首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

医学基因测序商业化研究论文

发布时间:

医学基因测序商业化研究论文

因为这个难题是科学家一直探索的问题,他的发现对以后的研究有很大的帮助。

科研人员揭示的完整人类基因组序列,是世界上最复杂的谜题之一,这一研究使得人类第一次看到最完整的、无间隙的DNA碱基基因序列,对于人类了解基因组变异的全谱,以及某些疾病的遗传贡献至关重要,将会推动与癌症、出生缺陷和衰老相关的研究与科学发展。

摘要:现代生物技术制药工业始于1971年,现已创造出35个重要治疗药物,全球大约有2500多家公司,主要产品有重组蛋白质药品、重组疫苗和诊断、治疗用的单克隆机体三大类。我国自80年代开始进行现代生物技术药品的研究和开发,到1998年7月底,我国已有近200多个现代生物技术制药企业,已有14种现代生物技术药品和疫苗投产,已经批准进入临床的有近10种药,正在进行临床前研究的有10多种。在采用现代生物技术改造传统生物技术制药产业方面已取得初步成果。但我国生物技术诊断试剂、酶工程、动植物细胞工程医药产品、现代生物技术支撑技术、后处理技术和制剂技术等方面与国外还存在差距。其中不重视中试放大过程是影响我国生物技术产业化发展的一个很重要的原因。 关键词:生物技术制药 生物技术的应用 生物技术发展 生物药物研究进展 生物技术药物(biotech drugs)或称生物药物(biopharmaceutics)是集生物学、医学、药学的先进技术为一体,以组合化学、药学基因(功能抗原学、生物信息学等高技术为依托,以分子遗传学、分子生物、生物物理等基础学科的突破为后盾形成的产业。现在,世界生物制药技术的产业化已进入投资收获期,生物技术药品已应用和渗透到医药、保健食品和日化产品等各个领域,尤其在新药研究、开发、生产和改造传统制药工业中得到日益广泛的应用,生物制药产业已成为最活跃、进展最快的产业之一。有些学者认为,20世纪的科学技术是以物理学和化学的成就占主导地位,而21世纪的科学技术是以生物学的成就占主导地位。无论这种说法是否得到普遍的认同,生物技术是当今高技术中发展最快的领域似乎是不争的事实。 科学家预测,生命科学到2015年会取得革命性进展。这些进展可以帮助人类解决很多目前无法医治的疾病的治疗问题,彻底消除营养不良,改善食品的生产方式,消除各种污染,延长人类寿命,提高生命质量,为社会安全和刑侦提供新的手段。有些成果还可以帮助人类加速植物和动物的人工进化以及改善生态环境对人类的影响等。产生新的有机生命的研究也会取得进展。 1.生物制药现状 目前生物制药主要集中在以下几个方向: 1 肿瘤 在全世界肿瘤死亡率居首位,美国每年诊断为肿瘤的患者为100万,死于肿瘤者达54.7万。用于肿瘤的治疗费用1020亿美元。肿瘤是多机制的复杂疾病,目前仍用早期诊断、放疗、化疗等综合手段治疗。今后10年抗肿瘤生物药物会急剧增加。如应用基因工程抗体抑制肿瘤,应用导向IL-2受体的融合毒素治疗CTCL肿瘤,应用基因治疗法治疗肿瘤(如应用γ-干扰素基因治疗骨髓瘤)。基质金属蛋白酶抑制剂(TNMPs)可抑制肿瘤血管生长,阻止肿瘤生长与转移。这类抑制剂有可能成为广谱抗肿瘤治疗剂,已有3种化合物进入临床试验。2 神经退化性疾病 老年痴呆症、帕金森氏病、脑中风及脊椎外伤的生物技术药物治疗,胰岛素生长因子rhIGF-1已进入Ⅲ期临床。神经生长因子(NGF)和BDNF(脑源神经营养因子)用于治疗末稍神经炎,肌萎缩硬化症,均已进入Ⅲ期临床。 美国每年有中风患者60万,死于中风的人数达15万。中风症的有效防治药物不多,尤其是可治疗不可逆脑损伤的药物更少,Cerestal已证明对中风患者的脑力能有明显改善和稳定作用,现已进入Ⅲ期临床。Genentech的溶栓活性酶(Activase重组tPA)用于中风患者治疗,可以消除症状30%。 3 自身免疫性疾病 许多炎症由自身免疫缺陷引起,如哮喘、风湿性关节炎、多发性硬化症、红斑狼疮等。风湿性关节炎患者多于4000万,每年医疗费达上千亿美元,一些制药公司正在积极攻克这类疾病。如 Genentech公司研究一种人源化单克隆抗体免疫球蛋白E用于治疗哮喘,已进入Ⅱ期临床;Cetor′s公司研制一种TNF-α抗体用于治疗风湿性关节炎,有效率达80%。Chiron公司的β-干扰素用于治疗多发性硬化病。还有的公司在应用基因疗法治疗糖尿病,如将胰岛素基因导入患者的皮肤细胞,再将细胞注入人体,使工程细胞产生全程胰岛素供应。 4 冠心病 美国有100万人死于冠心病,每年治疗费用高于1 170亿美元。今后10年,防治冠心病的药物将是制药工业的重要增长点。Centocor′s Reopro公司应用单克隆抗体治疗冠心病的心绞痛和恢复心脏功能取得成功,这标志着一种新型冠心病治疗药物的延生。基因组科学的建立与基因操作技术的日益成熟,使基因治疗与基因测序技术的商业化成为可能,正在达到未来治疗学的新高度。转基因技术用于构造转基因植物和转基因动物,已逐渐进入产业阶段,用转基因绵羊生产蛋白酶抑制剂ATT,用于治疗肺气肿和囊性纤维变性,已进入Ⅱ,Ⅲ期临床。大量的研究成果表明转基因动、植物将成为未来制药工业的另一个重要发展领域。 2.生物制药展望 今后10年生物技术将对当代重大疾病治疗剂创造更多的有效药物,并在所有前沿性的医学领域形成新领域。目前热门的药物生物技术如下:表1 热门药物生物技术技 术 新颖性 技 术 新颖性 组合化学 成熟领域 前导物综合鉴定技术 新生技术 药学基因组科学 发展领域 核糖酶 新生技术 蛋白质工程 发展领域 抗体酶 新生技术 基因治疗 发展领域 药物设计与人工智能 新生技术 糖类治疗剂 发展领域 功能抗原 新生技术 表2 正在研究开发的生物技术药物类型领 域 开发药物品种 领 域 开发药物品种 单克隆体 78 人生长激素 5 疫苗 62 组织纤溶酶原激活剂 4 基因治疗 28 凝血因子 3 白介素 11 集落细胞刺激因子 3 干扰素 10 促红细胞生成素 2 生长因子 10 SOD 1 重组可溶性受体 6 其他 56 反义药物 6 总数 284 生物学的革命不仅依赖于生物科学和生物技术的自身发展,而且依赖于很多相关领域的技术走向,例如微机电系统、材料科学、图像处理、传感器和信息技术等。尽管生物技术的高速发展使人们难以作出准确的预测,但是基因组图谱、克隆技术、遗传修改技术、生物医学工程、疾病疗法和药物开发方面的进展正在加快。除了遗传学之外,生物技术还可以继续改进预防和治疗疾病的疗法。这些新疗法可以封锁病原体进入人体并进行传播的能力,使病原体变得更加脆弱并且使人的免疫功能对新的病原体作出反应。这些方法可以克服病原体对抗生素的耐受性越来越强的不良趋势,对感染形成新的攻势。 除了解决传统的细菌和病毒问题之外,人们正在开发解决化学不平衡和化学成分积累的新疗法。例如,正在开发之中的抗体可以攻击体内的可卡因,将来可以用于治疗成瘾问题。这种方法不仅有助于改善瘾君子的状况,而且对于解决全球性非法毒品贸易问题具有重大影响。 各种新技术的出现有助于新药物的开发。计算机模拟和分子图像处理技术(例如原子力显微镜、质量分光仪和扫描探测显微镜)相结合可以继续提高设计具有特定功能特性的分子的能力,成为药物研究和药物设计的得力工具。药物与使用该药物的生物系统相互作用的模拟在理解药效和药物安全方面会成为越来越有用的工具。例如,美国食品药物管理局(FDA)在药物审批的过程中利用Dennis Noble的虚拟心脏模拟系统了解心脏药物的机理和临床试验观测结果的意义。这种方法到2015年可能会成为心脏等系统临床药物试验的主流方法,而复杂系统(例如大脑)的药物临床试验需要对这些系统的功能和生物学进行更为深入的研究。 到下世纪初生物技术药物的种类数目尚不会超过一般药物的总数,但生物技术制药公司总数将超过前10年的6倍。目前主要生物技术公司多分布在美国,如Amgen,Genetics institute,Genzyme,Genentech和Chiron,还有Biogen也发展较快。1987年尚没有一种重组DNA药物进入世界药品销售额排名前列表,但到1996年已有多种生物工程药物榜上有名。经上市的生物技术药物主要含3大类,即重组治疗蛋白质、重组疫苗和诊断或治疗用的单克隆抗体。 药物的研究开发成本目前已经高到难以为继的程度,每种药物投放市场前的平均成本大约为6亿美元。这样高的成本会迫使医药工业对技术的进步进行巨大的投资,以增强医药工业的长期生存能力。综合利用遗传图谱、基于表现型的定制药物开发、化学模拟程序和工程程序以及药物试验模拟等技术已经使药物开发从尝试型方法转变为定制型开发,即根据服药群体对药物反应的深入了解会设计、试验和使用新的药物。这种方法还可以挽救过去在临床试验中被少数患者排斥但有可能被多数患者接受的药物。这种方法可以改善成功率、降低试验成本、为适用范围较窄的药物开辟新的市场、使药物更加适合适用对症群体的需要。如果这种技术趋于成熟,可以对制药工业和健康保险业产生重大影响。 值得注意的是,制药工业的知识产权保护在世界各地是不平衡的。某些地区(例如亚洲)会继续以生产专利过期药物为主,有些地区(如美国和欧洲)除了继续生产低利润的药物外会不断开发新的药物。 总之,综合多学科的努力,通过新技术的创立可以大大拓宽发明新药的空间,增加发明新药的机遇与速度。因为这些手段可以寻找快速鉴定药物作用的靶,更有效地发现更多新的先导物化学实体,从而为发明新药提供更加广阔的前景。

李宝键教授在“展望21世纪的生命科学”一文中谈到基因组研究计划研究重要性时,引用《Scinence》上“第三次技术命革”中的一句话:“下一个传大时代将是基因组革命时代,它正处于初期阶段。”在当前的研究水平上,只要涉及生命体重要现象的课题,几乎离不开对基因及其作用的分析。2000年6月26日,英美两国首脑会同公私两大人基因组测序集团向世人正式宣告,人基因组的工作草图已绘制完成。科学家把这作为生命科学进入新时代的标志,即后基因组时代(post-genome era)。因此有必要对基因组及其研究内容和进展作一个了解。1基因组学及其研究内容基因组(GENOME)一词是1920年Winkles从GENes和chromosOMEs组成的,用于描述生物的全部基因和染色体组成的概念。1953年Watson和Crick发现DNA双螺旋结构,标志分子生物学的诞生,随着各学科的发展,当前生物学研究进入新的进代,在生物大分子水平上将不同的研究技术和手段有机的结合以攻克生物学难题。基因组研究可以理解为:(1)基因表达概况研究,即比较不同组织和不同发育阶段、正常状态与疾病状态,以及体外培养的细胞中基因表达模式的差异,技术包括传统的RTPCR,RNase保护试验,RNA印迹杂交,但是其不足是一次只能做一个。新的高通量表达分析方法包括微点阵(microarrary),基因表达序列分析(serial analysis of gene expression,SAGE),DNA芯片(DNA chip)等;(2)基因产物-蛋白质功能研究,包括单个基因的蛋白质体外表达方法,以及蛋白质组研究;(3)蛋白质与蛋白质相互作用的研究,利用酵母双杂交系统,单杂交系统(one-hybrid system),三杂交系统(thrdee-hybrid system)以及反向杂交系统(reverse hybrid system)等。1986年美国科学家Thomas Roderick提出了基因组学(Genomics),指对所有基因进行基因组作图(包括遗传图谱、物理图谱、转录图谱),核苷酸序列分析,基因定位和基因功能分析的一门科学。因此,基因组研究应该包括两方面的内容:以全基因组测序为目标的结构基因组学(structural genomics)和以基因功能鉴定为目标的功能基因组学(functional genomics)。结构基因组学代表基因组分析的早期阶段,以建立生物体高分辨率遗传、物理和转录图谱为主。功能基因组学代表基因分析的新阶段,是利用结构基因组学提供的信息系统地研究基因功能,它以高通量、大规模实验方法以及统计与计算机分析为特征。随着1990年人类基因组计划(Human Genome Project,HGP)的实施并取得巨大成就,同时模式生物(model organisms)基因组计划也在进行,并先后完成了几个物种的序列分析,研究重心从开始揭示生命的所有遗传信息转移到从分子整体水平对功能的研究上。第一个标志是功能基因组学的产生,第二个标志是蛋白质组学(proteome)的兴起。2 结构基因组学研究内容结构基因组学(structural genomics)是基因组学的一个重要组成部分和研究领域,它是一门通过基因作图、核苷酸序列分析确定基因组成、基因定位的科学。遗传信息在染色体上,但染色体不能直接用来测序,必须将基因组这一巨大的研究对象进行分解,使之成为较易操作的小的结构区域,这个过程就是基因作图。根据使用的标志和手段不同,作图有三种类型,即构建生物体基因组高分辨率的遗传图谱、物理图谱、转录图谱。2.1遗传图谱通过遗传重组所得到的基因在具体染色体上线性排列图称为遗传连锁图。它是通过计算连锁的遗传标志之间的重组频率,确定他们的相对距离,一般用厘摩(cM,即每次减数分裂的重组频率为1%)来表示。绘制遗传连锁图的方法有很多,但是在DNA多态性技术未开发时,鉴定的连锁图很少,随着DNA多态性的开发,使得可利用的遗传标志数目迅速扩增。早期使用的多态性标志有RFLP(限制性酶切片段长度多态性)、RAPD(随机引物扩增多态性DNA)、AFLP(扩增片段长度多态性);80年代后出现的有STR(短串联重复序列,又称微卫星)DNA遗传多态性分析和90年代发展的SNP(单个核苷酸的多态性)分析。2.2物理图谱物理图谱是利用限制性内切酶将染色体切成片段,再根据重叠序列确定片段间连接顺序,以及遗传标志之间物理距离[碱基对(bp)或千碱基(kb)或兆碱基(Mb)的图谱。以人类基因组物理图谱为例,它包括两层含义,一是获得分布于整个基因组30 000个序列标志位点(STS,其定义是染色体定位明确且可用PCR扩增的单拷贝序列)。将获得的目的基因的cDNA克隆,进行测序,确定两端的cDNA序列,约200bp,设计合成引物,并分别利用cDNA和基因组DNA作模板扩增;比较并纯化特异带;利用STS制备放射性探针与基因组进行原位杂交,使每隔100kb就有一个标志;二是在此基础上构建覆盖每条染色体的大片段:首先是构建数百kb的YAC(酵母人工染色体),对YAC进行作图,得到重叠的YAC连续克隆系,被称为低精度物理作图,然后在几十个kb的DNA片段水平上进行,将YAC随机切割后装入粘粒的作图称为高精度物理作图.2.3转录图谱利用EST作为标记所构建的分子遗传图谱被称为转录图谱。通过从cDNA文库中随机条区的克隆进行测序所获得的部分 cDNA的5'或3'端序列称为表达序列标签(EST),一般长300~500bp左右。一般说,mRNA的3' 端非翻译区(3'-UTR)是代表每个基因的比较特异的序列,将对应于3'-UTR的EST序列进行RH定位,即可构成由基因组成的STS图。截止到1998年12月底,在美国国家生物技术信息中心(NCBI)数据库中分布的植物EST的数目总和已达几万条,所测定的人基因组的EST达180万条以上。这些EST不仅为基因组遗传图谱的构建提供了大量的分子标记,而且来自不同组织和器官的EST也为基因的功能研究提供了有价值的信息。此外,EST计划还为基因的鉴定提供了候选基因(candidantes)。其不足之处在于通过随机测序有时难以获得那些低丰度表达的基因和那些在特殊环境条件下(如生物胁迫和非生物胁迫)诱导表达的基因。因此,为了弥补EST计划的不足,必须开展基因组测序。通过分析基因组序列能够获得基因组结构的完整信息,如基因在染色体上的排列顺序,基因间的间隔区结构,启动子的结构以及内含子的分布等。3功能基因组学研究功能基因组学(functional genomics)又往往被称为后基因组学(postgenomics),它利用结构基因组所提供的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使得生物学研究从对单一基因或蛋白质的研究转向多个基因或蛋白质同时进行系统的研究。这是在基因组静态的碱基序列弄清楚之后转入基因组动态的生物学功能学研究。研究内容包括基因功能发现、基因表达分析及突变检测。基因的功能包括:生物学功能,如作为蛋白质激酶对特异蛋白质进行磷酸化修饰;细胞学功能,如参与细胞间和细胞内信号传递途径;发育上功能,如参与形态建成等采用的手段包括经典的减法杂交,差示筛选,cDNA代表差异分析以及mRNA差异显示等,但这些技术不能对基因进行全面系统的分析。新的技术应运而生,包括基因表达的系统分析,cDNA微阵列,DNA芯片等。鉴定基因功能最有效的方法是观察基因表达被阻断或增加后在细胞和整体水平所产生的表型变异,因此需要建立模式生物体。比较基因组学(Comparative Genomics)是基于基因组图谱和测序基础上,对已知的基因和基因组结构进行比较,来了解基因的功能、表达机理和物种进化的学科。利用模式生物基因组与人类基因组之间编码顺序上和结构上的同源性,克隆人类疾病基因,揭示基因功能和疾病分子机制,阐明物种进化关系,及基因组的内在结构。目前从模式生物基因组研究中得出一些规律:模式生物基因组一般比较小,但编码基因的比例较高,重复顺序和非编码顺序较少;其G+C%比较高;内含子和外显子的结构组织比较保守,剪切位点在多种生物中一致;DNA 冗余,即重复;绝大多数的核心生物功能由相当数量的orthologous蛋白承担;Synteny连锁的同源基因在不同的基因组中有相同的连锁关系等。模式生物基因组研究揭示了人类疾病基因的功能,利用基因顺序上的同源性克隆人类疾病基因,利用模式生物实验系统上的优越性,在人类基因组研究中的应用比较作图分析复杂性状,加深对基因组结构的认识。 此外,可利用诱变技术测定未知基因,基因组多样性以及生物信息学(Bioinformatics)的应用。4蛋白质组学研究基因是遗传信息的携带者,而全部生物功能的执行者却是蛋白质,它有自身的活动规律,因而仅仅从基因的角度来研究是远远不够的,必须研究由基因转录和翻译出蛋白质的过程,才能真正揭示生命的活动规律,由此产生了研究细胞内蛋白质组成及其活动规律的新兴学科——蛋白质组学(proteomics)。蛋白质组(proteome)是由澳大利亚Macquarie大学的Wilkins和Williams于1994首先提出,并见于1995年7月的“Electrophonesis”上,指全部基因表达的全部蛋白质及其存在方式,是一个基因、一个细胞或组织所表达的全部蛋白质成分,蛋白质组学是对不同时间和空间发挥功能的特定蛋白质群体的研究。它从蛋白质水平上探索蛋白质作用模式、功能机理、调节控制以及蛋白质群体内相互作用,为临床诊断、病理研究、药物筛选、药物开发、新陈代谢途径等提供理论依据和基础。 蛋白质组学旨在阐明生物体全部蛋白质的表达模式及功能模式,内容包括鉴定蛋白质表达、存在方式(修饰形式)、结构、功能和相互作用方式等。它不同于传统的蛋白质学科,是在生物体或其细胞的整体蛋白质水平上进行的,从一个机体或一个细胞的蛋白质整体活动来揭示生命规律。但由于蛋白质具有多样性和可变性,复杂性,低表达蛋白质难以检测等,应该明确其研究的艰难性。总体上研究可以分为两个方面:对蛋白质表达模式(或蛋白质组成)研究,对蛋白质功能模式(目前集中在蛋白质相互作用网络关系)研究。对蛋白质组研究可以提供如下信息:从基因序列预测的基因产物是否以及何时被翻译;基因产物的相对浓度;翻译后被修饰的程度等。由于蛋白质数目小于基因组中开放阅读框(ORF, open reading frame)数目,因此提出功能蛋白质组学(functional proteomics),功能蛋白质指在特定时间、特定环境和试验条件下基因组活跃表达的蛋白质,只是总蛋白质组的一部分。功能蛋白质组学研究是位于对个别蛋白质的传统蛋白质研究和以全部蛋白质为研究对象的蛋白质研究之间的层次,是细胞内与某个功能有关或某种条件下的一群蛋白质。对蛋白质组成分析鉴定,要求对蛋白质进行表征化,即分离、鉴定图谱化,包括两个步骤:蛋白质分离和鉴定。双向凝胶电泳(2-DGE)和质谱(MS)是主要的技术。近年来,有关技术和生物信息学在不断并迅速开发和发展中。蛋白质组研究技术体系包括:样品制备;双向聚丙烯酰胺凝胶电泳(two-dimensional polyacrylamide gel electrophoresis,2-D PAGE);蛋白质的染色;凝胶图像分析;蛋白质分析;蛋白质组数据库。其中三大关键是:双向凝胶电泳技术、质谱鉴定、计算机图像数据处理与蛋白质数据库。5与基因组学相关学科诞生随着基因组学研究的不断深入,人类有望揭示生命物质世界的各种前所未知的规律,完全揭开生命之谜,进而驾驶生命,使之为人类的社会经济服务。基因组研究和其它学科研究交叉,促进一些学科诞生,如营养基因组学(nutritional genomics),环境基因组学(environmental genomics),药物基因组学(phamarcogenomics),病理基因组学(pathogenomics),生殖基因组学(reproductive genomics),群体基因组学(population genomics)等。其中,生物信息学正成为备受关注的新型产业的支撑点。生物信息学是以生物大分子为研究,以计算机为工具,运用数学和信息科学的观点、理论和方法去研究生命现象、组织和分析呈指数级增长的生物信息数据的一门科学。研究重点体现在基因组学和蛋白质两个方面。首先是研究遗传物质的载体DNA及其编码的大分子量物质,以计算机为工具,研究各种学科交叉的生物信息学的方法,找出其规律性,进而发展出适合它的各种软件,对逐步增长的DNA 和蛋白质的序列和结构进行收集、整理、发布、提取、加工、分析和发现。由数据库、计算机网络和应用软件三大部分组成。其关注的研究热点包括:序列对比,基因识别和DNA序列分析,蛋白质结构预测,分子进化,数据库中知识发现(Knowledge Discovery in Database, KDD)。这一领域的重大科学问题有:继续进行数据库的建立和优化;研究数据库的新理论、新技术、新软件;进行若干重要算法的比较分析;进行人类基因组的信息结构分析;从生物信息数据出发开展遗传密码起源和生物进化研究;培养生物信息专业人员,建立国家生物医学数据库和服务系统[5]。20世纪末生物学数据的大量积累将导致新的理论发现或重大科学发现。生物信息学是基于数据库与知识发现的研究,对生命科学带来革命性的变化,对医药、卫生、食品、农业等产业产生巨大的影响。邹承鲁教授在谈论21世纪的生命科学时讲到,生物学在20世纪已取得巨大的发展,数理科学广泛而又深刻地深入生物学的结果在新的高度上揭示了生命的奥妙,全面改变了生物学的面貌。生物学不仅是当前自然科学发展的热点,进入21世纪后将仍然如此。科学家称21世纪是信息时代。生物科学和信息科学结合,无疑是多个学科发展的必然结果。

基因测序论文题目

基因本质的确定为分子遗传学发展拉开了序幕。1955年,美国分子生物学家本泽(Benzer)对大肠杆菌T4噬菌体作了深入研究,揭示了基因内部的精细结构,提出了基因的顺反子(Cistron)概念。 本泽把通过顺反实验而发现的遗传的功能单位称为顺反子,1个顺反子决定一条多肽链,顺反子即是基因。1个顺反子内存在着很多突变位点——突变子,突变子就是改变后可以产生突变型表型的最小单位。1个顺反子内部存在着很多重组子。重组子就是不能由重组分开的基本单位。理论上每一核苷酸对的改变,就可导致一个突变的产生,每两个核苷酸对之间都可发生交换。这样看来,一个基因有多少核苷酸对就有多少突变子,就有多少重组子,突变子就等于重组子。这个学说打破了过去关于基因是突变、重组、决定遗传性状的“三位一体”概念及基因是最小的不可分割的遗传单位的观点,从而认为基因为DNA分子上一段核苷酸顺序,负责着遗传信息传递,一个基因内部仍可划分若干个起作用的小单位,即可区分成顺反子、突变子和重组子。一个作用子通常决定一种多肽链合成,一个基因包含一个或几个作用子。突变子指基因内突变的最小单位,而重组子为最小的重组合单位,只包含一对核苷酸。所有这些均是基因概念的伟大突破。 关于基因的本质确定后,人们又把研究视线转移到基因传递遗传信息的过程上。在20世纪50年代初人们已懂得基因与蛋白质间似乎存在着相应的联系,但基因中信息怎样传递到蛋白质上这一基因功能的关键课题在20世纪60年代至20世纪70年代才得以解决。从1961年开始,尼伦伯格(M.W. Nirenberg)和科拉纳等人逐步搞清了基因以核苷酸三联体为一组编码氨基酸,并在1967年破译了全部64个遗传密码,这样把核酸密码和蛋白质合成联系起来。然后,沃森和克里克等人提出的“中心法则”更加明确地揭示了生命活动的基本过程。1970年特明以在劳斯肉瘤病毒内发现逆转录酶这一成就进一步发展和完善了“中心法则”,至此,遗传信息传递的过程已较清晰地展示在人们的眼前。过去人们对基因的功能理解是单一的即作为蛋白质合成的模板。 1961年法国雅各布和莫诺的研究成果,又大大扩大了人们关于基因功能的视野。他们在研究大肠杆菌乳糖代谢的调节机制中发现了有些基因不起合成蛋白质模板作用,只起调节或操纵作用,提出了操纵子学说。从此根据基因功能把基因分为结构基因、调节基因和操纵基因。结构基因和调控基因:根据操纵子学说,并不是所有的基因都能为肽链进行编码。于是便把能为多肽链编码的基因称为结构基因,包括编码结构蛋白和酶蛋白的基因,也包括编码阻遏蛋白或激活蛋白的调节基因。有些基因只能转录而不能翻译,如tRNA基因和rRNA基因。还有些DNA区段,其本身并不进行转录,但对其邻近的结构基因的转录起控制作用,被称为启动基因和操纵基因。启动基因、操纵基因与其控制下的一系列结构基因组成一个功能单位叫做操纵子(operon)。就其功能而言,调节基因、操纵基因和启动基因都属于调控基因。这些基因的发现,大大拓宽了人们对基因功能及相互关系的认识。断裂基因:20世纪70年代中期,法国生物化学家查姆帮(Chamobon)和波盖特(berget)在研究鸡卵清蛋白基因的表达中发现,细胞内的结构基因并非全部由编码序列组成,而是在编码序列中间插入无编码作用的碱基序列,这类基因被称为间隔或断裂基因。这一发现于1977年被英国的查弗里斯和荷兰的弗兰威尔在研究兔β-球蛋白结构时所证实。1978年,生化学家吉尔伯特(Walter Gilbert)提出基因是一个转录单位的设想,他认为基因是一个DNA序列的嵌合体,同时包含两个区段:一个区段将被表达并存在于成熟的mRNA中,称为“外显子”;一个区段由虽然也同时被表达,但将在成熟mRNA中被删除,称为“内含子”。近年来的研究发现,原核生物的基因序列一般是连续的,在一个基因的内部几乎不含“内含子”,而真核生物中绝大多数基因都是由不连续DNA序列组成的断裂基因。断裂基因的表达过程是:整个基因先由DNA转录成一条信息RNA前体(precursor mRNA),其中的内含序列会被一种称为“剪接体”的RNA/蛋白质复合物所切除,两端再相互连接成一条连续的核酸顺序,以形成成熟的mRNA。DNA分子断裂基因的存在为基因功能的展现赋予了更大的潜力。重叠基因:长期以来,人们一直认为在同一段DNA序列内是不可能存在重叠的读码结构的。但是,1977年,维纳(Weiner)在研究Q0病毒的基因结构时,首先发现了基因的重叠现象。1978年,费尔(Feir)和桑戈尔(Sangor)在研究分析φX174噬菌体的核苷酸序列时,也发现由5375个核苷酸组成的单链DNA所包含的10个基因中有几个基因具有不同程度的重叠,但是这些重叠的基因具有不同的读码框架。以后在噬菌体G4、MS2和SV40中都发现了重叠基因。基因的重叠性使有限的DNA序列包含了更多的遗传信息,是生物对它的遗传物质经济而合理的利用。假基因:1977年,G·Jacp在对非洲爪赡5SrRNA基因簇的研究后提出了假基因的概念,这是一种核苷酸序列同其相应的正常功能基因基本相同,但却不能合成出功能蛋白质的失活基因。假基因的发现是真核生物应用重组DNA技术和序列分析的结果。现已在大多数真核生物中发现了假基因,如Hb的假基因、干扰素、组蛋白、α球蛋白和β球蛋白、肌动蛋白及人的rRNA和tRNA基因均含有假基因。由于假基因不工作或无效工作,故有人认为假基因,相当人的痕迹器官,或作为后补基因。移动基因:1950年,美国遗传学家麦克林托卡在玉米染色体组中首先发现移动基因。她发现玉米染色体上有一种称为Ds的控制基因会改变位置,同时引起染色体断裂,使其离开或插入部位邻近的基因失活或恢复恬性,从而导致玉米籽粒性状改变。这一研究当时并没有引起重视。20世纪60年代未,英国生物化学家夏皮罗和前西德生物化学家西特尔分别在细菌中发现一类称为插入顺序的可移动位置的遗传因子,20世纪70年代早期又发现细菌质粒的某些抗药性可移动的基因,到20世纪80年代已发现这类基因至少有20种。20世纪90年代之前,科学家终于用实验证明了麦克林托卡的观点,移动基因不仅能在个体的染色体组内移动,并能在个体间甚至种间移动。现已了解到真核细胞中普遍存在移动基因。基因移动性的发现不仅打破了遗传的DNA恒定论,而且对于认识肿瘤基因的形成和表达,以及生物演化中信息量的扩大等研究工作也将提供新的启示和线索。

我zju的孩子伤不起啊···哥···你看到这个题目还high了一下···我以为我的搞定了···

生物技术作为一门高新技术学科,必须经过长期培养才能在实际应用中显示出一定的效果,生物技术研究的范围也很广。生物技术专业的论文怎么写呢?下面我给大家带来生物技术专业论文选题题目_生物专业论文题目参考,希望能帮助到大家!

生物论文题目

[1]不同温度下制备的生物炭对水相Cu~(2+)的吸附表现

[2]新型冠状病毒肺炎疫情下治疗药物监测实验室的感染防控策略

[3]脱毒地黄试管苗的微扦插快繁技术研究

[4]水产蛋白源生物活性肽的研究进展

[5]杉木ClSAUR25基因5’侧翼序列的克隆与生物信息学分析

[6]芒果MiTFL1-4基因启动子克隆与生物信息学分析

[7]乳酸菌调控骨骼肌线粒体生物发生的机制研究进展

[8]基于模拟胃肠道消化的云南民族乳制品蛋白肽研究

[9]肠道派氏结M细胞在淋巴传递中的生物功能及靶向载体研究进展

[10]家禽肠道健康的生物标志物研究进展

[11]生物素对动物毛发生长的影响及其应用

[12]Bacillus asahii OM18菌剂载体筛选及其对玉米的促生效果

[13]江苏省湖泊水生植物优势种对氮、磷去除效果比较研究

[14]三维荧光分析评价腐殖酸高级氧化前处理效果的研究

[15]生物炭对铜污染土壤的修复及水稻Cu累积的影响

[16]基于鱼类需求的淮河上游息县枢纽工程闸下河段环境流量研究

[17]基于高通量测序探讨大宁河不同水华期真核浮游生物群落组成

[18]裂解温度对不同原材料生物炭理化特性的影响

[19]山楂鲨烯合酶CpSQS1,CpSQS2的基因克隆及原核表达分析

[20]甜菜素合成相关基因BvDDC1的克隆与表达分析

[21]“伞形集团”典型国家LULUCF林业碳评估模型比较研究

[22]小麦和苜蓿套作 种植 对土壤水分及作物水分利用效率的影响

[23]黄土高原刺槐人工林根际和非根际土壤磷酸酶活性对模拟降水变化的响应

[24]重庆都市区生态系统服务价值时空演变及其驱动力

[25]黄土高原降雨梯度对刺槐不同器官内源激素分布格局及生长的影响

[26]基于改进参数的长三角城市生态足迹分析及其可持续性评价

[27]黄土丘陵区退耕草地群落盖度与地上生物量关系

[28]模拟降雨量变化与CO_2浓度升高对小麦光合特性和碳氮特征的影响

[29]黑色地膜覆盖土壤水热效应及对玉米产量的影响

[30]生物土壤结皮生态修复功能研究及对石漠化治理的启示

[31]__核电厂邻近海域大型底栖动物群落变化和污染指数评价

[32]鸡和鸭对山苍子果渣养分和能量利用率的研究

[33]多级AO+潜流湿地对生活污水中的EDCs及常规污染物的去除试验研究

[34]人类生物医学干预是合法的政策监管手段吗?

[35]Rev-erbα在心血管疾病中的研究进展

[36]医用生物胶体分散剂在1064 nm Nd:YAG激光治疗婴幼儿血管瘤术后的应用

[37]茶黄素双没食子酸酯的生物活性及其作用机制

[38]化学动力学疗法:芬顿化学与生物医学的融合

[39]金银花和蒲公英对肉源性假单胞菌生物被膜的清除作用

[40]5.5亿年前动物“临终遗迹”的发现将分节动物的祖先推前了一千万年

[41]趋磁细菌磁小体合成的相关操纵子和基因

[42]霉菌毒素的生物脱除 方法 及机理研究进展

[43]内蒙古巴彦淖尔市畜禽寄生虫病调查

[44]基于O_2/Ar比值估算海洋混合层群落净生产力的研究进展

[45]海岸线的溢油环境敏感性评价研究进展

[46]海洋中挥发性卤代烃的研究进展

[47]海水养殖生境中硫化物污染及控制技术研究进展

[48]紫檀芪改善睡眠限制小鼠运动耐力的作用及其机制

[49]华癸中慢生根瘤菌多铜氧化酶基因mco的功能研究

[50]中南民族大学教师团队在自然指数期刊《Analytical Chemistry》发表研究成果

生物专业 毕业 论文题目

1、基于多元相场理论的细菌生物膜生长动力学建模及其数值模拟

2、血管紧张素II经酸性鞘磷脂酶/神经酰胺通路致动脉内皮功能障碍的作用

3、盐胁迫对鹅耳枥生长及生理生化特性的影响

4、2种应激诱导大鼠迷走复合体神经元的Fos表达

5、重组大肠杆菌SAHN和Lu_S蛋白表达及群感效应分析

6、基于线粒体控制区Dloop序列的长臀(鱼危)种群遗传结构分析

7、喉功能保留外科的喉功能解剖

8、褪黑素通过减轻内质网应激抗心肌缺血/再灌注损伤的作用及机制

9、生长分化因子-11促进小鼠诱导性多能干细胞向心肌细胞定向分化的研究

10、脂肪因子CTRP3的认识及研究现状

11、治疗性血管化策略研究进展

12、SD大鼠绝经后骨质疏松疾病动物模型的构建

13、牛血清在百日咳毒素CHO细胞簇聚试验中的影响

14、番茄黄化曲叶病毒的鉴定与群体进化分析

15、B细胞受体核心岩藻糖基化调节成熟B细胞的信号转导

16、NaHS对慢性间歇性低氧大鼠胸主动脉血管张力的影响

17、利用果蝇模型探讨SCA3/MJD与PD发病机制的相关性

18、纳米金属氧化物对耐药基因水平转移的影响

19、果胶酶液体发酵条件优化与酶学特性研究

20、丛枝菌根真菌根外菌丝形成时间及对牧草的促生长效应

21、左心耳形态和功能影像学评估的研究进展

22、金胺O荧光染色在结核病病理诊断中的应用价值

23、上海常绿树种固碳释氧和降温增湿效益研究

24、我国生态文明建设试点的问题与对策研究

25、城镇化对物流业碳排放变动影响研究

26、干扰素γ增强脂肪间充质干细胞对淋巴细胞的免疫调节作用

27、血脑屏障的研究进展

28、南北贸易、产权维护不对称与发展中国家生态资源贫瘠化

29、朱溪流域植被覆盖变化与居民点的空间关系

30、布氏田鼠秋季家群数量与捕食风险的关系

31、圆蟾舌蛙鸣声特征分析

32、大渡河流域黄石爬鮡的年龄与生长

33、雅砻江短须裂腹鱼胚胎和卵黄囊仔鱼的形态发育

34、基因序列的搜索与相似性比对

35、阿尔茨海默病早期生物标记物及其检测方法的研究进展

36、促红细胞生成素衍生肽抑制细胞自噬减轻小鼠心肌缺血/再灌注损伤

37、类风湿关节炎并发心血管损害的临床特点与相关因素

38、华卟啉钠的光漂白性质研究

39、采用蚕豆根尖细胞微核技术检测核设施周围水域的遗传毒性

40、鲤鱼墩遗址史前人类行为模式的骨骼生物力学分析

41、稳定微环境微流控细胞培养芯片的设计与制备

42、国产与进口心脏单腔起搏器临床应用比较

43、心房电极导线脱位到心室致反复心室安全起搏一例

44、谷氨酸受体在实验性青光眼视网膜细胞损伤中的作用

45、基于恢复动力学生态系统恢复建设的研究

46、Sabin株脊髓灰质炎灭活疫苗毒种的遗传稳定性

47、一株鸡源乳酸菌FCL67的鉴定及其生物学特性

48、人凝血/抗凝血因子类产品蛋白含量快速检测方法的建立及验证

49、肺孢子菌肺炎相关细胞因子的研究进展

50、气象因素与发热伴血小板减少综合征关联研究

生物技术毕业论文选题

[1]生物技术本科拔尖创新型人才培养模式的探索与实践

[2]禽源HSP70、HSP40和RPL4基因的克隆和表达

[3]中间锦鸡儿CiNAC038启动子的克隆及对激素响应分析

[4]H9和H10亚型禽流感病毒二重RT-PCR检测方法的建立

[5]单细胞测序相关技术及其在生物医学研究中的应用

[6]动物细胞工程在动物生物技术中的应用

[7]现代生物化工中酶工程技术研究与应用

[8]GIS在生物技术方面的应用概述

[9]现代生物技术中酶工程技术的研究与应用

[10]两种非洲猪瘟病毒检测试剂盒获批

[11]基因工程技术在生物燃料领域的应用进展

[12]基于CRISPR的生物分析化学技术

[13]生物信息技术在微生物研究中的应用

[14]高等工科院校创新型生物科技人才培养的探索与实践

[15]生物技术与信息技术的融合发展

[16]生物技术启发下的信息技术革新

[17]日本生物技术研究开发推进管理

[18]中国基因技术领域战略规划框架与研发现状分析及建议

[19]鸡细小病毒与H_9亚型禽流感病毒三重PCR检测方法的建立

[20]基于化学衍生-质谱技术的生物与临床样本中核酸修饰分析

[21]合成生物/技术的复杂性与相关伦理 政策法规 研究的科学性探析

[22]合成生物学技术发展带来的机遇与挑战

[23]应用型本科高校生物技术专业课程设置改革的思考

[24]知识可以改变对转基因食品的态度吗?——探究科技争议下的极化态度

[25]基因工程在石油微生物学中的研究进展

[26]干细胞技术或能延缓人类衰老速度

[27]生物技术复合应用型人才培养模式的探索与实践

[28]动物转基因高效表达策略研究进展

[29]合成生物学与专利微生物菌种保藏

[30]加强我国战略生物资源有效保护与可持续利用

[31]微生物与细胞资源的保存与发掘利用

[32]颠覆性农业生物技术的负责任创新

[33]生物技术推进蓝色经济——NOAA组学战略介绍

[34]人工智能与生物工程的应用及展望

[35]中国合成生物学发展回顾与展望

[36]桓聪聪.浅谈各学科领域中生物化学的发展与应用

[37]转基因成分功能核酸生物传感检测技术

[38]现代化技术在农业种植中的应用研究

[39]生物技术综合实验及其考核方式的改革

[40]生物技术处理船舶舱底含油污水

[41]校企合作以产学研为平台分析生物技术类人才培养

[42]生物技术专业“三位一体”深化创新创业 教育 改革

[43]基于环介导等温扩增技术的生物传感器研究进展

[44]分子生物学技术在环境工程中的应用

[45]生物有机化学课程的优化与改革

[46]地方农业高校生物技术专业“生物信息学”课程的教学模式探索

[47]不同育种技术在乙醇及丁醇高产菌株选育中的应用

[48]探秘生命的第三种形式——我国古菌研究之回顾与展望

[49]适应地方经济发展的生物技术专业应用型人才培养模式探索

[50]我国科研人员实现超高密度微藻异养培养

生物技术专业论文选题题目相关 文章 :

生物技术论文范文

★ 我们身边的生物技术论文(2)

★ 初中生物科技论文范文(2)

★ 生物类学术论文(2)

★ 生物制造技术论文范文(2)

★ 生物制药技术论文范文两篇(2)

★ 浅谈现代生物技术论文(2)

★ 生物制药技术论文两篇

★ 关于生物科技论文范文2000字(2)

★ 生物工程技术论文(2)

园艺作物基因组测序研究进展论文

2022年1月19日,广西农科院经济作物所严华兵团队联合菲沙基因在园艺领域权威期刊 Horticulture Research (IF=6.79)上发表了题为“ 《Chromosomal-level genome and multi-omics dataset of Pueraria lobata var. thomsonii provide new insights into legume family and the isoflavone and puerarin biosynthesis pathways》 ”的研究论文,该研究通过PacBio和Hi-C测序 构建了粉葛高质量的染色体水平基因组,解析了粉葛的基因组特征,随后利用包括基因组、转录组、代谢组在内的多组学技术深入解析了粉葛重要次生代谢物的生物合成机制 ,从而为粉葛的资源利用、遗传育种等研究提供了新见解。

鉴于粉葛杂合度较高,研究者选用了PacBio和Hi-C测序,构建的粉葛基因组大小为 1.38Gb , Contig N50=598 kb ,并将99.3%的序列锚定到 11 条染色体上,BUSCO评估基因组完整性为 92.9% 。通过注释,共获得了 45,270 个蛋白编码基因,其中94.4%的基因可以得到功能注释,基因组中重复序列占比为 62.7% 。

将粉葛与16个近缘物种(包含5个豆科植物)进行比较基因组分析,结果表明:

通过对高葛根素ZG-19和低葛根素ZG-39进行转录组和代谢组分析,研究者检测到了614种225种 差异代谢物(DMs) ,1814个 差异表达基因(DEG) ,DMs和DEG的丰富功能类别重叠,这说明 它们都是与类黄酮、异黄酮和ABC转运相关的基因或代谢物 。

进一步分析 代谢物与基因表达的相关系数 ,结果表明代谢物和基因对在样本中高度相关,60%的显著相关性涉及上调的代谢物和下调或不变的基因,在15%的显著相关性中, 代谢物和基因表达的变化方向相同 。

此外,研究者在异黄酮生物合成途径中发现了大量的DMs和DEG。这充分解析了粉葛中异黄酮的生物合成途径。

通过 同源基因搜索 ,研究者发现编码葛根素合成途径中关键酶的9个基因家族在粉葛中都有所 扩张 ;通过分析糖基转移酶家族中催化糖基化修饰的基因,共鉴定出104个GT基因,有13个基因与8-C-葡萄糖基转移酶(8-C-GT)同源,其中6个与先前研究的催化大豆苷元C-糖基化为葛根素的PIUGT43基因同源。

编码大豆异黄酮合酶(IFS)的基因(CHR11G3854.1)催化着葛根素合成的中间代谢物大豆苷元的合成, 被鉴定为与葛根素的合成途径高度相关 。总之,上述分析初步解析了粉葛中葛根素的生物合成途径。

综上,该研究通过构建高质量的粉葛基因组解析了粉葛基因组的进化特征;通过多组学分析深入解析了粉葛中重要次生代谢物异黄酮、葛根素等生物合成途径,从而为粉葛的资源利用、遗传育种等研究提供了新见解。

广西农业科学院经济作物研究所严华兵研究员团队近些年与华中农业大学、菲沙基因、上海大学、广西中医药大学、广西医科大学等单位持续开展联合攻关,在全球葛根资源收集与鉴定评价、葛属资源分类、葛根基因组与分子生物学、粉葛和野葛品种选育、健康种苗生产、高产高效栽培等方面取得了一系列的成果。团队到目前为止,已广泛收集全球葛属种质资源419份,包括野葛、粉葛、葛麻姆、大花葛、泰葛、苦葛、红葛、须弥葛、食用葛等;通过开发葛SSR分子标记,构建了广西葛核心种质库;通过广泛靶向代谢组解析葛属葛种野葛、粉葛和葛麻姆等3个变种块根中影响食用品质和药用品质的代谢差异;结合表型鉴定通过叶绿体基因组研究,揭示了葛及其近缘种之间的系统发育关系;挖掘了调控葛根素合成代谢相关的结构基因和转录因子,并正在开展相关基因功能验证工作;选育出适合开发葛花茶、高葛根素粉葛、无渣粉葛、药用野葛等系列葛根新品种,并逐步建立配套种苗繁育和高效栽培技术。以上研究相关成果先后发表在Horticulture Research、Frontier in Plant Science、Molecules、植物遗传资源学报、植物生理学报等期刊,相关研究先后得到了国家自然科学基金委、广西科技厅等部门项目的资助。粉葛基因组文章的发表将进一步推动全世界葛属植物的进化与分类研究,促进我国葛根产业的科技进步,发挥基础研究源头供给作用以进一步推动广西地方特色优势粉葛产业的高质量发展。

说到葛根大家一定不陌生,野葛在美国开始被用作生态治理后来泛滥成灾被列为入侵生物,泰国葛根产业及其健康功效风靡全球。最早关于葛的文献记载出现在周代,《神农本草经》记载“(葛根)主消渴,身大热,呕吐,诸痹,起阴气,解诸毒”。葛根具有解肌退热,生津止渴,透疹,升阳止泻,通经活络,解酒毒等。现代药理研究表明,葛根在改善心血管系统、抗氧化、降血糖、解热、抗炎、解酒护肝、神经保护、抗骨质疏松和雌激素样作用等方面具有较好的药理活性。

粉葛为豆科葛属植物,为药食同源两用植物,素有“亚洲人参”、“南葛北参”的美誉,广泛种植在广西、广东、江西、湖南、湖北等地,其中广西是粉葛主要种植产区,种植面积全国第一!其中梧州藤县和平镇是中国著名的“葛根之乡”,藤县葛色天香和平粉葛产业(核心)示范区被评为广西现代特色农业(核心)四星级示范区。当前广西粉葛产业发展仍然面临很多亟待解决的问题,粉葛基因组的解析将为粉葛产业高质量发展提供科技支撑。

转自:

我先前也是对论文的写作非常非常头大,还好后来找闻闻论文网的老师帮忙才搞定。论文里面的核心部分,分析和数据处理是最难的,包括我身边的一些同学写到一半写不下去了,我都介绍的闻闻论文网给他们,非常专业,有的甚至把整篇都找帮忙的。

生姜(Zingiber officinale)是一种极具价值的食药两用园艺作物, 既为传统中药的重要成分,又是重要的调味料 ,在我国有悠久的栽培历史。中国生姜栽培面积、产量和出口量均居全球第一位。长江中上游生姜总面积226万亩,占全国49.7%,是推动乡村振兴的优选产业。姜具有多年生宿根,根茎肉质、肥厚,内含多种营养成分,它除了含有蛋白质、碳水化合物、多种维生素和矿物质外,还含有姜辣素、姜油、姜醇等生物活性物质,具有调味、抗癌、抗真菌、抗炎症、抗氧化和抗血小板聚集等用途,是香料家族和药用植物家族的重要成员。姜辣素是生姜特有的呈味物质,也是生姜多种功能活性的主要功能因子,在调味品、化妆品和医疗保健等领域具有广阔的应用前景。尽管姜在世界范围内有显著的经济价值,但由于其有性繁殖困难,基因组庞大、杂合度高,相关的分子生物学和遗传选育工作一直停滞不前。此外,长久以来生姜基因组信息的缺乏,限制了我们对 合成调控机理的理解,导致生姜分子育种发展缓慢。

近日,Horticulture Research背靠背在线发表了两个不同品种生姜基因组数据,分别是平顶山学院植物遗传育种研究组与北京林业大学等单位合作的题为 《Haplotype-resolved genome assembly and allelespecific gene expression of cultivated ginger》 的研究论文,以及重庆文理学院与西南大学等单位合作的题为 《Haplotype-resolved genome of diploid ginger (Zingiberofficinale) and its unique gingerol biosynthetic pathway》 的研究论文。

☆☆☆ 平顶山学院植物遗传育种研究组等单位的研究解析了我国重要的传统生姜品种单倍型基因组序列,揭示了单倍型基因组间差异,推断了姜高度不育的基因组基础,初步澄清了姜酚(姜辣素)生物合成通路,为后续的功能研究和分子设计育种奠定了重要基础。

该研究以全国首个国家农产品地理标志登记保护的生姜品种 张良姜 为研究对象。据记载,自汉代起“张良姜”已有2000多年的种植历史,现保存在河南省平顶山市鲁山县张良镇。此品种有“姜中之王”美称,具有色泽深黄、辛辣芳香、气浓味长、质实丝多、百煮不烂、久贮不腐等优良特性。

该研究利用先进的长读长测序技术, 解析了“张良姜”单倍型基因组序列;检测了两个单倍型基因组间的遗传差异,以此推断出与姜高度配子败育率相关的结构变异区;揭示出两套基因组间等位基因表达差异可能与基因顺式调控区、编码区序列差异、转座子的临近效应以及选择压有关;利用基因共表达网络分析,初步解析了姜酚(姜辣素)生物合成相关的基因调控机制。

☆☆☆ 重庆文理学院等单位的研究破解了西南地区主栽品种 竹根姜 的基因组,利用短读长(369.51 Gb),长读长PacBio(285.81 Gb)及Hi-C(563.16 Gb)策略组装出竹根姜 两套单倍型高质量基因组 ,单倍型的基因组大小分别为1.53 Gb (contig N50: 4.68 M)和1.51 Gb (contig N50:5.28 M),98.11%的序列锚定到22条染色体(图1)。PacBio 读长在2个单倍型的overlap分别为 97.95%和98.1%,显示了分型的准确性。 两套单倍型的Ka/Ks分析揭示生姜驯化历史过程中经历了相似的选择压力。通过等位基因分析,总共55,635个基因(占所有基因的72%)在两个单倍型中具有同源性。生姜17,226对等位基因中,11.9%在转录水平表现出染色体偏好性(图2)。该研究发现生姜基因组杂合度3.6%,是目前已报道杂合度最高的植物基因组。重复序列高,其中长末端片段重复(long terminal repeats,LTRs)占61.06%,可能是导致其基因组大、杂合度高的主要原因,同时也是生姜基因组进化的主要驱动力。生姜等位基因在两套单倍型中没有展现出表达差异,17,226对等位基因中有2055对(11.9%)在转录水平表现出染色体偏好性。

通过整合基因组、转录组和代谢组数据进行整合分析,该研究构建了生姜特有成分姜辣素的合成通路,筛选出12个参与姜辣素合成的关键酶家族(PAL, C4H, 4CL, CST, C3′H, C3OMT, CCOMT, CSE, PKS,AOR, DHN, 和DHT),鉴定出38个可能调控姜辣素合成的重要转录因子家族,并绘制出姜辣素合成的分子调控网络(图3)。

作者简介

Haplotype-resolved genome assembly and allelespecific gene expression of cultivated ginger

平顶山学院程世平副教授、北京林业大学博士生贾凯华(现山东省农业科学院工作)、博士生刘辉和张仁纲博士(源宜(山东)基因科技股份有限公司)为共同第一作者。通讯作者是北京林业大学毛建丰副教授和比利时根特大学教授、比利时皇家科学院院士Yves Van de Peer。平顶山市农业科学院马爱锄博士、于从文研究员也参与了该项研究。该工作还包含来自瑞典于默奥大学、加拿大拉瓦尔大学、不列颠哥伦比亚大学、根特大学、比勒陀利亚大学和南京农业大学等单位的合作者。该研究得到河南省科技攻关以及平顶山学院高层次人才启动基金等项目的资助。

Haplotype-resolvedgenome of diploid ginger (ingeiber officinale) and its unique gingerolbiosynthetic pathway

该工作由重庆文理学院牵头,联合长江大学、西南大学和华大基因共同完成。李洪雷教授、吴林副教授、董照明副教授、姜玉松教授和姜三杰博士为论文的共同第一作者,刘奕清教授、夏庆友教授、简建波博士和邹勇副教授为论文的共同通讯作者。济南市第二农科院李承勇研究员、李庆芝高级工程师等参与了该研究。该研究得到了重庆文理学院生姜基因组重大专项、重庆市自然科学基金等项目的支持。

文章链接: Haplotype-resolved genome assembly and allelespecific gene expression of cultivated ginger

Haplotype-resolved genome of diploid ginger (Zingiberofficinale) and its unique gingerol biosynthetic pathway

人类基因组测序完成论文文献

历时22年,研究人员终于从头到尾破译了完整的人类基因组序列。

钛媒体App4月1日消息,据科技日报,全球顶级期刊《Science》(科学)杂志今天凌晨连发6篇论文报告,公布了人类基因组测序的最新进展:国家人类基因组研究中心(NHGRI)组成的端粒到端粒 (T2T) 联盟科学团队,通过新的技术研究出全球第一个完整的、无间隙的人类基因组序列,首次揭示了高度相同的节段重复基因组区域及其在人类基因组中的变异。

这是对标准人类参考基因组,即2013年发布的参考基因组序列(GRCh38)的“重大升级”,增加了之前整条染色体上隐藏的DNA片段,破译了缺失的大约2亿个DNA碱基对以及2000多个新基因——占人类基因组的8%。

这篇研究成果意义重大。科研人员揭示的完整人类基因组序列,是世界上最复杂的谜题之一,这一研究使得人类第一次看到最完整的、无间隙的DNA碱基基因序列,对于人类了解基因组变异的全谱,以及某些疾病的遗传贡献至关重要,将会推动与癌症、出生缺陷和衰老相关的研究与科学发展。

同时,这也是《Science》创刊141年来,首次在同一期杂志中连发6篇论文揭示人类基因组研究。

本论文作者,圣路易斯华盛顿大学医学院遗传学家Ting Wang(音译:王庭)表示,此次拥有完整的基因组,一定会改善生物医学研究。“毫无疑问,这是一项重要的成就。”

据中国科学报,人类基因组计划参与者、中国科学院北京基因组研究所研究员于军表示,假如把人类基因组序列比作一辆非常复杂的汽车,那么与20年前完成的人类基因组草图相比,完整的新序列非常于增添了更多零件。

“我们看到了以前从未阅读过的章节,”本论文通讯作者,华盛顿大学霍华德-休斯医学研究所(HHMI)研究员Evan Eichler(艾希勒)表示,这是全行业的一件大事。

Science封面图研究人员到底破译了什么?人类基因组由超过60亿个独立的DNA碱基、大约2-3万个蛋白质编码基因(整个基因仍未有统一答案)组成,与黑猩猩等其他灵长类动物的数量差不多,分布在23对染色体上。为了读取数以万计的基因组,科学家们首先将所有的DNA链切成几百到几千个单位长度的DNA片段。然后用测序机器读取每个片段中的各个碱基,科学家们试图按照正确的顺序组装这些片段,就像拼凑一个复杂的拼图。

2001年2月12日,由6国科学家共同参与的国际人类基因组计划首次公布人类基因组图谱及初步分析结果;2003年4月15日,公布了人类基因组序列草图。

然而,由于技术限制,当初的人类基因组计划留下了大约8%的“空白”间隙。这部分很难被测序,由高度重复、复杂的DNA块组成,其中包含功能基因以及位于染色体中间和末端的着丝粒和端粒。

实际上,核心的挑战在于,基因组的某些区域反复重复相同的碱基。重复的区域包括着丝粒和核糖体DNA等,过去无法按照正确的顺序组装一些被切碎的片段。这就像拥有相同的拼图碎片一样,科学家们不知道哪块碎片在哪里,因此基因组图中留下了很大的空白。

而且大多数细胞包含两个基因组--一个来自父亲,一个来自母亲。当研究人员试图组装所有的片段时,来自父母双方的序列可能混合在一起,掩盖了个体基因组内的实际变异。

如今,研究人员通过新的纳米机器设备与核心技术,实现了新的无间隙版本T2T-CHM13,由30.55亿个碱基对和19969个蛋白质编码基因组成。增加了近2亿个碱基对的新DNA序列,包括99个可能编码蛋白质的基因和其中近2000个需要进一步研究的候选基因。

这些候选基因大多数是失活的,但其中115个仍然可能表达。团队还在人类基因组中发现了大约200万个额外的变异,其中622个出现在与医学相关的基因中。此外,新序列还纠正了GRCh38中的数千个结构错误。

近端着丝粒染色体的显示图样(来源:论文)

具体而言,新序列填补的空白包括人类5条染色体的整个短臂,并覆盖了基因组中一些最复杂的区域。其中包括在重要的染色体结构中及其周围发现的高度重复的DNA序列,如染色体末端的端粒和在细胞分裂过程中协调复制染色体分离的着丝粒。

此外,新序列还揭示了以前未被发现的节段重复,即在基因组中复制的长DNA片段,并揭示了关于着丝粒周围区域的前所未见的细节。这一区域内的变异性可能为人类祖先如何进化提供新证据。

值得一提的是,本研究成果的关键进展,其实是利用了新的技术设备——英国牛津纳米孔技术公司和太平洋生物科学公司制造的快速迭代的基因测序机器。

早在2017年,国家人类基因组研究中心(NHGRI)负责人Adam Phillippy(亚当-菲利皮),以及加州大学圣克鲁兹分校(UCSC)的凯伦-米加意识到,新的纳米孔机器实现了一次准确读取100万个DNA碱基的能力,可以为最终解决基因组难点打开了大门。

大约在同一时间,华盛顿大学霍华德-休斯医学研究所(HHMI)Evan Eichler(艾希勒)领导的科研团队已经证明,使用太平洋生物科学公司的设备技术,可以解决更复杂形式的遗传变异技术。

因此,三人一起创办了端粒到端粒(T2T)联盟,利用全球约100名科学家团队资源,使其加快了研究佳偶。

随后,该团队连续六个月不间断地利用快速迭代的纳米孔基因测序机器,并请来几十位科学家来组装这些基因片段并分析结果。最终利用设备、技术等,实现了长读数测序读数,并将长读测序与牛津纳米孔的数据相结合,准确率超过了99%,填补了全球基因学研究的空白。

一直到2020年夏天,该团队已经拼上了两条染色体。在新冠疫情爆发的期间,团队通过Slack等通讯工具进行远程工作,获得了另外21条染色体,将每个染色体从一端或端粒排序到另一端。而且,科研人员人员还试图组装基因组中最难的区域,即着丝粒中高度重复的DNA序列。

最终,通过长时间的研究与团队合作,该团队成功实现了对每个染色体进行了测序,包含了编码用于制造核糖体的RNA的基因的多个拷贝,总共400个。

2021年6月,这份研究成果首次发表在预印版平台bioRxiv上。经过同行评议等,如今一系列论文登上了《Science》(科学)杂志。

研究人员在会后采访中表示,下一阶段的研究将对不同人的基因组进行测序,以充分掌握人类基因的多样性、作用以及人类与近亲、其它灵长类动物的关系。

年增速超20%,中国百亿基因市场前景广阔

随着生物学技术的不断发展,新的行业层出不穷,本次研究成果所属的中国基因测序行业是一个百亿级市场,拥有广阔的发展前景。

根据千际投行的研究统计数据显示,早在2019年,基因测序所在的全球生物制品行业市场规模就达到了3172亿元,未来五年有望达到万亿级别。其中,2019年中国基因测序行业市场规模约为149亿元,年增速超20%。

近年来,基因测序行业得到迅速发展,吸引了大量资本和企业的进入。从产业上下游来看,基因测序产业链主要包括了上游仪器、中游服务提供商以及下游终端应用三个环节。涉及到的公司包括华大基因、达安基因、药明康德,以及互联网巨头苹果公司、亚马逊、谷歌、微软等。

整个产业看似简单,但上游的基因测序仪及配套试剂是整个产业链壁垒最高的部分,下游终端应用还涉及领域覆盖面非常广,既包括医疗领域的人体基因组、人体微生物基因组以及基础研究领域,还包括非医疗领域的环境治理、石油存储探测、农牧软文种等。

实际上,早在几十年前,医学界就对此有过尝试,将狒狒的心脏移植给了一个罹患先天性心脏病的孩子。如今,通过嵌合的方式,通过基因编辑的方式,甚至是通过合成生物学的方式,实现了猪心脏在人类身上的移植。

华大集团CEO尹烨曾表示,其实,今天人类进入了生命时代,我们关心的则是自身的基因和健康,以此就将去整合物理世界、信息世界和生命世界。

在应用场景不断拓宽,测序能力进一步加强的共同促进作用下,全球基因测序行业市场规模将不断增长,中国基因行业市场规模虽然与全球头部企业差距较大,但是在国内市场中仍然占据较大的优势,未来要想提高国际市场份额,还需进一步加强技术研发,未来发展具有巨大的想象空间。

今天,新的基因组序列研究成果,是科研人员必不可少的第一步,也是实现商业化的重要一步。

Evan Eichler(艾希勒)表示,“现在我们有了一块罗塞塔石碑(注:一块制作于公元前196年的花岗闪长岩石碑,解读出已经失传千余年的埃及象形文之意义与结构),可以在未来研究数十万个其他基因组的完整编译。”

因为基因的破译是一个繁琐的工程,而且精密度非常高,所以说这是世界上最复杂的谜题之一。

自成立以来,中心先后承担和参与了人类基因组测序,水稻4号染色体测序,黑猩猩22号染色体测序,日本血吸虫基因组测序,功能基因组与生物芯片,人类重大疾病的蛋白质组学研究等八十多个重大项目,在国际权威学术刊物发表论文一百多篇,申报专利近五百项,荣获国家和上海市奖励22项。5项特色成果如下:在短短的5年时间里,该中心获得了累累硕果,仅国际领先的研究成果就有5项。钩端螺旋体等三种微生物全基因组测序及功能研究该中心联合多家单位,完成了三个重要的人类和植物病原微生物--钩端螺旋体(4.85Mb)、表皮葡萄球菌(2.6Mb)和黄单胞菌(5.2Mb)的全基因组测序。其中,钩端螺旋体是该中心在国际上率先完成全基因组测序和生物信息学分析的重要微生物。该项研究首次识别了维持钩端螺旋体生命活动的4700多个基因,同时鉴定了30多个致病相关基因和10多个潜在的、可发展疫苗的新靶点。研究成果发表在2003年4月的《Nature》(《自然》)杂志上,同时申请了3项基因专利。房颤致病基因的克隆研究该中心遗传部与同济医科大学合作,通过对一房颤家系进行遗传连锁分析,首先定位、克隆了该疾病的致病基因--心肌钾离子通道蛋白KCNQ1,并确定了该基因致病的突变位点。这是迄今为止发现的第一个引起家族性房颤的致病基因,这一发现将有助于房颤治疗新药的研发。该项研究成果发表在2003年1月的《Science》(《科学》)杂志上,并申请了专利两项。鼻咽癌易感基因的定位研究该中心遗传部与广州中山医科大学附属肿瘤防治中心合作,通过对广东地区的100多个鼻咽癌家系进行遗传学研究,成功地定位了鼻咽癌的易感基因位点(4p15.1-4p12区域),这是鼻咽癌遗传易感性研究的重要进展。相关研究成果发表在2002年8月的《NatureGenet鄄ics》(《自然遗传学》)杂志上。肝癌相关基因研究该中心在世界上首次对肝癌进行大规模EST测序(EST:Ex鄄pressedSequenceTage,是基因组中被表达的部分,携带着完整基因的某些片段--编者注),获得肝癌和癌旁组织的EST达4万条,构建了国际上最大的肝癌EST数据库;并在转录组水平初步揭示肝癌发生、发展的规律,克隆了一批肝癌相关新基因并申请若干项基因专利。日本血吸虫功能基因组研究该中心与中国疾病预防控制中心寄生虫病预防控制所等单位合作,以日本血吸虫为研究对象,在世界上第一次针对血吸虫不同发育阶段和形态(包括雌虫、雄虫和虫卵)进行大规模基因片段检测并作全面分析和验证,获得了43707条基因片段,建成世界上最大的触手担轮类(原口动物)表达顺序标签公共数据库;克隆全长基因611条,为弄清血吸虫基因组结构奠定基础;基因功能检测显示,血吸虫有众多的基因参与代谢,寻找并鉴定出一批代谢、发育和性别相关基因,为血吸虫病的诊断和疫苗研制奠定了重要基础。该项研究成果于2003年10月在《NatureGenetics》杂志上发表。另外,该中心还发挥技术平台优势,积极配合中科院国家基因研究中心,参与完成了水稻(粳稻)4号染色体的精确测序,这一工作发表在2002年11月的《Nature》上;积极参与国际合作研究,于2001年参与了国际黑猩猩基因组计划,参与完成了黑猩猩第22号染色体的精确测序,该项工作将在近期《Nature》杂志上发表。

题目:人类基因组计///作者///院系:///年级:///学号:摘要:人类基因组计划由美、英、日、中、德、法等国参加进行了人体基因作图,测定人体全部DNA序列创建计算机分析管理系统,检验相关的伦理、法律及社会问题,进而通过转录物组学和蛋白质组学等相关技术对基因表达谱、基因突变进行分析,可获得与疾病相关基因的信息。在揭示人类发展历史,基因治疗,农作物绿色革命,DNA鉴定方面具有深远影响。关键字:人类基因组计划正文:人类基因组计划人类基因组计划于20世纪80年代提出,由国际合作组织包括有美、英、日、中、德、法等国参加进行了人体基因作图,测定人体23对染色体由3×109核苷酸组成的全部DNA序列,于2000年完成了人类基因组“工作框架图”。2001年公布了人类基因组图谱及初步分析结果。其研究内容还包括创建计算机分析管理系统,检验相关的伦理、法律及社会问题,进而通过转录物组学和蛋白质组学等相关技术对基因表达谱、基因突变进行分析,可获得与疾病相关基因的信息。人类基因组计划与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划。人类基因组计划在二十多年的时间里取得了较大进展。人类基因组计划最早在1985年由诺贝尔奖获得者,美国的杜尔贝克Renato Dulbecoo提出。最初目的是完成人类基因组全长约30亿个核苷酸的碱基序列测定,阐明所有人类基因并确定其在染色体上的位置,从而破译全部的人类遗传基因。1986年3月7日,杜尔贝克在《科学》杂志上发表了一篇题为“癌症研究的转折点——测定人类基因组序列”的文章,指出癌症和其它疾病的发生都与基因有关,并提出测定人类整个基因组序列的途径和重要意义。1988年美国能源部和国家卫生研究院率先在美国开展人类基因组计划,并经国会批准由政府给予资助。此后,成立了一个国际间的合作机构——人类基因组织(Human Genome Organization),由多个国家筹集资金和科研力量,积极参加这一国际性研究计划。1990年10月,国际人类基因组计划正式启动,预计用15年时间,投资30亿美元,完成30亿对碱基的测序,并对所有基因(当时预计为8万~10万个)进行绘图和排序。全球性人类基因组计划有美国、英国、日本、法国、德国和中国六个国家负责,其中美国承担了全部任务的54%,英国33%,日本7%,法国2.8%,德国2.2%,中国于1999年9月获准加入人类基因组计划并承担了1%的测序任务,即3号染色体断臂自D3S3610标志至端粒区段约3000万个碱基的全序列测定。中国1993年启动了相关研究项目,相继在上海和北京成立了国家人类基因组南、北两个中心,并承担人类基因组计划中1%的测序任务。经过多个国家的科学家的共同协作,人类终于在20世纪90年代完成了对自身基因组测序的初步工作。2003年6月,中、美、日、德、法、英等六国科学家宣布首次绘成人类基因组“工作框架图”。2003年4月14日,中、美、日、德、法、英等六国科学家宣布人类基因组序列图绘制成功,人类基因组计划的所有目标全部实现。2004年,人类基因组完成测序;2005年,人类X染色体测序工作基本完成,并公布了该染色体基因草图。HGP的主要任务是人类的DNA测序,包括下图所示的四张谱图,此外还有测序技术、人类基因组序列变异、功能基因组技术、比较基因组学、社会、法律、伦理研究、生物信息学和计算生物学、教育培训等目的。1、遗传图谱(genetic map)又称连锁图谱(linkage map),这是根据基因或遗传标记之间的交换重组值来确定它们在染色体上的相对距离、位置的图谱。其图距单位是厘摩(coml),以纪念现代遗传学奠基人摩尔根。遗传图谱的建立为基因识别和完成基因定位创造了条件。意义:6000多个遗传标记已经能够把人的基因组分成6000多个区域,使得连锁分析法可以找到某一致病的或表现型的基因与某一标记邻近(紧密连锁)的证据,这样可把这一基因定位于这一已知区域,再对基因进行分离和研究。对于疾病而言,找基因和分析基因是个关键。2、物理图谱(physical map)物理图谱是指有关构成基因组的全部基因的排列和间距的信息,它是通过对构成基因组的DNA分子进行测定而绘制的。绘制物理图谱的目的是把有关基因的遗传信息及其在每条染色体上的相对位置线性而系统地排列出来。DNA物理图谱是指DNA链的限制性酶切片段的排列顺序,即酶切片段在DNA链上的定位。因限制性内切酶在DNA链上的切口是以特异序列为基础的,核苷酸序列不同的DNA,经酶切后就会产生不同长度的DNA片段,由此而构成独特的酶切图谱。因此,DNA物理图谱是DNA分子结构的特征之一。DNA是很大的分子,由限制酶产生的用于测序反应的DNA片段只是其中的极小部分,这些片段在DNA链中所处的位置关系是应该首先解决的问题,故DNA物理图谱是顺序测定的基础,也可理解为指导DNA测序的蓝图。广义地说,DNA测序从物理图谱制作开始,它是测序工作的第一步。制作DNA物理图谱的方法有多种,这里选择一种常用的简便方法──标记片段的部分酶解法,来说明图谱制作原理。用部分酶解法测定DNA物理图谱包括二个基本步骤:(1)完全降解 (2)部分降解3、序列图谱(sequence map)随着遗传图谱和物理图谱的完成,测序就成为重中之重的工作。DNA序列分析技术是一个包括制备DNA片段化及碱基分析、DNA信息翻译的多阶段的过程。通过测序得到基因组的序列图谱。4、基因图谱(DNA map)基因图谱是在识别基因组所包含的蛋白质编码序列的基础上绘制的结合有关基因序列、位置及表达模式等信息的图谱。在人类基因组中鉴别出占具2%~5%长度的全部基因的位置、结构与功能,最主要的方法是通过基因的表达产物mRNA反追到染色体的位置。原理基因图谱的意义在于它能有效地反应在正常或受控条件中表达的全基因的时空图。通过这张图可以了解某一基因在不同时间不同组织、不同水平的表达;也可以了解一种组织中不同时间、不同基因中不同水平的表达,还可以了解某一特定时间、不同组织中的不同基因不同水平的表达。人类基因组计划的实施具有重大意义和影响。第一,揭示人类发展历史破译生命密码的人类基因组计划有助于人们对基因的表达调控有更深入的了解。同时,人类基因组图谱对揭示人类发展、进化的历史具有重要意义。对进化的研究,不再建立在假说的基础上,利用比较基因组学,通过研究古代DNA,可揭示生命进化的奥秘以及古今生物的联系,帮助人们更好地认识人类在自然界中的地位。第二,基因治疗获得人类全部基因序列将有助于人类认识许多遗传疾病以及癌症等疾病的致病机理,为分子诊断、基因治疗等新方法提供理论依据。在不远的将来,根据每个人DNA序列的差异,可了解不同个体对疾病的抵抗力,依照每个人的“基因特点”对症下药,这便是21世纪的医学——个体化医学。更重要的是,通过基因治疗,不但可预防当事人日后发生疾病,还可预防其后代发生同样的疾病。第三,基因工程药物研究基因工程药物,是重组DNA的表达产物。广义的说,凡是在药物生产过程中涉及用基因工程的,都可以成为基因工程药物。基因技术应用于制药工业,可以生产出高效、高产、廉价、不再苦口的防治疾病的新药物,从而引起制药工业的革命性变革。对于肝炎、心血管疾病、肿瘤、艾滋病等目前尚无良药可治的重大疑难病,人们对生物工程寄予厚望,期待基因工程技术生产出有效地治疗药物。第四,农作物的绿色革命科学家们在利用基因工程技术改良农作物方面已取得重大进展,基因技术的突破使科学家们得以用传统育种专家难以想象的方式改良农作物。例如,基因技术可以使农作物自己释放出杀虫剂,可以使农作物种植在旱地或盐碱地上,或者生产出营养更丰富的食品。科学家们还在开发可以生产出能够防病的疫苗和食品的农作物。基因技术也使开发农作物新品种的时间大为缩短。利用传统的育种方法,需要七、八年时间才能培育出一个新的植物品种,基因工程技术使研究人员可以将任何一种基因注入到一种植物中,从而培育出一种全新的农作物品种,时间则缩短一半。第五,DNA鉴定DNA鉴定已经给法医科学和犯罪司法系统带来了一场革命。DNA已经成为无数审判中的关键证据,帮助警察和法庭鉴别暴力犯罪中的罪犯,而且可信度非常高。它能够确定犯罪的人,同时也能够证明误判的人无罪。不仅如此,DNA鉴定还可以用于帮助寻找失踪的人、谋杀或事故中的受害者;还可以用于证明或否认父子关系。第六,转基因动物随着基因工程技术的飞速发展及其在动物上的应用,转基因动物的发展呈现出一片“大好形势”。比如基因育种能提供高产优质抗病的“超级动物”;基因工程疫苗为畜牧业节省了大笔开支;通过转基因动物进行器官移植。人类基因组的重要性由以上的事实我们可以看出,要想解开人类自身的秘密,就要从破解基因的密码做起。对人类基因的了解和掌控,也将对人类物种的进化、人类社会的进步产生强大推动作用。通过对人类基因已知和未知领域的探索,可以找到更好的基因更有利人类进步的基因,人类社会将从本质上发生突破性的飞越。因此我们可以说,这项耗资大耗时长的人类基因组计划确实是非常必要而且永世受益的。对于生物学界来说这可能是很小的一步,但对人类社会来说却是非常大的一步。尽管该计划已宣告完成,但该计划尚未得出令人满意的人类基因图谱,因此,科学工作者们对人类基因组的探索研究仍在紧张的进行中。希望在不久的将来,人类能解开基因的面纱,了解它掌控它,给人类社会带来无穷的财富。参考文献:1、章波《人类基因研究报告》重庆出版社 2006年版2、钱俊生、孔伟、卢大振《生命是什么》中共中央党校出版社2000年12月版3、C.丹尼斯、R.加拉格尔、J.D.沃森 序《人类基因组 我们的DNA》科学出版社2003年4月版4、杨业洲、陈廉《人类基因组计划》实用妇产科杂志2001年1月第17期 (Journal of Practical Obstetrics and Gynecology 2001 January Vol.17 No.1)5、参考资料:《科学》(Science)

基因组学研究论文

李宝键教授在“展望21世纪的生命科学”一文中谈到基因组研究计划研究重要性时,引用《Scinence》上“第三次技术命革”中的一句话:“下一个传大时代将是基因组革命时代,它正处于初期阶段。”在当前的研究水平上,只要涉及生命体重要现象的课题,几乎离不开对基因及其作用的分析。2000年6月26日,英美两国首脑会同公私两大人基因组测序集团向世人正式宣告,人基因组的工作草图已绘制完成。科学家把这作为生命科学进入新时代的标志,即后基因组时代(post-genome era)。因此有必要对基因组及其研究内容和进展作一个了解。1基因组学及其研究内容基因组(GENOME)一词是1920年Winkles从GENes和chromosOMEs组成的,用于描述生物的全部基因和染色体组成的概念。1953年Watson和Crick发现DNA双螺旋结构,标志分子生物学的诞生,随着各学科的发展,当前生物学研究进入新的进代,在生物大分子水平上将不同的研究技术和手段有机的结合以攻克生物学难题。基因组研究可以理解为:(1)基因表达概况研究,即比较不同组织和不同发育阶段、正常状态与疾病状态,以及体外培养的细胞中基因表达模式的差异,技术包括传统的RTPCR,RNase保护试验,RNA印迹杂交,但是其不足是一次只能做一个。新的高通量表达分析方法包括微点阵(microarrary),基因表达序列分析(serial analysis of gene expression,SAGE),DNA芯片(DNA chip)等;(2)基因产物-蛋白质功能研究,包括单个基因的蛋白质体外表达方法,以及蛋白质组研究;(3)蛋白质与蛋白质相互作用的研究,利用酵母双杂交系统,单杂交系统(one-hybrid system),三杂交系统(thrdee-hybrid system)以及反向杂交系统(reverse hybrid system)等。1986年美国科学家Thomas Roderick提出了基因组学(Genomics),指对所有基因进行基因组作图(包括遗传图谱、物理图谱、转录图谱),核苷酸序列分析,基因定位和基因功能分析的一门科学。因此,基因组研究应该包括两方面的内容:以全基因组测序为目标的结构基因组学(structural genomics)和以基因功能鉴定为目标的功能基因组学(functional genomics)。结构基因组学代表基因组分析的早期阶段,以建立生物体高分辨率遗传、物理和转录图谱为主。功能基因组学代表基因分析的新阶段,是利用结构基因组学提供的信息系统地研究基因功能,它以高通量、大规模实验方法以及统计与计算机分析为特征。随着1990年人类基因组计划(Human Genome Project,HGP)的实施并取得巨大成就,同时模式生物(model organisms)基因组计划也在进行,并先后完成了几个物种的序列分析,研究重心从开始揭示生命的所有遗传信息转移到从分子整体水平对功能的研究上。第一个标志是功能基因组学的产生,第二个标志是蛋白质组学(proteome)的兴起。2 结构基因组学研究内容结构基因组学(structural genomics)是基因组学的一个重要组成部分和研究领域,它是一门通过基因作图、核苷酸序列分析确定基因组成、基因定位的科学。遗传信息在染色体上,但染色体不能直接用来测序,必须将基因组这一巨大的研究对象进行分解,使之成为较易操作的小的结构区域,这个过程就是基因作图。根据使用的标志和手段不同,作图有三种类型,即构建生物体基因组高分辨率的遗传图谱、物理图谱、转录图谱。2.1遗传图谱通过遗传重组所得到的基因在具体染色体上线性排列图称为遗传连锁图。它是通过计算连锁的遗传标志之间的重组频率,确定他们的相对距离,一般用厘摩(cM,即每次减数分裂的重组频率为1%)来表示。绘制遗传连锁图的方法有很多,但是在DNA多态性技术未开发时,鉴定的连锁图很少,随着DNA多态性的开发,使得可利用的遗传标志数目迅速扩增。早期使用的多态性标志有RFLP(限制性酶切片段长度多态性)、RAPD(随机引物扩增多态性DNA)、AFLP(扩增片段长度多态性);80年代后出现的有STR(短串联重复序列,又称微卫星)DNA遗传多态性分析和90年代发展的SNP(单个核苷酸的多态性)分析。2.2物理图谱物理图谱是利用限制性内切酶将染色体切成片段,再根据重叠序列确定片段间连接顺序,以及遗传标志之间物理距离[碱基对(bp)或千碱基(kb)或兆碱基(Mb)的图谱。以人类基因组物理图谱为例,它包括两层含义,一是获得分布于整个基因组30 000个序列标志位点(STS,其定义是染色体定位明确且可用PCR扩增的单拷贝序列)。将获得的目的基因的cDNA克隆,进行测序,确定两端的cDNA序列,约200bp,设计合成引物,并分别利用cDNA和基因组DNA作模板扩增;比较并纯化特异带;利用STS制备放射性探针与基因组进行原位杂交,使每隔100kb就有一个标志;二是在此基础上构建覆盖每条染色体的大片段:首先是构建数百kb的YAC(酵母人工染色体),对YAC进行作图,得到重叠的YAC连续克隆系,被称为低精度物理作图,然后在几十个kb的DNA片段水平上进行,将YAC随机切割后装入粘粒的作图称为高精度物理作图.2.3转录图谱利用EST作为标记所构建的分子遗传图谱被称为转录图谱。通过从cDNA文库中随机条区的克隆进行测序所获得的部分 cDNA的5'或3'端序列称为表达序列标签(EST),一般长300~500bp左右。一般说,mRNA的3' 端非翻译区(3'-UTR)是代表每个基因的比较特异的序列,将对应于3'-UTR的EST序列进行RH定位,即可构成由基因组成的STS图。截止到1998年12月底,在美国国家生物技术信息中心(NCBI)数据库中分布的植物EST的数目总和已达几万条,所测定的人基因组的EST达180万条以上。这些EST不仅为基因组遗传图谱的构建提供了大量的分子标记,而且来自不同组织和器官的EST也为基因的功能研究提供了有价值的信息。此外,EST计划还为基因的鉴定提供了候选基因(candidantes)。其不足之处在于通过随机测序有时难以获得那些低丰度表达的基因和那些在特殊环境条件下(如生物胁迫和非生物胁迫)诱导表达的基因。因此,为了弥补EST计划的不足,必须开展基因组测序。通过分析基因组序列能够获得基因组结构的完整信息,如基因在染色体上的排列顺序,基因间的间隔区结构,启动子的结构以及内含子的分布等。3功能基因组学研究功能基因组学(functional genomics)又往往被称为后基因组学(postgenomics),它利用结构基因组所提供的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使得生物学研究从对单一基因或蛋白质的研究转向多个基因或蛋白质同时进行系统的研究。这是在基因组静态的碱基序列弄清楚之后转入基因组动态的生物学功能学研究。研究内容包括基因功能发现、基因表达分析及突变检测。基因的功能包括:生物学功能,如作为蛋白质激酶对特异蛋白质进行磷酸化修饰;细胞学功能,如参与细胞间和细胞内信号传递途径;发育上功能,如参与形态建成等采用的手段包括经典的减法杂交,差示筛选,cDNA代表差异分析以及mRNA差异显示等,但这些技术不能对基因进行全面系统的分析。新的技术应运而生,包括基因表达的系统分析,cDNA微阵列,DNA芯片等。鉴定基因功能最有效的方法是观察基因表达被阻断或增加后在细胞和整体水平所产生的表型变异,因此需要建立模式生物体。比较基因组学(Comparative Genomics)是基于基因组图谱和测序基础上,对已知的基因和基因组结构进行比较,来了解基因的功能、表达机理和物种进化的学科。利用模式生物基因组与人类基因组之间编码顺序上和结构上的同源性,克隆人类疾病基因,揭示基因功能和疾病分子机制,阐明物种进化关系,及基因组的内在结构。目前从模式生物基因组研究中得出一些规律:模式生物基因组一般比较小,但编码基因的比例较高,重复顺序和非编码顺序较少;其G+C%比较高;内含子和外显子的结构组织比较保守,剪切位点在多种生物中一致;DNA 冗余,即重复;绝大多数的核心生物功能由相当数量的orthologous蛋白承担;Synteny连锁的同源基因在不同的基因组中有相同的连锁关系等。模式生物基因组研究揭示了人类疾病基因的功能,利用基因顺序上的同源性克隆人类疾病基因,利用模式生物实验系统上的优越性,在人类基因组研究中的应用比较作图分析复杂性状,加深对基因组结构的认识。 此外,可利用诱变技术测定未知基因,基因组多样性以及生物信息学(Bioinformatics)的应用。4蛋白质组学研究基因是遗传信息的携带者,而全部生物功能的执行者却是蛋白质,它有自身的活动规律,因而仅仅从基因的角度来研究是远远不够的,必须研究由基因转录和翻译出蛋白质的过程,才能真正揭示生命的活动规律,由此产生了研究细胞内蛋白质组成及其活动规律的新兴学科——蛋白质组学(proteomics)。蛋白质组(proteome)是由澳大利亚Macquarie大学的Wilkins和Williams于1994首先提出,并见于1995年7月的“Electrophonesis”上,指全部基因表达的全部蛋白质及其存在方式,是一个基因、一个细胞或组织所表达的全部蛋白质成分,蛋白质组学是对不同时间和空间发挥功能的特定蛋白质群体的研究。它从蛋白质水平上探索蛋白质作用模式、功能机理、调节控制以及蛋白质群体内相互作用,为临床诊断、病理研究、药物筛选、药物开发、新陈代谢途径等提供理论依据和基础。 蛋白质组学旨在阐明生物体全部蛋白质的表达模式及功能模式,内容包括鉴定蛋白质表达、存在方式(修饰形式)、结构、功能和相互作用方式等。它不同于传统的蛋白质学科,是在生物体或其细胞的整体蛋白质水平上进行的,从一个机体或一个细胞的蛋白质整体活动来揭示生命规律。但由于蛋白质具有多样性和可变性,复杂性,低表达蛋白质难以检测等,应该明确其研究的艰难性。总体上研究可以分为两个方面:对蛋白质表达模式(或蛋白质组成)研究,对蛋白质功能模式(目前集中在蛋白质相互作用网络关系)研究。对蛋白质组研究可以提供如下信息:从基因序列预测的基因产物是否以及何时被翻译;基因产物的相对浓度;翻译后被修饰的程度等。由于蛋白质数目小于基因组中开放阅读框(ORF, open reading frame)数目,因此提出功能蛋白质组学(functional proteomics),功能蛋白质指在特定时间、特定环境和试验条件下基因组活跃表达的蛋白质,只是总蛋白质组的一部分。功能蛋白质组学研究是位于对个别蛋白质的传统蛋白质研究和以全部蛋白质为研究对象的蛋白质研究之间的层次,是细胞内与某个功能有关或某种条件下的一群蛋白质。对蛋白质组成分析鉴定,要求对蛋白质进行表征化,即分离、鉴定图谱化,包括两个步骤:蛋白质分离和鉴定。双向凝胶电泳(2-DGE)和质谱(MS)是主要的技术。近年来,有关技术和生物信息学在不断并迅速开发和发展中。蛋白质组研究技术体系包括:样品制备;双向聚丙烯酰胺凝胶电泳(two-dimensional polyacrylamide gel electrophoresis,2-D PAGE);蛋白质的染色;凝胶图像分析;蛋白质分析;蛋白质组数据库。其中三大关键是:双向凝胶电泳技术、质谱鉴定、计算机图像数据处理与蛋白质数据库。5与基因组学相关学科诞生随着基因组学研究的不断深入,人类有望揭示生命物质世界的各种前所未知的规律,完全揭开生命之谜,进而驾驶生命,使之为人类的社会经济服务。基因组研究和其它学科研究交叉,促进一些学科诞生,如营养基因组学(nutritional genomics),环境基因组学(environmental genomics),药物基因组学(phamarcogenomics),病理基因组学(pathogenomics),生殖基因组学(reproductive genomics),群体基因组学(population genomics)等。其中,生物信息学正成为备受关注的新型产业的支撑点。生物信息学是以生物大分子为研究,以计算机为工具,运用数学和信息科学的观点、理论和方法去研究生命现象、组织和分析呈指数级增长的生物信息数据的一门科学。研究重点体现在基因组学和蛋白质两个方面。首先是研究遗传物质的载体DNA及其编码的大分子量物质,以计算机为工具,研究各种学科交叉的生物信息学的方法,找出其规律性,进而发展出适合它的各种软件,对逐步增长的DNA 和蛋白质的序列和结构进行收集、整理、发布、提取、加工、分析和发现。由数据库、计算机网络和应用软件三大部分组成。其关注的研究热点包括:序列对比,基因识别和DNA序列分析,蛋白质结构预测,分子进化,数据库中知识发现(Knowledge Discovery in Database, KDD)。这一领域的重大科学问题有:继续进行数据库的建立和优化;研究数据库的新理论、新技术、新软件;进行若干重要算法的比较分析;进行人类基因组的信息结构分析;从生物信息数据出发开展遗传密码起源和生物进化研究;培养生物信息专业人员,建立国家生物医学数据库和服务系统[5]。20世纪末生物学数据的大量积累将导致新的理论发现或重大科学发现。生物信息学是基于数据库与知识发现的研究,对生命科学带来革命性的变化,对医药、卫生、食品、农业等产业产生巨大的影响。邹承鲁教授在谈论21世纪的生命科学时讲到,生物学在20世纪已取得巨大的发展,数理科学广泛而又深刻地深入生物学的结果在新的高度上揭示了生命的奥妙,全面改变了生物学的面貌。生物学不仅是当前自然科学发展的热点,进入21世纪后将仍然如此。科学家称21世纪是信息时代。生物科学和信息科学结合,无疑是多个学科发展的必然结果。

题目:人类基因组计///作者///院系:///年级:///学号:摘要:人类基因组计划由美、英、日、中、德、法等国参加进行了人体基因作图,测定人体全部DNA序列创建计算机分析管理系统,检验相关的伦理、法律及社会问题,进而通过转录物组学和蛋白质组学等相关技术对基因表达谱、基因突变进行分析,可获得与疾病相关基因的信息。在揭示人类发展历史,基因治疗,农作物绿色革命,DNA鉴定方面具有深远影响。关键字:人类基因组计划正文:人类基因组计划人类基因组计划于20世纪80年代提出,由国际合作组织包括有美、英、日、中、德、法等国参加进行了人体基因作图,测定人体23对染色体由3×109核苷酸组成的全部DNA序列,于2000年完成了人类基因组“工作框架图”。2001年公布了人类基因组图谱及初步分析结果。其研究内容还包括创建计算机分析管理系统,检验相关的伦理、法律及社会问题,进而通过转录物组学和蛋白质组学等相关技术对基因表达谱、基因突变进行分析,可获得与疾病相关基因的信息。人类基因组计划与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划。人类基因组计划在二十多年的时间里取得了较大进展。人类基因组计划最早在1985年由诺贝尔奖获得者,美国的杜尔贝克Renato Dulbecoo提出。最初目的是完成人类基因组全长约30亿个核苷酸的碱基序列测定,阐明所有人类基因并确定其在染色体上的位置,从而破译全部的人类遗传基因。1986年3月7日,杜尔贝克在《科学》杂志上发表了一篇题为“癌症研究的转折点——测定人类基因组序列”的文章,指出癌症和其它疾病的发生都与基因有关,并提出测定人类整个基因组序列的途径和重要意义。1988年美国能源部和国家卫生研究院率先在美国开展人类基因组计划,并经国会批准由政府给予资助。此后,成立了一个国际间的合作机构——人类基因组织(Human Genome Organization),由多个国家筹集资金和科研力量,积极参加这一国际性研究计划。1990年10月,国际人类基因组计划正式启动,预计用15年时间,投资30亿美元,完成30亿对碱基的测序,并对所有基因(当时预计为8万~10万个)进行绘图和排序。全球性人类基因组计划有美国、英国、日本、法国、德国和中国六个国家负责,其中美国承担了全部任务的54%,英国33%,日本7%,法国2.8%,德国2.2%,中国于1999年9月获准加入人类基因组计划并承担了1%的测序任务,即3号染色体断臂自D3S3610标志至端粒区段约3000万个碱基的全序列测定。中国1993年启动了相关研究项目,相继在上海和北京成立了国家人类基因组南、北两个中心,并承担人类基因组计划中1%的测序任务。经过多个国家的科学家的共同协作,人类终于在20世纪90年代完成了对自身基因组测序的初步工作。2003年6月,中、美、日、德、法、英等六国科学家宣布首次绘成人类基因组“工作框架图”。2003年4月14日,中、美、日、德、法、英等六国科学家宣布人类基因组序列图绘制成功,人类基因组计划的所有目标全部实现。2004年,人类基因组完成测序;2005年,人类X染色体测序工作基本完成,并公布了该染色体基因草图。HGP的主要任务是人类的DNA测序,包括下图所示的四张谱图,此外还有测序技术、人类基因组序列变异、功能基因组技术、比较基因组学、社会、法律、伦理研究、生物信息学和计算生物学、教育培训等目的。1、遗传图谱(genetic map)又称连锁图谱(linkage map),这是根据基因或遗传标记之间的交换重组值来确定它们在染色体上的相对距离、位置的图谱。其图距单位是厘摩(coml),以纪念现代遗传学奠基人摩尔根。遗传图谱的建立为基因识别和完成基因定位创造了条件。意义:6000多个遗传标记已经能够把人的基因组分成6000多个区域,使得连锁分析法可以找到某一致病的或表现型的基因与某一标记邻近(紧密连锁)的证据,这样可把这一基因定位于这一已知区域,再对基因进行分离和研究。对于疾病而言,找基因和分析基因是个关键。2、物理图谱(physical map)物理图谱是指有关构成基因组的全部基因的排列和间距的信息,它是通过对构成基因组的DNA分子进行测定而绘制的。绘制物理图谱的目的是把有关基因的遗传信息及其在每条染色体上的相对位置线性而系统地排列出来。DNA物理图谱是指DNA链的限制性酶切片段的排列顺序,即酶切片段在DNA链上的定位。因限制性内切酶在DNA链上的切口是以特异序列为基础的,核苷酸序列不同的DNA,经酶切后就会产生不同长度的DNA片段,由此而构成独特的酶切图谱。因此,DNA物理图谱是DNA分子结构的特征之一。DNA是很大的分子,由限制酶产生的用于测序反应的DNA片段只是其中的极小部分,这些片段在DNA链中所处的位置关系是应该首先解决的问题,故DNA物理图谱是顺序测定的基础,也可理解为指导DNA测序的蓝图。广义地说,DNA测序从物理图谱制作开始,它是测序工作的第一步。制作DNA物理图谱的方法有多种,这里选择一种常用的简便方法──标记片段的部分酶解法,来说明图谱制作原理。用部分酶解法测定DNA物理图谱包括二个基本步骤:(1)完全降解 (2)部分降解3、序列图谱(sequence map)随着遗传图谱和物理图谱的完成,测序就成为重中之重的工作。DNA序列分析技术是一个包括制备DNA片段化及碱基分析、DNA信息翻译的多阶段的过程。通过测序得到基因组的序列图谱。4、基因图谱(DNA map)基因图谱是在识别基因组所包含的蛋白质编码序列的基础上绘制的结合有关基因序列、位置及表达模式等信息的图谱。在人类基因组中鉴别出占具2%~5%长度的全部基因的位置、结构与功能,最主要的方法是通过基因的表达产物mRNA反追到染色体的位置。原理基因图谱的意义在于它能有效地反应在正常或受控条件中表达的全基因的时空图。通过这张图可以了解某一基因在不同时间不同组织、不同水平的表达;也可以了解一种组织中不同时间、不同基因中不同水平的表达,还可以了解某一特定时间、不同组织中的不同基因不同水平的表达。人类基因组计划的实施具有重大意义和影响。第一,揭示人类发展历史破译生命密码的人类基因组计划有助于人们对基因的表达调控有更深入的了解。同时,人类基因组图谱对揭示人类发展、进化的历史具有重要意义。对进化的研究,不再建立在假说的基础上,利用比较基因组学,通过研究古代DNA,可揭示生命进化的奥秘以及古今生物的联系,帮助人们更好地认识人类在自然界中的地位。第二,基因治疗获得人类全部基因序列将有助于人类认识许多遗传疾病以及癌症等疾病的致病机理,为分子诊断、基因治疗等新方法提供理论依据。在不远的将来,根据每个人DNA序列的差异,可了解不同个体对疾病的抵抗力,依照每个人的“基因特点”对症下药,这便是21世纪的医学——个体化医学。更重要的是,通过基因治疗,不但可预防当事人日后发生疾病,还可预防其后代发生同样的疾病。第三,基因工程药物研究基因工程药物,是重组DNA的表达产物。广义的说,凡是在药物生产过程中涉及用基因工程的,都可以成为基因工程药物。基因技术应用于制药工业,可以生产出高效、高产、廉价、不再苦口的防治疾病的新药物,从而引起制药工业的革命性变革。对于肝炎、心血管疾病、肿瘤、艾滋病等目前尚无良药可治的重大疑难病,人们对生物工程寄予厚望,期待基因工程技术生产出有效地治疗药物。第四,农作物的绿色革命科学家们在利用基因工程技术改良农作物方面已取得重大进展,基因技术的突破使科学家们得以用传统育种专家难以想象的方式改良农作物。例如,基因技术可以使农作物自己释放出杀虫剂,可以使农作物种植在旱地或盐碱地上,或者生产出营养更丰富的食品。科学家们还在开发可以生产出能够防病的疫苗和食品的农作物。基因技术也使开发农作物新品种的时间大为缩短。利用传统的育种方法,需要七、八年时间才能培育出一个新的植物品种,基因工程技术使研究人员可以将任何一种基因注入到一种植物中,从而培育出一种全新的农作物品种,时间则缩短一半。第五,DNA鉴定DNA鉴定已经给法医科学和犯罪司法系统带来了一场革命。DNA已经成为无数审判中的关键证据,帮助警察和法庭鉴别暴力犯罪中的罪犯,而且可信度非常高。它能够确定犯罪的人,同时也能够证明误判的人无罪。不仅如此,DNA鉴定还可以用于帮助寻找失踪的人、谋杀或事故中的受害者;还可以用于证明或否认父子关系。第六,转基因动物随着基因工程技术的飞速发展及其在动物上的应用,转基因动物的发展呈现出一片“大好形势”。比如基因育种能提供高产优质抗病的“超级动物”;基因工程疫苗为畜牧业节省了大笔开支;通过转基因动物进行器官移植。人类基因组的重要性由以上的事实我们可以看出,要想解开人类自身的秘密,就要从破解基因的密码做起。对人类基因的了解和掌控,也将对人类物种的进化、人类社会的进步产生强大推动作用。通过对人类基因已知和未知领域的探索,可以找到更好的基因更有利人类进步的基因,人类社会将从本质上发生突破性的飞越。因此我们可以说,这项耗资大耗时长的人类基因组计划确实是非常必要而且永世受益的。对于生物学界来说这可能是很小的一步,但对人类社会来说却是非常大的一步。尽管该计划已宣告完成,但该计划尚未得出令人满意的人类基因图谱,因此,科学工作者们对人类基因组的探索研究仍在紧张的进行中。希望在不久的将来,人类能解开基因的面纱,了解它掌控它,给人类社会带来无穷的财富。参考文献:1、章波《人类基因研究报告》重庆出版社 2006年版2、钱俊生、孔伟、卢大振《生命是什么》中共中央党校出版社2000年12月版3、C.丹尼斯、R.加拉格尔、J.D.沃森 序《人类基因组 我们的DNA》科学出版社2003年4月版4、杨业洲、陈廉《人类基因组计划》实用妇产科杂志2001年1月第17期 (Journal of Practical Obstetrics and Gynecology 2001 January Vol.17 No.1)5、参考资料:《科学》(Science)

菊花 ( Chrysanthemum ×morifolium Ramat.)是世界著名的观赏植物,具有千姿百态的花型。实际上,菊花的花是指由外围的 舌状花 和盘心的 管状花 共同构成的头状花序。 其花型由头状花序上舌状花和管状花的形态和相对数量决定 。解析同一头状花序上舌状花和管状花分化的分子调控机制不仅可以为阐明菊花复杂的头状花序形态奠定基础,也将为菊科植物头状花序发育提供新见解。但目前关于菊花花型的研究受到其复杂遗传背景的限制,导致无法充分利用菊花丰富的基因资源进行花型定向育种。因此,获得高质量的菊花及其近缘种的基因组信息并在此基础上研究头状花序发育的分子调控机制显得尤为必要。

近日, Horticulture Research 在线发表了北京林业大学戴思兰团队题为 The Chrysanthemum lavandulifolium genome and the molecular mechanism underlying diverse capitulum types 的研究论文。 该论文完成了菊花近缘野生种之一甘菊( C. lavandulifolium )的全基因测序工作,获得了染色体水平上的高质量甘菊参考基因组, 结合3种不同类型菊科植物头状花序的转录组数据初步解析了头状花序发育的分子调控机制,为实现人工调控菊花花型奠定了坚实的分子理论基础。

甘菊为菊属植物中的二倍体物种,采用 Illumina + Pacbio + Hi-C 测序技术对其进行全基因测序,获得了 2.60 Gb 的染色体水平的参考基因组。其中94.46%的序列锚定到 9 条染色体上。甘菊基因组中重复序列占基因组的67.69%, Cypsy 和 Copia 的占比分别为37.92%和29.06%,插入时间在1.25百万年前。

与其他10个物种建立进化树, showed that C. lavandulifolium diverged from C. nankingense at approximately 7.2 Mya 。比较了11个物种之间基因家族的扩张和收缩,以研究基因家族的进化。结果表明,C. lavandulifolium 有1305个和453个基因家族扩增和收缩 (图1b)。扩增的基因家族在花发育相关和细胞合成相关的GO中富集(补充表)。

比较基因组分析结果表明,甘菊经历了 两次 全基因组复制(WGD)事件,其中 最近 的一次是所有菊科植物共有的,而 较早 的一次是核心双子叶植物共有的γ事件, 甘菊自身没有发生WGD,其基因组演化的动力来源主要是串联重复事件 。

基于 甘菊头状花序发育的6个重要时期 和 其他菊科植物 不同类型头状花序发育关键时期的转录组有参分析发现, MADS-box、TCP、NAC 和 LOB基因家族 可能参与 管状花 和 舌状花 的分化。值得注意的是, NAM 和 LOB30 高表达于舌管兼备型的头状花序中,而在全舌型和全管型的头状花序中表达量相对较低,这表明其可能是参与两类小花分化的关键基因。

结合关键基因在 全舌型、全管型 以及 舌管兼备型 的头状花序中的表达模式和蛋白互作模式,初步推测并构建了不同类型头状花序发育可能的调控机制。

总之, NAM 和 LOB 不仅可以与花序分生组织相关基因如 LFY 等互作,也可以与两类小花身份决定基因如 CYC2- LIKE 等基因互作,这表明 NAM 和 LOB30 在头状花序上舌状花和管状花原基分化调控中的关键角色**。

高质量甘菊参考基因组的获得不仅可以为栽培菊花基因组的破译提供有效的参考,更为解析菊花乃至菊科植物多样的生物学性状提供丰富的基因资源。

北京林业大学 戴思兰教授课题组 一直致力于 菊花研究,基于植物系统学研究方法对菊属植物种间亲缘关系和菊花品种起源进行探索,在种质资源评价,花色、花型、开花期和抗逆性等观赏性状形成的分子机理,菊花优异种质创制以及产业化栽培技术等开展了全面研究,取得了一系列重要突破性进展和研究成果。 本研究得到了国家自然科学基金重点项目(31530064)和国家重点研发专项(2018YFD1000403)的资助。

甘菊 : Chrysanthemum lavandulifolium

Among these plants , the most important families are as follows , Ranunculaceae, Berberidaceae, Menispermaceae, Papaveraceae, Rutaceae, Fabaceae, Apocynaceae, Solanaceae, Asteraceae and so on. 其中主要的科为:毛莨科 、 小檗科、防己科 、 芸香科 、 罂粟科 、 豆科 、 夹竹桃科 、 茄科 、 菊科等.

菊科里有两个亚科,一为管状花亚科,一为舌状花亚科。

文章链接:

转自:

相关百科

热门百科

首页
发表服务