首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

分析数据的论文范文

发布时间:

分析数据的论文范文

统计分析是运用统计 方法 与分析对象有关的知识,从定量与定性的结合上进行的研究活动。下文是我为大家整理的关于统计分析论文的 范文 ,欢迎大家阅读参考!

浅谈统计分析与决策

[摘要] 统计分析与决策二者有联系又有区别。统计要参与决策,必须搞好统计分析。搞好统计分析,需要解决选题、分析、撰写 报告 三个问题。

[关键词] 统计分析 分析方法 决策

统计工作的全过程分为四个阶段,即统计设计,统计调查,统计整理,统计分析。其中,统计分析是统计工作的最后一个阶段,是出统计成果的阶段。现在倡导统计要参与决策,这是不是说统计工作还要增加一个决策阶段呢?如果不是,那么,统计分析与决策是什么关系呢?

狭义的说,统计分析与决策是有区别的。统计分析是以统计数字为基础,以统计方法为手段,对社会经济情况进行科学的分析和综合研究,以认识其本质和规律的过程。而决策则是为了达到某一预定目标,运用逻辑方法和统计方法,对两种或两种以上可能采取的方案进行比较、分析、研究,以做出合理的、科学的抉择的行为过程。假若把统计分析与决策比作医生看病,统计分析就是对病情的诊断,决策就是开处方,“诊断”和“处方”是有区别的。

广义的讲,统计分析与决策是密不可分的。一方面,统计分析贯穿于决策过程之中。一个决策过程大体上可分为下列三个大步骤:第一,诊断问题所在,确定决策目标;第二,探索和拟定各种可能的备选方案;第三,从各种备选方案中选出最合适的方案。从这三大步骤看,尽管要用到多种方法和手段,但哪一步也离不开统计分析,第一步就是通过统计分析,诊断问题所在,并在分析的基础上确定决策目标;第二步拟定备选方案,要经过“轮廊设想”和“细部设计”这个阶段对轮廊设想的方案要做初步筛选,对每一方案要充实具体内容,“筛选”和“充实”都要经过统计分析;第三步选择最佳方案,首先要对各个备选方案进行评价、论证,这又需要统计分析。因此可以说,没有统计分析,也就没有科学决策。另一方面,从某种意义上讲,决策是统计分析的结果。一般来说,统计分析报告是提出问题、分析问题、指出解决问题的办法,其实,决策方案也就是解决问题实现决策目标的办法,只不过比“今后意见”“几条 措施 ”之类的办法更全面、更详细、更科学罢了。医生诊断是为了正确处方,治病救人,不能只诊断不处方。统计分析是为了发现问题,解决问题,推动社会经济的顺利发展;也不能只提出问题,而不寻找解决问题的办法。从这个意义上讲,统计分析也就包括预测和决策。我们不能为统计而统计,也不能为分析而分析。统计应该参与决策,为了决策科学化,必须搞好统计分析。

搞好统计分析,需要解决选题、分析、撰写报告三个问题。

一、统计分析选题

所谓选题,就是在复杂的社会经济现象中,确定统计分析的内容和范围。进行统计分析,选题很重要。成功的选题是成功的分析的前提。

怎样选好题呢?选好题标准有两条:―是分析对象有意义,二是适合决策层和群众需要。关键是抓住党和国家的方针政策和企业的经济效益。

统计分析课题是很广泛的。工业统计分析课题如:计划执行情况分析、工业净产值统计分析、工业产品销售统计分析、工业原材料供应和消耗统计分析、工业能源消耗统计分析、工业生产设备统计分析、工业劳动与工资统计分析、成本利润统计分析、综合经济效益统计分析等。商品流通企业统计分析课题如:市场供求状况分析、市场占有率分析、主要商品经济寿命周期分析、市场商品价格分析、计划执行情况分析、购销合同执行情况分析、商品购进质量分析、商品销售动态分析、商品销售构成分析、商品库存分析、企业经济效益分析等。对于以上内容,可根据不同的时间、地点、条件,按两条选题标准适当选择。

统计分析有专题分析与综合分析之分。在一定的总体范围内,研究总体的各个方面及其相互关系,或研究总体的主要方面的统计分析,属于综合分析;只研究其中某一方面,或某一部分的统计分析,属于专题分析。两者各有不同的特点,都是必要的,但专题分析宜多,综合分析宜少。

二、统计分析方法

统计分析的关键是分析,怎样进行统计分析呢?统计分析有两个特点:一是以统计数字为基础,二是以统计方法为手段。因此,统计分析在选题之后,就要根据分析的需要,搜集整理有关数字资料及具体情况,在充分占有材料的基础上,灵活运用统计方法进行分析。

统计分析方法很多。统计学原理中除了有关统计调查、统计整理的内容外,综合指标、统计指数、时间数列、抽样推断等内容全部是统计分析方法。从方法角度上讲,统计分析就是统计学原理的运用。

统计方法与人们的认识过程是相适应的。人们的认识分感性认识和理性认识两个阶段。感性认识阶段所认识的是事物的现象,可采用统计调查和统计整理。理性认识阶段所认识的是事物的本质和规律,这个阶段要经过形成概念、进行判断和推理等思维活动。与此相适应,要分别采用不同的统计分析方法。

形成概念一般用描述性的综合指标法,即总量指标、相对指标和平均指标,以说明现象的规模大小、水平高低、速度快慢、内部结构以及比例关系等。判断推理就是要判断事物的性质,分析事物变化的原因,找出事物发展的规律。这一般要用分组分析法、动态分析法、因素分析法、相关回归分析法、平衡分析法等。

对统计学原理中的各种统计分析方法要熟练地掌握,灵活地运用。怎样灵活运用呢?这里有个技巧问题。技巧就是定性分析与定量分析巧妙结合。

所谓定性分析是指对事物的性质和影响事物发展变化的因素进行分析。定量分析就是分析事物的规模、水平、速度、结构、比例,以及各个因素对事物总体变化的影响方向和影响程度。定性分析与定量分析巧妙结合有两层含义,一是二者不可偏废,二是二者密不可分,

没有定性分析,定量分析就没有方向。没有定量分析,定性分析就不准确。结合的目的是在质与量的辩证统一中探寻事物的内在联系。

从根本上讲,统计分析就是完成从感性认识到理性认识,从现象到本质的飞跃。完成了这―飞跃,才是高质量的统计分析。有些统计分析质量不高,往往就是没有完成这一飞跃,仍然停留在表面现象上。

三、统计分析报告的撰写

统计分析报告是统计的最终产品。如果说统计数字的准确性是统计的生命,那么,统计分析报告的质量则关系到统计作用的发挥。对高质量的统计分析报告的要求,可以概括为五个字,就是“准、快、新、深、活”。

准:就是实事求是地反映客观实际。做到数字准确,情况准确,论点准确。

快:就是在决策层决策之前,不失时机地及时提供分析报告。

新:就是不断创新。要求不断开拓新领域,钻研新课题,反映新情况和新问题。

深:就是要在充分占有材料的基础上,提高分析的深度,使认识不只停留在反映现象上,而要揭示事物的本质和规律,并且用观点统帅材料,用材料说明观点,做到材料和观点的统一。

活:就是文字生动活泼,形式灵活多样。资料要多样化和生动具体,要有群众语言,要通俗易懂,文字要精精炼。

统计分析报告是在统计分析的基础上撰写出来的。没有好的分析,不可能写出好的报告。经过分析阶段,弄清了事实,判明了性质,探索出规律,得出了结论,在此基础上就可以撰写统计分析报告。但分析得好,并不等于报告写得好,这里还有个撰写的技巧问题,那就是准确地表述事实,透彻地阐明本质,深刻地揭示规律,恰当地提出建议。

1.准确地表述事实

每一篇统计分析报告,都需要表述所分析的现象,即说明“是什么”。准确地表述事实,才能给读者一个明确的概念。为此,须注意如下几点:(1)数字要真实;(2)运用数字要适当,不要堆砌数字,搞数字文字化;(3)语言要素准确。

2.透彻地阐明本质

现象只说明事物的各个片面,本质才说明事物的整体。撰写统计分析报告,必须深刻地揭示事物的本质,它是统计认识事物的正确程度和深度的反映。如果不能深刻地阐明事物的本质,那只能是现象罗列,没有多大价值。

阐明事物的本质,也就是阐明事物的基本性质。事物的性质是由事物内部矛盾的主要方面决定的。例如,某企业利润增加,是靠涨价,还是靠降低成本?经过分析,认识到利润增加主要是靠降低成本,这是矛盾的主要方面,这就反映出事物的性质。因此,在报告中就应阐明降低成本在提高经济效益中的重要作用。再如某企业,本质问题是钢材浪费严重,在报告中就应揭示浪费的若干方面和严重程度。

3.深刻地揭示规律

规律是事物内部固有的、本质的、必然联系。成本高低与产量多少有联系,经过推理,这种联系是事物内部固有的、本质的必然联系,反映了事物发展变化的规律性,而且存在一定的回归关系。而回归方程反映这种关系,所以在统计分析报告中,要利用回归方程揭示这种必然联系及其回归关系。

4.恰当地提出建议

认识世界的目的是为了改造世界。经过统计分析,透过现象认识到事物的本质和规律,还必须提出解决问题的建议,如“今后意见”、“几点建议”、“决策方案”等等。怎样才算恰当地建议呢?恰当的建议要符合三个条件:(1)符合分析目的;(2)合乎客观规律;(3)切实可行。

以上四点,一般可以作为分析报告的结构和顺序,但不能千篇一律。

统计分析报告是统计分析结果的反映。既要注意提高写作水平,更要努力锻炼分析问题和解决问题的能力。

试谈统计分析方法应用

【摘要】统计分析方法应用于各个领域,解决了很多工业、农业、经济、医学等领域的实际问题,本文分析多元统计分析方法的主要应用和构建多元统计方法检验体系的必要性,针对性的提出了需要引起注意的共性问题,具有很强的现实意义。

【关键词】统计分析方法;应用;检验体系;共性问题;现实意义前言

随着信息技术的普及和广泛应用,它推动了社会、经济和科学技术的发展,多元统计分析方法的难题得到了攻破,各个领域广泛采用,推动了各行各业经济的快速发展。

二、多元统计分析方法的主要应用

统计方法是科学研究的一种重要工具,其应用颇为广泛。在工业,农业,经济,生物和医学等领域的实际问题中,常常需要处理多个变量的观测数据,因此对多个变量进行综合处理的多元统计分析方法显得尤为重要。随着电子计算机技术的普及,以及社会,经济和科学技术的发展,过去被认为具有数学难度的多元统计分析方法,已越来越广泛地应用于实际。

聚类分析

它是研究分类问题的一种多元统计方法,聚类分析的基本思想是首先将每个样本当作一类,然后根据样本之间的相似程度并类计算新类与 其它 类之间距离,再选择近似者并类每合并一次减少一类,继续这一过程直到所有样本都合并成为一类为止。所以聚类分析依赖于对观测间的接近程度或相似程度的理解,定义不同的距离量度和相似性量度就可以产生不同的聚类结果。企业制定 市场营销 战略时要弄清在同一市场中哪些企业是直接竞争者,哪些是间接竞争者是非常关键的一个环节。要解决这个问题,企业首先可以通过 市场调查 ,获取自己和所有主要竟争者,从而寻找企业在市场中的机会。

判别分析

判别分析是已知研究对象分成若干类型,并取得各种类型的一批已知样品的观测数据、在此基础上根据某些准则建立判别式,然后对未知类型的样品进行判别分析,企业在市场预测中往往根据以往所调查的种种指标,用判别分析方法判断下季度产品是畅销平销或滞销。一般情况下判别分析经常与聚类分析联合起来使用。

主成分分析

主成分分析就是设法将原来指标重新组合成一组新的互相无关的几个综合指标,来代替原来指标,同时根据实际需要从中可取几个较少的综台指标,尽可能多反映原来指标的信息,在市场研究中常常利用主成分析方法分析顾客的偏好和当前市场的产品与顾客之间的差别,从而提供给生产企业新产品开发方向的信息。

因子分析

因子分析是主成分分析的推广和应用。它是将错综复杂的随机变量综合为数量较少的随机变量去描述,多个变量之间的相关关系以再现原始指标与因子之间的相互关系。也可以认为因子分析是将指标按原始数据的内在结构分类。例如:对Y个调查区的商业网点数、人口数、金融机构服务数、收入情况等N个指标进行因子分析,如果按照一般的分析方法,我们就需要处理N个指标,并给它们以不同的权重。这样不仅工作量变大而且由干指标之间存在比较高的相关性,会给分析结果带来偏差另外给具有较高相关性的众多指标,从而计算出各个调查区平均综合实力得分以便决定在某个调查区拟建何种类型的销售点。

三、构建多元统计分析方法检验体系的必要性

(一)构建多元统计分析方法检验体系,提高多元统计分析应用质量

多元统计分析方法已经越来越为人们广泛应用,但应用中盲目套用分析方法的情况很多,只关心模型方法的应用。许多教科书也只侧重介绍多元统计分析方法的思想、原理和分析步骤,对多元统计分析方法应用结果的统计检验叙述不多。这就直接影响了多元统计分析方法的应用效果和可信性。因此,本文拟对多元统计分析方法的统计检验问题进行探讨。构建多元统计分析方法检验体系的目的在于进一步丰富和完善多元统计分析方法的内容体系;实践上,使多元统计分析方法的应用更加合理、规范。推动多元统计分析方法应用质量的提高,推动多元统计分析方法获得更广泛的应用。

(二)多元统计分析统计检验体系的基础理论

多元正态分布总体的样本分布,即维希特分布,霍特林分布,威尔克斯分布,多元正态总体均值向量假设检验,包括一个正态总体均值向量假设检验,两个正态总体均值向量假设检验,多个正态总体均值向量假设检验;多元正态总体协方差阵假设检验,包括一个正态总体协方差阵假设检验,多个协差阵相等假设检验。

(三)关于统计检验体系

将上述统计检验体系有机结合在一起,就构成了多元统计分析方法检验体系的基本框架。多元统计分析方法检验体系的构建,用多元统计分析方法,充分发挥多元统计分析方法的应用价值,提高应用质量,我们建议,在应用时,应该按照上述框架进行相应的统计检验。当然。上述统计检验体系还是一个初步的框架,随着多元统计分析方法理论的逐步完善,上述检验体系也需要不断完善,也需要更多的同行关注此类问题并不断加以研究。另一方面,在实际应用中,即便是某种方法根据上述内容都进行了统计检验,由于各种方法自身存在的缺陷或局限性,也还会存在许多应用中考虑不周之处。应该引起注意。但是,因子分析结果还是具有较大主观性。特别是对公共主因子在专业方面实际意义的解释上,仍然保留着一种艺术气息,并没有统一做法,因此很多情况下也是不能令人满意的。总之,我们在应用时,对因子分析的适用性、公因子的估计方法、公因子选取的数目。公因子的实际意义的解释等一系列问题都要引起足够注意。检验体系有如下几个分类:

a.主成分分析统计检验体系

b.因子分析统计检验体裂引

c.系统聚类分析统计检验体系

d.判别分析统计检验体裂

e.对应分析统计检验体系

f.典型相关分析统计检验体系

四、多元统计分析方法应用中需要注意的几个共性问题

1.关于原始数据变量的总体分布问题。

对原始变量的总体分布各种方法各有不同的要求。有的方法对原始数据变量总体分布没有特殊的要求,如主成分分析、聚类分析、对应分析。有的方法在不同情况下,对原始变量分布有不同的要求,如因子分析中,公共因子的估计方法不同,对原始变量分布要求不同,采用极大似然估计方法估计主因子时,是假定原始变量是服从多元正态分布的,因此,应用时要引起重视,如典型相关分析要求原始变量服从正态分布,但在严格意义上,如果变量的分布形式比如高度偏态不会降低其他变量的相关关系,典型相关分析是可以包含这种非正态变量的。

样本容量问题。

进行多元统计分析时,样本容量n达到多少为宜,目前尚没有统一的结论。有的认为样本容量应是变量个数的10~20倍,有的认为样本容量要在100以上比较合适,有的认为进行巴特莱特检验时的样本容量应该大于150方可,也有的认为不必苛求太多的样本容量,如在进行主成分分析和因子分析时当原始变量之间的相关性很小时,即使再扩大样本容量,也难以得到满意效果。

原始变量之间的相关性以及非线性关系问题。

多元统计分析方法中,有的是的要求原始变量中要具有相关性。有的则不要求原始变量具有相关性。如聚类分析中,进行Q型系统聚类分析时对原始数据变量之间的相关性也是有要求的,如选择欧式距离、明氏距离、兰氏距离时,则要求原始变量之间是不相关的。只有对原始数据的相关性进行了处理后,才可以选择使用上述距离。若原始变量存在相关性,则选择马氏距离比较合适。另外原始变量之间的非线性关系也是需要注意的问题。如主成分分析、因子分析以及典型相关分析当基于相关矩阵来进行计算时,这里的相关矩阵实际上是Pearson的积差相关。但是,如果变量之间的关系不是线性的,而是非性相关关系,于是,所进行的分析以及结论也就失去应有的意义了。

数据处理问题。

多元统计分析中涉及多个变量,不同变量往往具有不同的量纲及不同的数量级别。在分析时,具有不同量纲的变量进行线性组合是没有意义的,不同的数量级别的变量之间进行分析时。会导致“以大吃小”,即数量级的变量的影响会被忽略,从而影响了分析结果的合理性。因此。为了消除量纲和数量级别的影响,进行多元统计分析时,必须对原始数据进行处里,最常用的是先作标准化变换处理,然后再作相应的分析。

五、结束语

在统计分析方法的应用中,会涉及到多个变量,因此,必须根据原来有的数量进行处理,然后才能得出相应的分析结论。本文结合多元统计分析方法的理论基础,对相关检验体系和分析体系进行了分析,具有现实的理论指导意义。

【参考文献】

[1]于秀林.多元统计分析[M].北京,中国统计出版社,1999:223—224.

[2]高惠璇.应用多元统计分析[M].北京,北京大学出版社 ,2005:343—366.

[3]郭志刚.社会科学分析方法一SPSS软件应用[M].,中国人民大学出版社,1999.

[4]傅德印.主成分分析中的统计检验问题 [J].统计 教育 ,2007(9):4—7.

SPSS软件是“统计产品与服务解决方案”软件,是数据统计分析的一个重要的工具。下文是我为大家整理的关于spss统计分析论文的 范文 ,欢迎大家阅读参考!

统计分析软件SPSS的特点和应用分析

【摘要】通过文献资料法,介绍了统计分析软件SPSS的特点,并通过实例:用非参数检验中的两个独立样本的检验(Test for Two Independent Sample)进行分析,对该软件的应用做了详细的介绍,旨在为学习SPSS软件的人们提供参考。

【关键词】统计分析软件;SPSS;独立样本;非参数检验

一、前言

统计分析软件SPSS是一款统计产品与服务解决方案的软件,其全称为“统计产品与服务解决方案(Statistical Product and Service Solutions)”。该软件是一款在统计中应用很广的统计分析软件,目前在各专业 毕业 论文经常可以看到它的身影,其应用范围广、方便快捷等特点吸引着众多的 爱好 者。本文通过对统计分析软件SPSS的功特点进行介绍,通过举例用非参数检验中的两个独立样本的检验(Test for Two Independent Sample)进行分析,对该软件的操作用做了详细的介绍,为学习SPSS软件的人们提供参考。

二、SPSS软件的特点

(一)操作简便

SPSS软件的界面非常友好,除了数据录入及部分命令程序等少数输入工作需要键盘键入外,大多数操作可通过鼠标拖曳、点击“菜单”、“按钮”和“对话框”来完成。

(二)编程方便

具有第四代语言的特点,告诉系统要做什么,无需告诉怎样做。只要了解统计分析的原理,无需通晓统计 方法 的各种算法,即可得到需要的统计分析结果。对于常见的统计方法,SPSS的命令语句、子命令及选择项的选择绝大部分由“对话框”的操作完成。因此,用户无需花大量时间记忆大量的命令、过程、选择项。

(三)功能强大

具有完整的数据输入、编辑、统计分析、报表、图形制作等功能。自带11种类型136个函数。SPSS提供了从简单的统计描述到复杂的多因素统计分析方法,比如数据的探索性分析、统计描述、列联表分析、二维相关、秩相关、偏相关、方差分析、非参数检验、多元回归、生存分析、协方差分析、判别分析、因子分析、聚类分析、非线性回归、Logistic回归等。

(四)全面的数据接口

能够读取及输出多种格式的文件。比如由dBASE、FoxBASE、FoxPRO产生的*.dbf文件,文本编辑器软件生成的ASCⅡ数据文件, Excel 的*.xls文件等均可转换成可供分析的SPSS数据文件。能够把SPSS的图形转换为7种图形文件。结果可保存为*.txt,word,PPT及html格式的文件。

(五)灵活的功能模块组合

SPSS for Windows软件分为若干功能模块。用户可以根据自己的分析需要和计算机的实际配置情况灵活选择。

(六)针对性强

SPSS针对初学者、熟练者及精通者都比较适用。并且现在很多群体只需要掌握简单的操作分析,大多青睐于SPSS,像薛薇的《基于SPSS的数据分析》一书也较适用于初学者。而那些熟练或精通者也较喜欢SPSS,因为他们可以通过编程来实现更强大的功能。

三、实例分析――两个独立样本的检验(Test for Two Independent Sample)

例题:为了调查甲、乙两地土壤对 种植 同一种西瓜有没有影响,从这两个产地分别随机抽取同种的8只和7只西瓜,称重后得重量(市斤)如下:

甲(斤):9.31、9.57、10.21、8.86、8.52、10.53、9.21、9.14

乙(斤):9.98、8.46、8.92、10.14、10.17、11.04、9.43

问:根据样本数据检验两地的土壤对种植西瓜在重量上是否有显著差异?

解:建立假设 H0:甲乙两地的西瓜重量没有显著差异;

H1:甲乙两地的西瓜重量有没有显著差异。

然后根据上面给出的数据建立数据文件,注意数据文件中有一个表示重量数据的变量和一个表示地区分组的变量。最后在数据编辑窗口进行检验。检验的具 体操 作过程如下:

第一步:单击Analyze Nonparametric Test 2 Independent Sample,打开Two-Independent-Sample对话框(见图1)。

第二步:选择检验的变量进入检验框中,选择分组变量进入Grouping Variable框中,单击Define Group键,打开Define Group对话框,将分组变量值分别键入两个框中,单击Continue返回主对话框(见图2):

第三步:在Test Type栏中,确定检验方法。

SPSS中提供了四种检验方式,几种检验方法侧重点不同,但都是先把两样本数据混合排序,再从不同的角度分析并检验两个独立总体的分布是否有显著的差异。有时这几种检验结果可能不一样,所以要结合数据的探索分析考察数据的分布状况作出结论。本文选择了常用的Mann-Whitney U曼―惠特尼检验和Kolmogorov-Smirnov Z K-S检验。

第四步:选择输出的结果形式及缺失值处理方式;

第五步:单击OK,得输出结果。

所以,以上两种检验结论是一致的。也就是说在两地种植的同一种西瓜地重量没有显著差异。

参考文献

[1]杜志渊.常用统计分析方法―SPSS应用[M].山东人民出版社,2011.

[2]刘宁元.运用SPSS对高职专业课程成绩进行相关分析[J].电脑与电信,2007(3).

[3]井海立.SPSS在数学试卷统计分析中的应用[J].科技信息(学术版),2006(10).

试谈SPSS软件在考试数据统计分析中的应用

摘要: SPSS软件是数据统计分析的一个重要的工具。本文作者利用SPSS软件对考试数据的相关性、检验假设进行了统计分析,介绍了使用SPSS进行统计分析的一般方法和步骤,文中的方法对考试研究人员具有一定的指导意义。

关键词: SPSS软件 考试数据 统计分析 操作步骤

1. 引言

一份好的试卷须有好的测量指标来表明它的优良程度,试题有难度和区分度指标,试卷有效度和信度指标,这些是评价考试最主要的测量指标,但是仅有这些指标不足以反映一份试卷的实际测量效果,考试研究人员希望从考生的试卷统计分析中获取更多的信息来评价一份试卷。在计算机未普及的年代,考试成绩统计主要依靠人工阅卷,考试数据无法电子化存储,对考试数据分析统计难以实现。随着计算机的普及和信息化的推广,各种分析数据的软件应运而生,这些软件中汇集了统计学和测量学的分析工具,使得应用电子信息技术分析统计考试成绩数据成为可能,这些统计信息可以为教研部门、考试行政部门进行行政决策等提供非常重要的帮助。在众多的统计分析软件当中,SPSS是应用最多、影响最广泛的分析工具之一。在本文中,我们以SPSS软件为工具,对 教育 招生考试成绩的数据进行统计分析,分析主要着重于考试数据的相关性、假设检验等几个方面。

2. SPSS分析软件简介

“SPSS统计分析软件”的英文名称为“Statistical Package for the Social Science”,中文名称为“社会科学统计软件包”,它是世界著名的统计分析软件之一,在自然科学、社会科学的各个领域均有非常广泛的应用。SPSS是一个组合式软件包,它集数据整理、分析于一身,主要功能包括数据管理、统计分析、图表分析、输出管理等,该软件的统计分析过程包括描述性统计、均值比较、一般线性模型、相关分析、回归分析、对数线性模型、聚类分析、数据简化、生存分析、时间序列分析、多重响应等几大类。

下面我们利用SPSS软件对考试数据的相关性、检验假设进行统计分析,介绍使用SPSS进行统计分析的一般方法和步骤。

3. 相关性分析

教育考试中,考试结果的信度,试题的区分度,每个题目得分与试卷总分的关系,以及题目之间的关系,等等,都是考试研究的重要内容,最主要的研究方法就是数据的相关性分析。在众多的教育考试数据的相关性分析方法中,Pearson相关系数法、Spearman相关系数法和Cronbach α信度系数法是比较常用的几种方法。

Pearson相关系数法计算公式:

式中x为第i个考生第j题的得分,y为第i个考生第k题的得分,为第j题的平均分,为第k题的平均分,n为测试样本量。该公式既可以计算两个连续变量之间的相关性,又可以计算一个双歧变量与一个连续变量之间的相关性。

Spearman相关系数法计算公式:

r=1-(2)

式中D为两个变量的秩序之差,n为样本容量。

Cronbach a信度系数法计算公式:

α= 1-(3)

式中n为试题数,s为第i题的标准差,s为总分的标准差。该公式实际上就是将考试中所有试题间相关系数的平均值(又称内部一致性)作为α信度系数。

对于给定的一组考生成绩数据,利用SPSS统计分析软件可以非常容易地定量分析考生某学科试卷总分和该学科某道题的相关性,以及各个题目之间的相关性。我们以Pearson相关系数分析为例,利用SPSS软件进行统计分析。

数据统计分析的对象是某省高考数学6道解答题的得分情况(不是整张试卷),数据源于该省的高考数据成绩。研究的目的是测量6道解答题每两个题目之间的相关性。

我们以SPSS 13.0版本的软件为例,介绍利用SPSS进行数据统计分析的步骤(以Pearson相关系数法为例):

(1)将考试数据导入SPSS软件,在SPSS数据窗口中,顺序点击【Analyze】→【Correlate】→【Bivariate...】,系统弹出变量相关系数设置对话框。

(2)在该对话框中,将待计算的变量从左侧的变量列表中导入到右侧的“Variables”变量列表中,在本例中导入t1、t2、t3、t4、t5、t6共6个变量(t1―t6是6道解答题的变量名称)。在“Correlation Coefficients”相关系数选项中,选取“Pearson”复选框。

(3)在该对话框的“Test of Significance”设置区域,可以点选“Two-tailed”选项或者“One-tailed”,我们采用系统默认值。

(4)对话框中的 其它 选项取软件系统的默认值,点击【OK】,开始相关系数计算,系统弹出新的窗体输出运算的结果。本次输出的情况如下:

上表的统计结果可用于题目之间相关性的分析。表中的大部分题目的相关系数都比较适中,但题目T4和题目T5之间的相关程度远高于其它几个题目,我们可以确信这两者之间一定存在着比其他题目之间更紧密的关系,这是我们通过分析获取的重要信息,该信息表明这两个题目之间的相关性高于其他几个题目之间的相关性,这在大规模考试中是不应该出现的,需要在以后的命题考试中加以改进。

Spearman相关系数分析方法和上述分析方法类似,只需要在上述SPSS操作的第二个骤中选取“Pearson”复选框,程序就会按Pearson相关系数法进行统计分析,如果同时选中“Spearman”和“Pearson”复选框,程序将会同时计算按两种分析方法统计分析的数据,并会以不同的图表进行显示,而Cronbach a信度系数法计算方法与上述方法略有不同,其操作步骤如下:

(1)在SPSS数据窗口中,顺序点击【Analyze】→【Scale】→【Reliability Analysis...】,系统弹出“Reliability Analysis”信度分析设置对话框。

(2)将待计算的变量从左列的变量列表中导入到右侧的“items”变量中,在左下列的“model”选择项的下拉列表中确保选中“Alpha”(信度系数),点击“Statistics”选择项可以进行更为详细的参数设置,我们采用系统的默认值即可。

(3)参数设置完毕之后,点击【OK】,软件开始相关系数计算并输出运算结果。

4. 选择题的选项分析

在目前的教育招生考试中选择题是一种较常见的题型,考试研究人员关注较多的是对选择题基本特征、测量功能及其优缺点的理论探讨[1][2],对选择题干扰项的设计及其施测后的实际效果关注甚少,事实上施测后对题目各选项的有效性作出判断可为评价试题质量提供重要参考依据。我们利用统计中χ检验假设,对试卷中常见的选择题选择项进行统计分析。

教育考试的单项选择项一般设置为4个,其中仅有1个选择项是正确的。命题人员在设计选择项时,应当也必然对每道题目所有的选择项(正确选择项和干扰选择项)的考生作答情况作出预测,对考生作答的分布情况作出预估。考试结束后,研究人员应该对实测的情况与命题教师预测的情况进行对比分析,以检验考试效果是否达到了预测的目标。这和χ拟合度检验的思想具有一致性,因此可以尝试使用χ检验假设进行分析。

我们依据文献[3][4]的方法来介绍χ检验假设在考试数据分析中应用的基本原理,设变量E是命题者对某道试题的期望值,E=nP,n为样本容量,P为期望的相对频率,引入以下统计量:∑(O-E)/E,其中O为观察频数。

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

我们需要进行的假设检验是:零假设H:选项的实测分布与期望分布相同;非零假设H:选项的实测分布与期望分布不同。

检验假设的思想:拟合度检验的统计量在确定的某种显著性水平下如果零假设是真,则检验统计量∑(O-E)/E呈近似χ分布,其自由度为研究变量的可能值减1;如果实测分布与期望的分布相当吻合,就不排除零假设,否则就排除零假设;最后对检验假设的结果进行解释。

数据分析的目的是判断考生实际的应答结果(实测数据)与命题期望的选择概率(期望数据)是否一致。我们随机抽取某省5542个高考考生的数学有效数据构成分析样本,利用SPSS进行统计分析。

SPSS数据统计分析的步骤如下:

(1)将考试数据导入SPSS软件,依次点击【Analyze】→【Nonparametric Tests】→【Chi-Square...】,弹出“Chi-Square Tests”对话框。

(2)将变量列表中待分析的题目序号导入到“Test Variables List”(检验变量列表)中,本例中题目的序号为t7。

(3)将对选择试题的每个选项的期望值依次输入到“Expected Values”所属的方框,具体操作方法是选中单选框“Values”,输入具体的期望数值,点击“Add”按钮,依次重复上述的步骤直至所有的选项的期望值输入完毕。

(4)点击【OK】,输出软件运算结果。

我们需要进行的假设检验,H:选项的实测分布与期望分布相同;H:选项的实测分布与期望分布不同。

假设检验的显著性水平为α=0.05,χ=∑(O-E)/E,自由度为df=4-1=3,查χ分布表或利用相关软件可得P=0.0626,由于P>α,因此不能拒绝零假设,即选项的实测分布与期望分布相同。因此,检验结果在0.05显著性水平时,没有足够的证据拒绝零假设,即可认为本题选项的实测分布与期望分布相同,也就是说本题的实际测试效果与命题教师预测的效果是一致的,命题教师准确地估计了考生的实际水平,这是分析获得的很重要的结论。

5. 结语

SPSS软件在考试数据统计分析中应用广泛,但大部分是集中在试题难度、均值、方差统计、考试数据的图表显示等几个方面,本文从一个新的角度利用SPSS软件对考试数据的相关性、检验假设等几个方面进行了尝试性统计分析,介绍了使用SPSS进行统计分析的一般方法和步骤。从上述分析来看,软件操作步骤和统计分析过程十分简单、快捷,对于测量学和统计学基础不太好的数据分析统计人员来说,只要遵循一定的操作步骤,就可以进行分析。

参考文献:

[1]王孝玲.教育测量(修订版)[M].上海:华东师范大学出版社,2006.

[2]雷新勇.大规模教育考试:命题与评价[M].上海:华东师范大学出版社,2006.

[3]李伟明,冯伯麟,余仁胜.考试的统计分析方法[M].北京:高等教育出版社,1990.

[4]雷新勇.考试数据的统计分析和解释[M].上海:华东师范大学出版社,2007.

猜你喜欢:

1. 统计学数据分析论文

2. spss统计分析实习心得

3. 统计学学年论文

4. 统计学分析论文

论文中的数据分析

论文数据方法有多选题研究、聚类分析和权重研究三种。

1、多选题研究:多选题分析可分为四种类型包括:多选题、单选-多选、多选-单选、多选-多选。

2、聚类分析:聚类分析以多个研究标题作为基准,对样本对象进行分类。如果是按样本聚类,则使用SPSSAU的进阶方法模块中的“聚类”功能,系统会自动识别出应该使用K-means聚类算法还是K-prototype聚类算法。

3、权重研究:权重研究是用于分析各因素或指标在综合体系中的重要程度,最终构建出权重体系。权重研究有多种方法包括:因子分析、熵值法、AHP层次分析法、TOPSIS、模糊综合评价、灰色关联等。

拓展资料:

一、回归分析

在实际问题中,经常会遇到需要同时考虑几个变量的情况,比如人的身高与体重,血压与年龄的关系,他们之间的关系错综复杂无法精确研究,以致于他们的关系无法用函数形式表达出来。为研究这类变量的关系,就需要通过大量实验观测获得数据,用统计方法去寻找他们之间的关系,这种关系反映了变量间的统计规律。而统计方法之一就是回归分析。

最简单的就是一元线性回归,只考虑一个因变量y和一个自变量x之间的关系。例如,我们想研究人的身高与体重的关系,需要搜集大量不同人的身高和体重数据,然后建立一个一元线性模型。接下来,需要对未知的参数进行估计,这里可以采用最小二乘法。最后,要对回归方程进行显著性检验,来验证y是否随着x线性变化。这里,我们通常采用t检验。

二、方差分析

在实际工作中,影响一件事的因素有很多,人们希望通过实验来观察各种因素对实验结果的影响。方差分析是研究一种或多种因素的变化对实验结果的观测值是否有显著影响,从而找出较优的实验条件或生产条件的一种数理统计方法。

人们在实验中所观察到的数量指标称为观测值,影响观测值的条件称为因素,因素的不同状态称为水平,一个因素可能有多种水平。

在一项实验中,可以得到一系列不同的观测值,有的是处理方式不同或条件不同引起的,称为因素效应。有的是误差引起的,称做实验误差。方差分析的主要工作是将测量数据的总变异按照变异原因的不同分解为因素效应和试验误差,并对其作出数量分析,比较各种原因在总变异中所占的重要程度,作为统计推断的依据。

例如,我们有四种不同配方下生产的元件,想判断他们的使用寿命有无显著差异。在这里,配方是影响元件使用寿命的因素,四种不同的配方成为四种水平。可以利用方差分析来判断。

三、判别分析

判别分析是用来进行分类的统计方法。我来举一个判别分析的例子,想要对一个人是否有心脏病进行判断,可以取一批没有心脏病的病人,测其一些指标的数据,然后再取一批有心脏病的病人,测量其同样指标的数据,利用这些数据建立一个判别函数,并求出相应的临界值。

这时候,对于需要判别的病人,还是测量相同指标的数据,将其带入判别函数,求得判别得分和临界值,即可判别此人是否属于有心脏病的群体。

四、聚类分析

聚类分析同样是用于分类的统计方法,它可以用来对样品进行分类,也可以用来对变量进行分类。我们常用的是系统聚类法。首先,将n个样品看成n类,然后将距离最近的两类合并成一个新类,我们得到n-1类,再找出最接近的两类加以合并变成n-2类,如此下去,最后所有的样品均在一类,将上述过程画成一张图。在图中可以看出分成几类时候每类各有什么样品。

比如,对中国31个省份的经济发展情况进行分类,可以通过收集各地区的经济指标,例如GDP,人均收入,物价水平等等,并进行聚类分析,就能够得到不同类别数量下是如何分类的。

五、主成分分析

主成分分析是对数据做降维处理的统计分析方法,它能够从数据中提取某些公共部分,然后对这些公共部分进行分析和处理。

在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。

主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。

最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。

如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现在F2中,用数学语言表达就是要求Cov(F1, F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P个主成分。

六、因子分析

因子分析是主成分分析的推广和发展,它也是多元统计分析中降维的一种方法。因子分析将多个变量综合为少数几个因子,以再现原始变量与因子之间的相关关系。

在主成分分析中,每个原始变量在主成分中都占有一定的分量,这些分量(载荷)之间的大小分布没有清晰的分界线,这就造成无法明确表述哪个主成分代表哪些原始变量,也就是说提取出来的主成分无法清晰的解释其代表的含义。

因子分析解决主成分分析解释障碍的方法是通过因子轴旋转。因子轴旋转可以使原始变量在公因子(主成分)上的载荷重新分布,从而使原始变量在公因子上的载荷两级分化,这样公因子(主成分)就能够用哪些载荷大的原始变量来解释。以上过程就解决了主成分分析的现实含义解释障碍。

例如,为了了解学生的学习能力,观测了许多学生数学,语文,英语,物理,化学,生物,政治,历史,地理九个科目的成绩。为了解决这个问题,可以建立一个因子模型,用几个互不相关的公共因子来代表原始变量。我们还可以根据公共因子在原始变量上的载荷,给公共因子命名。

例如,一个公共因子在英语,政治,历史变量上的载荷较大,由于这些课程需要记忆的内容很多,我们可以将它命名为记忆因子。以此类推,我们可以得到几个能评价学生学习能力的因子,假设有记忆因子,数学推导因子,计算能力因子等。

接下来,可以计算每个学生的各个公共因子得分,并且根据每个公共因子的方差贡献率,计算出因子总得分。通过因子分析,能够对学生各方面的学习能力有一个直观的认识。

七、典型相关分析

典型相关分析同样是用于数据降维处理,它用来研究两组变量之间的关系。它分别对两组变量提取主成分。从同一组内部提取的主成分之间互不相关。用从两组之间分别提取的主成分的相关性来描述两组变量整体的线性相关关系。

问题一:怎样进行论文数据分析 请在此输入您的回答,每一次专业解答都将打造您的权威形象数据源:(是什么) 研究区域描述:(如果你研究的是区域的话,要写出研究区域你要研究的那一方面的发展概况) 数据处理方法:你用了什么方法,仔细描绘,比如怎么选取变量,有 *** 参数或部分数据啦等等,怎么检验你处理的方法是否恰当啦 问题二:论文结果分析怎么写 结果是你实验过程中记录的各项变化和数据。列出图、表更直观一些。并且要做一下适当的说明。 分析是将这些结果说明了什么写出,即结论,同时是否与你的预期一致,还有你的实验结果有什么意义。 如果结果与预期不符,说明一下原因或可能的原因。 问题三:有数据了怎么写数据分析的论文 20分 数据了,写数据,分析的 问题四:论文的数据分析怎么写 你可以把数据发给我看看,我帮你看下 问题五:关于毕业论文的数据分析 我觉得你先要明白想用这些数据得出怎么样的结果 然后我就知道怎么样进行数据分析 数据分析只是方式,前提是你要明白自己的目的 问题六:论文中数据显著分析,怎么做是啊a,b,c 论文不难写的,不要抄袭,有自己的观点就行,不会写可以问我的。论文常指用来进行科学研究和描述科研成果的文章,简称之为论文。它既是探讨问题进行科学研究的一种手段,又是描述科研成果进行学术交流的一种工具。 问题七:急!!毕业论文实证分析中的样本选取和数据来源怎么写啊 20分 数据可以去公司里面,年鉴等地方找 不要相信其他人说的给你,什么没问题,都你的 我经常帮别人做数据分析的 问题八:毕业论文的假设检验进行数据分析后 有些没通过 影响大吗 最后的结论怎么写 要写哪些内容 25分 做的是什么假设检验:方差分析、卡方检验、秩和检验还是直线相关与回归 问题九:这个论文数据分析该找哪些数据,该怎么分析,求大神指导。 这个框架 没有办法判断 你需要把4.2模型的设定 先做出来 才可能确定数据选择和收集 问题十:工程力学论文怎么写,其中的数据分析如何 1,定义:应用于工程实际的各门力学学科的总称。常指以可变形固体为研究对象的固体力学。广义的工程力学还包括水力学、岩石力学、土力学等。工程力学是研究有关物质宏观运动规律,及其应用的科学。 2,一般工程力学包括结构力学,理论力学,材料力学即三大力学。它们的关系是包括与被包括的关系。包括实验力学,结构检验,结构试验分析。模型试验分部分模型和整体模型试验。结构的现场测试包括结构构件的试验及整体结构的试验。实验研究是验证和发展理论分析和计算方法的主要手段。

论文的数据分析怎么写如下:

首先,针对实证性论文而言,在开始撰写论文之前,必须要提前确定好数据研究方法。而数据研究方法的确定与选择需要根据大家毕业论文的研究课题来确定。

另外,大家也可以跟自己的的论文指导老师多多交流,尽可能多的了解更多关于研究方法的知识,以供自己选择。除此之外,大家还需要大量查找文献资料,见多识广有大量输入之后才能有所输出,本环节需要大家跟导师沟通商议后决定。

接下来一个比较重要的步骤是搜集和整理实验数据。在这一部分,很多同学朋友都会遇到各种各样的问题,比如,不知道去哪里找数据,找到的数据可靠性无法保障,需要的数据总是无法搜集全面等等各种问题。

那么在这里需要跟大家强调一下,推荐大家使用国家统计局、中国统计年鉴、国泰安、万方等等这些比较权威的网站去搜集数据资料。

在此需要注意的是,国泰安和万方等这些网站是需要收费的,上去看了一下,价格不是很亲民。

给大家分享一下,如果有些数据在国家官方网站确实找不到或者毕业论文所需的最新数据还没及时发布,推荐大家可以上某宝,因为某宝上电子版数据往往都很全面,而且价格大都可以接受。

在此提醒大家搜集到数据之后,一定要按照自己的习惯整理保存好,避免后期使用数据时出现差错。

spss数据分析的期刊

SPSS软件及教程百度网盘免费下载

链接:

SPSS为IBM公司推出的一系列用于统计学分析运算、数据挖掘、预测分析和决策支持任务的软件产品及相关服务的总称,有Windows和Mac OS X等版本。包含各版本SPSS软件及相关基础和进阶视频教程及资料,涉及统计,医学,机器学习等方向。

不会。一般规范的分析需要有一些规范的格式,SPSS是将所有所有的结果都输出,非常多都是没有用的中间过程,而且表格也不规范。可以使用下在线版本SPSS软件SPSSAU进行分析,里面出来的表格结果全部都是规范好的,并且还有智能化文字分析以及图表等。SPSS(Statistical Product and Service Solutions),“统计产品与服务解决方案”软件。最初软件全称为“社会科学统计软件包”(Solutions Statistical Package for the Social Sciences),但是随着SPSS产品服务领域的扩大和服务深度的增加,SPSS公司已于2000年正式将英文全称更改为“统计产品与服务解决方案”,这标志着SPSS的战略方向正在做出重大调整。SPSS为IBM公司推出的一系列用于统计学分析运算、数据挖掘、预测分析和决策支持任务的软件产品及相关服务的总称,有Windows和Mac OS X等版本。

论文中使用的何种工具没关系主要是你写的论文的主题是哪方面的,就往哪方面杂志投

论文数据分析范文模板

论文的数据分析怎么写如下:

首先,针对实证性论文而言,在开始撰写论文之前,必须要提前确定好数据研究方法。而数据研究方法的确定与选择需要根据大家毕业论文的研究课题来确定。

另外,大家也可以跟自己的的论文指导老师多多交流,尽可能多的了解更多关于研究方法的知识,以供自己选择。除此之外,大家还需要大量查找文献资料,见多识广有大量输入之后才能有所输出,本环节需要大家跟导师沟通商议后决定。

接下来一个比较重要的步骤是搜集和整理实验数据。在这一部分,很多同学朋友都会遇到各种各样的问题,比如,不知道去哪里找数据,找到的数据可靠性无法保障,需要的数据总是无法搜集全面等等各种问题。

那么在这里需要跟大家强调一下,推荐大家使用国家统计局、中国统计年鉴、国泰安、万方等等这些比较权威的网站去搜集数据资料。

在此需要注意的是,国泰安和万方等这些网站是需要收费的,上去看了一下,价格不是很亲民。

给大家分享一下,如果有些数据在国家官方网站确实找不到或者毕业论文所需的最新数据还没及时发布,推荐大家可以上某宝,因为某宝上电子版数据往往都很全面,而且价格大都可以接受。

在此提醒大家搜集到数据之后,一定要按照自己的习惯整理保存好,避免后期使用数据时出现差错。

统计学专业是一门处理大量数据的学科,在社会中的重要性越来越不可忽视。下文是我为大家搜集整理的统计学论文的内容,欢迎大家阅读参考!统计学论文篇1 谈农经统计工作在农村经济发展中的作用 摘要:农经统计是农村地区经营管理的基础工作,也是农村社会经济统计的一部分,具有重要的地位,通过收集相关的数据并整理出来,数据可以反映出当地农村经济发展的实际情况,让人们掌握农村经济发展的特点和规律,农经部门就可以针对农村经济发展的特点和规律制定针对性的工作 措施 和思路,对于促进农村经济的发展至关重要。本文就农经统计工作在农村经济发展中的作用进行分析,并提出了提高农经统计工作效率的措施。 关键词:农经统计工作;农村;经济发展 引言 农经统计工作是一类重要的农村经济社会统计工作,收集农村经济发展的相关数据,为农经部门的工作提供正确的思路和方向,政府也可以根据相关的数据依据制定农业政策、农业发展规划,及时发现农村经济运行中存在的问题,并及时提出有效的解决措施。因此,在农村社会经济统计中,一定要做好农经统计工作。 一、农经统计工作在农村经济发展中的作用 (一)为农村经济政策的制定提供有效的依据 近年来,我国的经济得到了快速的发展,农村经济也得到了前所未有的发展,在一个地区,农经统计的主要工作就是收集当地经济发展的相关数据,整理出来,人们通过数据就可以了解农村经济的运行情况,掌握农村经济的发展脉络,而只有掌握历史,才能针对发展中的问题提出有效的解决措施,从而引导农村经济的正确发展。农经统计得出的信息不仅可以反映出农村经济发展脉络,同时还能够为地方政府部门以及单位部门提供数据依据,使其能够正确判断农村经济发展的形势,加强农村经济的研究,提出有效的促进农村经济发展的措施。例如,通过对农民的负担进行统计,政府部门就可以正确分析和了解农村的负担构成、负担水平以及其发展的趋势,从而针对实际情况制定减轻农民负担的政策,真正达到减负的效果。因此,农经统计工作可以为各种惠农政策的制定提供重要的依据[1]。 (二)农经统计工作可以为农业经营体制机制的创新提供有效的途径 近年来,我国的经济体制在不断改革,为了促进我国的农村经济发展,还应该做好农业经营体制机制的改革,才能真正促进农业和其他产业的和谐持续发展。因此,农业经营体制机制的创新对于促进农业经济的发展具有至关重要的作用,而是在创新机制的过程中,就要求充分了解当地农业的经济发展情况。通过农经统计数据,人们可以了解农业发展取得的成效,同时也能够及时发现农业发展过程中的制约因素[2]。例如,针对农村土地流入企业,就可以反映出政策导向的问题。而清楚的了解这些问题之后,相关的部门就可以针对具体的问题提出有效的应对措施,提出针对性的农业经营体制机制的创新途径,以促进我国农业经济的发展。 (三)农经统计是国家统计局工作的有效补充 国家统计局工作对于促进我国经济的发展和社会的发展具有非常重要的作用,但是国家统计局的工作是有效的,在实际工作中也有一些重要的工作没有涉及到,例如农民专业合作组织发展、农村土地承包管理以及农民负担监督管理等工作,都使没有被包含在国家统计局的工作内容中的,但是其对于农村经济的发展来说具有直观重要的作用。而农经统计工作中就会对相关的工作内容和数据信息进行统计,提供能够反映农村集体经济组织发展的重要信息资料。因此,农经统计工作不仅具有独特的业务特点,其也是国家统计局工作的有效补充。 二、加强农经统计工作效率的措施 (一)建立完善的统计制度 农经统计工作对于促进我国农村经济的发展来说具有非常重要的作用,但是从实际的情况来看,在农经统计工作中还存在着各种各样的问题制约着农经统计工作作用的发挥。其中,缺乏完善的统计制度是一个重大的问题。因此,在实际统计工作过程中,一定要建立完善的农经统计工作制度。加强基层统计制度的建设,包括统计台账制度、原始数据统计记录制度以及统计数据的质量检测制度等,从数据统计的最开始、数据统计过程一直到统计数据的检测都能够有一套完善的制度,来指导人们工作。对于数据的采集,应该采用抽样分层调查、重点调查和典型调查等相关的统计调查 方法 。 (二)改善统计方法 农经统计工作中,统计方法的合理性和科学性直接会对统计结果造成影响。因此,在实际的统计环节中,一定要改善统计方法,采用科学的统计方法来确保统计的有效性。在数据的收集过程中,要广泛收集,进入农户家中收集相关数据,询问农作物的生长情况,对于农作物的病虫害防治、农作物的销售等都要采集相关的数据。此外,还应该加强对各个部门的数据收集,深入到邮局、信用社、烟草站等部门了解相关的数据,了解农民的存款增长情况、贷款余额、汇款额等,还应该深入学校了解学校的收费情况,掌握农民的 教育 负担[3]。在广泛收集数据的基础上,还应该采用抽样调查的方式,抽取一定比例的农户进行细致调查,指导农户做好自己的台账,详细记录自己在一段时间内的收支情况。收集数据之后,还可以通过开展农民座谈会来验证数据的真实性和可靠性。 三、结语 农经统计在农村经济发展中具有非常重要的作用,其可以为农村经济政策的制定提供有效的依据,为农业经营体制机制的创新提供有效的途径,也是国家统计局工作的重要补充,在实际的统计工作中,应该制定完善的统计制度,采用科学的统计方法,提高统计工作的有效性和可靠性。 参考文献 [1]车德彬.浅谈农经统计工作在农村经济发展中的作用[J].农民致富之友,2014,14(11):134-135. [2]廖兵.做好农经统计工作促进农村经济大力发展[J].中国农业信息月刊,2014,21(12S):133-134. [3]宋铁.做好农经统计工作,促进农村经济大力发展[J].农民致富之友,2013,12(7):257-258. 统计学论文篇2 浅析中小企业发展中统计的作用 摘要:当前随着我国市场经济的快速发展,我国很多企业单位也正在进行不断的改革,这使得很多中小型企业的经济统计专项目标和要求也发生了改变,逐渐向更高更远的方向发展。对于中小型企业来说,统计工作是非常重要的工作内容,是保障企业未来更好运作的关键内容,因此本文就通过对中小企业发展中统计的作用进行分析,并对中小企业统计工作中初中的问题进行合理分析,在制定合理的解决策略,更好的提升中小企业统计工作效率和质量,为中小企业未来发展奠定坚实基础。 关键词:统计;中小企业;发展;作用 在中小企业发展过程中,统计、会计核算等对象与目标都是相统一的,而其两者的内容与原则以及技术形式是有很大差别的,中小企业中的统计工作是非常重要的,通过运用有效的统计方法、要求以及原则等来完成统计工作,从而保证企业生产经营以及管理等工作能够顺利开展,统计在中小企业发展中的作用是非常大的,因此企业必须要重视统计工作,并制定合理的统计工作策略,发挥其重要价值,为企业未来发展奠定建设有利的基础。 一、中小企业发展中统计的具体应用 1.有效的统计工作能够客观的强化企业预测 中小企业在运用统计分析开展相关工作时,是需要运用动静结合的形式开展统计工作,在这一过程当中要发挥预测的重要作用,并且要与企业发展要求保持一致,通过对季度统计与年度统计等内容进行预测分析,进而有效的完成中小企业的最终目标,从而更好的促进企业未来发展。要与企业发展计划保持一致,对往年的销售数据进行合理分析,提升其合理性,之后对企业自身行业的特殊性进行研究,合理运用科学和专业的技术来优化企业服务形式、发展目标等,提升企业竞争力。 2.良好的统计工作能够确保企业决策的科学性 当前随着我国科学技术的快速发展,很多先进的技术和设备被广泛的运用在不同的企业当中,尤其是计算机技术以及 网络技术 等,这使得外部环境对企业的发展也带来较大的影响。而在这样的情况下,中小企业一定要拥有分析和处理相关信息的技能,这样才能更好的保障企业良好发展。企业必须要拥有良好的统计能力,并且要结合当前的市场需求以及各方面因素,对其进行合理分析,之后在对市场经济情况进行合理研究,从而合理制定长远发展战略,这样才能把总企业决策更加具有科学性特点,更好的保障中小企业在竞争激烈的市场氛围下更好发展。 3.完善的统计工作能够提升 企业管理 的实效性 企业管理工作中统计的作用是非常大的,借助统计分析的相关知识对管理模式进行优化和完善,这样比较能够提升企业管理工作的整体水平,还能更好的提升管理工作的实效性,发挥其重要作用;并且还能对中小企业的管理思想进行创新,全面完善企业管理形式,并为企业量身定制符合相关需求的统计形式,对企业管理成本进行合理控制,提升企业管理实效性,为中小企业未来稳定发展奠定坚实基础。 二、统计在中小企业发展中发挥有利作用的有效策略 1.对中小企业统计管理工作形式进行创新 通过对统计工作在中小企业中的应用进行分析明确,对于不同的部门来说,其统计工作的形式是不同的,通过将相关数据已经报表上交到管理部门。而对于传统的统计形式来说,相对比较单一化,过于传统,无法良好的发挥统计工作的作用,企业内部如果无法构建一个相对独立、专业的统计部门的话,那么就不能更好的以企业未来良好发展为方向,会导致统计工作出现很多弊端,不利用中小企业更好发展,因此中小企业必须要对统计管理工作形式进行创新,从而保证统计信息的完整性和全面性,更好的保障中小企业良好发展。对于近几年刚刚起步的中小企业来说,有些企业并没有认识到统计工作的作用,使得企业内部欠缺相对完整的统计制度和规定,而且还要一些企业是由财务会计来兼职统计职务,使得统计工作并不全面和完善,出现很多严重的问题。因此中小企业必须要制定合理的统计工作策略,对统计管理形式进行创新,首先,企业要在内部创建相对专业且独立的统计部门,并要明确各岗位的主要职责,建立完整的统计结构,进而保障企业统计工作能够良好完成。而对于规模较小的企业来说,要制定比较精简统计机构,虽然并不用制定独立的统计机构,但是还是要保障企业统计岗位的综合性,在各个环节良好的发挥统计作用,从而保障企业更好发展。另外,企业要全面落实不同部门的权力与职能,并且要将统计工作贯彻到各个环节当中,更好的发挥统计工作的作用,进而为中小企业未来发展奠定坚实有利的基础。 2.有效借助专业的统计模型工具 企业可以根据自身管理形式与企业决策等需求,对企业各种数据与信息进行统计、排列和组合,进而有效满足企业统计信息的综合分析。通过对某种简单信息进行分析与研究,例如生产进度或者销售状况,在对相对比较复杂、多层次的信息进行综合分析,包括结合盈利或亏损数据等信息,在运用统计分析信息,在结合企业的发展方向和最终目标开制定合理的统计形式,主要由具体的研究内容来选择最终方案,之后在上交到上级部门,为企业后期相关工作提供一定的信息参考。企业的统计人员也要不断提升自身整体能力,要明确自身职责,正确认识到统计工作的重要性,进而严格按照相应的标准来开展统计工作,更好的保障统计工作顺利完成,推动中小企业稳定发展。 3.建立信息化统计分析体系 随着信息技术在不同企业中的广泛运用,中小企业也要有效的利用信息化技术来开展相关工作,企业统计工作也要有效利用信息化技术,结合该技术制定一个完善的统计系统,为企业统计工作奠定建设有利的基础。企业要有效的利用现代化信息技术的优势,借助其先进功能制定一个良好的统计报表指标,将企业不同部门通过网络系统进行连接,从而借助统计系统,将不同的部门中信息进行整合,进而完成统计工作,在通过网络技术上交到领导部门,为上级领导开展决策工作奠定良好基础,更好的推动企业未来发展,发挥统计在中小企业发展在的有利作用。 三、结束语 通过对中小企业发展中统计工作的作用进行分析,明确发现统计在中小企业发展中的重要是非常重要的,统计工作时贯穿到企业各个环节当中的重要环节,也是促进企业未来发展的重要部分,因此企业必须要重视统计工作,并明确其重要性,之后在制定一系列合理的统计工作策略,发挥其重要意义与价值,进而更好的推动中小企业未来发展。 参考文献 [1]杨莉.怎样发挥统计在中小企业改革中的作用[J].四川省情,2010,(8):40-41. [2]王发山.试析统计分析在中小企业中的应用[J]. 财经 界(学术版),2013,(6):76,78. 统计学论文篇3 论文摘要:统计分析是运用统计方法与分析对象有关的知识,从定量与定性的结合上进行的研究活动,是整个统计工作中的重要组成部分,在企业中发挥着巨大的作用,也是企业制定生产计划、发展战略与规划的主要依据。 论文关键词:统计分析 企业 发展 一、统计分析的概述及其特点 1.统计分析的概述 统计分析是指运用统计方法及与分析对象有关的知识,从定量与定性的结合上进行的研究活动。它是继统计设计、统计调查、统计整理之后的一项十分重要的工作,是在前几个阶段工作的基础上通过分析从而达到对研究对象更为深刻的认识。它又是在一定的选题下,集分析方案的设计、资料的搜集和整理而展开的研究活动。系统、完善的资料是统计分析的必要条件。 2.统计分析的特点 运用统计方法、定量与定性的结合是统计分析的重要特点。随着统计方法的普及,不仅统计工作者可以进行统计分析,各行各业的工作者都可以运用统计方法进行统计分析。只将统计工作者参与的分析活动称为统计分析的说法严格说来是不正确的。提供高质量、准确而又及时的统计数据和高层次、有一定深度、广度的统计分析 报告 是统计分析的产品。从一定意义上讲,提供高水平的统计分析报告是统计数据经过深加工的最终产品。 (1)运用统计方法:统计方法是以总体现象的数量关系为对象的一类特殊科学研究方法的总称,从运用的角度可分为 经验 方法和数学方法。经验方法是指人们长期的统计实践经验相关的方法。在统计分析中常用的数量比较法、分组分析法、指数及因素分析法等就属于这一类。对于这一类方法如能正确运用,可以提高统计分析的科学性。 (2) 定量与定性的结合:统计分析面对的不是抽象的数字,而是在定性分析的前提下。通过其数量表现对研究对象进行认识。因此,熟悉和掌握与研究对象有关的知识是十分必要的。 二、统计分析在企业中的运用 统计分析在一个企业的运转中发挥着举足轻重的作用。从统计认识的全过程来看,通过统计设计、调查和初步整理所取得的统计资料,可以对客观现象总体的数量特点取得一定的认识。但是这些认识却只是初步的、表面的,只有对这些资料进行由表及里的分析和研究,才能把握事物的本质特点、内在联系和发展变化规律,使统计认识得到进一步的深化。由于统计分析具有深化认识的作用,使得统计分析在企业当中得到广泛的应用。 统计具有数量性的特点,统计分析所起的作用,主要是通过定量的分析来实现的。统计分析在人们的认识过程中主要有三个方面的作用:一是对客观事物量化,包括反映客观事物规律的数量表现;二是根据量变程度确认事物的质,即确定区别事物质量的数量界限;三是揭示新的规律,即通过分析数量关系,发现尚未被认识的事物的规律。统计分析工作是一个从感性到理性的认识客观世界的过程。 在企业正确处理好统计分析工作,可以从整体上更为全面地看清现状,可以更好地促进企业的发展和发挥统计分析工作的作用和意义。就社会经济领域而言,统计分析还是发挥统计整体功能,提高统计工作地位的重要手段。随着我国改革开放的实施,社会经济领域发生了深刻的变化,各级领导部门和决策者仅凭个人能力和经验已经很难把握瞬息万变的局面,更难以正确做出科学的决策。在这种情况下,统计分析的优势随之显现。它可以把数据、情况、问题、建议等融为一体,既有定量分析,又有定性分析。比一般统计数据更集中、更系统、更清楚地反映客观实际,又便于阅读、理解和利用。因而是发挥统计的信息、咨询、监督功能的主要手段。与此同时,也提高了统计工作的社会地位。 统计分析在企业发展中应用广泛,主要体现在三个方面: 第一,统计分析在企业预测中的应用。 在统计预测中,一般强调静态分析预测和动态分析预测相结合,以静态分析预测为主。首先,企业应根据自身特点,重点进行年度、季度统计预测分析,确保企业目标管理和考核的有效性。其次,要根据企业的计划目标和历史销售数据确定各项数据指标,找出经济运行波动的共性和差异性。再次,要根据企业的总体规划和行业的特殊性,综合运用一定的预测模型来提高分析的科学性,公司的市场份额取决于该公司的产品、服务、价格、沟通等与竞争者的关系。如其他因素相同,则公司的市场份额取决于它的市场费用在规模和效益上与竞争者的关系。 第二,统计分析在企业决策中的应用。 随着企业信息化建设的推进,企业受外部环境的影响逐步加深,这就要求企业及时对相关信息进行处理和分析。一是对市场需求和供给能力的分析。主要包括居民的购买力、商品的潜在和实际市场需求量、品牌成熟度、订单满足率、消费偏好等。通过分析,可以判断企业的赢利空间、供需缺口等,为领导层确定商品销售规模、制定阶段性营销策略等提供依据。二是对社会经济环境的分析和影响。主要包括国内、国际的宏观环境对我国行业发展的影响和对地方法规、民风民俗对企业的发展的影响。三是对企业竞争力的分析。通过分析本行业其他企业的经营情况,在对比中认识自身发展的差距和潜力,从而为制定正确的发展战略提供参考。 第三,统计分析在企业过程分析和阶段分析控制中的应用。 在计划方案的落实过程中,往往会出现一些不可预知的状况。需要及时的进行过程分析和阶段分析。企业利用统计数据定期分析计划完成情况、进度情况等,可以及时的发现执行过程中所存在的问题。通过对完成阶段的结果进行对比分析,有利于确定指标完成率。便于衡量市场潜力相同的不同市场之间的业绩。也作为销售目标制定的依据。 在企业当中,统计分析工作是了解现状、预测未来,为了更好的促进企业发展进步的重要方法。做好统计分析工作具有重要的作用和意义。因此,我们要提高对统计分析的研究,使统计分析工作更好地成为企业发展的有力推动力量。 参考文献: [1]百度 百科 .统计分析[EB/OL]. [2]赵井霞.试谈如何进行统计分析[J].商业经济.2004.4. [3]宋安. 统计分析在企业管理与经营决策中的应用[J].经济师.2003.6 猜你喜欢: 1. 统计学论文范文 2. 统计学专业论文范文 3. 浅谈统计学论文论文 4. 浅谈统计学专业相关论文 5. 统计学分析论文

如何分析毕业论文的数据分析

1、获取数据

获取数据也有两种途径,要么就是手上有的或者是能直接使用到的现成数据,还有一种就是二手数据。现在的数据分析库主要分为了调查数据和政府数据。

2、整理数据

整理数据就是对观察、调查、实验所得来的数据资料进行检验与归类。得出能够反映总体综合特征的统计资料的工作过程。并且,对已经整理过的资料(包括历史资料)进行再加工也属于统计整理。

3、呈现数据

当数据收集充分且真实过后,研究者可运用数据,但要清楚的说明数据来源以及如何对原始的数据进行加工的。需要尽可能的描述获取数据的过程,提供足够多的细节,以便同行能重复研究过程,并保障原生作者的创作性。

请在此输入您的回答,每一次专业解答都将打造您的权威形象数据源:(是什么)研究区域描述:(如果你研究的是区域的话,要写出研究区域你要研究的那一方面的发展概况)数据处理方法:你用了什么方法,仔细描绘,比如怎么选取变量,有无修正参数或部分数据啦等等,怎么检验你处理的方法是否恰当啦

论文数据方法有多选题研究、聚类分析和权重研究三种。

1、多选题研究:多选题分析可分为四种类型包括:多选题、单选-多选、多选-单选、多选-多选。

2、聚类分析:聚类分析以多个研究标题作为基准,对样本对象进行分类。如果是按样本聚类,则使用SPSSAU的进阶方法模块中的“聚类”功能,系统会自动识别出应该使用K-means聚类算法还是K-prototype聚类算法。

3、权重研究:权重研究是用于分析各因素或指标在综合体系中的重要程度,最终构建出权重体系。权重研究有多种方法包括:因子分析、熵值法、AHP层次分析法、TOPSIS、模糊综合评价、灰色关联等。

拓展资料:

一、回归分析

在实际问题中,经常会遇到需要同时考虑几个变量的情况,比如人的身高与体重,血压与年龄的关系,他们之间的关系错综复杂无法精确研究,以致于他们的关系无法用函数形式表达出来。为研究这类变量的关系,就需要通过大量实验观测获得数据,用统计方法去寻找他们之间的关系,这种关系反映了变量间的统计规律。而统计方法之一就是回归分析。

最简单的就是一元线性回归,只考虑一个因变量y和一个自变量x之间的关系。例如,我们想研究人的身高与体重的关系,需要搜集大量不同人的身高和体重数据,然后建立一个一元线性模型。接下来,需要对未知的参数进行估计,这里可以采用最小二乘法。最后,要对回归方程进行显著性检验,来验证y是否随着x线性变化。这里,我们通常采用t检验。

二、方差分析

在实际工作中,影响一件事的因素有很多,人们希望通过实验来观察各种因素对实验结果的影响。方差分析是研究一种或多种因素的变化对实验结果的观测值是否有显著影响,从而找出较优的实验条件或生产条件的一种数理统计方法。

人们在实验中所观察到的数量指标称为观测值,影响观测值的条件称为因素,因素的不同状态称为水平,一个因素可能有多种水平。

在一项实验中,可以得到一系列不同的观测值,有的是处理方式不同或条件不同引起的,称为因素效应。有的是误差引起的,称做实验误差。方差分析的主要工作是将测量数据的总变异按照变异原因的不同分解为因素效应和试验误差,并对其作出数量分析,比较各种原因在总变异中所占的重要程度,作为统计推断的依据。

例如,我们有四种不同配方下生产的元件,想判断他们的使用寿命有无显著差异。在这里,配方是影响元件使用寿命的因素,四种不同的配方成为四种水平。可以利用方差分析来判断。

三、判别分析

判别分析是用来进行分类的统计方法。我来举一个判别分析的例子,想要对一个人是否有心脏病进行判断,可以取一批没有心脏病的病人,测其一些指标的数据,然后再取一批有心脏病的病人,测量其同样指标的数据,利用这些数据建立一个判别函数,并求出相应的临界值。

这时候,对于需要判别的病人,还是测量相同指标的数据,将其带入判别函数,求得判别得分和临界值,即可判别此人是否属于有心脏病的群体。

四、聚类分析

聚类分析同样是用于分类的统计方法,它可以用来对样品进行分类,也可以用来对变量进行分类。我们常用的是系统聚类法。首先,将n个样品看成n类,然后将距离最近的两类合并成一个新类,我们得到n-1类,再找出最接近的两类加以合并变成n-2类,如此下去,最后所有的样品均在一类,将上述过程画成一张图。在图中可以看出分成几类时候每类各有什么样品。

比如,对中国31个省份的经济发展情况进行分类,可以通过收集各地区的经济指标,例如GDP,人均收入,物价水平等等,并进行聚类分析,就能够得到不同类别数量下是如何分类的。

五、主成分分析

主成分分析是对数据做降维处理的统计分析方法,它能够从数据中提取某些公共部分,然后对这些公共部分进行分析和处理。

在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。

主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。

最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。

如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现在F2中,用数学语言表达就是要求Cov(F1, F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P个主成分。

六、因子分析

因子分析是主成分分析的推广和发展,它也是多元统计分析中降维的一种方法。因子分析将多个变量综合为少数几个因子,以再现原始变量与因子之间的相关关系。

在主成分分析中,每个原始变量在主成分中都占有一定的分量,这些分量(载荷)之间的大小分布没有清晰的分界线,这就造成无法明确表述哪个主成分代表哪些原始变量,也就是说提取出来的主成分无法清晰的解释其代表的含义。

因子分析解决主成分分析解释障碍的方法是通过因子轴旋转。因子轴旋转可以使原始变量在公因子(主成分)上的载荷重新分布,从而使原始变量在公因子上的载荷两级分化,这样公因子(主成分)就能够用哪些载荷大的原始变量来解释。以上过程就解决了主成分分析的现实含义解释障碍。

例如,为了了解学生的学习能力,观测了许多学生数学,语文,英语,物理,化学,生物,政治,历史,地理九个科目的成绩。为了解决这个问题,可以建立一个因子模型,用几个互不相关的公共因子来代表原始变量。我们还可以根据公共因子在原始变量上的载荷,给公共因子命名。

例如,一个公共因子在英语,政治,历史变量上的载荷较大,由于这些课程需要记忆的内容很多,我们可以将它命名为记忆因子。以此类推,我们可以得到几个能评价学生学习能力的因子,假设有记忆因子,数学推导因子,计算能力因子等。

接下来,可以计算每个学生的各个公共因子得分,并且根据每个公共因子的方差贡献率,计算出因子总得分。通过因子分析,能够对学生各方面的学习能力有一个直观的认识。

七、典型相关分析

典型相关分析同样是用于数据降维处理,它用来研究两组变量之间的关系。它分别对两组变量提取主成分。从同一组内部提取的主成分之间互不相关。用从两组之间分别提取的主成分的相关性来描述两组变量整体的线性相关关系。

相关百科

热门百科

首页
发表服务