态突变 微卫星DNA或短串联重复序列,尤其是三核苷酸的重复,在靠近基因或位于基因序列中时,其重复次数在一代一代的传递中会出现明显增加的现象,导致某些遗传病的发生。 (3)、基因突变的修复 ①切除修复 是一种多步骤的酶反应过程,首先将受损的DNA部位切除,然后再合成一个片段连接到切除的部位以修补损伤。 ②重组修复 又称复制后修复,是在DNA受损产生胸腺嘧啶二聚体(T-T)以后,当DNA复制到损伤部位时,再与T-T相对应的部位出现切口,完整的DNA链上产生一个断裂点。此时,在重组蛋白作用下,完整的亲链与有重组的子链发生重组,亲链的核苷酸片段补充了子链上的缺失。重组后亲链的切口在DNA聚合酶作用下,以对侧子链为模板,合成单链DNA片段来填补,随后在DNA连接酶作用下,以磷酸二酯键使新片段与旧链相连接,而完成修复过程。 2、遗传的细胞基础 染色质:在间期细胞核,染色质的功能状态不同,折叠程度也不同,分为常染色质和异染色质两种。1、常染色质 在细胞间期处于解螺旋状态,具有转录活性,呈松散状,染色较浅;2、异染色质 在细胞间期处于凝缩状态,很少进行转录或无转录活性,染色较深;3、性染色质 在间期细胞核中染色体的异染色质部分显示出来的一种特殊结构,有两种:(1)、X染色质 正常女性间期细胞核中有一个染色较深,大小约为10nm的椭圆形小体(了解Lyon假说)。(2)、Y染色质 正常男性间期细胞核用荧光染料染色后,核内可见一个圆形或椭圆形的强荧光小体,直径为3nm左右。 染色体:1、染色体的结构 有丝分裂中期,每一染色体都具有两条染色单体,称为姐妹染色体。两单体之间由着丝粒连接,着丝粒处凹陷缩窄,称初级缢痕。着丝粒将染色体划分为短臂(p)和长臂(q)。在短臂和长臂的末端分别有一特化部位称为端粒。某些染色体的长、短臂上还可见凹陷缩窄的部分,称为次级缢痕。人类近端着丝粒染色体的短臂末端有一球形结构,称为随体。2、染色体的类型 人类染色体分为三种类型:中着丝粒染色体、亚中着丝粒染色体和近端着丝粒染色体。3、染色体的数目 人类体细胞(二倍体细胞,2n)染色体数目为46条(23对,2n=46),其中22对为常染色体,1对为性染色体(女性的两条性染色体为形态相同的XX染色体;男性只有一条X染色体,另一条是较小的Y染色体);正常生殖细胞(单倍体细胞,n)是23条染色体(n=23)。 (三)人类的正常核型:色体数目、形态结构特征的分析叫核型分析。1、非显带核型 根据丹佛体制,将正常人类体细胞的46条染色体分为23对7个组(A、B、C、D、E、F和G组)。在描述一个核型时,首先写出染色体总数(包括性染色体),然后是一个“,”号,最后是性染色体。正常男性核型描述为46,XY;女性为46,XX。2、显带核型 用各种特殊的染色方法使染色体沿长轴显现出一条条明暗交替或深浅相间的带,故又叫带型。根据ISCN规定,描述一特定带时,需要写明4项内容:①染色体号;②臂号;③区号;④带号。 遗传的基本规律:孟德尔提出的分离定律和自由组合定律以及摩尔根提出的连锁与交换定律构成了遗传的基本规律,通称为遗传学三大定律。分离律说的是遗传性状有显隐性之分,这样具有明显显隐性差异的一对性状称为相对性状。相对性状中的显性性状受显性基因控制,隐性性状由一对纯合隐性基因决定。杂合体往往表现显性基因的性状。基因在体细胞中成对存在,在形成配子时,彼此分离,进入不同的子细胞。减数分裂时同源染色体彼此分离,分别进入不同的生殖细胞是分离律的细胞学基础。自由组合律是说生物在形成配子时,不同对基因独立行动,可分可合,以均等的机会组合到同一个配子中去。减数分裂过程中非同源染色体随机组合于生殖细胞是自由组合律的细胞学基础。连锁与交换律是说位于同一条染色体上的基因是互相连锁的,它们常一起传递(连锁律),但有时也会发生分离和重组,是因为同源染色体上的各对等位基因进行了交换。减数分裂中,同源染色体联会和交换是交换律的细胞学基础。 单基因性状的遗传:遗传性状受一对基因控制的,称单基因性状的遗传。单基因性状又叫质量性状。1、决定某种遗传性状的等位基因,在传递时服从分离律;2、当决定两种遗传性状的基因位于不同对染色体上时,这两种单基因性状的传递符合自由组合律。3、如果决定两种遗传性状的基因位于同一对染色体上时,它们的传递将从属于连锁与交换律。 多基因性状的遗传:由多基因控制的性状往往与单基因性状不同,其变异往往是连续的量的变异,称为数量性状。每对基因对多基因性状形成的效应是微小的,称为微效基因。微效基因的效应往往是累加的。多基因遗传性状除受多基因遗传基础影响外,也受环境因素影响。(熟悉多基因遗传假说,了解多基因遗传的特点) 遗传的变异:(一)染色体异常与疾病;染色体异常类;形成机; 数目畸变 整倍性改变 单倍体 多倍体 双雄受精,双雄受精,核内复制 非整倍性改变 亚二倍体 染色体不分离,染色体丢失 超二倍体 结构畸变 缺失(del) 受多种因素影响,如物理因素、化学因素和生物因素等 重复(dup) 倒位(inv) 易位(t) 环状染色体 双着丝粒染色体 等臂染色体 1、一个个体内同时存在两种或两种以上核型的细胞系,这种个体称嵌合体。 2、染色体结构畸变的描述方式有简式和详式两种。 (二)人类的单基因遗传病1、常染色体显性遗传(AD)病 (1)、AD系谱特点:①致病基因位于常染色体上,遗传与性别无关;②患者双亲中至少有一方是患者,但多为杂合体;③患者与正常个体结婚,后代有1/2的发病风险;④系谱中可看到连续传递现象。 (2)、其它AD类型:①不完全显性或半显性,是指杂合体的表现型介于显性纯合体与隐性纯合体的表现型之间;②不规则显性,是指杂合体由于某种原因不一定表现出相应的症状,即使发病,但病情程度也有差异;③共显性,是指一对等位基因无显隐性之分,杂合状态下,两种基因的作用都能表现出来;④延迟显性,有显性致病基因的杂合体在生命早期不表现出相应症状,当到一定年龄后,其作用才表达出来。 2、常染色体隐性遗传(AR)病 (1)、AR系谱特点:①致病基因的遗传与性别无关,男女发病机会均等;②患者双亲往往表型正常,但都是致病基因的携带者,患者的同胞中约有1/4的可能将会患病,3/4表型正常,但表型正常者中2/3是可能携带者;③系谱中看不到连续传递现象,常为散发;④近亲婚配后代发病率比非近亲婚配后代发病率高。 (2)、常见AR病:苯丙酮尿症、白化病、先天性聋哑、高度近视和镰状细胞贫血等。 3、X连锁显性遗传(XD)病 (1)、XD系谱特点:①系谱中女性患者多于男性患者,且女患者病情较轻;②患者双亲中至少有一方是患者;③男性患者后代中,女儿都为患者,儿子都正常;女性患者后代中,子女各有1/2的患病风险;④系谱中可看到连续传递现象。 (2)、常见XD病:抗维生素D性佝偻病。 4、X连锁隐性遗传(XR)病 (1)、XR系谱特点:①人群中男性患者远多于女性患者;②双亲无病时,儿子可能发病,女儿则不会发病;③由于交叉遗传,患者的兄弟、舅父、姨表兄弟和外甥各有1/2的发病风险;④如果女性是患者,父亲一定是患者,母亲一定是携带者或患者。 (2)、常见XR病:甲型血友病、红绿色盲。 5、Y连锁遗传(YL)病 全男性遗传 (三)多基因遗传病 1、有关多基因遗传病的几个重要概念 (1)、易感性 在多基因遗传病中,由多基因遗传基础决定某种多基因病发病风险高低。 (2)、易患性 由遗传基础和环境因素共同作用,决定了一个个体是否易于患病。 (3)、发病阈值 当一个个体的易患性高达一定水平即达到一个限度时,这个个体就将患病,这个易患性的限度称为阈值。 (4)、遗传度 在多基因遗传病中,易患性受遗传基础和环境因素的双重影响,其中遗传基础所起作用大小的程度称为遗传度或遗传率。一般用百分率(%)来表示。 2、多基因遗传病的特点 (1)、有家族聚集倾向,患者亲属的发病率高于群体发病; (2)、随着亲属级别的降低,患者亲属的发病风险迅速降低; (3)、近亲婚配时,子女患病风险增高; (4)、发病率有种族(或民族)差异。 三、遗传与变异在当代 人类基因组计划的工作草图已于今年的6月26日绘制完成,但要将全部30多亿个碱基完全装配完成还需要一段时间,预计要到明年的6月份。即使完成了人类基因组计划的“精图”,也只是我们认识人类基因功能的开始,完全弄清基因的功能及其相互间的作用,至少还要40年的时间。毋庸赘言,这是一项浩繁巨大的工程。 迄今为止,人们对整个人类基因组中所含有的基因数目尚存争议,有人说是3万,有人说是14万,相差非常大。在整个人类基因组序列中,只存在1%的差异,就是这1%的差异导致了人种、肤色、身高、眼睛、胖瘦以及疾病的易感性等方面的不同。科学家除继续研究基因的数量和功能外,基因在多大程度上受外界环境和体内因素的影响以及这种改变是否可以一代代地延续下去,也是需要解决的问题。 上述问题涉及到后成说(epigenetics)这一范畴。后成说是研究通过其他的化学途径,而不是通常所说的碱基突变,使基因活性发生半永久性改变的一门科学。后成说的重要性一直存有很大争议。如果后成说真有科学依据的话,那么它将是解释不同个体之间,甚至不同物种之间存在差异的关键所在,同时还将是疾病发生的一个重要机制。 不同基因的表达:基因含有合成蛋白质的指令,蛋白质合成的过程称为基因表达。但是遗传学家们很早以前就知道通过对DNA链碱基上的化学基团进行修饰来调控基因表达、影响蛋白质的合成。最常见的修饰方式是基因的甲基化(甲基是由一个碳原子和三个氢原子组成的基团),即在基因上添加甲基基团,结果常常会终止基因表达。 科研人员通过对某些哺乳动物的研究发现,此类修饰只存在于个体中,而不遗传给后代,因为这种修饰在精子和卵子细胞中常常被清除。最近有人发现,后成特征在小鼠中可以遗传。在悉尼大学生化学家怀特劳博士所做的实验中,遗传学相同的小鼠,同其父母相比,更像它们的母亲。因为它们继承了其母亲的卵子DNA的甲基化类型。该型甲基化在决定小鼠毛色中起着非常重要的作用。 怀特劳博士小组的大量的研究数据表明,要探明动物是如何把物理特征或疾病易感性传给后代的,有必要先搞清可遗传的后成特征。如果后成特征可遗传,那么这些特征所引起的疾病应能够像普通的基因突变一样在家系之间传递。该研究小组对小鼠的后成标记在传代过程中如何关闭和表达进行了深入地研究。研究人员将一个可以产生特异类型红细胞的基因(称为转基因)导入具有相同遗传学特征小鼠的基因组中(接受该基因的小鼠称之为转基因鼠)。研究发现这些转基因小鼠体内的转基因正以不同的方式表达。有些转基因小鼠体内40%的红细胞表达该基因,而另一些则根本就不表达。同时该小组还对小鼠毛色进行了研究,发现与毛色有关的DNA甲基化增高与转基因的不表达(或称为“沉默”表达)有关。但是在这种情况下,后成性改变可来自父方,也可以来自母方。 令人费解的是,虽然这种基因表达的沉默现象至少可以维持三代,但不是不可逆转的。在该型的后代小鼠与非同类小鼠交配时,发现在后代小鼠中不存在甲基化和表达沉默现象,转基因又可在小鼠的幼崽中获得表达。如果这种基因沉默和再活化现象是自然发生的话,那么就可以解释个体之间和代与代之间差异的原因。 后成说还可以解释物种之间的差异。最近普林斯顿大学的迪尔格曼通过两种相近小鼠的交配,将多个小鼠基因上的后成特征破坏。这些小鼠相互之间不能进行正常的交配,并且它们杂交的后代表现为生长异常。研究人员认为这种生长异常与杂交后代基因上的甲基化模式破坏有关。他们推测后成性效应非常显著,仅靠改变这些特征就可以造就新物种。 大家都知道,物种的产生是遗传变异逐渐积累的结果。但是,迪尔格曼认为有些物种出现之快不是该假说所能解释的。所以物种后成说的假设有一定优势。例如,甲基化可以迅速地关闭整条基因的表达,并引起根本的改变。这种改变足以阻止新的品种与旧品种之间的杂交,尤其是阻止新物种的产生。 四、结论 变异基因的表达:许多生物学家对此种假说表示不屑。基因序列虽不能完全解释动物的特征,但是至少可以解释一些由基因突变所引起的疾病。 疾病基因突变假说的倡导者把癌症作为经典的实例,来说明在个体DNA水平上,到底有多少碱基差错才能导致肿瘤。但加州大学伯克利分校的杜斯博格博士不同意这一观点,认为癌症并不是由基因异常引起的,而是由另一形式的后成现象 染色体异常引起的。 根据癌症基因突变假说,指导细胞分裂和死亡的基因突变使正常的细胞分裂和死亡过程遭到破坏,导致细胞不受控制地生长。但是,最近杜斯博格博士领导的研究小组报道,至今还没有人证实突变的基因会使正常的细胞变为癌细胞。他还指出,如果突变基因对细胞分裂具有显著影响的话,为什么有些情况下,突变发生的数月甚至数年后才发展为癌症,这是非常奇怪的现象。他认为可以用后成性非整倍现象对上述问题加以解释,非整倍性是指细胞具有错误的染色体个数。 在细胞分裂时,染色体排列整齐,通过纺锤体(一种蛋白质的支架)分配到子代细胞中。杜斯博格推测,致癌的化学物质可以影响纺锤体,因此,造成子代细胞具有或多或少的染色体。由于这种错误分配的染色体不稳定,细胞分裂时染色体之间相互混合并发生非自然的重组。 大多数重组对细胞而言是至关重要的,但最终会产生一个分裂异常的细胞。产生这种异常细胞的概率非常小,这种低概率事件可以解释为什么从接触致癌物质到细胞发生癌变,要经过这么长时间。细胞的非整倍性是5000多种肿瘤的一种显著特征。 与个体碱基突变相比,染色体数的增加或减少使细胞表征发生显著改变。因为染色体数目的改变(即非整倍性),可以导致成千上万种蛋白质活性发生改变,而不仅仅是一种或两种蛋白质,导致细胞分裂的失控。假如这种假说成立的话,那么现在试图通过定点修复癌基因来治疗癌症的策略将毫无效果。 杜斯博格博士10年前曾因自己的假说而声名狼藉,他认为人类免疫缺陷病毒(HIV)并不能引起艾滋病。一系列的HIV和艾滋病的研究表明,杜斯博格的理论是极其荒谬的。这严重地损害了他的声誉,因此,他的其他理论也很容易被人忽视。但是,他的非整倍性假说似乎非常有价值。癌症中非整倍体的普遍性尚需进一步阐明。

医学遗传学论文

遗传学是研究生物体遗传和变异的科学,遗传学是生物学的重要分支和核心学科,并且是生命科学最具活力的领域之一。以下是我整理的医学遗传学论文,欢迎阅读。

1 医学遗传学课程特点

医学遗传学是医学与遗传学相结合的一门边缘学科,是遗传学知识在医学领域中的应用。它以生物、生化、病理、生理等学科的理论为基础,研究人类疾病的发生发展与遗传因素的关系,提供诊治、预防遗传病的科学依据及手段,从而改善人类健康素质。具有内容繁杂、实践性强、多学科交叉等特点。医学遗传学课程设置的内容存在递进关系、相辅相成,因此设置综合考试来考查学生对所学知识的综合运用能力是非常有必要的。

2 改革医学遗传学考试方式的必要性

传统教育理念与现代教育理念的一个重要区别是采取应试教育,还是素质教育。传统考试重识记轻能力, 往往局限于教材, 多以记忆性、上课重点为主。存在问题一是考试方式单一。二是“一考定终生”的弊端,不能客观反映每一位学生真实的学习的质量、效果和能力,带有某种投机性和偶然性,导致部分学生平时松,考前“临时抱佛脚”取得合格的分数,掩盖了教学中存在的问题,不利于教学质量的改进和提高。有些学生考试作弊,损害了考试的公平性,还对学习风气造成不良影响。另外学生考前心理负担过重,尤其是考前1 周, 学生不眠不休, 影响身心健康, 不利于创新型人才的培养。

医学遗传学已从单纯的理论型学科向理论与实践相结合的综合性学科发展,为培养复合型人才,必须探索一种更加系统、科学的考试方式,用于强化考试在教学过程中所起的评定、诊断作用,强化考试的检测功能和反馈功能,强化考试对师生的激励作用,从而培养学生的综合能力,激发学生的学习热情,避免重结果轻能力的倾向。

3 医学遗传学课程考试制度改革的主要思路

3.1 改革考试形式 在考核方法的选择上,采用灵活多样的考试方式,构成“形成性评价与终结性评价相结合”的考核与评价体系,即理论与实践相结合,技能与态度相结合,笔试、口试与操作相结合,开卷与闭卷相结合。因此将整个考试结构设置为:笔试(60%)、口试(15%)、操作(20%)、写作(5%)4个部分。

笔试包括章节性考试和期终考试的笔试成绩。教师可根据需要在某个章节学习结束后进行一次笔试测验,组成一个形成性考核的笔试成绩,这个成绩再与期终考试成绩结合起来,作为本部分成绩。

口试包括课堂提问、课堂表现、课堂纪律和课堂病例讨论的成绩。课堂提问反映学生自主学习的情况,能够检验课前预习、课堂学习、课后复习3 个方面的学习效果,易实施,操作性强,突出学习的过程,培养学生良好的.学习习惯,避免不良风气。课堂表现、课堂纪律反映学生的学习态度。课堂病例讨论, 主要讨论典型病例, 目的是让学生了解病例讨论的过程、步骤及如何运用所学知识分析问题、解决问题,以自由编组,随机抽题,口头回答的方式进行考核,有助于培养和提高学生的合作能力、参与能力、自主学习能力、自我管理能力和创新能力。

操作包括实训操作和实验报告的成绩。在整个实验课学习过程中,提供给每个学生实训操作机会,教师作为督导,从认真态度、严谨作风、职业素质、团队意识等方面进行考核,再根据完成实验报告的质量,评定每次实验成绩,取平均值作为此部分的成绩。

写作主要是指撰写小综述、小论文、翻译文献的成绩。初步培养学生的科研论文写作能力,从学生的自主态度、参与程度、完成质量、论文答辩水平等方面评定成绩。

3.2 转变教育思想观念 高等教育的目的是传授知识和培养学生的能力,由注重考核书本知识向注重学生知识、能力、素质综合考核转变;由笔试闭卷考试为主向灵活多样的考试方法转变;由重视一次性终结考试向注重全程性考核转变;传统教学以“传授知识为主”向现代教学以“培养能力为主”的转变,建立与之相适应的内容广泛、形式多样的考试考核制度。

3.3 鼓励学生参与思想政治教育讲解 教师结合学科特点和内容有意识、有目的、自觉地渗透爱国主义教育、职业道德教育、辩证唯物主义教育等思想政治教育。让学生在接受理论知识和提高技能的同时,养成良好高尚的道德风范。同时鼓励学生查找与本学科相关思想政治教育资料,在课堂上向大家讲解所受人生观、价值观的启迪。

3.4 注重考试内容的选择,提高学生综合素质 在考核内容的选择上,以“知识点上遵循教学大纲,但应用上不拘泥于教学大纲”为原则,在试题设计上,由注重知识向注重能力转变,增加应用题和能力题,考核应能充分反映学生掌握基本理论、基本技能的情况以及分析问题、解决问题和创新的能力,尽可能多一些综合性思考题、分析题、应用题,甚至没有标准答案的考试内容。考试内容应突出基础性、创新性和实践性。

3.5 调动教师积极性,促进教研活动 教师是考试模式改革的实施者,对考试改革的认识程度、对考试改革的积极性在考试改革过程中起着至关重要的作用。因此教师要不断更新教学内容、教学理念、教学方法、教学手段,付出更多的时间和精力开展教研活动,调动自身积极性。

总之,考试不仅是实施素质教育的内在要求, 也是推进素质教育实施的动力。构建多种形式的考试体系, 有利于对学生明确课程目标、巩固所学知识、检验学习效果、培养综合能力等方面具有积极作用, 有利于督促教师根据教学目标选择教学方法、调整教学内容, 强化学生的学习动机。

参 考 文 献

[1] 彭峰. 我国高校考试制度改革的若干思考.时代教育,2008,6:106107.

[2] 王海涛.改革高校考试模式,培养创新型人才.辽宁教育行政学院学报,2008,(11):162 163.

人类基因突变被看做是与生俱来的,并且会伴随人的一生。有一些基因突变是很明显的,刚看到他的时候也就发现了,可是有些基因突变是可以隐藏起来的。有一些基因突变会随着人类的年龄增长而愈演愈烈,而有些是会导致人类死亡的。现在很多基因突变的事情都在世界上公布,人们可以从电视上或者网络上查到。下面我要介绍的这八种基因突变不知道你有没有听说过。 独眼畸形 这种天生的基因突变使得人们不能用两只眼睛来观察世界,这种畸形一般在250人中会有1人患有。脸部会模糊或者鼻子会失去作用,如果碰到这样的情况,一般家长会在孩子出生之前就会选择不要。这种人类基因突变都是遗传因素或者是因为母亲身体中摄入了毒素。树人从图片上可以看到,这个男子看起来就像是一个树人,手脚上都有树的分支。20年来,他一直都是这样的生活,他全身上下都有苔藓,这让他看起来像是在森林里生长的植物。这些在他身上的苔藓可能有12多磅而他总身重也就100磅。他走几步道就会觉得很累因为全身上下多余的体重很沉。有专家认为引起他这种基因突变的原因是一种HPV病毒。有两种HPV病毒,一种可以导致宫颈癌,而另一种可能导致皮肤上有苔,显然,他是属于后者的。当他进入青春期的时候,这些基因也跟随着他开始发展,这些东西是他所不能控制的。

随着人们绿化意识的增强和绿化观念的更新,传统花卉种植方式因存在诸多弊端,已不符合人们审美情趣的要求。例如,鲜切花缺少了一个从种植到开花结果的实践过程,且保鲜时间短;一般盆花常用土壤栽培,养护必须凭经验,不易管理,易患病虫害,与现代居室环境不和谐。花卉立柱式无土栽培!以下简称花卉立柱)是把工艺化塑料盆钵垒叠成一定高度,在其上栽植花卉,并用营养液自动循环浇灌来满足花卉生长对水、气、肥的需求而进行的栽培方式,集立体栽培、无土栽培、设施栽培于一身,具有技术新、工艺化、节水环保、绿化容量大、美观和易管理等优点,能最大程度满足人们种花养花的情趣。花卉立柱在城市公园、街道、庭院、居室、屋顶、阳台的美化绿化以及都市农业中具有广阔的应用前景。花卉立柱是插花、盆景以外的一种新型花卉生产模式和艺术形式,有望成为一种时尚的产业。 1 花卉立柱系统结构 根据应用场所和循环系统可将花卉立柱分为常规型和家庭型2类。 1.1 常规型花卉立柱系统 通常采用水培法,进行较大面积的群体栽培主要应用于都市农业,城市公园街道,庭院屋顶绿化等。 1.1.1 立柱装置基本结构每667m2安装立柱600根,每根立柱由底座、中心轴和柱体构成。柱体的外壳是由白色工程塑料(ABS)浇注成的盆钵,一根立柱垒叠10~12个盆钵,高160~200cm,直径15cm,每个盆钵上设有5个栽培孔,花卉苗木即生长在栽培孔上。立柱成行状排列,柱体套在中心轴并立于下端的底盘上,便于旋转,也能随中心轴自由搬动。通过旋转使花卉苗木受光均匀。 1.1.2 营养液循环系统由贮液池、输液管道、滴淋头和回流沟组成。盆钵上的花卉苗木生长所需的养分,是由潜水泵把贮液池中的营养液送上输液管道,然后通过立柱顶端的滴淋头注入盆钵内的,当上一个盆钵内的营养液超过一 一定水位后,即自动向下一个盆钵注入,直至营养液溢出栽培槽的出口,最后通过回流沟流至贮液池中。营养液可定时自动浇灌,循环利用。 1.2 家庭型花卉立柱系统有水培、基质培、混合培3种栽培方式。室内花卉单体栽培主要应用于居室、办公室、阳台绿化等。 1.2.1 立柱装置基本结构每套装置由底盆、中心柱、盆钵、微型泵和定时器构成。家庭型立柱一般垒叠3~6个盆钵,高50~100cm底盆采用圆柱体,体积约为6L用于贮藏和回收营养液。 1.2.2 营养液自动循环系统家庭型立柱底盆中的营养液由微型泵泵入,然后通过软管、淋头、盆钵,再回收到底盆,重复利用,通过24h程控定时器实现自动循环浇灌。 2 栽培技术要点 2.1 品种选择 常规型花卉立柱主要考虑其观赏性,品种选择以草本花卉为主,适栽品种有孔雀草、长春花、洋凤仙、万寿菊、百日草、千日红、杂交石竹、凤尾鸡冠花、三色荃、四季海棠、雁来红、彩叶草、观赏番茄、金盏菊、翠菊、矮牵牛、一串红、矮向日葵、吊竹梅等;家庭型花卉立柱考虑室内环境条件的特殊性,品种选择以耐荫观叶植物为主,适栽品种有万年青、合果芋、绿萝、常春藤、龟背竹、文竹、银皇后、绿宝石、小斑马、百合竹、袖珍椰子、富贵竹、朱蕉、鹅掌木、肾藏、白掌、虎尾兰、吊兰、君子兰、一叶兰、条纹竹芋、孔雀竹芋等。 2.2 无土育苗技术 2.2.1 草花无土育苗一般采用种子播种繁殖,也有通过扦插繁殖的,如万寿菊、孔雀草、四季海棠、长春花等。种子繁殖以穴盘无土育苗效果最好,出苗整齐而茁壮。相对于常规露地无土育苗来说,受地下害虫为害轻,育苗移栽时伤根少,缓苗期短。育苗基质为珍珠岩、泥炭与蘑菇废料的复合基质(体积比1:1:1)。育苗容器采用宁夏圣宝工贸有限公司生产的圣宝重型128育苗穴盘(8×16穴,穴大小3cm×3cm)。草花种子播种前用40%福尔马林100倍液浸泡15min进行消毒,不易发芽的草花品种用温水浸种和催芽。播种发芽后,当草花幼苗长至2叶(对)期后,每天喷浇稀营养液1次。当幼苗达到一定苗龄形态指标要及时移栽,一般移栽期为4~5叶(对)期。 2.2.2 耐荫观叶植物无土育苗通常采用分株或扦插繁殖,有许多观叶植物2种方法均可繁殖。分株繁殖较简单,当母株分化出的子株已长有根系,就可分离母株进行单独培育。方法是将母株挖起,去除基质,清除老根和烂根,然后找出根系自然分歧处,用手册开或用刀切开,要求分离出来的子株带有细根、枝条(叶片)和芽。扦插繁殖基质为珍珠岩。扦插用的插条剪成8~12cm长,去除插条基部的叶片,下部剪口要平滑,呈45°斜面,用50×10-6的吲哚乙酸浸渍剪口12h,促进发根。插后做好保湿工作,防止插条失水萎蔫。当根长出2~3cm即可移栽,移栽时尽量减少伤根。 2.3 养液管理 2.3.1 营养液pH值测定与调整笔者用的营养配方肥料由杭州龙山化工厂生产提供。花卉用营养液的pH值适宜范围为5.5~6.5,一般稳定在6.0左右为最好。在营养液配制和使用过程中,可用手持式汉拿酸碱度测试笔定期进行pH值的测定。测试后,若发现营养液的pH偏高,用硫酸、磷酸或硝酸调整;若pH偏低,则用NaOH调整。 2.3.2 营养液EC值测定与调整花卉用营养液的适宜离子浓度(以EC值表示),因花卉不同生育期、不同栽培季节而有所差异,一般苗期略低,生育盛期略高;冬季略高,夏季略低。幼苗期适宜的EC值为0.6~1.2ms/cm,开花期或成苗期(耐荫植物)适宜的EC值为1.2~1.8ms/cm。一般可用DDS-11A型电导率仪定期测定营养液的EC值,若发现EC值过高加水稀释,过低则通过加配方肥料进行调整。 2.3.3 营养液含氧量的补充通过每天多次的营养液循环浇灌来补充营养液中的含氧量,从而满足花卉根系生长对氧气的需求。 2.3.4 供液时间与次数采取间歇定时供液的办法,通过定时器进行控制,一般每天供液2~4次,每次15~20min。供液在白天进行,夜间不供液;晴天供液次数多些,阴雨天少些;气温高光线强时供液次数多些,温度低光线弱时供液少些。 2.3.5 营养液的更换家庭型花卉立柱底盆容积小,每盆营养液使用期为1~2个月,即夏天1个月更换1次,冬天2个月更换1次。常规型花卉立柱因贮液池容积大,营养液使用期可延长至4~6个月。若发生污染,应及时更换。 2.4 病虫害防治 据笔者观察,家庭型花卉立柱在室内摆放期间,一般很少有病虫害发生。花卉立柱大棚生产期间,各种病虫害均会发生。主要病虫害有:灰霉病、霜霉病、炭疽病、白粉病、叶斑病、叶螨、蚜虫、青虫、夜蛾等。应采取“以防为主,综合防治”的策略综合防治:(1)及时摘除枯枝败叶,清理病虫株;(2)物理防治,用-诱虫胶板诱杀害虫;(3)用一熏灵、利得烟熏剂等熏烟;(4)药剂防治禁用剧毒农药,选用低、中残毒农药,并做到对症下药;杀虫杀螨剂有7051杀虫素、万灵、一遍净、抑太保、吡虫啉等,杀菌剂有达科宁、多菌灵、大生、雷多米尔、杀毒矾等。 3 应用前景探讨 通过不同品种、不同花色的搭配、不同高度花柱的组合,可设计出富有不同艺术情趣的花卉立柱组合模式,表达不同的文化内涵。 3.1 在园林绿化上的应用 花卉立柱组合景观可为城市公园增辉,也可作为移动花坛应用,在绿化死角具有与盆花相似的应用效果。 3.2 在都市农业中的应用 花卉立柱组合可提升都市农业品位,增添现代园艺科技气息。 3.3 在街道绿化上的应用 花卉立柱成行竖立于街道两旁,能明显增加街道的节日文化气氛,给人耳目一新的感觉。 3.4 屋顶花园 花卉立柱节水环保,不积水,避免了屋顶土壤栽培的积水易渗漏等缺点。 3.5 在室内绿化中的应用 家庭型花卉立柱,绿化容量大,美观易管理,是家庭居室、办公室美化绿化的理想选择。

变异与生物进化论文参考文献

虽然达尔文的《物种起源》已经发表了一百多年,而且自本世纪中叶以来,无论达尔文及达尔文主义的研究,还是进化生物学本身,都取得了飞速的发展。但是目前不少国人在对进化的认识上依然存在着严重的误解,有些误解源自恩格斯关于进化的论述。例如将进化视作进步,以及依然认为生物进化是生物从低等到高等的变化等等。这种看法并非真正的达尔文主义,也与现代的进化观相去甚远。

浅谈进化摘要:虽然达尔文的《物种起源》已经发表了一百多年,而且自本世纪中叶以来,无论达尔文及达尔文主义的研究,还是进化生物学本身,都取得了飞速的发展。但是目前不少国人在对进化的认识上依然存在着严重的误解,有些误解源自恩格斯关于进化的论述。例如将进化视作进步,以及依然认为生物进化是生物从低等到高等的变化等等。这种看法并非真正的达尔文主义,也与现代的进化观相去甚远。关键词:进化 进步 达尔文主义1959年,美国著名遗传学家H.J.穆勒在纪念达尔文《物种起源》发表一百周年的一次会议上,针对百年来人们对于达尔文进化理论的简单、片面的理解,以及进化理论发展的迟缓,发出了这样的感叹:“一百年来没有达尔文也是一样的”。[1]时间又过去了37年,我想, 如果穆勒在天之灵有知达尔文主义和进化理论在当前中国的状况,他还会发出相同的感叹。姑且不论中国当前对于达尔文主席和进化理论的研究、教学方面的忽视〔1〕, 就是对于达尔文主义和当代生物进化理论的理解和接受方面,我们也远远落后于欧美。再具体一些,对于什么是进化这一进化论中最基本的问题,不少人的认识和理解依然停留在一百年前的水平,其中当然不乏误解。《自然辩证法通讯》1995年第4 期上的“论恩格斯关于物质形态进化的学说”便为我们提供了这样一个例证(以下引注此文时,只注页码)。然而,正如我们下面将要看到的,在中国目前有不少人持有与该文作者相同或相近的观点。因此,我们就进化问题的讨论便具有了普遍性的意义,它不是针对某人,而是针对问题本身的。一“论恩格斯关于物质形态进化的学说”一文中提出,“进化与事物的革命性变革、上升发展、相互转化等概念是一回事”。并且认为这“首先是客观的事实”,“所以,从语义学上讲,‘进化’者‘前进变化’之简谓也”。(第23页)从汉语的语义学角度看,“进化”确实能使人产生“前进变化”的联想。但是这样理解显然是望文生义。因为“进化”(evolution )是一个纯粹的外来语,又有译作“演化”的(笔者认为,根据现代的进化生物学,“演化”是比“进化”更贴切的译法),它的词根“evolv ”的拉丁语含义是“滚动”的意思。据《牛津英语辞典》,“进化”一词于1670年首次使用在生命科学中,但直到19世纪初叶,“进化”这个词基本局限于胚胎发生学中,大致用来表达胚胎发育中潜能的“展露”(unfolding),即表达胚胎的有机发育。〔2〕这也是为什么拉马克、达尔文这两位科学进化理论的创始人很少使用“进化”一词的原因之一,因为容易与当时人们熟悉的“进化”用法混淆。 在表述生物的进化时, 拉马克更多更明确使用的是“转形”(transformisme ), [ 2] 而达尔文则经常使用“带有饰变的由来”(descent with modification)。(〔3〕、〔4〕,p.34)在达尔文时代,使用“进化”一词最响的并不是达尔文,而是赫伯特·斯宾塞。不过斯宾塞的“进化”用法并不是严格意义上达尔文理论的含义,而是带有前进变化的含义,并且主要通过他,“进化”一词被广泛用于社会科学中。[5]即使从理论的内涵上看,拉马克和达尔文的进化理论也并不完全含有“革命性变革、上升发展、相互转化”的意思。首先应该指出的是,“革命性变革”或“革命性变化”在18世纪末19世纪初的生命科学领域中有其特定的含义。灾变论的创始人乔治·居维叶正是使用“革命”(revolution)这个词来说明地层中脊椎动物的不连续性,说明地质史上生物的灾变。(〔5〕,pp.106—112)。而拉马克和达尔文理论很少的共同点中就包括他们都明确反对“灾变”(或按当时的用词“革命性变化”)的观点,他们都信奉赫顿的箴言“自然中没有飞跃”,达尔文则更是一位坚定的“均变论”者。[6] 而恩格斯的“自然界完全由飞跃所组成”的观点表明他并没有汲取当时的最新科学成果来看待自然变化的连续性与间断性。〔3〕此外, 拉马克和达尔文从未提出过生物的进化是“相互转化”的观点。试以一个简单的例子,按照拉马克、达尔文的进化理论,哺乳动物起源于爬行动物,如果进化是相互转化的话,也就意味着,哺乳动物中还会发源出爬行动物。自然界中根本就没有这种相互转换的生物进化例证。至于生物进化是否是“上升发展”的观念,在拉马克的理论中确有这样的含义,在达尔文的进化理论中则几乎没有。现代主流的科学进化理论秉承达尔文主义的传统(即综合进化理论,又被称作新达尔文主义),结合了现代的遗传学、系统分类学、古生物学、胚胎学、生态学、动植物地理学、动物行为学等成果,对于生物的进化有了更新更透彻的理解。无论按照综合进化论的重要代表人物之一迈尔所下的并且被广泛使用的“进化”定义,“进化是适应的改变和生物群体多样性的变化”,还是按照许多遗传学家所坚持的“进化是群体中基因频率的变化”的“进化”定义〔7〕pp.162—163),“进化”的科学含义中都不存在“革命性变革”、“上升发展”或“相互转化”的意思。亦即,从语义上看,“进化”不等于“前进变化”。二“论恩格斯关于物质形态进化的学说”一文中提出,“在这个〔指达尔文的〕进化学说看来,生物的变化就决不只是种类和数量的简单变化,即是一个由低级到高级,从简单到复杂的前进发展过程。……‘进化’概念的科学含义,就是指事物由低级到高级的不断演变、转化、发展”(第23页)。持有相同进化观的人在中国为数不少。这一点,仅从十几年来的几本高校自然辩证法教材中就可以看出来。1979年人民教育出版社的《自然辩证法讲义(初稿)》中就指出:“进化论用大量的事实……揭示了生物……从低级到高级发展变化的自然图景”(22页),动植物都经历了“从低等到高等的发展”(71页);1984年吉林人民出版社出版的舒炜光主编的《自然辩证法原理》中也说:“在生物进化的过程中,是经历了从低级向高级的方向发展”(478页); 而东北大学出版社最新出版的(1995年)陈昌曙主编的《自然辩证法概论新编》中依然认为生物的进化存在着从低级到高级的方向性(80—82页)。此外,在人民出版社1983年出版的《自然辩证法论文集》中我们看到,即使象方宗熙这样从事多年生物进化教学和研究的学者也从低级和高级的角度看待生物的进化(258页)。这种观点显然是对达尔文进化学说的曲解。达尔文的进化理论具有很丰富的内涵。[8] 他将生物的进化看作生物(确切地说是物种)的趋异化过程,在这一过程中,生物发生了从简单到复杂的变化,结果是生物多样性的增加。达尔文认为生物的进化是一两个阶段的过程。第一阶段是随机(不定向)变异的产生,这完全是一个偶然性的过程。第二阶段是自然选择的作用,结果使适应的变异保留了下来,而不适应的变异被淘汰(〔3〕,pp.80—81),这个阶段可以视为定向的和必然性的过程,但衡量的标准只是生物的适应。在达尔文看来,适应是生物进化最终结果。在这样一种理论柜架中,偶然性与必然性真正达到了统一。现存生物以及人类的出现是生命演化长河中无数偶然性,以及每一阶段、每一特定时间、特定环境中自然选择作用的结果,并非“物质的本性”决定了必然“发展出能思维的生物”(《自然辩证法通讯》1995年第4期第25页)。同样,对比之下, 恩格斯所谓“太阳系、地球可能要毁灭,但还会重新出现新的集结运动过程,星球、生物、人类还会重新出现”显然缺乏事实和理论依据,只能算是幻想。此外,按照达尔文的进化理论框架,生物“从低级到高级的前进”进化观也显得毫无必要。再者,“低级”,“高级”、“前进”都是人类中心说的判定标准。达尔文理论的一个重要特征就在于其中彻底的唯物论内涵,包括完全抛弃人类中心说的判定生物是否进化的标准。这也正是达尔文理论与前人的进化理论及西方传统观念的一个明显的区别,[9]同时也是他迟迟不发表自己进化观点(推迟了20年)的顾虑所在和他的理论最终引起很大争议的原因所在。(〔4〕,pp.21—27)生物,乃至整个自然界,存在着低级与高级之分,这种观点可以追溯到柏拉图的理念论,并且在亚里士多德那里得到进一步的完善,从而形成“自然等级”(scala naturae)的理论。 亚里士多德认为自然界中的万物根据其质料因和形式因可以划分出不同的等级,并构成静止不动的自然等级。在这个等级中,无机物是低级的,有机物是高级的;而在有机物中,植物是低级的,动物是高级的,人类则是最高级的。这种观念在中世纪后期与经院哲学和世俗的社会政治理论结合了起来,成为基督教教会和封建贵族解释社会等级差别的理论依据。到了17—18世纪,亚里士多德的自然等级观念被改造成为“存在的巨大链条(The GreatChain of Being)[10],并且越来越多的人认为这个链条之间的环节并非固定不变的。到了18世纪后期,存在的巨大链条不是静止不动的,其中存在进步(或前进)变化的观点已广为人知。[10]、[11]拉马克的进化理论正是按照这样的理论框架形成的。拉马克承认自然界中存在从低级生物到高级生物这样一个等级序列,其中人类是最高级的。但拉马克认为这样一个序列并不是静止不动的,而是存在着进步(或前进)式进化变化,即链条的每个环节都会发生本质性改变,明确地说,物种本身会发生改变,变化的趋势是从简单到复杂,从低级到高级(〔2〕,p.60)。这是不同于莱布尼茨等人观点的重要地方, 莱布尼茨等所提出的生物潜能的展露并不涉及生物的本质变化。在谈到生物进化的机制时,拉马克提出,除了环境的作用、获得性遗传、用进废退、自然发生外, 还有生物内在的向着完善的驱动力(intrinsic drivetoward perfection)(〔12〕,pp.222—250)。应该指出的是,19世纪下半叶流行欧美的社会达尔文主义中就包含了许多拉马克理论的成份,如获得性遗传、环境对生物变异的直接作用、用进废退和生物具有向着完善进步进化的内驱力等。(〔5〕,pp.266—274)恩格斯关于物质形态进化的观点显然受到社会达尔文主义的很大影响。[13]社会达尔文主义也随着进化论在上个世纪末传播到中国[14],加上带有浓厚拉马克主义色彩的米丘林、李森科等前苏联学者的进化观在中国的广泛宣扬,至今在一些国人的进化认识中,依然存留着拉马克主义的痕迹。达尔文以其坚定的推论和丰富的依据,为人们展示了一个全新而严谨的理论体系,更加合理地解释了生物的适应、和谐、地质史展示的生物变化与差异,从而带来科学史上的一次革命。[9]达尔文在其进化理论形成的早期(1837—1838)就认识到不能用从低级和高级的角度来解释生物的进化,“当我们谈到高级时,我们总会说到智力上的高级——但是当我们面对覆盖着美丽的大草原和森林的地球时,很难认为智力是这个世界的唯一目的。”[15]以后他更加明确地告诫自己“绝不使用高级和低级这些词”。(〔7〕,p.251)这一思想被现代的绝大多数进化生物学家所继承了。确实诚如现代著名进化论者古尔德所说,“假如阿米巴象我们一样适应生活的环境,谁又能说我们是高级的生物?”(〔4〕,p.36)倘若不以人作为参照标准, 低级与高级就更难划分了。比如,软骨鱼出现的历史早于硬骨鱼,按照拉马克主义、社会达尔文主义和所展示的观点,会认为软骨鱼是低级的,硬骨鱼是高级的,但是不论从适应环境的。角度,还是从食物链上位置的角度,都很难认为作为软骨鱼的鲨要比作为硬骨鱼的鳕鱼低级所以认为进化是“一个由低级到高级……的前进发展过程”,既不是达尔文的进化理论,又不是现代的科学成果,只不过是被达尔文理论所替代的拉马克进化论或启蒙运动时期思想家的乐观主义进步论而已。三诚然,达尔文在谈到生物进化的用词上,并没有完全脱离他那个时代。他在《物种起源》中10次使用“进步”(progress),123 次使用了“完美”(perfect, perfected perfection)。[3]但他在使用这些词时,很少带有人类中心说的色彩。他在使用“进步”一词时,并不指生物向着完善的定向发展和前进,而是指时间的进程。(〔7〕,p.240)在《物种起源》中,只有一处在谈到“高级”(即地层中晚出现的)化石动物群可能取代其他类群时,达尔文使用了带有发展改善意思的“进步”一词,但他又说:“我找不到检验这种进步的方法”。(〔3〕,p.337)在使用“完美”一词时,达尔文主要用来说明在自然选择的作用下生物更加完美地适应所生活的环境,并不是等级上完美的意思。(〔3〕 第六章,〔7〕,pp.240—241)斯宾塞等社会达尔文主义者在使用“进化”、“进步”、“完美”时,与达尔文的用法有很大的区别,其中含有以人类或智力为标准而指称从低级向高级上升前进、不断完善的意思。 [5][16]恩格斯在使用这些词时,其中的含义更近似于斯宾塞的用法。 这类用法的“进化”概念,并不是严格意义的科学进化概念。19世纪中叶以来,“进化”概念从生命科学中传到天文学、地质学、物理学、化学以及社会科学和人文科学中。在这一传播过程中,“进化”概念发生了很大的改变,已不同于达尔文在说明生物变化时的原义了。今天,“进化”一词被广泛用来说明人类历史的变化、政治的变化、经济的变化等,但其中的含义基本上是事物随时间的改变,而且是单向性的,甚至有些进化是可以预先确定方向的。而生物的进化除了时间上的变化外,它还不是单向性的,而是分叉状的,另外生物进化的方向并不是预先可以确定的。(〔17〕,p.5)换句话说,到目前为止, 科学界关于物质形态的进化还未形成统一的理论。其实,即使在生物学界,在生命进化本身的看法上也没有达成共识。如此看来,上面所引述的且被目前许多人所认同的恩格斯的关于物质形态进化的统一学说就显得过于乐观和缺乏依据了。马克思、恩格斯的学说无疑是奉献给人类的无价财富,继承这笔财富的最好方法是利用时代发展所取得的精神、文化成果(包括科学的最新成果)去丰富它,而不是恪守其中已经过时的教条。参考文献[1] H.J.Muller, "One Hundred Years Without Darwin areEnough". The Humanist, 19:139—149, 1959.[2] J.B.Lamarck, Zoological Philosophy (1809). Translatedby H.Elliot, London, 1914; reprinted by Univ. of Chicago,1984.[3] C.Darwin, On the Origin of Species ( 1859) , Facsimileof first edition, ed. E.Mayr, Harvard Univ. Press, 1964.[4] S.J.Gould, Ever Since Darwin, W.W.Norton, 1977.[5] P.J.Bowler, Evolution-the history of an idea, Univ. of California Press, 1984.[6] E.Mayr, The Growth of Biological Thought. HarvardUniv. Press, 1982.[7] E.Mayr, Toward a New Philosophy of Biology, HarvardUniv. Press, 1988.[8] D.Kohn ed., The Darwinian Heritage, Princeton Univ. Press, 1985.[9] M.Ruse, The Darwinian Revolution, Univ. of ChicagoPress, 1979.[10] A.O.Lovejoy, The Great Chain of Being, 1936. Reprinted: Harper, 1960.[11] S.F.梅森:《自然科学史》,第28章,周熙良等译, 上海译文出版社,1984。[12] E.Mayr, Evolution and the Diversity of Life, HarvardUniv. Press, 1976.[13] R.M.Young, "Darwinism is Social", In [8], pp. 609—638, 1985.[14]李佩珊:“社会达尔文主义和达尔文进化论在中国”,《自然辩证法通讯》1991,3:29—32。[15] S.Herbert ed., The Red Notebook of Charles Parwin, B252.Cornell Univ. Press, 1979.[16] M.Ruse,Laking Darwin Serously, Basil Blackwell, 1986.[17] M.Ridley, Evolution, Blackwell, 1993.仅供参考,请自借鉴。希望对您有帮助。

楼主:给你点资料,希望对你有帮助。世界上现存的生物种类繁多,大至几十吨的巨鲸,小至仅有二、三百个核苷酸的类病毒,都有一种不同于非生物的特点——繁殖。物生其类;传种接代,这种一个物种只产生同一物种的后代,这些后代又都继承着上一代的各种基本特征的现象,就是遗传。正是因为遗传现象的存在,人类才能保持形态、生理和生化等特征的相对稳定。但是繁殖的结果还有一种可能,即各种生物所生的后代又不完全象亲代,子代各个体间也不完全一样,这种亲子代间的差异称为变异。 遗传使物种保持相对稳定;变异则是使物种的进化成为可能,其实质是在环境因素的作用下,机体在各种形态、生理等各方面获得了某些不是来自于亲代的一些新的特征;如果没有遗传现象,世界上的各个物种就不可能一代—代地连续下去;同样,若没有变异现象的存在,地球上的生命只能永远停留在最原始的类型,也不可能构成形形色色的生物界,更不可能有人类进化的历史。所以说遗传与变异的矛盾是生物发展和变化的主要矛盾,在生物进化过程中起决定作用。对于稳定品种的有机体,遗传是矛盾的主要方面,变异是次要方面,这样才可保持其特性一定的稳定和相对不变。但有时由于某种原因,变异会成为主要矛盾,遗传成为次要的,这时有机体的某些特征和特性就会发生改变,从而引起了生物的变化和发展资料来源:

遗传与优生论文参考文献

1、什么是遗传与优生?遗传:生物通过各种生殖方式繁衍种族,这就保证了生命世代间的延续,这种世代间的延续称为遗传。优生:优生乃是“遗传健康”。通俗地说,优生就是让优秀的小孩出生或让优秀者存活并健康成长。优生与遗传关系密切,优生主要目标是尽可能地防止先天性畸形和遗传病儿出生,以减少遗传病的发病率。2、怎样做到优生优育?优生,应包括优恋、优婚、优孕、优产、优育和优教。优恋:就是找优秀的人谈恋爱,即选择德、智、体、美都优秀的人为恋爱对象。其中身体健康,智力正常是非常重要的。优婚:就是指与优秀的、志同道合的、身体强壮的人结婚。优孕:就是选择最佳的时期妊娠,做好孕期保健,避免接触毒物,创造一切有利的条件,来促进胚胎和胎儿的正常发育成长。优产:就是使胎儿正常娩出,不受到任何损害和影响。优育:是指正确的喂养方法和提供合理的营养,以促进小孩的正常生长发育。优教:就是指小孩受到良好的教育和精心的培养。优生优育的重要性: 健康的孩子,既给美满幸福的家庭带来欢乐,又有利于国家民族的兴旺繁荣。优生学就是专门研究人类遗传,改进人种的一门科学。 优生的目的是提高人口质量,它包括两个方面:一是积极的优生学;二是消极的优生学。 积极的优生学是促进体力和智力上优秀的个体优生。即用分子生物学和细胞分子学的研究,修饰、改造遗传的物质,控制个体发育,使后代更加完善,真正做到操纵和变革人类自身的目的。 消极优生学是防止或减少有严重遗传性和先天性疾病的个体的出生,就是说减少不良个体的出生。后者是人类最基本的,有现实价值的预防性优生学。不减少白痴、畸形儿的出生,就谈不上人口质量的提高。 一个先天性痴呆孩子的出生,将会造成双亲的极大痛苦,成为家庭的累赘和社会的负担。他的存活对社会没有任何意义。因此,预防和尽早发现胎儿异常,阻断遗传病和先天性缺陷的延续,是家庭幸福的重要前提。 目前,我国提倡一对夫妇只生一个孩子。生一个健康而又聪明的孩子是家庭和社会的共同愿望。欲使这个愿望得以实现,就必须具备一定的优生、优育和优教方面的科学知识。优生知识是获得一个健康孩子的前提,优育和优教是使孩子健康成长的保证。如果您的孩子先天具备了良好的条件,而出生后却通过不科学的抚育,也能影响孩子的聪明和健康成长。例如,夏季出生的小儿长了痱子或尿布疹很严重,那么孩子的情绪就不好;此外护理不好,不及时给孩子清洁鼻腔,通气不畅,孩子不能好好吃奶;指甲长了不剪,会使孩子将脸抓破,只要孩子哪一点发生了问题,他(她)就会烦躁不安,以致影响睡眠。 每天每次喂奶要让孩子吃饱,保持尿布干燥及臀部的清洁卫生,经常给孩子洗澡,保持身体清洁,给孩子作婴儿体操,日光浴和户外活动等,这样能保证他充足的睡眠……。总之,对孩子要给予充满母爱的抚育,因此对孩子一天生活日程的安排非常重要。其中就包括了从出生第一天起的优育和优教的密切结合。因为婴儿出生后,离开了母体,一切都是他学习的过程,随着月龄的增长,婴儿所能接触到的一切,都需要逐渐适应。这个适应过程也就是教育的过程,而不是等待婴儿自然发育。喂养婴儿是促进生长发育的良好时机。 例举:母乳喂养是最适合婴儿的一种喂养方法,无论是从母乳所含的营养质量还是从各种养份的比例来看,母乳都优于牛乳。由于母乳中含有抗传染病的免疫体,婴儿通过母乳获得,就能增强抗病能力,尤其母乳,中含有分泌型的免疫球蛋白,不仅能预防小儿呼吸道疾病,而且还能抵抗消化道的疾病。所以作为母亲只要有奶就应尽喂奶的责任,至少要喂3~4个月。为什么要强调母乳喂养,更重要的问题是为了使婴儿能获得“早教”(即o~3岁的早期教育)。建立了良好的亲子关系。每当哺喂母乳时,母亲要心情舒畅地把孩子抱在怀里,让婴儿含着奶头及乳晕的大部分,一边听着音乐,一边带着微笑而和蔼可亲地给婴儿喂奶,孩子就有舒适感,也以微笑的脸看着妈妈。通过母乳喂养,使母子心心相印,这是培养感情最好的方法。婴儿在这样的环境中,他的明亮的眼睛里闪耀着母亲的任何一举一动、一言一语,所以说父母是孩子的第一任教师(尤其母亲)。可以从婴儿的微笑中,人们可以感到生命的活力和喜悦,孩子有好的情绪是健康的标志之一。从O~3岁所进行的一切都要结合生活日程进行,通过这些可从小培养良好的卫生习惯、文明的行为、优良的品德、高度的同情心。小儿的智力需要成人去引导开发而不是等待,所以说优育意义重大——事关人的一生。

优生属于人类遗传手段中正常(原始)遗传的一种。它与劣生相对,是一种致力于人类完美的一种常规遗传方式,也相对简单。相信未来会有更大的发展在人类遗传方面:如克隆单性遗传……

优生属于人类遗传手段中正常(原始)遗传的一种。它与劣生相对,是一种致力于人类完美的一种常规遗传方式,也相对简单。

主要是指一对等位基因的突变导致的疾病,分别由显性基因和隐性基因突变所致。这类疾病涉及多个基因起作用,其病情严重程度、复发风险均可有明显的不同,且表现出家族聚集现象。

扩展资料

某些遗传病可通过控制饮食达到阻止疾病发生的目的,从而收到治疗效果。如苯丙酮尿症的发病机理是苯丙氨酸羟化酶缺陷,使苯丙氨酸和苯丙酮酸在体内堆积而致病,可出现患儿智力低下或成为白痴。

可是如果诊断准确,在早期最好在出生后7-10天开始着手防治,在出生后3个月内,给患儿低苯丙氨酸饮食,如大米、大白菜、菠菜、马铃薯、羊肉等,则可促使婴儿正常生长发育。等到孩子长大上学时,再适当放宽对饮食的限制。

生物基因工程论文参考文献汇总

生物基因工程论文参考文献汇总 生物基因工程论文参考文献怎么写?有哪些格式要求,下面我就为大家推荐一些优秀的范例,希望大家喜欢![1] Brackett B G, Baranska W, Sawicki W,et al. Uptake of heterologous genome by mammalianspermatozoa and its transfer to ova through fertilization. Proc Natl Acad Sci USA,1971,68(2):353-357. [2] Jaenisch R, Mintz B. Simian virus 40 DNA sequences in DNA of healthy adult mice derived frompreimp antation blastocysts injected with viral DNA. Proc Natl Acad Sci USA, 1974,71 (4): 1250-1254. [3] Palmiter R D, Brinster R L, Hammer R E, et al. Dramatic growth of mice that develop from eggsmicroinjected with metallothionein-growth hormone fusion genes. Nature, 1982,300(5893):611-615. [4] 李宁.动物克隆与基因组编辑.中国农业大学出版社,2012. [5] Hammer R E, Pursel V G, Rexroad C J, et al. Production of transgenic rabbits, sheep and pigs bymicroinjection. Nature, 1985,315(6021):680-683 [6] 杜伟,崔海信,王 琰 ,等.精子载体法制备转基因动物的'研究进展.生物技术通报,2012(12):13-18. [7] Maione B,Lavitrano M, Spadafora C, et al. Sperm-mediated gene transfer in mice. Mol ReprodDev, 1998,50(4):406-409. [8] Lavitrano M, Bacci M L, Forni M, et al. Efficient production by sperm-mediated gene transfer ofhuman decay accelerating factor (hDAF) transgenic pigs for xenotransplantation. Proc Matl Acad SciUSA, 2002,99(22):14230-14235. [9] Sperandio S, Lulli V,Bacci M L, et al. Sperm - mediated DNA transfer in bovine and swinespecies. Animal biotechnology, 1996,7(1):59-77. [10] 武坚,刘明军,李文蓉,等.精子载体介导法生产转基因绵羊的研究.草食家畜,2001(S2):186-190. [11] Pfeifer A, Kessler T, Yang M, et al. Transduction of liver cells by lentiviral vectors: analysis inliving animals by fluorescence imaging. Mol Ther,2001,3(3):319-322. [12] Lois C, Hong E J, Pease S, et al. Germline transmission and tissue-specific expression oftransgenes delivered by lentiviral vectors. Science, 2002,295(5556):868-872. [13] Hofmann A, Kessler B, Ewerling S,et al. Efficient transgenesis in farm animals by lentiviralvectors. EMBO Rep, 2003,4( 11): 1054-1060. [14] Hofmann A, Zakhartchenko V, Weppert M, et al. Generation of transgenic cattle by lentiviral genetransfer into oocytes’ Biol Reprod, 2004,71 (2):405-409 [15] Lillico S G, Sherman A, McGrew M J,et al. Oviduct-specific expression of two therapeuticproteins in transgenic hens. Proc Natl Acad Sci USA,2007,104(6): 1771-1776. [16] Lyall J,Irvine R M, Sherman A, et al. Suppression of avian influenza transmission in geneticallymodified chickens. Science,2011,331(6014):223-226. [17] Golding M C, Long C R,Carmell M A, et al. Suppression of prion protein in livestock by RNAinterference. Proc Natl Acad Sci USA, 2006,103(14):5285-5290. [18] 杨春荣,窦忠英.利用干细胞生产转基因动物研究进展.西北农林科技大学学报(自然科学版),2006(07):37-40. [19] Hai T, Teng F,Guo R, et al. One-step generation of knockout pigs by zygote injection ofCRISPR/Cas system. Cell Res, 2014,24(3):372-375. [20] Hongbing H, Yonghe M A, Tao W, et al. One-step generation of myostatin gene knockout sheepvia the CRISPR/Cas9 system. Frontiers of Agricultural Science and Engineering, 2014,1(1):2-5. [21] Swanson M E,Martin M J, O'Donnell J K, et al. Production of functional human hemoglobin intransgenic swine. Biotechnology (N Y),1992,10(5):557-559. [22] Zbikowska H M,Soukhareva N, Behnam R, et al. Uromodulin promoter directs high-levelexpression of biologically active human alpha 1-antitrypsin into mouse urine. Biochem J, 2002,365(Pt1):7-11. [23] Golovan S P,Hayes M A, Phillips J P,et al. Transgenic mice expressing bacterial phytase as amodel for phosphorus pollution control. Nat Biotechnol, 2001,19(5):429-433. [24] Rapp J C, Harvey A J, Speksnijder G L, et al. Biologically active human interferon alpha-2bproduced in the egg white of transgenic hens. Transgenic Res, 2003,12(5):569-575. [25] Wright G, Carver A, Cottom D, et al. High level expression of active human alpha-1 -antitrypsin inthe milk of transgenic sheep. Biotechnology (N Y), 1991,9(9):830-834. [26] Li S, Ip D T, Lin H Q, et al. High-level expression of functional recombinant humanbutyrylcholinesterase in silkworm larvae by Bac-to-Bac system. Chem Biol Interact,2010,187(1-3):101-105. [27] 刘英,张瑞君,伍志伟,等.转基因疾病动物模型的研究进展.动物医学进展,2006(12):44-49. [28] Kragh P M, Nielsen A L, Li J, et al. Hemizygous minipigs produced by random gene insertion andhandmade cloning express the Alzheimer's disease-causing dominant mutation APPsw. Transgenic Res,2009,18(4):545-558. [29] Lee M K, Stirling W, Xu Y, et al. Human alpha-synuclein-harboring familial Parkinson'sdisease-linked Ala-53 Thr mutation causes neurodegenerative disease with alpha-synucleinaggregation in transgenic mice. Proc Natl Acad Sci USA, 2002,99(13):8968-8973. ;

[3] 赵艳,于彦春,钱前,等.无载体主干序列的bar和cecropin B基因表达框共转化水稻[J]. 遗传学报,2003,30(2):135-141. [4] 安韩冰,朱祯,李慧芬,等.基因枪法转化水稻(Oryza sativa L.)获得可育的转抗虫基因水稻再生植株[J]. 高技术通讯,2001,2:12-17. [5] CHU Qi-ren, CAO Hua-xin, FAN Hui-qin, et al.. Preliminary report on transienexpression of gus gene in transgene rice protoplast-derived calli via PEG-mediated DNA transformation[J]. shanghai nongye xue bao,1995,11(3):63-68. [6] 赵凌,王才林,宗寿余,等. 花粉管介导的转bar基因水稻植株的获得及其遗传[J]. 中国生物工程杂志,2003,23(8):92-95. [7] LI L C, QU R D, KOCHKO A,et al.. An improved transformation of embryogenic grape cell suspensions[J]. Plant Cell Report,1993,12:250-255. [8] 范钦,许新萍,黄小乐,等. 早籼稻培矮64S愈伤组织形成及植株再生[J]. 西北植物学报,2002,22(6):1 469-1 473. [9] 易自力,曹守云,王力,等. 提高农杆菌转化水稻频率的研究[J]. 遗传学报,2001,28(4):352-358. [10] 郑宏红,何锶洁,戴顺洪,等. 提高水稻基因枪转化效率的研究[J]. 生物工程学报,1996,(增):111-115. [11] 田文忠,IAN RANCE,ELUNIALAI,等. 提高籼稻愈伤组织再生频率的研究[J]. 遗传学报,1994,21(3):215-221. [12] 叶松青,储成才,曹守云,等. 提高水稻转化率几个因素的研究[J]. 遗传学报,2001,28(10):933-938. [13] 刁现民,陈振玲,段胜军,等. 影响谷子愈伤组织基因枪转化的因素[J]. 华北农学报,1999,14(3):31-36. [14] 易自力,王力,曹守云,等. 提高籼稻基因枪转化频率的研究[J]. 高技术通讯,2000,10(11):12-15. [15] 薛锐,曹守云,杨炜,等. 基因枪法转化籼稻有关因素的评价[J]. 中国水稻科学,1998,12(1):21-26. [16] LI L C, TIAN W Z, YANG M, et al.. Establishment of an efficient transformation system for rice(Oryza Sativa L.) [A].农业的未来-转基因技术研究[C]. 长沙,湖南科学技术出版社,2002. [17] 马炳田,朱祯,李平,等. 水稻遗传转化选择系统优化初探[J]. 西南农业学报,2003,16(1):28-31. [18] 唐祚舜,王象坤,李良才,等. 基因枪法转基因水稻中HPT基因稳定遗传[J]. 遗传学报,2000,27(1):26-33. [19] 陶利珍,凌定厚,张世平,等. 基因枪介导的籼稻遗传转化及外源基因在受体中的遗传研究[J]. 武汉植物学研究,1999,17(4):289-296. [20] CHENG Zai-quan,HUANG Xing-qi,RAY Wu,et al..Comparison of biolistic and agrobacterium-mediated transformation methods on transgene copy number and rearrangement frequency in rice[J]. Acta Botanica Sinica, 2001,43(8):826-833.

相关百科

热门百科

首页
发表服务