首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

铝含量对高铝砖的影响研究论文

发布时间:

铝含量对高铝砖的影响研究论文

在我们生活中,砖头的种类多种多样,,不知道大家是否听说过高铝砖呢?高铝砖是一种性能出色的防火材料,它的主要成为氧化铝,常被用于热风炉、电炉之中。那么 高铝砖 有哪些优点,如何选购质量出色的高铝砖呢,下面本文就来给大家介绍下吧。

高铝砖有哪些优点

1、耐火度

高铝砖的耐火度我们常用的黏土、半硅砖等耐火材料都要高,可达1750〜1790℃,是一种高性能耐火材料,通常氧化铝含量较高的耐火砖,耐火性能就更加出色。

2、荷重软化温度

因为高铝砖中氧化铝成分较高,杂志比较少,因此喜欢那些比较容易熔化的玻璃体变少,因此它的荷重软化温度比较高。

3、导热性

高铝砖拥有非常出色的导热性能,因为高铝砖内部导热性较差的玻璃成分较少,而导热性能出色的来石和刚玉质晶体含量较高,因此导热性能相对比较出色。

4、抗热震稳定性

高铝砖的抗热震稳定性介于黏土和硅质制品之间,主要是因为高铝砖内部的莫来石含量较高,从而从改善制品的颗粒结构,提高了高铝砖抗热震稳定性。

5、抗渣性

因为高铝砖中氧化铝含量较大,具有一定的抗酸性渣和碱性渣的侵蚀作用。同时高铝制品的抗渣性还与制品在渣中的稳定性有一定影响,通常经高温烧制后,气孔较少的高铝砖抗渣性更加出色。

如何选购质量出色的高铝砖

1、色彩

我们在选购高铝砖时,首先需要看它的色彩,通常质量出色的高铝砖把你面膜光滑,颜色黄中发白,边角较为平坦,没有断脚与裂缝。

2、看重量

我们在选购高铝砖时,还需看下其重量,通常一级高铝砖重量在4.5KG 左右 ,二级高铝砖重量在4.2KG左右,三级高铝砖重量在3.9KG左右,如果重要不达标,则表示质量较差,不宜选购。

文章总结:以上就是关于 高铝砖 有哪些优点以及如何选购质量出色的高铝砖的相关介绍,希望能让大家对高铝砖有一定了解,选择到质量出色的高铝砖产品。

瓷砖一般是要看他的硬度了,铝的粘性较好!压机压模容易成型!

铜过高对铝硅合金的影响研究论文

铝硅合金精炼温度过高过低对合金有什么影响 一.Al-Mg-Si系合金的基本特点: 6063铝合金的化学成份在GB/T5237-93标准中为0.2-0.6%的硅、0.45-0.9%的镁、铁的最高限量为0. 35%,其余杂质元素(Cu、Mn、Zr、Cr等)均小于0.1%。这个成份范围很宽,它还有很大选择余地。 6063铝合金是属铝-镁-硅系列可热处理强化型铝合金,在AL-Mg-Si组成的三元系中,没有三元化合物,只有两个二元化合物Mg2Si和Mg2Al3,以α(Al)-Mg2Si伪二元截面为分界,构成两个三元系,α(Al)-Mg2Si-(Si)和α(Al)-Mg2Si-Mg2Al3,如图一、田二所示: 在Al-Mg-Si系合金中,主要强化相是Mg2Si,合金在淬火时,固溶于基体中的Mg2Si越多,时效后的合金强度就越高,反之,则越低,如图2所示,在α(Al)-Mg2Si伪二元相图上,共晶温度为595℃,Mg2Si的最大溶解度是1.85%,在500℃时为1. 05%,由此可见,温度对Mg2Si在Al中的固溶度影响很大,淬火温度越高,时效后的强度越高,反之,淬火温度越低,时效后的强度就越低。有些铝型材厂生产的型材化学成份合格,强度却达不到要求,原因就是铝捧加热温度不够或外热内冷,造成型材淬火温度太低所致。 在Al-Mg-Si合金系列中,强化相Mg2Si的镁硅重量比为1.73,如果合金中有过剩的镁(即Mg:Si>1. 73),镁会降低Mg2Si在铝中的固溶度,从而降低Mg2Si在合金中的强化效果。如果合金中存在过剩的硅,即Mg:Si<1.73,则硅对Mg2Si在铝中的固溶度没有影响,由此可见,要得到较高强度的合金,必须Mg:Si<1.73。 二.合金成份的选择 1.合金元素含量的选择 6063合金成份有一个很宽的范围,具体成份除了要考虑机械性能、加工性能外,还要考虑表面处理性能,即型材如何进行表面处理和要得到什么样的表面。例如,要生产磨砂料,Mg/Si应小一些为好,一般选择在Mg/Si=1-1.3范围,这是因为有较多相对过剩的Si,有利于型材得到砂状表面;若生产光亮材、着色材和电泳涂漆材,Mg/Si在1.5-1.7范围为好,这是因为有较少过剩硅,型材抗蚀性好,容易得到光亮的表面。 另外,铝型材的挤压温度一般选在480℃左右,因此,合金元素镁硅总量应在1.0%左右,因为在500℃时,Mg2Si在铝中的固溶度只有1.05%,过高的合金元素含量会导致在淬火时Mg2Si不能全部溶入基体,有较多的末溶解Mg2Si相,这些Mg2Si相对合金的强度没有多少作用,反而会影响型材表面处理性能,给型材的氧化、着色(或涂漆)造成麻烦。 2.杂质元素的影响 ①铁,铁是铝合金中的主要杂质元素,在6063合金中,国家标准中规定不大于0.35,如果生产中用一级工业铝锭,一般铁含量可控制在0.25以下,但如果为了降低生产成本,大量使用回收废铝或等外铝,铁就根容易超标。Fe在铝中的存在形态有两种,一种是针状(或称片状)结构的β相(Al9Fe2Si2),一种为粒状结构的α相(Al12Fe3Si),不同的相结构,对铝合金有不同的影响,片状结构的β相要比粒状结构α相破坏性大的多,β相可使铝型材表面粗糙、机械性能、抗蚀性能变差,氧化后的型材表面发青,光泽下降,着色后得不到纯正色调,因此,铁含量必须加以控制。 为了减少铁的有害影响可采取如下措施。 a)熔炼、铸造用所有工具在使用前涂涮涂料,尽可能减少铁溶人铝液。 b)细化晶粒,使铁相变细,变小,减少其有害作用。 c)加入适量的锶,使β相转变成α相,减少其有害作用。 d)对废杂料细心挑选,尽可能的减少铁丝、铁钉、铁屑等杂物进入熔铝炉造成铁含量升高。 ②其它杂质元素 其它杂质元素在电解铝锭中都很少,远远低于国家标准,在使用回收废杂铝时就可能超过标准;在生产中,不但要控制每个元素不能超标,而且要控制杂质元素总量也不能超标,当单个元素含量不超标,但总量超标时,这些杂质元素同样对型材质量有很大影响。特别需要提出强调的是,实践证明,锌含量到0.05时(国标中不大于0.1)型材氧化后表面就出现白色斑点,因此锌含量要控制到0.05以下。 三.6063铝合金的熔炼 1.控制好熔炼温度 铝合金熔炼是生产优质铸棒的最重要工艺环节之一,若工艺控制不当,会在铸捧中产生夹渣、气孔,晶粒粗大,羽毛晶等多种铸造缺陷,因此必须严加控制。 6063铝合金的熔炼温度控制在750-760℃之间为佳,过低会增大夹渣的产生,过高会增大吸氢、氧化、氮化烧损。研究表明,铝液中氢气的溶解度在760℃以上急剧上升,当热减少吸氢的途径还有许多,如烘干溶炼炉和熔炼工具,防止使用熔剂受潮变质等。但熔炼温度是最敏感因素之一,过离的熔炼温度不但浪费能源,增加成本,而且是造成气孔,晶粒粗大,羽毛晶等缺陷的直接成因。 2.选用优良的熔剂和适当的精炼工艺 熔剂是铝合金熔炼中使用的重要辅助材料,目前市场上所售熔剂中主要成份为氯化物,氟化物,其中氯化物吸水性强,容易受潮,因此,熔剂的生产中必须烘干所用原料,彻底除去水份,包装要密封,运输、保管中要防止破损,还要注意生产日期,如保管日期过长,同样会发生吸潮现象,在6063铝合金的熔炼中,使用的除渣剂、精炼剂、覆盖剂等熔剂如果吸潮,都会使铝液产生不同程度的吸氢。 选择好的精炼剂,选择合适的精练工艺也是非常重要的,目前6063铝合金的精炼绝大多数采用喷粉精炼,这种精炼方法能使精炼剂与铝液充分接触,可使精炼剂发挥最大效能。虽然这个特点是显而易见的,但是精炼工艺也必须注意,否则得不到应有效果,喷粉精炼中所用氮气压力以小为好,能满足吹出粉剂为佳,精炼中如果使用的氮气不是高纯氯(99.99%N2),吹入铝液的氮气越多,氟气中的水份使铝液产生的氧化和吸氢越多。另外,氟气压力高,侣液产生的翻卷波浪大,增大产生氧化夹渣的可能性。如果精炼中使用的是高纯氮,精炼压力大,产生的气泡大,大气泡在铝液中的浮力大,气泡迅速上浮,在铝液中的停留时间短,除氢效果并不好,浪费氮气,增加成本。因此氮气应少用,精炼剂应多用,多用精炼剂只有好处,没有坏处。喷粉精炼的工艺要点是用尽可能少的气体,喷进铝液尽可能多的精炼剂。 3.晶粒细化 晶粒细化是铝合金熔铸中晕重要的工艺之一,也是解决气孔、晶粒粗大、光亮晶、羽毛晶、裂纹等铸造缺陷的最有效措施之一。在合金铸造中,均是非平衡结晶,所有的杂质元素(当然也包括合金元素)绝大部分集中分布在晶界,晶粒越小,晶界面积就越大,杂质元素(或合金元素)的均匀度就越高。对杂质元素而言,均匀度高,可减少它的有害作用,甚至将少量杂质元素的有害变为有益;对合金元素面言,均匀度高,可发挥合金元素更大的合金化艘能,达到充分利用资源的目的。 细化晶粒、增大晶界面积、增大元素均匀度的作用可通过下面的计算加以说明。 假设金属块1与2有同样的体积V,均由立方体晶粒构成,金属块1的晶粒边长为2a,2的边长为a,那么金属块1的晶界面积为: 金属块2的晶界面积为: 金属块2的晶界面积是金属块1的2倍。 由此可见合金晶粒直径减小一倍,晶界面积就要增大—倍,晶界单位面积上的杂质元素将减少一倍。 在6063铝合金的生产中,对磨砂料来说,由于要通过腐蚀使型材产生均匀砂面,那么合金元素及杂质元素的均匀分布就显得尤为重要。晶粒越细,合金元素(杂质元素)的分布越均匀,腐蚀后得到的砂面就越均匀。

磷酸酯对铝的影响研究论文

能。H66磷酸酯可以通过与铝表面反应形成一层保护膜,阻止氧气和水分接触铝表面,从而减缓铝材料的氧化速度和颜色变化。H66磷酸酯是一种常用的缓蚀剂。

因为磷酸盐能和水络合形成磷酸二钠,这种络合物会把钠阻止在铝表面上,从而阻止电解质反应中的水解反应,从而抑制铝水解钠。

180度保温对铝的影响研究论文

铝的熔点为660.37 ℃貌似不会变软 因为是金属原子晶体

铝在200度下不会明显变软,这个温度刚好的做热处理的温度,内部的组织结构会发生变化.

铝合金材料的线性膨胀系数(1/k)为24.10-6,是铁的2倍,对环境温度的变化比较敏感。受温度变化的影响,在加工过程中不仅要考虑设备与刀具对工件精度的影响,还要根据环境对工件温度的影响变化来微调加工数据,温度的变化引起工件长度方向加工尺寸的变化是必须要考虑的因素。在环境温度小于10℃或大于30℃时,工件长度随温度变化量不稳定,无法保证加工尺寸。那么,如何解决这一问题,我们从加工和测量两个方面进行分析。1、加工尺寸计算我们可以计算铝合金型材在正常使用温度范围内的尺寸变化,即线性膨胀/收缩率公式如下:L=L0(1+αΔT)第 2 页其中:L为当前环境温度下的实际测量值,L0为20℃时理论值ΔT=T1-T2,T1为当前环境下的实际温度,T2=20℃铝热膨胀系数α=0.0000241(铝合金各种牌号稍有差别,但在这个温度范围内都是24左右)测量:用卷尺/精确度+/-1mm例如:24.2m的铝合金型材,在温度升高1℃后的长度为:L=24.2(1+0.0000241×1)=24.20058m。24.2m的铝合金型材,温度变化1℃长度变化0.58mm。利用上述公式,将图纸中要求的加工尺寸换算到加工车间实际的环境温度下的加工尺寸,如:车间当前温度在15℃,那么,图纸要求加工至24.2m的尺寸当前温度环境下需要加工至尺寸为:L=24.2(1-0.第 3 页0000241×5)=24.197m,比图纸尺寸应减少3mm。同理,假如车间当前温度在25℃,则需要加工至24.2029m,比图纸尺寸要增加3mm。同样,边梁上在长度方向的所有线性加工尺寸都要如此类推通过计算后按照计算的数值进行加工编程及数据微调。2、测量尺寸计算在进行工件的尺寸测量时,先测量出当前温度下的尺寸值,并应用上面的公式进行反推计算出工件在20℃下,尺寸是否达到图纸的尺寸要求:L=L0(1+αΔT)推出L0=L/(1+αΔT)。通过以上计算,我们可以得知,在温度允许的情况下,以20℃为基准,20m型材为参考,温度每升高或降低一度,长度尺寸相应的增加或减少0.4mm左第 4 页右。加工时工艺员需要根据当前的工件温度来调整加工参数。值得一提的是,以上温度参数实际上应为工件的温度,即表温仪测量的工件表面的温度,在生产中一般以车间的环境温度为计算值即可,但要保证原材料存放于车间24小时以上,即与车间的环境温度基本一致。通过以上的科学计算及实际测量出的数据,加工完后的工件尺寸基本与理论数据吻合。产品在批量供应客户后,经过与其他部件的组装调试均能够满足组对精度要求,产品的尺寸精度及质量稳定性得到了客户的极大认可。

铝元素对淬硬层影响研究论文

影响奥氏体晶粒度的因素很多。钢的脱氧和合金化情况均与“奥氏体本质晶粒度”有关。一般来说,一些不形成碳化物的元素,如镍、硅、铜、钴等,阻止奥氏体晶粒长大的作用较弱,而锰、磷则有促进晶粒长大的倾向。碳化物形成元素如钨、钼、铬等,对阻止奥氏体晶粒长大起中等作用。强碳化物形成元素如钒、钛、铌、锆等,强烈地阻止奥氏体晶粒长大,起细化晶粒作用。铝虽然属于不形成碳化物元素,但却是细化晶粒和控制晶粒开始粗化温度的最常用的元素。钢的淬透性(见淬火)高低主要取决于化学成分和晶粒度。除钴和铝等元素外,大部分合金元素溶入固溶体后都不同程度地抑制过冷奥氏体向珠光体和贝氏体的相变,增加获得马氏体组织的数量,即提高钢的淬透性。

铬是影响钢的淬硬性最大的元素,其次是碳、锰、锌和铝。铬可以提高钢的硬度、耐磨性和耐腐蚀性,使钢具有更高的抗弯强度和抗压强度。碳是钢的主要组成元素,可以提高钢的硬度和强度,但会影响钢的韧性和抗拉强度。锰可以增加钢的抗腐蚀性和强度,而锌可以提高钢的抗拉强度和耐磨性。铝可以提高钢的耐热性和抗腐蚀性。

相关百科

热门百科

首页
发表服务