据新闻报道,5月12日11时40分,安徽省淮北市濉溪县玉鑫矿业有限责任公司矿围墙外东北部约100m处发生地面沉降,经全力救援,并未发生人员伤亡事件。此外,官方并没有更多的消息发布,对于地面沉降的原因,可能还在调查之中吧。
但我们知道,所谓的地面沉降,就是地面塌陷,是因为下方有空洞,上方的土层才可能会下陷。一般来说,大量抽取地下水、采矿以及地壳运动等都会造成地下产生空洞,使得地面出现沉降的现象。
这起新闻中事件中,地面沉降的原因明显是由采矿造成的。根据通报,淮北市濉溪县玉鑫矿业有限责任公司是一家从事铁矿石开采加工的企业,发生沉降的位置又是他们公司矿围墙边上,这次沉降跟采矿必然是有关系的。据悉,濉溪县矿产资源丰富,已探明的煤矿资源储量有60亿吨,铁矿也有1亿吨,但濉溪县地势平坦,并没有什么大的山脉,所以这些矿产都是藏在地下的。而要把这些矿产开采出来,势必要在地下挖出很大的空间,比如通道、比如矿洞等等,如果这些地下空间的支撑做得不牢固,回填又不及时不充分,空洞上方的地面就是很容易塌陷下沉的,这是很简单的逻辑。
地面沉降的危害很大,矿区还算好一点,没有什么大型的建筑物,大家对地面沉降也有比较充分的准备,但在别的地方,地面沉降会造成更大的损失。比如在路上行驶时,前面突然有个洞,这谁能想到,又如何防备呢?我们普通人能做的大概就是节约用水,并对那些非法抽取地下水、私自采矿等行为进行举报了,别的事情也是无能为力。
地下水水位大幅急速下降。以至形成地下水降落漏斗。造成地面沉降、塌陷。河流,湖泊水量减少形成干涸等灾害。减少泉流量。而泉流量减少则破坏了古建筑物与文物的保护,甚至因泉水枯竭使古井和旅游景点失去了应有的旅游价值。
1、地面沉降
地面沉降是一种地面变形现象。长期开采地下水,特别是过度开采,降低了开采含水层的水头压力,从而导致黏土(淤泥)质隔水层及含水层中黏土(淤泥)质透镜体被压缩,造成地面区域沉降。称这种现象为地面沉降。地面沉降的高度称为沉降量。
2、地面塌陷
地面塌陷系指上覆的第四系松散岩类或隐伏岩溶顶板在人为活动或天然因素作用下,特别是水动力条件变化引起的环境效应引起的突然塌陷。地面沉降也是一种地表变形现象,主要发生在隐伏岩溶地下水矿区,又称岩溶塌陷。
3、海水入侵和咸水入侵
据有关调查分析资料,辽宁省、黄渤海、山东胶东半岛、河北省秦皇岛市、广西壮族自治区北海市等部分沿海地区遭受海水入侵。海水入侵总面积已超过1500平方公里,重海地下水氯离子含量超过1000毫克/升。进水面积350多平方公里。
造成此现象的原因,一是大量开采地下水,第二是人类的工程经济活动。
(一)算法选择与数据处理流程
差分干涉的数据处理流程为:首先获取实验区DEM以及SAR干涉影像数据,检查数据是否满足算法要求,然后进行影像配准,计算相干系数并生成干涉图,在方位向上进行5视处理;去除平地相位以及地形相位,对差分干涉图进行滤波,根据成像几何关系,获得沿斜距向的形变信息,并投影到垂直方向,即生成所需的沉降图。
从物理角度上将干涉相位分解,可以写为下式:
退化废弃地遥感信息提取研究
式中:φflat为平地效应引起的相位,通过成像几何关系消除平地效应;φtopo为地形引起的相位;φdef为最后剩余的形变信号;φorb为轨道误差引起的相位,可用精密轨道以减少误差;φatm为对流层及电离层延迟引起的相位,天气晴朗的情况下可以忽略;φnoi为噪声引起的相位,可对干涉图进行平滑去噪处理。
根据地形相位φtopo的消除方式,差分干涉分为二轨法、三轨法和四轨法。
二轨法使用两幅SAR图像以及外部DEM数据(例如SRTMDEM),外部DEM数据用来消除地形相位,消除的过程即差分处理。二轨法的优点是不需要对DEM数据进行相位解缠,因此也不会引入与其相关的误差,缺点是得到的形变图分辨率受到DEM数据空间分辨率的影响。
三轨法使用三幅 SAR 图像,一主两副。图像1 和图像2 一般时间间隔较短,以保证两次成像期间地表几乎没有变化,形成的第一幅干涉图可近似地认为只含有地形产生的干涉相位,用来消除地形信息,三轨法可用于无 DEM 的区域。然后对图像 1 和图像 3 进行干涉处理,生成包含地形相位以及形变信号的第二幅干涉图,后者与前者的差分即为图像 1和图像 3 之间的位移。
四轨法使用四幅 SAR 图像,两主两副。第一幅干涉图与三轨法相同,由图像1 和图像2 生成,不同的是第二幅干涉图用图像 3 和图像 4 生成,减去第一幅干涉图即为图像 3 和图像 4 之间的形变。四轨法类似于三轨法,不同的是地形干涉图与形变干涉图相互独立,选择空间更大,应用更加灵活,常用于有 Tandem 像对的情况。
考虑到数据成本及结果精度,本研究使用二轨法进行矿区沉陷监测。
二轨法数据处理流程如图 6 -15 所示。
图 6 -15 二轨法数据处理流程图
( 二) 影响因素分析
干涉处理中的去相干因素包括时间失相干、空间失相干、数据处理失相干、对流层及电离层影响。因此,总的相干可以表示为:
退化废弃地遥感信息提取研究
1. 时间失相干
很多情况下,星载 SAR 顺轨干涉图像的获取时间不同,间隔短则一天,长则数月甚至数年。在此期间,地面可能会发生变化,而任何变化都有可能改变雷达信号的相位及其统计分布,由此引起的相干性减弱甚至消失称为时间失相干。引起时间失相干的主要因素有: 植物生长或因收获、耕作、大风等引起的植被变化; 液体表面的不断运动,例如海洋、湖泊、池塘等,混同于沼泽或者不稳定区; 地面滑坡、地震等突发事件; 人类活动,例如商业中心停车场地在空间上的发展、建筑工程、森林砍伐等引起的其他变化; 降水、冰雪覆盖以及融化等环境变化。简而言之,地表位移以及环境因子是造成时间失相干的主要因素。
假设地表位移为高斯分布,那么相干性可以用散射体的 RMS 位移来近似替代 ( Zebker,1994) :
退化废弃地遥感信息提取研究
式中:σy和σz分别为沿交轨和垂直方向的位移。对于ERS-1/2C波段卫星,取λ=5.7cm,参考入射角θ=23°,JERS-1L波段卫星,λ=23.5cm,参考入射角θ=35°,图6-16和图6-17反映了ERS卫星及JERS-1的水平及垂直RMS位移变化与时间失相干的关系。
图6-16 时间失相干与散射体RMS位移的关系图(ERS-1/2)
图6-17 时间失相干与散射体RMS位移的关系图(JERS-1)
从图 6 -16 和图 6 -17 中可以发现,约 3cm 的 RMS 位移足够使得 ERS -1/2 C 波段的数据完全失相干。JERS -1 卫星达到约 10cm 的 RMS 位移,才造成完全的时间失相干,其相干性所容许的最大 RMS 位移要远远高于 ERS 卫星,这充分说明 C 波段的雷达波比 L 波段的雷达波对地面变化更加敏感,也可以说同样的 RMS 位移 L 波段的雷达波能够保持比 C波段的雷达波更高的相干性。
2. 空间失相干
地面分辨单元内各个散射体回波的矢量和构成了回波振幅和相位。如果两次获取地面图像时几何条件相同,而且散射体的位置没有发生任何变化,那么两次成像振幅和相位相同; 如果几何条件发生变化,例如天线入射角发生了变化,那么回波相位就会发生改变,这种现象即为空间失相干。任何干涉仪都不可避免地会遇到此类问题。
对于 ENVISAT ASAR,名义临界基线距为1. 1km。对于 ALOS PALSAR,名义临界基线距为12. 6km。假设有效基线长度已知,那么基线导致的空间失相干可由式 ( 6 -14) 计算:
退化废弃地遥感信息提取研究
3. 数据处理失相干
数据处理失相干包括很多方面,例如配准失相干、插值失相干、干涉图滤波以及相位解缠等,一般配准失相干的影响作用最为显著,其他可通过相应的方法来抑制,如果方法不当则会导致配准失败或误差过大。配准过程引入的误差会降低干涉图的相干性,进而引入相位噪声,当配准误差达到 1 个像素,两幅影像将完全不相干。Just 和 Bamler ( 1994)给出了距离向和方位向的配准失相干公式:
退化废弃地遥感信息提取研究
式中:μr为配准误差,介于0和1之间。
(三)研究数据与方法
本研究利用二轨法对影像数据进行处理以获取地面沉降信息。首先,利用两幅SAR成像时的几何关系,将DEM反演成只含地形信息的干涉图并将其投影到SAR影像坐标系下。然后与由两幅SAR影像得到的含有地表形变信息的干涉图做差分,从而求得形变信息。由以上分析可知获取精度满足要求的DEM数据是二轨法的关键。2000年2月,美国进行了航天飞机测图任务(SRTM),该任务对北纬60°到南纬54°间的广大区域进行了干涉测量,可以提供分辨率30m、高程精度优于16m的覆盖陆地表面80%的DEM数据(图6-18、图6-19)。
研究所用雷达数据为欧洲太空局的ENVISAT-1卫星ASAR(AdvancedSyntheticApertureRadar)合成孔径雷达传感器获取的徐州地区的二景影像数据。SRTMDEM数据的发布为两通差分干涉测量的广泛应用提供了数据保证。所以本次所用数据为ASAR数据产品中成像模式的0级原始数据,产品代码为ASA_IM_0C,以及SRTMDEM数据提供的高程数据。
图6-18 徐州市DEM平面示意图
图6-19 徐州市沛县附近实验区DEM三维示意图
数据名称如下:
ASA_IM__0CNPDE20090120_022105_000000642075_00404_36029_9461.N1
ASA_IM__0CNPDE20070327_022114_000000792056_00404_26510_1403.N1
N34E116.hgt
N34E117.hgt
从ASAR数据的文件名可以看出这两景数据都是N1格式文件,两景影像获得时间分别是2009年1月20号和2007年3月27号,Track(轨迹)号都是404,第一个轨道号是36029,第二个轨道号是26510。通过GAMMA软件处理,把2009年1月20号和2007年3月27号的0级原始数据处理成单视复图像(SLC),获得的两景影像的垂直基线为271.95m、时间基线665d,在SLC上截取所需要的研究区范围,进行数据处理以获得区域形变量。
(四)徐州市区地面沉降监测
截取了徐州市区影像,范围为北纬34°11'7.58″~34°24'0.34″,东径117°23'1.19″~117°17'48.62″(图6-20),以2009年1月20号的影像为主影像(图6-21为强度图),2007年3月27号的为副影像,对外部DEM进行二轨法分析。
图6-20 徐州市区的地貌图
由图6-22的相干系数图看,整体的相干性比较好,大部分地区的相干系数都大于0.5。由图6-23的沉降图可知,徐州市区存在地面沉降,沉降量达到10mm左右,有的区域的沉降量达到38mm左右。从沉降的分布来看,市区中心的沉降比较小,主要分布在市区中心的外围地区,这也符合了徐州市这个煤矿大城市的地理分布情况,一般徐州市的煤矿远离市区中心,分布在市区中心以外的四周。在图6-24中的①处沉降量较大,达到38mm,结合当地的地理环境分析,附近有大型现代化矿井———庞庄煤矿,该煤矿由庞庄、张小楼三对井口组成,井田面积18.3km2,工业广场面积1.36km2。张小楼新大井成功改扩建以后深度达-1025m,为华东地区第一深井。每年采煤量达到260万t。可能由于每年的采煤以及地下水的不断开采,导致所在地以及周围区域出现了地面沉降的现象,还呈现出向东北沉降的趋势。从图6-24中还可以看到,在庞庄煤矿那一带的沉降比市区中心地带的沉降明显许多,但是整个徐州市的平均沉降量还是比较小的。
图6-21 徐州市区强度图(左右倒置)
图6-22 徐州市区相干系数图(左右倒置)
图6-23 徐州市区沉降图(左右倒置)
图6-24 沉降漏斗(左右倒置)
(五)大屯镇地面沉降监测
大屯镇是徐州市的“十强镇”之一,已探明煤炭储量24亿t,能均衡开采100年,年产原煤1200万t,大屯煤电集团公司坐落于镇区腹地,拥有龙东煤矿、姚桥煤矿、徐庄煤矿和孔庄煤矿,大屯中心区是煤矿城市徐州市的一个典型区域。图6-25是截取的大屯中心区的影像,范围是北纬34°45'56.78″~34°53'58.23″,东经116°51'23.46″~117°0'3.27″,由于龙东煤矿不在SLC上,所以截取的范围只包括其他三座煤矿。在图6-26上看到明显的煤矿区,其相干系数很高,一般大于0.6(图6-27),采用二轨法获取的大屯中心形变图如图6-28所示。
图6-25 大屯中心区的地貌图
图6-26 大屯中心区强度图(左右倒置)
图6-27 大屯中心区相干系数图(左右倒置)
图6-28 大屯中心区形变图(左右倒置)
将差分得到的形变图左右倒置后,可得到大屯中心区的沉降图(图6-29),从沉降图中可以看出,从2007年3月27日到2009年1月20日共665天的时间跨度里,大屯中心区大部分地区存在着明显的沉降趋势,沉降分布与矿区分布基本一致,姚桥、徐庄、孔庄煤矿都出现了地面沉降,70%以上区域的沉降量大于10mm。图6-29中三角形标示区域为大屯中心区,沉降量最大达到61mm,平均沉降量为3mm,年平均最大沉降累积量达到33.5mm。
图6-29 大屯中心区沉降图
根据上文对大屯中心区基于水准测量的结果可知,到2010 年预计最大累计沉降量将达到753mm,在这五年期间的年平均最大沉降累积量达到30. 6mm,比较水准测量和D-InSAR 二轨法监测的结果,两者仅相差2. 9mm,由此可知,用D-InSAR 二轨法监测徐州市大屯中心区的年平均最大沉降累积量与水准测量得到的结果具有一致性( 表6 - 15) 。
表6-15 两种监测方法结果的比较单位:mm
随着大屯中心区经济的发展,人口逐渐增多,煤矿资源的不断开采,地面沉降的趋势必然加剧,而地面沉降所带来的城镇防洪抗洪能力降低、地下基础设施破坏等危害,必将影响该地区的生产和生活,造成巨大的经济损失。因此,大屯中心区应合理利用地下水资源,合理地开采煤矿资源,完善地面沉降动态监测系统,尽早采取措施减缓沉降趋势。
城市地下岩土工程是岩土工程的一部分,是城市可持续发展,特别是我国大城市可持续发展所面临的诸多问题之一,更是摆在岩石力学工作者面前的新课题和新任务。 1 城市地下岩土工程是新世纪城市建设的重要环节 随着国民经济的高速发展,我国城市化水平正在快速提高,从1990年的18.96%提高到1997年末的28.9%。城市化水平的提高标志着城市工程建设的飞速发展。但是,我国城市建设基本上沿用“摊大饼”的粗放发展模式,给国民经济带来不应有的损失。主要是: (1)城市范围无限制地外延扩展,耕地损失严重。据卫星遥感资料判断和测算,1986~1996年间,全国31个特大城市城区实际占地规模扩大50.2%,有的城市占地成倍增长。另据预测,至2010年,我国城市总数将从1996年的640座增加到1 000座,其结果是占用了大量耕地。到下世纪中叶,我国城市化水平将提高到65%左右,这意味着城市人口将比1990年增加7亿多人,按每个城市人口用地100 m2计,将占用耕地1亿多亩。土地问题是我国可持续发展的关键,城市人口急剧增长与地域规模的限制已成为城市发展的突出矛盾,城市 发展非走节约土地的集约化发展模式不可。 (2)城市人口密度大,形成了所谓的“城市综合症”。首先表现在城市交通阻塞,行车速度缓慢。例如北京市干道的平均车速比10年前降低50%以上,且正以年递减2 km/h的速度持续下降。上海、北京每公里道路的汽车拥有量相应为506辆与345辆,为发达国家大城市相应拥有量的1倍及至数倍。其次是,由于城市基础设施落后于城市面积的扩展和城市人口的增长,造成城市环境的恶化。当前我国城市环境形势日趋严重,大气污染日趋加剧,全国500多座城市大气质量达到一级标准的不到1%,酸雨面积超过国土面积的40%,重庆等城市尤为严重;城市污水80%未经处理排入江河;城市地下水受到污染;垃圾围城现象普遍;噪声污染普遍超标,建筑空间拥挤,城市绿地减少,生态恶化。 (3)城市总体抗灾抗毁能力偏低。在城市总体规划中,除防洪、防空外,目前尚缺少综合防灾的内容,城市基础设施的防灾措施处于空白。为了克服这方面的弊端,解决城市人口、环境、资源三大危机,医治“城市综合症”,实施城市可持续发展,世界发达国家都在把地下空间作为新的国土资源,开发利用城市地下空间,成为越来越受到重视的城市建设指导方针和发展方向。 城市功能空间能转入和宜转入地下的领域是很广阔的,包括商业、交通、部分市政设施、文化娱乐休闲、部分工业生产、仓储、防灾(避难)和救灾空间等。充分利用地下空间是城市立体化开发的最重要组成部分。它可以达到扩大空间容量、提高开发集约度、消除步车混杂、交通顺畅、商业更加繁荣,地面绿地增加,环境优美开敞,购物与休闲,娱乐相互交融的多功能效果,与向城市上空发展的模式相比,是一种更为合理的发展模式。 向地下要土地、要空间已成为城市建设发展的必然趋势,显示了无比的优越性。我国及国外大城市的地下商业城(街)、地下车库、地下影剧院、地下铁道、地下人防系统,是众所周知的城市地下工程。有的国家已开始实施和计划采用地下污水收集和处理设施、地下垃圾处理厂、地下超导磁直接储存电能、地下供热供冷系统、地下多功能公用隧道(共同沟)以及具有抗灾功能的地下空间系统。它们是未来城市建设的发展方向。 2 城市地下岩土工程的特点及难点 众所周知,地下岩土工程是一个具有悠久历史的领域。可以说自有人类以来就有岩土工程,特别是进入工业社会以后岩土工程处处存在,但是城市岩土工程,除了传统的地面房层工程外,地下岩土工程却是随着现代城市的兴起而发展的。经过最近几十年的实践,无论从设计、施工、设备和工艺,还是理论、技术和经验,都已达到相当高的水平,特别是深埋地下岩石工程,更是达到了较成熟的程度。 但是,城市地下岩土工程却具有与一般岩土工程不同的特点,主要是:多数埋深较浅。地面建筑、交通设施密集,地下管线多,开挖造成的影响大,地质条件复杂,多以土体为主,常有膨胀土、沙层、地下水,尤其是沿海沿江城市,淤土、软土的开挖难度更大。因此,城市地下岩土工程存在许多需要解决的特殊问题。主要是: (1)浅埋、超浅埋暗挖施工技术。城市地下工程的埋深,不仅直接影响工程造价,而且关系到工程使用方便与否,因此,城市地下工程一般埋深较浅。在浅埋、特别是超浅埋的条件下,地下工程需要穿越建筑物和线路、街道,地面保护成为施工技术中的首要问题。 (2)复杂、恶劣环境下的开挖技术。诸如流砂层、膨胀土、高压缩性软土淤土、风化破碎岩石、高浓度瓦斯地层、大涌水、硫化氢、岩溶、高应力、地下管线、地面大车流量、大型载重车多、建筑物密集等等,都是地下岩土工程施工中的难题。 (3)大断面隧道开挖、支护技术。主要是地铁车站及商场、仓库、厅、室,其跨度尺寸达10 m以上。 (4)开挖影响控制技术。随着工程埋深的减小,开挖对地面的影响越来越大,在超浅埋条件下,开挖影响的控制与开挖方式、施工工艺、支护方法等众多因素有关,是地下工程施工中最为复杂的问题。 3 城市地下岩土工程的开挖技术及其适应条件 我国城市地下工程建设起步较晚,随着人防、地铁、地下商场、仓库、影剧院等大量工程的建设,特别是近年来的工程实践,城市地下空间开挖技术得到了长足发展和提高。我国城市地下隧道及井孔工程先后采用了明挖法、暗挖法、盖挖法、盾构法、沉管法、冻结法及注浆法等,这些技术有的已达到国际先进水平。 3.1 明挖法 明挖法具有施工简单、快捷、经济、安全的优点,城市地下隧道式工程发展初期都把它作为首选的开挖技术。其缺点是对周围环境的影响较大。 明挖法的关键工序是:降低地下水位,边坡支护,土方开挖,结构施工及防水工程等。其中边坡支护是确保安全施工的关键技术。主要有: (1)放坡开挖技术。适用于地面开阔和地下地质条件较好的情况。基坑应自上而下分层、分段依次开挖,随挖随刷边坡,必要时采用水泥粘土护坡。 (2)型钢支护技术。一般使用单排工字钢或钢板桩,基坑较深时可采用双排桩,由拉杆或连梁连结共同受力,也可采用多层钢横撑支护或单层、多层锚杆与型钢共同形成支护结构。 (3)连续墙支护技术。一般采用钢丝绳和液压抓斗成槽,也可采用多头钻和切削轮式设备成槽。连续墙不仅能承受较大载荷,同时具有隔水效果,适用于软土和松散含水地层。 (4)混凝土灌注桩支护技术。一般有人工挖孔或机械钻孔两种方式。钻孔中灌注普通混凝土和水下混凝土成桩。支护可采用双排桩加混凝土连梁,还可用桩加横撑或锚杆形成受力体系。 (5)土钉墙支护技术。在原位土体中用机械钻孔或洛阳铲人工成孔,加入较密间距排列的钢筋或钢管,外注水泥砂浆或注浆,并喷射混凝土,使土体、钢筋、喷射混凝土板面结合成土钉支护体系。 (6)锚杆(索)支护技术。在孔内放入钢筋或钢索后注浆,达到强度后与桩墙进行拉锚,并加预应力锚固后共同受力,适用于高边坡及受载大的场所。 (7)混凝土和钢结构支撑支护方法。依据设计计算在不同开挖位置上灌注混凝土内支撑体系和安装钢结构内支撑体系,与灌注桩或连续墙形成一个框架支护体系,承受侧向土压力,内支撑体系在做结构时要拆除。适用于高层建筑物密集区和软弱淤泥地层。 3.2 暗挖法 适用于城市中不能采用明挖法施工的地方,亦适用于松散层及含水松散层地层。 一般应按照“新奥法”原理设计和施工,采用较强的初期支护,先注浆后开挖的方法。施工原则是:“管超前、严注浆、短开挖、强支护、快封闭、勤量测”。一般用30~50 mm钢管超前棚顶导管,然后注入水泥或化学浆,形成“结石体”,以增强围岩自稳能力。每次开挖进尺0.75 m左右,先进行环状开挖,留核心土,预喷5~8 cm混凝土,架拱架和钢筋网,再喷25~30 cm混凝土,形成初期支护,做防水层后再做二次衬砌。 暗挖法有单拱单跨和多拱多跨暗挖施工技术。北京地铁西单车站为多拱多跨。也有三连拱、四连拱、五连拱地铁车站、公路隧道和地下商场。北京天外天地下商场为五连拱结构。还有平直墙暗挖施工技术。国际上传统的暗挖法其顶部都是拱形结构,我国创造出平顶直墙超浅埋暗挖施工技术,如北京长安街过街道。 在岩石中进行暗挖施工时,一般采用钻爆法。为了保护围岩的自承能力,普遍采用光面爆破技术。为了减少对地面的振动影响,还采用微差爆破及合理设计爆破参数等减振技术。 3.3 盖挖法 指的是边坡支护为连续墙、混凝土灌注桩,其上为盖板所构成的框架结构,并在其保护下开挖及结构施工的方法。它具有快速、经济、安全的优点,是较明挖法对环境影响少,较暗挖法成本低的一种方法。适于市区高层建筑密集区。 盖挖法可分为由浅而深地逐层开挖、逐层做结构的盖挖逆作法以及依次开挖至底后再做结构的正作法两种。前者适用于地质条件复杂、开挖断面大的情况,后者反之。 3.4 盾构法 指的是全断面推动园筒状钢盾构进行开挖的方法。施工方法有人工、半机械及全机械化多种。盾构由液压千斤顶推进。用盾构法能完成直径几十厘米至十多米尺寸的隧道,以及双联、三联和四联盾构的大型工程。它适于稳定和不稳定松散含水地层。 从施工技术上看,盾构法有泥水盾构法、土压平衡法(可控制地面沉降)、开敞式机械化盾构、气压盾构、插刀盾构及混合盾构等多种。在岩石地层中,也可采用隧道掘进机(岩石盾构)。 此外,国内外还开发了称为“地老鼠”的非开挖技术,包括导向钻进、定向钻进、冲击矛、夯管、水平顶管及螺旋钻等。我国首都机场跑道下采用这种方法完成一次顶进�273 mm、壁厚8 mm、长110 m作为安装通讯电缆用的钢管。我国最长铺管长度可达500 m,最大铺管直径800 mm,铺设设备达到国际先进水平。 3.5 冻结法 地层冻结法是采用人工制冷固结不稳定松散砂土地层或软岩地层,并隔断地下水的施工方法。在拟开凿的地下工程周围钻凿一定数量的冻结孔,通过冻结管中的供液管,循环由制冷设备提供的低温盐水,使地层局部形成不透水且有一定强度能抵抗地压的冻结壁,并在其保护下进行开挖施工,工程完工后,冻结壁融化,地层岩土恢复原状。此法适用于松散含水地层,已在煤矿广泛采用。上海地铁1#线、2#线的联结通道及泵站、上海杨树浦水厂泵站基坑、北京地铁大北窑区间隧道等复杂高难地段,均用此法获得成功,并首次试成水平冻结技术及液氮快速冻结技术。 3.6 沉管(箱)法 沉管(箱)法是采用将事先预制的钢筋混凝土结构,焊封头部钢板、然后放水浮运沉入到设计的位置来建造水下岩土工程的方法。国外及我国煤矿均有大量施工实例。广州珠江隧道采用了这种方法。适于修建过江、过海隧道的水中部分及浅表土层中的竖井施工。 3.7 钻井法 钻井法是一种用途广泛、技术先进的岩土井、孔施工方法,其全部开挖工程在地面操作,工人不需“入地”,劳动强度小,它是通过专门的大直径钻机(我国最大钻井直径9.3 m)驱动钻杆及钻头钻进,泥浆护壁,压气排渣,井壁漂浮下沉,壁后充填固井等工序,一次超前钻进,分级扩孔成井。我国煤矿已成功采用此法完成47个深井井筒。此外还有由下而上施工的反井钻进技术。钻井法在我国矿山、铁路、交通、国防、水电等复杂及水下岩土工程中得到成功应用。 3.8 注浆法 注浆法指的是通过注浆设备以选定的注浆工艺利用钻孔进行岩土加固的一种施工技术。它早就被广泛应用。根据注浆材料不同有单液和双液注浆,水泥注浆、粘土水泥和化学材料注浆;根据注浆机具不同有重力注浆和压力注浆,有渗透注浆和喷射注浆等。 近年来发展起来的高压喷射注浆法,在岩土工程的加固和治水中更是发挥了独特作用,例如高压旋喷桩法、高压定喷墙法以及水平旋喷法。三重管高压旋喷桩法在上海地铁1#线的施工中,对淤泥地层进行帷幕堵水、防渗加固,效果十分理想。高压旋喷桩与灌注桩结合法在高层建筑地基基坑护坡工程中更是得到广泛应用。 4 城市地下岩土工程中的开挖影响及环境保护 城市地下岩土工程中的开挖影响指的是开挖引起的围岩移动与地面沉降,不包括其它扰民影响。地下开挖必然会在其周围岩土体中引起位移与变形。由于开挖深度小,其影响必然要波及到地面上,但由于开挖宽度有限,其影响也是可以控制的。影响的程度与范围,取决于众多因素。对于浅理、超浅埋隧道式开挖工程,主要取决于开挖方式、断面跨度、导坑形式、机具、支护方式与时机、构件刚度、回填、地面载荷(动、静载)、岩土体性质及地下水抽排等。 据实测研究,隧道式开挖引起的地面沉降,其横剖面一般呈盆状,大体上用可概率积分曲线来描述。 对于浅埋和超浅埋隧道式开挖引起的地面沉降,其最大下沉值大致由开挖空间支护前的下沉、地下水抽排引起的下沉以及开挖空间支护后的下沉等构成。这些下沉可通过采取一定的减沉措施减少到最小程度。从北京、上海和广州等城市的地铁施工实例结果看,北京地铁“复—八线”两侧高大建筑物累计下沉量最大仅为2.5 mm,北京地铁西单车站正上方累计地表最大下沉量也未超过30 mm;广州地铁有一段隧道横穿市区主干道天河路,隧道顶距路面7 m,地层为饱含水细砂层,地下密布有供水管、污水管及电缆线,地面昼夜车流量约12万辆,还有载重30~60 t大型集装箱运输车快速通过。开挖后,据对128个测点观测,最大下沉为20.7 mm,低于国际上地面沉降控制标准。 根据国内外浅埋开挖实践,地面减沉的措施有: (1)围岩预加固。为了加固软弱和松散岩、土体,一般采取导坑或全断面预注浆。对于软弱或破碎岩体,采用单液或双液压力预注浆;对于松散土体,采用单液或双液高压旋喷预注浆。 (2)强力支护。包括预支护、提高支护构件刚度及壁后充填等。预支护有管棚和插板两种方法。管棚钻孔深度受导坑尺寸限制,可兼作注浆管,适用条件广泛。插板需用千斤顶顶进,具有防水效果,但不能用于卵石地层。及时支护可以有效减少支护前的下沉。锁脚锚管是用于分步支护构件基础的稳定,为下部开挖与支护安装创造良好条件,减少上部支护构件的沉降。提高支护构件刚度可以减少支护后的下沉。壁后充填是减少支护构造与岩土体之间空隙的有效措施,在一次支护和二次支护后采用小导管注浆法进行充填。 (3)分步开挖,及时支护。实践证明,分步开挖、及时支护可以有效地减少围岩及地面下沉。例如北京长安街过街道,跨度大(开挖跨度11.6 m)、超浅埋(表土厚度仅0.6~1.0 m)、有动载、地下管线多,为了减少地面下沉,采用“中洞法”分步施工,地面下沉减到24 mm,效果良好。 (4)降水—回灌技术,是治理地下水和减少地面下沉的有效方法,已在北京地铁施工中推广应用。一般是“浅抽深灌”或“前抽后灌”。据北京地铁“复—八线”实测,采用此法后其两侧高大建筑物下沉未超过2.5 mm。 值得研究的是,近年来我国试验成功的“高水速凝材料”,具有快速固结含水砂层的性能。如能在地下工程中进行试验,对于阻隔地下水渗入施工空间,将具有良好的应用前景。 5 国外地下岩土工程开挖技术的新进展 (1)全过程机械化。从护坡、土方开挖、结构施工,包括暗挖法施工的拱架安装、喷射混凝土、泥浆配制和处理等工序的机械化,同时采用计算机技术进行监控,从而保证了施工安全、快速施工和优良的工程质量。 (2)盾构法得到较大发展。近30年内英、美、法、日等国大量采用盾构施工技术,日本已生产盾构近万台,用于地铁、铁路、公路,水工及管网施工,已出现双联、三联、四联盾构,能完成三跨地铁车站,开挖宽度达17 m。日本正设想设计直径80 m的盾构,在地下建造人造太阳和住宅区。 (3)微型盾构和非开挖技术已广泛应用。主要用于建造各种直径的雨、污水、自来水管道和电缆管道。微型盾构就是直径2 m以下的盾构。刀盘掘进,遥控和卫星定位控制方向和坡度,然后安装管片。非开挖技术就是采用微型钻机,通过切割轮成孔,退回钻杆后安装管线或电缆。 (4)预砌块法施工技术。拱圈是在土方开挖后采用拼装机安装,管片上留有注浆孔,衬砌拼装完成后,由注浆孔向壁后注浆,堵塞空隙,增强围岩与衬砌的共同作用。法国用此法施工的最大单拱跨度达24.48 m。 (5)预切槽法施工技术。意、法等国制造了一种地层预切槽机,采用链条沿拱圈将地层切割出一条宽15 cm,长4~5 m的槽缝,然后向槽缝内喷射混凝土,并在其保护下开挖土方,做防水层及二次衬砌,形成隧道。 (6)顶管大管棚法。修建地铁车站时,在顶管内灌混凝土,形成大管棚,再在其保护下进行暗挖施工。 (7)微气压暗挖法。就是在具有1个大气压以下的压缩空气环境下,按照“新奥法”原理进行施工。优点是可以排出地下水,保证工作面干燥;由于气压存在,可减少地面沉降;还可降低衬砌成本。 (8)数字化掘进,又称计算机化掘进(Data drilling,Computerised drilling),应用于硬岩工程的开挖。在数字化掘进时,钻杆的推进是程序化的,从一个洞到另一个洞也是自动的。掘进机手可以同时管理3套钻杆,其作用是监督钻杆的运动,必要时予以调整。孔位、孔深和掘进序列预先已在掘进机的计算机软件中安排,掘进方向由激光束控制,实现了孔的严格定位,从而可以实现掘进工艺的最优化以及曲线隧道的掘进。数字化掘进的优点是:控制隧道掘进的超挖;实现掘进方案的优化;消除了工作面上的人工测量。 作者简介 刘天泉 教授,院士,1927年生,1958年毕业于波兰克拉科夫矿冶学院采矿系,获硕士学位,1959年起至今,在煤炭科学研究总院从事地下开挖影响理论与控制技术研究工作。地址:北京市和平里煤炭科学研究总院,邮码:100013。 作者单位:刘天泉(中国工程院院士,煤炭科学研究总院) 钱七虎(中国工程院院士,总参军事科学技术委员会) 参 考 文 献 1 城市地下空间开发利用设计与施工技术.中国建筑科学研究院,1998(8) 2 钱七虎.可持续城市化与地下空间开发利用.世界科技研究与发展,1998(10) 3 邵根大.北京地下铁路建设中最新的技术进步.北京地铁建设,1994(5) 4 侯景岩等.北京地铁工程降水—回灌技术研究.北京地铁建设,1996(4) 5 洪伯潜等.地下工程特殊施工技术.能源与矿业工程学部学术报告汇编,1998 6 傅同雷.从广州地铁施设中探求防止地面下沉的方法.北京地铁建设,1996(3) 这个很有权威性哦,对您有帮助么?
论地下工程引起的地质问题及防治措施论文
摘要:随着城市建设的大力发展,地下工程建设越来越多,由此引发的各类工程地质问题也逐渐显现出来,根据城市地下工程的特点,对地下工程开挖引起的工程地质问题进行了分析并提出了预防措施。
关键词:地下工程;工程地质问题;预防
城市地下工程具有现场环境条件复杂、施工难度大、技术要求高、工期长、对环境影响控制要求高等特点,是一项相当复杂的高风险性系统工程。但是,地下工程建设一般都在市区内,在其施工过程中常常会引起周围地层的位移、变形、沉降与塌陷等环境地质效应,对周围地面建筑物及基础、地下早期人防和其他构筑物、公共地下管线和各种地下设施以及城市道路的路基、路面等都可能构成不同程度的危害,已经出现并且孕育诸多工程地质问题。
1地下工程开挖引起的工程地质问题
1.1地面沉降
1.1.1地层初始应力状态的改变引起的地表沉降:地下工程开挖是在存在初始应力场的地层中进行的,开挖引起地层初始应力状态的改变,即二次应力场,它是由地层初始应力场与开挖引起的附加应力场的叠加应力场,对应二次应力场开挖的位移场仅是由开挖引起的附加应力场。地表沉降的主要机理是由开挖面的应力释放,附加应力等引起地层的弹塑性变形。引起初始地应力状态改变的主要原因有:
(1)地下工程开挖引起的附加应力;
(2)地下工程施工对地层的扰动和地层损;
(3)地下水渗流引起的地下水位的变化。
1.1.2土体的固结沉降:地下工程施工引起的地表沉降与时间有关。土体内部含水渗出,体积逐渐减少,这一现象成为土的“固结”。随着土体的固结,土体的压缩变形和强度逐渐增长。因此,土的固结所产生的沉降是城市地下工程施工中最值得注意的问题之一。根据地下工程施工的特点总结固结沉降的主要原因有:
(1)地下水位下降引起的固结沉降;
(2)土体空隙水压力变化,引起土体的固结沉降;
(3)土体扰动后,重新固结后产生沉降;
(4)土体的次固结和流变。
1.2洞室围岩失稳
地下开挖后,洞壁围岩由于失去了原有的岩体的支持而向洞内产生松胀变形,如果变形超过了围岩所能承受的能力,围岩就会被破坏。围岩的变形破坏程度常取决于围岩的应力状态、岩体结构和洞室的断面形状等。洞室开挖使地下原来的应力状态被破坏,围岩应力重分布,产生变形位移。
均质岩土体中应力未达到或未超过其强度以前,在开挖过程中的变形,以弹性变形为主,变形速度快,变量小,瞬时完成,一般不易察觉;当应力达到或超过岩土体强度时,塑性变形十分明显,发生压碎、拉裂或剪破。当岩体强度主要由结构面控制时,与上述情况基本一样,但当结构面组合构成围岩不稳定条件时,岩体除了弹性变形外,塑性变形也比较明显,它表现为围岩分离体(岩块)的相互错动,围岩松动时围岩稳定性降低,为进一步松动创造了条件。
1.3斜坡破坏
斜坡破坏主要发生在山区城市,除直接经济损失外,还可能造成人员伤亡,其原因主要是:由于自然地质作用和工程地质作用引发的,而工程地质作用造成的斜坡破坏较自然地质作用频率大。当然决非任何斜坡破坏都能称为地质灾害,但斜坡破坏确属重大的地质灾害类型之一。
斜坡破坏主要形式为滑坡,其影响因素主要有岩性、构造、地形、地震、降雨及人类活动等。其中,许多山体滑坡现象是由地下工程活动引发的,即主要是由于地下工程的开挖或采掘影响到了上部的山体,使岩体开裂,地面倾斜,并在一定条件的配合下,导致山体失稳形成滑坡。在隧道建设中,滑坡现象主要发生在浅埋、偏压及进出口等地段,其危害常常比较严重。为评价斜坡岩土的稳定性,预防斜坡破坏导致的地质灾害,认识引起斜坡破坏的内在原因与外部条件,掌握其运动发展规律显得非常重要,尤其是当前在城市这个人类经济活动的密集区,斜坡破坏造成的经济损失和人员伤亡都是巨大的`,都是由于工程活动不合理造成的。 1.4地下水污染
在城市环境地质中地下水的不良作用主要表现为地下水的侵蚀。地下水的不良作用和地下水污染主要由人为引起。随着经济持续稳定发展,人类活动加剧,对地下水的污染越来越严重,主要表现为:多数城市垃圾随意堆放;工业废水和废液不经处理或初步处理后任意排放。首先污染地表水,经地表水补给地下水或渗入地下水,再污染地下水,使地下水具有侵蚀性,对城市的建筑物基础及地下工程不断侵蚀破坏。
2防治措施
2.1开展详尽的工程地质勘察
工程地质勘察资料是地下工程施工的重要依据,通过详细的工程地质勘察,为设计施工提供需要的参数和指标,确定合理的开挖方案、开挖步骤,如果地下工程建设所涉及勘察资料不详细、不准确,势必给支护工程带来事故隐患。
2.2做好开挖方案的优化选择
地下工程的开挖方法很多,以基坑工程为例,有分层全开挖、中心岛式开挖等等。开挖顺序不同,引起的位移不同,中心岛法的开挖顺序就比从一个方向按顺序向另一个方向的开挖方法,对基底隆起和桩后地面沉降有一定程度地减少。因此,基坑开挖时应做好开挖方案的优化选择。
2.3实行科学的降水设计
水是影响基坑工程稳定的重要因素之一,从实际统计资料来看,约有70%的基坑事故与地下水有关,因此,地下工程建设中应特别注意地下水的影响。地下工程建设绝大多数都需要进行人工降低地下水。要降低地下水位,就要合理地选择降水方法,在此基础上进行人工降水的方案设计,以及进行降水方案的水位预测,通过预测进行降水方案的优化,从而达到最佳的降水方案。
2.4做好现场监测,开展信息化施工技术
地下工程是土体与围护结构体相互共同作用的一个动态变化的复杂系统,仅依靠理论分析和经验估计是难以把握在复杂的开挖和降雨等条件下支护结构与土体的变形破坏,也难以完成可靠而经济的开挖设计。通过施工时对整个工程进行系统的监测,可以了解变化的态势,利用监测信息的反馈分析,就能较好地预测系统的变化趋势。当出现险情预兆时,可做出预警,及时采取措施,保证施工和环境的安全;当安全储备过大时,可及时修改设计,削减围护措施。
2.5积极采用新技术、新方法
工程实践证明,采用基坑内降水、坑内侧土体加固(化学灌浆、石灰桩加固等)、及时支撑并预加轴力、增加挡墙的入土深度、墙外地层中筑帷幕、坑内降水坑外注水、分步开挖、逆作法施工、信息反馈施工法的采用等,对改善基坑变形、提高其稳定性有重要意义。计算机技术方法应广泛地应用到地下工程建设中,如进行数据分析与计算、计算机制图、计算机辅助深基坑设计、信息施工与管理等领域具有十分广阔的前景。
结语
地下空间资源正越来越多被开发利用于各种领域,如地下轨道交通工程、地下街、地下室、地下车库等各类地下工程,已经成为现代城市功能转入地下的重要载体。但是,地下工程建设一般都在市区内,在其施工过程中常常会引起周围地层的位移、变形、沉降与塌陷等环境地质效应,对周围地面建筑物及基础、地下早期人防和其他构筑物、公共地下管线和各种地下设施以及城市道路的路基、路面等都可能构成不同程度的危害。因此,研究城市地下建设工程引起的地质问题及其防治措施具有相当重要的现实意义。
工程测量被广泛应用于测绘、国土规划、土建工程等多领域,包含普通测量、控制测量、地形测量、海洋测量、大地测量、道路测量、建筑测量、地下工程测量、桥梁工程测量、隧道工程测量等技能的专业技术。下面是我为大家整理的有关工程测量论文 范文 ,供大家参考。
《 工程测量在水电水利工程建设中的作用 》
摘要:工程测量可为水利工程建设提供准确的数据、资料,对水利工程建设具有重要意义,保持水利水电工程的安全运行,为人民生命财产安全提供着技术性的支持,对促进水利水电事业起着至关重要的作用。本文从以下几个方面对工程测量在水电水利工程建设中的重要作用进行了详细论述。
关键词:工程建设;工程测量;测量数据;作用
在水利水电工程中,测量是一项很重要的工作,它贯穿着水利水电工程建设全过程。经过准确、周密的测量后,水利工程可以顺利的按图施工,还可以为施工质量提供重要的技术支持与保障,更是质量检查的主要手段与 方法 。在规划设计水利工程时,需要进行地形资料的收集与整理,要提供提供中、小比例尺的地形图以及相关的信息,在进行建筑物的设计时需要注意,应该提供的是大比例尺地形图。所以,工程建设与工程测量是确保水利工程项目建设,能够取得成功的重要基础与关键。
1水电水利工程建设中工程测量重要性
(1)现今测量作为一门专业技术,以其能够将设备、建筑物等按照大小、形状、位置等不同设计要求在实地进行标定,以及够准确的采集和表示各种地貌及地物的几何信息等显著特点,被广泛应用到了各种工程建设之中。水利工程施工测量是保证工程施工测量过程处于受控状态,并严格按设计图纸、修改通知、技术规范和合同等的具体要求,进行控制测量的作业。通过资料和图纸进行规划和设计,同时选定最为经济、合理的方案,再通过测量与各项工程的施工相配合,并确保设计意图的正确执行。为满足竣工后工程在管理、使用、维修乃至扩建时的需要,还需编绘竣工图。工程测量数据还可为确定水利工程的堤坝高度、设计水利工程中的各项水工建筑等提供依据。
(2)水利工程结构定型的依据即工程测量,工程测量决定了水利工程的设计和定位,可以利用工程测量来确定水利工程基础、诊断水利工程问题,并且是诊断水利工程质量的最重要手段,各种测量数据可尽早的发现水利工程存在的问题,其意义十分重大。施工测量准备工作是保证整个工程施工测量工作顺利进行的重要环节,包括施工图纸的审核,监理单位提供的平面坐标点和高程点的交接及校核,施工测量方案的编制与数据的整理等。测量在高程放样方面可为模板施工提供准确的基准点,能够保证模板施工的平整度以及混凝土施工提供标高控制线,以确保其在施工后和平整度。工程测量可以为工程施工管理提供可靠的资料以及技术支持,并可对水利工程项目混凝土施工中混凝土种类的使用、混凝土厚度等提供精确的数据。
2水电水利工程测量存在的问题
(1)在水利工程建设要达到水利工程项目建设质量不断提升的目标,就需要进行详细的工程测量,并将工程测量的数据予以应用,以消除那些不可预见的因素确保工程质量。水利工程的施工质量对区域性经济发展和居民的生命安全有重要的影响,在水利水电工程建设阶段需要明确各个控制要点,满足工程实际测量体系的具体要求。在水利水电工程开工建设前期的测量工作,必须按照建设单位的建设规模和具体要求,以及按照项目所在地的自然条件和预期目的进行规模设计。否则将会出现测量数据的误差,就有可能导致水利工程在施工过程中出现严重的质量问题,甚至是引发重大的安全事故造成严重的经济损失,同时对社会方面也会增加严重的负面舆情。
(2)主体结构的施工过程中,要重视工程测量对多方面数据确定的影响,要做好水利工程的轴线、坡面的平整度、 渠道 的中线、大型水利工程建筑物垂直度控制以及主体标高控制等项工作,以防止出现、变形、偏位、渗漏等常见病害的发生,造成对水利工程质量的严重伤害,从而使水利工程项目在日常运行过程的安全性能受到影响。还要作好水工建筑物的变形观测,杜绝由于水工建筑物沉降、位移所引起的安全质量事故发生,以确保水利工程安全的稳定性。工程测量对水利水电工程建设有一定的指导性意义,因此需要结合施工工程设计形式的要求,对不同的设计环节进行分析,适应水利水电工程的建设需求。
3工程测量在水电水利工程建设中的管理与应用
(1)工程测量不但广泛的应用于建筑、土地测量等领域,其在水利工程建设也占据着重要的位置。工程测量能够为水利工程建设提供各项数据,可能保证水利工程建设基础的质量,从而确保整个水利工程项目的质量。随着计算机技术的飞速发展以及“互联网+”时代的到来,出现了地面测量、数字化测绘和RS、GIS、3S、GPS等,先进技术设备和集成测绘新技术的深入应用,使水利水电工程测量的手段和方法进行着快速的更新换代,同时也在不断的开拓着服务领域。这些测量方法最大的特点就是可对数据进行修正,能够让测量对象的参数得到及时修正,提升测量数据的精准度和连续性。
(2)在结合实际对测量工作进行合理的安排,有效提升测量精度,推动水利水电工程建设、促进区域经济健康发展的同时,还应该注重加强包括测量技术水平提高、责任意提升等施工管理人员综合能力素养方面的培养,这样有助于在具体的工作中,采取切实有效的 措施 与方法,以确保工程测量的准确性。需对具体管理人员以及施工人员的工程测量意识进行巩固与加强,通过培训等对他们的质量意识和责任意识进行不断完善,使其在工作能够做到按部就班、不出纰漏,按照流程根据施工图纸进行放样,确定控制高程,以为后面的施工奠定基础,从而加强工程质量。
(3)现阶段对大坝水底地形的测量,主要还是技术人员根据卫星定位技术与多波束探测仪之间的紧密配合来进行的。近年来,我国水利水电工程测量研究投入增多,发展很快,进步很大,取得了显著成绩,在此基础之上我们还应注意,要加强管理人员以及施工人员的测量意识,要进一步提高对测量工作的重视度,从而达到各个环节工程测量水平的全面提升。随着测量数据传播与应用的多样化、网络化及社会化和测量数据采集与处理的实时化、自动化及数字化,还有测量数据管理的标准化、规格化与科学化,水利水电工程测量技术一定会有一个辉煌的未来。
4结束语
工程测量精准的观测成果,为水利水电工程质量和人民生命财产的安全提供了坚实的保障。水利工程的规划、设计和施工以及运行管理等各环节、各阶段都离不开测量工作。工程测量工作要不断的 总结 工作 经验 ,提升专业素质,引用、掌握先进测量仪器,以满足不同时期水利水电工程的不同需求。
参考文献:
[1]杨玉平,杨玉华.论工程测量在水利水电工程建设中的重要性[J].江西测绘,2014,(4):53-54+57.
[2]李添萍.浅析水利水电工程质量检测的重要作用[J].青海科技,2010,(4):136-138.
《 建筑工程测量施工放样方法及应用 》
摘要:随着我国经济发展水平的不断提高,建筑行业得到了显著发展,建筑工程测量作为建筑工程的重要组成,在整个建筑施工前期阶段发挥着重要作用,需要不断对工程测量施工放样技术进行改进与创新才能满足建筑项目需求。本文将对建筑工程测量施工的放样方法与应用进行分析,从而表现做好测量放样处理对工程的重要性。
关键词:建筑工程测量施工放样方法技术探讨
建筑工程开展过程中对尺寸与施工范围有着严格要求与控制,这就需要应用测量放样技术,工程测量存在于整个施工阶段,对施工质量与施工开展有重要意义,需要对放样精度与测量结果反复对比,增强测量放样的精度。鉴于测量施工结果是施工依据与参照,一旦放样测量出现误差,将会影响立模、打桩、钢筋混凝土施工方方面面,在施工位置上容易出现偏差,对施工方带来损失。
1建筑工程测量施工放样概述
1.1内涵
施工放样就是按照设计图标注的内容实地定标的过程。此过程需要使用到全站仪、测量仪器等设备,需要明确设计图纸上平面位置与高程,使用测量仪将实地位置标记出来,按照建筑物间几何关系将距离与特征确定出来,得到距离、高程、角度等数据,再结合控制点位置,在实际建筑中将建筑物特征点标定出来。
1.2施工放样的主要方式
(1)平面放样。
施工放样分为平面位置放样与高程放样两种。平面位置放样较为常见的方法有直角坐标法、方向线交法以及交汇法,每一种方法基本操作方法都需要按照长度与角度进行;极坐标法则是使用数学极坐标原理将极轴确定为连线轴,将其中的某一极点作为放样控制坐标,将极点距离与放样极点连线方向到极点的夹角计算出来,将其作为放样参考[1]。通常,放样点距离控制点很近,需要极坐标与其保持120米距离,这样在测量时将更加方便,角度测量可以使用经纬仪或者测距仪,在使用电子测距仪时需要将控制点的距离延长,这样才能使放样作业更加方便、灵活;直角坐标法主要就是保持坐标轴的平行控制线,先沿横坐标放样,再沿控制线方向放样,只需将直角测设出来便可。
(2)高程放样。
几何水准测量法应用时需要先控制高程点,将控制点精度引入到施工范围内,使用方便固定与保存的方法,在水准点的保密上可以使用一次仪器完成高程放样。常规测量方法为:放样点附近到控制点存在高差,此时,需要使用较长钢尺对高程测设。具体施工中需要使用木桩将放样高程固定下来,使用红线对木桩侧面标记,需要结合具体情况注记高程。三角高程测量法:对水平距离与天顶距两点进行观测,将两点的高差计算出来,这种观测方法虽然简单,但受条件限制需对大地控制点高程测量。基本原理为:将地面两点设为a、b,站在a点观测b点标高,将竖向角度设为α1.3,两点水平距离为S0,a点仪器高设为i1,i2作为标高,此时a、b两点间高差表示为:S0tgα1.3+i1-i2=h1.3,假设地球表面是一个平面结构,能利用上述公式将直线条件计算出来,大地测量时,还需要对地球弯曲与大气垂直折光度充分考虑[2]。为将三角高程测量精度提高,可以使用对向观测法,将两点高差推导出来。
1.3建筑工程总定位放样方法
可以使用经纬仪将放样方向确定下来,再使用钢尺将测量距离,对地势较平坦的地区需要将定向设置在平缓点位置,再使用测距仪完成测量。曲线定位放线也是常用手段,分为直线、圆曲线等,先将圆曲线桩坐标设计出来,再对坐标加密处理,利用公式进一步对坐标测算。
2放样中注意的问题
放样工作中,有很多内容需要注意:首先,在主轴点放样中,可以使用三点交会法、三边测距法,不能仅使用两点测角定点法,需要选择至少三个方向,将校核点设定为第三点。如果使用测角定点,则要在观测时从四个方向出发,丈量好轮廓距离,不管使用哪种放样法,都需要与理论值对比,防止出现误差。在使用光电测距法放样定点式,现场至少选择一个放样点,丈量设计间距时,能够使校核作用增强。如果通过规则图放样使,则首先要考虑的是放样点间的几何关系,并反复检查几何关系,使用方向法放样时,在使用仪器时可以确定至少两个方向,对方位观察看是否合格,如果精度过低或者存在倾斜,要使用天顶距观测法,防止出现校核偏差。
3放样过程中的现场平差
现场平差就是指在现场放样,现场测量存在偏差消除时可以使用现场平差法。比如,在测放某一个方向时,需要先定点倒镜与正镜,最终将两个方向中点方向值确定下来。在建筑施工中,对测量放样精度有较高要求,分为严密性与松散性要求,从建筑物角度看,严密性与构件存在相关性,如果放样存在的误差较大,将使建筑质量降低。而建筑各部分间的联系则能体现松弛关系,这种情况下需要对建筑各部分有深入了解,将三维数据规定确定下来,也可以结合施工具体情况将放样影响度降低[3]。要想更深刻了解放样精度特征,需要使放样保持严密性,多对严密性进行考虑。如果针对松散构件,则要将误差分散开,确保总体工程质量不会受到影响。与现场平差不同的是,不是将误差全部消除,而是将其放样到质量相关的地方,对其进行吸纳。如果是精密性较高的建筑部位,则要从控制主轴线上实施放样工作,不用考虑控制网精度设计,在完成对主轴线测设后,就可以将建筑部位设定为主轴线基础,将主轴为基准才能确保建筑具备严密性,减少测设带来的精度误差,保证测设的严密性。在具体施工中,还能在主轴基础上将误差分散到建筑各个部分,防止误差过于集中。
4防范误差的对策
受多种因素的影响,测量经常出现误差,极大影响到了建筑施工的顺利开展,人员组成、操作以及施工管理都是重要的影响因素,必须切实做好这些内容的管理与防范才能减少误差。要想将测量放样误差减少,首先就要做好测量准备工作,反复校核设计图纸中的数据,并核实总平面数据与坐标,将基础图与平面图轴线位置确定下来,对符号与标高尺寸进行检查,确保各项数据、参数的准确,对总平面布设位置与分段尺寸进行设定,使分段长度与各段长度一致。其次,还要在人员组织分配上尽量选择技术精湛、有高度责任心的施工人员,将这些人员分为5组。在具体测量中,需要准备好测量仪器与工具,并调整好仪器的温度,增强仪器使用的效率与准确性。及时将测量结果记录下来,确保测量的数据能够更加真实、准确,并能在核对中及时发现问题、解决问题,必须经过两个人反复核对以后才能将最终结果确定下来,使用加减相消法能够及时发现错误。针对问题采取科学、有效的定位复测措施,完成定位以后,复测建筑平面几何尺寸与角度坐标,对建筑物图纸设计与标高是否相符进行核对,对建筑方向准确性进行检查,发现存在的问题。质量监督机构要定期对放样操作进行监督,将质量管理检查机构建设起来,采取自检、互检以及复检方法使放样精度得到保证。
5结束语
建筑工程测量施工是一个复杂且漫长的过程,是建筑施工中必不可少的组成,一个环节出现误差或者遗漏就会对整个施工质量造成影响,为施工单位带来损失。为此,加强放样管理,强化放样操作,做好校核平差工作显得非常重要。这有这样,才能将测量误差消除,确保建筑工程质量与测量精度。
参考文献
[1]邓志永,冯显征.建筑施工测量误差分析及对施工放样精度要求的探讨[J].建筑工程技术与设计,2014(22):779-779.
[2]袁俊利.采用传统测量技术进行复杂立交桥工程测量的方法和措施[J].建筑技术,2012,43(9):806-809.
[3]郝安华,贾涛.试论市政道路工程测量放样控制工作的要点与对策[J].商品与质量•建筑与发展,2014(5):
《 地铁工程测量技术及应用 》
摘要:在地铁工程项目中,地铁测绘工作及测量技术是项目建设的基础工作,它不仅贯穿于整个地铁工程建设始终,还对地铁工程质量产生重要影响。本文结合地铁测绘工作的实践经验,分析了常见的地铁工程测量技术,就具体的实践应用进行了分析探讨,以期对相关的地铁工程测绘工作有所启示作用。
关键词:地铁测绘;测量技术;地铁工程
伴随我国经济建设的蓬勃发展,各地城市交通建设也面临着全新的发展局面,作为城市交通的最基础建设之一,地铁工程与百姓生活密切相关,其工程质量自然也备受社会关注。地铁测绘工作是地铁工程的一项重要环节,它贯穿于整个地铁工程,从地铁工程开始筹划直到工程的后续运营,几乎都离不开测绘工作的支持。因此作为工程施工单位,需重视地铁工程测量技术的应用,保证测量的准确性,提高工程建设水平。本文结合具体工程实例,对上述问题进行探析,具有一定的参考价值。
1.地铁工程概述
为方便本次研究分析,本文选取了某地铁工程的具体实践建设作为研究参考对象。工程为某城市的地铁线路,是南北方向的主干线,线路全长约21.9km,其中地下线长约13.5km,地上线长约8.4km,该项工程是解决主城南北客运主流向出行需求的南北主轴线。结合本次地铁工程概述及以往的施工经验,总结本次地铁工程测绘工作和测量技术工作具有以下特点。首先,本次地铁工程项目属于城市地铁线路主干线,对城市交通影响较大;而且地铁项目投资大,工程建设周期长,因此地铁测绘工作要贯穿于整个项目始终,从地铁工程开始筹划直到工程的后续运营,都需要测量技术支持。其次,地铁工程界限规定严格,施工过程中存在的误差都必须受到严格控制,测量技术必须有精确性和可靠性的保障。最后,地铁测量工作必须抓好每一个细节,要通过测量技术的管理提高项目管理质量,对于施工过程中一些关键环节如铺轨基标测量、隧道施工方面测量等,都要做好严格把控,从整体上提高测量技术水平,为地铁工程打下良好的基础。
2.地铁工程测量技术分析
地铁测绘工作贯穿于整个地铁工程建设项目始终,具体包括工程勘测阶段、地铁施工图设计阶段、地铁施工测量阶段、地铁的运营期等几个方面。本文主要从施工阶段对地铁工程测量技术的应用进行分析,具体如下。
2.1测量机器人的应用
测量机器人是本次地铁工程施工阶段的主要测量技术,其具体实质上属于一种智能型电子全站仪,它能够代替人工来进行一系列的测量工作,如自动搜索、跟踪、识别,此外它还能精确照准目标并获取角度、距离、三维坐标以及影像等信息,在实际工程中取得了良好的测量效果。该项技术的测量优势在于测量精度高,智能自动化,自动照准,锁定跟踪,遥控测量及自动调焦等。本次工程测量实例中应用了测量机器人,对于本次地铁工程测量的可靠性和效率都有明显提升,测量精度度高,测量与绘制工作可以一体化进行。在实际工程中发现,测量机器人有着良好的对数据实时分析处理能力,这对于提高本次工程数据处理能力,提升测量精度发挥了重要作用。此外,电子全站仪的应用实现了集成化管理,可以有效确保数据的共享交换,施工放样的质量和效率都大幅提升,安装误差控制在一个很小的范围内。
2.2定向测量
传统的竖井定向测量手段均采用全站仪、垂准仪和陀螺经纬仪联合的方式,而在本次工程的具体实例中,应用了定向测量系统,在隧道盾构的情况下,利用自动化引导系统进行隧道开挖,而且定向测量能够实现实时显示,对于隧道轴线的点偏移值能够及时发现并处理,保证了隧道开挖的可靠性,提高了隧道开挖的精度程度,对于工程中所存在的误差值也能控制在理想的范围内。此外,在本次工程的地下顶管施工过程中,考虑到传统的施工手段技术(即人工测量)费时费力,施工效益低下,因此在本次实际施工中采用了顶管自动引导测量系统,由计算机远程控制测量机器人来自动完成作业,取得了非常理想的施工效果。
2.3断面测量
在本次工程的断面测量上,施工单位综合采取了断面测量系统,该系统的具体内容包括了全站仪、数据采集器、计算机和觇牌等等。在隧道施工中的各个环节上,该断面测量系统取得了良好的实践效果,放样、测量、检测和计算等诸多环节上都没有出现问题。在隧道的初砌和开挖工作中,测量准确性得到了保证,同时测量效率提升,节约了大量的人力物力。本次施工发现,利用断面测量来保证隧道施工的测量工作,一方面可以大大提高施工进度,测量速度有保障;另一方面,在同等的施工时间内,测量精度可以控制在理想范围内,一般精度范围可控制在毫米,测量精准度大大提升。此外在本次施工工程中,还利用到了无反射和全自动棱镜三维断面测量,一方面保证了测量数据采集的高效性,另一方面由于实现了多断面共同测量,且操作简便高效,可靠性强,因此又进一步提高了测量效率。
2.4无棱镜测量的应用
在本次的地铁工程施工中,还涉及到了无棱镜测量机器人的具体应用。该项技术通过辐射测量极坐标的方式,准确并高效地完成了一系列的工测量工作,具体包括了隧道掘进放样、断面测量、围岩净空位移量测等等,测量精确度高,测量效率好。该项测量技术进行了有针对性的创新,在工程中利用计算机自动处理,有效减少了工程成本,测量起来也十分方便。该项测量技术的一个典型特点是把设计图中的地铁相应物体的位置及大小都放到实地中,这种趋近于真实的参考参照,大大提高了本次工程的放样精确程度。此外,施工基坑监测系统能够实现对数据的及时分析管理,对于地铁基坑监测项目也具有非常高的可行性。
2.5地铁施工铺设阶段
在地铁施工铺设阶段,本次施工也采用了测量机器人。该项技术的主要原理是应用到了无线传输技术,通过它将测量数据持续传输到机载计算机,然后再利用计算机实现对地铁铺设的精确控制。通过该项技术在本次工程施工中的应用,施工铺设的安全性与质量都得到了有效保障。同时在铺设精度得到有效控制的前提下,铺设成本大大降低,工程经济效益得到了有效保证。此外在施工路面扫描系统中,测量机器人也有很高的应用价值,可将监测目标分为圆棱镜,无棱镜和反射贴片三种。
2.6竣工测量阶段
在本次项目的地铁工程竣工阶段,也需要进行大量的数据测量,这些测量的数据将作为竣工验收的参考,并做相应好存档工作。这些具体的测量内容包括了地铁结构的平面位置、埋深、线路等诸多方面。通过测量机器人的应用,可以实现对相关建筑物(包括附属结构)的尺寸测量、线路及高程测量等,提升了轨道测量精度,保障了地铁工程测量放样的顺利实现。
总结
综上所述,地铁测绘工作是一项系统且复杂的内容,它贯穿于整个工程始终,并对工程质量提供了强有力的保障。在当前各地城市交通建设不断发展的新时期,地铁工程自然占据了十分重要的位置,相关单位需要在保证工程质量的前提下,加强工程测量管理工作,强化对地铁工程测量技术的研究,保证测量各个环节的质量与水平,确保工程顺利开展并取得良好的综合效益,推动我国地铁交通事业的发展迈向一个新高度。
参考文献:
[1]张铁斌.地铁工程测量技术及应用分析[J].科技展望,2015,09:39.
[2]龚振文,龙晓敏,胡朝英.昆明地铁工程测量技术分析及测绘新技术应用[J].山西建筑,2013,33:208-210.
[3]程栋.地铁工程测量中平面联系测量的应用[J].科技展望,2015,35:35.
有关有关工程测量论文范文推荐:
1. 有关工程测量论文范文
2. 有关工程测量毕业论文范文
3. 工程测量毕业论文范文
4. 工程测量工程论文范文精选
5. 浅谈工程测量论文范文
6. 工程测量毕业论文例文
7. 工程测量技术论文
下面是中达咨询给大家带来关于广州地铁2号线鹭中区间隧道施工监测的相关内容,以供参考。1、工程概况广州地铁二号线首期工程始于海珠区琶洲,止于白云区江夏,线路全长23.21km.二号线鹭江站至中山大学站区间隧道,分为左、右两支单线隧道,左线ZCK6539.5~ZCK8057.05,全长1523.055m,右线YCK6539.05~YCK80.57.05,全长1517.55m.该区间隧道上覆地层为人工杂填土、冲积层、残积层和风化岩层,覆盖层厚度为9.4~19.5m.洞身大部分位于强风化的粉砂岩层,属于Ⅱ、Ⅲ类围岩。该区间隧道部分区段全断面采用钻爆法开挖,其它区段隧道的上半部分采用人工开挖,下半部分采用钻爆法开挖。该区间沿新港中路由东向西至新港西路,为广州市主要交通干道,车流量大。地面道路两侧高大建筑物林立,地下管网密布。暗挖施工中做到无坍塌及涌水、涌砂事故,并有效地控制地面沉降,沿线管网线路做到不断裂、不渗漏,保证地面交通和各种社会活动的正常进行。因而在施工中如何加强围岩量测、获取支护结构的受力状态和环境影响信息,以便及时调整施工参数,为安全施工服务,就显得尤为突出和重要。2、施工监测设计2.1监测内容根据该工程的特征,在施工中对以下项目进行了监测:①围岩及支护状态的观察描述;②地表沉降;③隧道拱顶沉降;④隧道收敛监测;⑤格栅受力状况监测;⑥近地建筑物倾斜监测;⑦爆破振动监测;⑧孔隙水压力监测;⑨支护土压力监测;⑩土体垂直位移监测;土体水平位移监测。2.2量测断面与测点布置2.2.1围岩及支护状态的观察描述每开挖、支护循环作业,均需对掌子面工程地质、水文地质及支护厚度与质量进行观察、记录和描述。2.2.2地表沉降各施工竖井井口周边、施工横通道和正线隧道每10m设置一个量测断面。竖井井口地面沉降测点在矩形井四角及各边中点各设一个。横通道每一地表沉降量测断面设7个测点,共26个量测断面、182个测点。区间正线隧道每一地表沉降量测断面设11个测点,共151个量测断面、1661个测点。2.2.3隧道拱顶沉降监测各施工横通道和左右线正线隧道每隔10m设置一个监测断面,并与地表沉降监测断面重合。每一个监测断面在隧道拱顶设置一个监测点,共177个量测断面,177个监测点。2.2.4隧道净空收敛量测量测断面布置同拱顶沉降量测,并与拱顶量测断面重合。每一个量测断面布置2对测线,分别布置在拱脚以上0.5m和墙中处,共177个量测断面,708个收敛埋设点。2.2.5格栅钢架受力状况监测分别在1#~3#施工横通道和左、右线Ⅱ、Ⅲ及Ⅳ类围岩各选择一个量测断面,共9个量测断面。对每一量测断面,分别在拱顶、拱部300、600和900、墙腰和墙脚及仰拱各设一个测点,每一量测断面设12个测点,共108个测点。2.2.6孔隙水压力监测量测断面选择与支护土体压力监测相同,共9个量测断面。对每一量测断面,分别在拱顶、墙中和仰拱各设一个测点,每一量测断面设4个测点,共36个测点。2.2.7土体垂直位移监测土体垂直位移监测断面选择与支护土体压力监测同断面,共9个量测断面。对每一个量测断面均在坑道拱顶设置一个孔内多点位移计,孔内每隔1.0m设测点一个,共用110个孔内沉降磁环。2.2.8土体水平位移监测土体水平位移监测断面选则与土体垂直位移量测同断面,共9个量测断面。这样,支护结构土压力、孔隙水压力、支护结构应力、土体垂直位移和水平位移监测点均设在同一断面上。对每一个量测断面分别在开挖轮廓外侧0.5m处各设一个土体水平位移测孔,孔内每隔1.0m深设测点一个。2.2.9近地建筑物倾斜监测根据实际地面建筑物,特别是高大建筑物、旧巷民宅等,距区间左右线隧道外缘25m以内时,每栋建筑物观测点的数量≥6个,观测标志点设在地墙(柱)或基础上。2.2.10爆破振动监测地面建筑物选择和测点布置与近地建筑物倾斜监测相同。2.3量测方法和频率2.3.1围岩及支护状态的观察描述采用地质罗盘、皮尺等仪器工具进行观察描述,每开挖、支护循环观察一次,直至模筑砼后结束。2.3.2地面沉降采用蔡司(德国产)-004精密水准仪和铟钢尺等精密水准测量方式。测点用16~20钢筋头长25~30cm,端头磨圆。对已硬化地面用冲击钻钻孔,水泥砂浆锚固,端头露出地面0.5~0.8cm;对未硬化地面,用挖孔、水泥砂浆锚固,端头露出地面0.8~2.0cm.监测频率:在开挖面距量测端面前1倍洞径与埋深之和开始量测;在开挖面通过量测断面1倍洞径与埋深之和范围内,每开挖循环或1天1次,5倍洞径范围内每2天1次,5倍洞径范围外每周1次,直至变形稳定或全部施工完成。2.3.3拱顶下沉和净空收敛监测拱顶下沉采用蔡司-004精密水准仪和倒挂钢尺形式的精密水准测量方式。带测球的测杆预埋在隧道初期支护内。隧道净空收敛量测采用JSS30/15A收敛计量测,带测球的测杆预埋在隧道初期支护内。监测频率:测点断面喷射砼支护后开始第一次量测;2倍洞径范围内每开挖循环或每天1次,5倍洞径范围内每2天1次,5倍洞径范围外每周1次,直至变形稳定或模筑砼后。2.3.4钢架受力、孔隙水压和土体压力监测钢架应力量测,对型钢钢架采用在钢架上、下翼缘粘贴电阻应变量测元件和YJ-5型电阻应变仪进行量测。对格栅钢架采用焊接JXG-1型钢弦式钢筋计和SINC052型频率仪进行量测。孔隙水压量测采用DKY-51型孔隙水压力仪进行量测。土体压力监测采用GDY-2型钢弦式土压盒和频率仪进行监测。监测频率:在各量测元件埋设后进行第一次量测,以后量测频率同净空收敛量测。上述各项监测可视变化情况,适当加密监测。2.3.5土体垂直位移和水平位移监测土体垂直位移监测采用钻孔直径100mm,采用DW-3A型钢弦式双线圈连续激振型多点位移计和频率接收仪监测地中垂直位移。土体水平位移也称地中水平位移监测,通过地面钻孔,用BC-5型倾斜仪量测钻孔各测点的倾斜度方式来量测。因土中垂直位移和水平位移监测可从地面钻孔监测,因而如同地面沉降监测一样,在开挖面距量测断面前1倍洞径与埋深之和前开始量测。量测频率同地表沉降监测。2.3.6近地表建筑物倾斜监测和爆破震动监测建筑物倾斜监测通过在待测建筑物地墙(或柱)或基础上设置标志点,通过精密水准仪、铟钢尺等精密水准测量方式进行监测。近地表建筑物爆破震动监测通过在待测建筑物上粘贴CD-1型磁式速度(或加速度)传感器和测震仪进行监测。爆破震动监测,在开挖面距量测点5倍洞径和埋深之和,到开挖面通过测点5倍洞径和埋深之和后这段范围,每开挖爆破时监测。2.4地铁区间隧道施工中的信息反馈基本判断准则监控量测的控制标准:①地表下沉量不允许>30mm;②地表沉降槽曲线最大坡度≤1/300;③初期支护结构相对水平收敛值≤15~30mm;④初期支护结构趋于基本稳定。施工中出现下列情况之一时,立即停工,采取措施进行处理:①初期支护结构喷射砼出现裂缝,且不断发展;②开挖一个月后洞内水平位移不能收敛,实测位移达到危险状态的70%;③位移时间曲线出现反弯突变的急剧增长现象。2.5监测数据处理方法①对围岩及支护状态观测,详细记录洞内各项作业、时间与进尺,描绘每一开挖断面的工程地质断面和水文地质断面,记录描述支护厚度、质量等情况。每周绘制工程地质和水文地质纵向剖面图。②对洞内变形和支护格栅应力,记录填写日变化量和累计量的日报表,绘制累计变化量与时间、累计变化量与进尺关系散点图,按下述函数关系:σ=A1g(1T)σ=A1ge-B/Tσ=T/(ABT)σ=A(e-B/T-eB/T)σ=AT2BTC式中:—变形值或应力值;T量测时间或开挖进尺;A、B、C回归常数。分别对各变形值和应力值进行回归分析,根据回归曲线的拟合好坏程度,即选择相关系数或方差最小的函数为该量测数据的回归拟合曲线,并求得回归趋势,对洞室稳定和支护状态进行预测和判断。③对于地表沉降观测,除对各断面最大沉降点进行如同洞内变形观测点一样绘制沉降与时间、沉降与进尺关系散点和回归分析外,尚需绘制各量测断面各测点的沉降关系即沉降槽曲线,绘制最大沉降点沿隧道纵向的沉降关系曲线。④对孔隙水压力和结构振动测试,记录填写日报表,绘制量测值与开挖进尺的关系曲线。3、施工监测管理(1)工程施工前,根据现场的实际情况(尤其危房建筑)及工程的施工进度,编制详细的监测实施作业计划及其相应的保证措施。纳入施工生产计划中的一项重要内容,同时报请监理工程师和业主批准。(2)成立专门的监测小组,保证监测人员有确定的时间、空间和相应的监测工具,确保监测成果及时准确。(3)施工监测紧密结合施工步骤,测出每一施工步骤时的变形影响,同时计算出各测点的累计变形。(4)监测人员及时整理分析监测数据,绘制各种变形和时间的关系曲线,预测变形发展趋向,及时向总工程师、监理和业主汇报,若发现异常情况,随时与监理、业主联系,采取有效措施,做好预防。同时根据监测结果及时调整施工步骤及采取相应的技术措施,确保施工及周围环境的安全。4、施工体会(1)地铁区间隧道施工监测是一项繁琐而细致的工作,施工能否在安全的前提下顺利进行,施工监测起到了很重要的作用。(2)我国城市地铁方兴未艾,从企业的前途和命运出发,我们要下大力气培养一批过得硬的地铁施工队伍,同时加强隧道施工监测专业人员的培养,使本企业在城市地铁施工的领域里能够大有作为。更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:
本科毕业设计任务书_高层建筑沉降观测数据处理软件的开发 - 豆丁网毕业设计(论文)任务书 一、毕业设计(论文)题目: 高层建筑沉降观测数据处理软件的...2、自选一种自己熟悉的计算机语言,实现沉降观测数据的记录、计算与绘图。 3、...本科毕业设计任务书_高层建筑沉降观测数据处理软件的开..._百... 评分:3.5/5 2页 毕业设计(论文) 毕业设计(论文)任务书一、毕业设计(论文)题目: 高层建筑沉降...2、自选一种自己熟悉的计算机语言,实现沉降观测数据的记录、计算与绘图。 3、...毕业设计:某建筑工程项目沉降监测施工方案 - 毕业设计 - 道客巴巴从而在各个沉降观测点高程变化中了解建筑物的沉降情况。 3.2 监测步骤: 1)...所有文档>>学术论文>>毕业设计>> 毕业设计:某建筑工程项目沉降监测施工方案 ...
我也想知道的
你的问题解决了吗?能否借鉴一下你的资料?
我可以弄 需要的可以找我
建筑施工毕业论文的整理的思路我们可以依据建筑施工毕业的引言、建筑施工中常见问题的现状及危害、建筑施工采用的措施、建筑施工总结四部分内容。其中建筑施工中常见问题的现状及危害的问题内容有哪些?(1)地基基础中常见的质量问题1、地基基础中常见的质量问题有深基坑的支护不按要求进行支护、施工期间有相邻的建筑物或者是正在施工中的建筑物未定期的进行沉降测量从而造成安全隐患甚至是重大经济损失。2、地基处理方法中的密实法不按规定进行而造成承载力不足直接影响到上层建筑的质量。(2)钢筋工程中常见的质量问题1、钢筋的绑扎不到位或者是绑完后发生钢筋位移。会减少工程的预期荷载承载力。2、在施工中为了寻求利益的最大化或者是材料原因随意更换钢筋型号从而造成柱梁板的承载力不足发生质量上的问题。3、在进行钢筋连接时不按要求进行。在柱中会造成柱子的受压减小,在梁板中会造成受弯减小从而影响工程的质量和寿命。4、受力钢筋的弯钩和锚固长度不够。在柱中会造成柱子的受压减小,在梁板中会造成受弯减小从而影响工程的质量和寿命。更多关于标书代写制作,提升中标率,点击底部客服免费咨询。
随着科学技术的进步和社会生产力的发展,人类文明进程得到前所未有的发展,但是与此同时,人类社会也面临着一系列重大环境与发展问题。因此,发展环境工程意义重大。下文是我为大家搜集整理的关于环境工程5000字 毕业 论文的内容,欢迎大家阅读参考!
浅谈环境工程中的工艺 方法
摘 要:环境工程作为一种现代城市建设的工程,不仅对城市的环境有着非常重要的影响,还关系到城市居民的健康问题。所以,在城市环境工程的建设过程中,有关部门应该加强对工艺方法的选择和研究。
关键词:环境工程工艺;工程法;类比法;对称法;应用分析
随着我国经济的发展,我国的城市环境也有了明显的改善,这种情况下无论是环境工程的质量还是规模都有所变化,所以,为了更好的实现对环境工程的管理,有关部门应该加强对环境工程的工艺和方式的研究,以便更好的实现对现阶段的环境工程的优化。下文中笔者将结合现阶段几种常见的环境工程的施工工艺和技术,对该问题进行分析。
1 价值工程法的现实应用和分析
目前来看,在环境工程的施工过程中,价值工程作为一种非常重要的常见工程技术,对于环境工程的施工质量和效果有着非常重要的影响。尤其是在环境工程的经济效益实现的过程中以及相关的环境工程的产品设计形式的表达上,有着非常重要的作用。一般来说,这些作用可以概括为以下几点:
1.1 环境工程中的价值工程法可以有效的在工程中避免功能过剩的问题。即在现代的环境工程的施工过程中,有关部门可以通过对工程的价值的比较和分析,来实现对环境工程的有效评估,所以,有关部门可以通过价值工程法来实现对环境工程的各种职能的优化和删除,这样就可以将环境工程最大的合理化控制,有助于环境工程的价值的发挥和实现。
1.2 环境工程的价值工程法可以有效的避免价值短缺的现象,也就是说在环境工程的价值分析的过程中,可以根据现有工程的实际情况,对工程的总体成本进行控制,可以有效的平衡工程的成本,避免不必要的功能支出导致的成本增加,因为环境工程的复杂性决定了各种职能之间可能存在相互冲突的状况。所以,采用价值工程法可以有效的规避这种问题。
2 类比法的实际应用和分析
所谓类比法,就是指在环境工程的过程中,对现有的环境工程的各种 实施方案 进行类别,也就是说对有共同点的各种环境工程质检的前提和方式进行分析,这样就可以更好的实现对环境工程的各种具体项目的判断。一般来说,我国的环境工程的类比法的应用主要体现在以下几个方面:
2.1 环境工程中的废气/废水处理工艺类比,指的是在环境工程的开发过程中,应该对各种工程中的废水和废气进行类比,也就是说要实现对其成分和处理的方法进行严格的控制。一般来说,主要体现在以下几个方面:①膜分离技术分析:即在对现有的环境工程的废水和废气进行处理的过程中,要对现有的膜分离技术进行全面的分析,不仅要对其进行盐水淡化处理,还要对其进行严格的废水除盐等技术的使用。这种方式的最大的特点在于能够实现对能源的节约,可以实现施工过程中的有效环保,还能够实现对各种相变反应的有效控制。②吸附技术分析:即在对现有的环境工程进行管理和控制的过程中,还应该要通过类比法来实现对一些特定的流体和固体的分离,也就是说在工程过程中,可以根据具体的环境需要对环境进行有效的处理,这种方式广泛的应用在石油工业废水处理以及相关的大气污染处理中,因为在这种环境工程的操作过程中,会运用到相关的分离性比较高的设备。
2.2 环境工程中垃圾预测的类比法运用:
在环境工程中,常会遇到对生活垃圾的处理问题,因为城市的生活垃圾产生的环境影响是不容忽视的,由于城市生活垃圾的产生量是非常大的,所以如果可以对生活垃圾进行一个全面的预测,就可以事前做好相关的处理方案的设计。一般来说,在采用类比法对现有的环境工程中的垃圾预测时,应该注意以下几个方面的问题:①类比指标的选取:即选择合适的环境工程的对比方案,对现有的各种城市生活垃圾产生的因素进行对比分析,以便更好的实现对该区域的地域性的垃圾产生问题进行分析。②类比城市的选取:在对城市垃圾的预测分析的过程中,应该注意的是要选择一些具有典型的可参考数据的城市作为类比对象和参考对象。③类比方法的实施:即对类比城市生活垃圾人均日产生量的变化发展规律作出合理研究与分析,进而对其进行有效预测。
3 环境工程中的对称法应用分析
对称法可以说是研究环境工程工艺的最基本性方法,它能够针对客观事物的基本属性及性质、结构运动特征,在事物内部构件一一对应的交互关系,从而在相类似事物当中找到相似点所在。从其在环境工程工艺中的应用角度上来说,对称法的应用可以分为内部对称与外部对称这两个方面,具体而言可作如下归纳。
3.1 内部对称法在环境工程中的应用分析:在当前技术条件支持下,内部对称法在环境工程中的应用价值主要体现在以下几个方面:①首先,是氧化与还原反应。我们可利用还原剂自身的还原特性对固体废弃物进行处置作业,并对城市工业建设中所产生的各类废气与废水进行净化处理;与此同时,我们还可以借助于氧化剂自身的氧化特性同样实现上述相关处理目的,以此缓解环境压力;②其次,是上浮与沉淀反应。
我们知道,大部分存在于废水水体当中的杂质在密度分布与大小参数上均有着较为显著的差异,对于那部分密度部分高于水体且尺寸较大的杂质而言,我们可采取重力沉降的方式对其进行去除处理,而对于那部分密度低于水体且尺寸较小的杂质而言,可利用杂质本身的上浮反应达到去除杂质的目的。现阶段上浮处理工艺方法广泛应用于餐饮废水的处理以及污泥原材的浓缩工作当中,而沉淀处理工艺方法则多适用于工业及生活污水/废水的处理工作当中;③最后,是好氧与厌氧反应。好氧微生物与厌氧微生物差异性的反应特征决定了其在环境工程中不同的应用价值。对于好氧微生物而言,其在氧气含量充分的条件下发挥处理特性,在氧化分解与沉淀处理的配合作用之下将废水/污水中大量的有机污染物物质进行去除处理。
3.2 外部对称法在环境工程中的应用分析:在现阶段技术条件支持下,外部对称法在环境工程中的应用价值主要体现在以下几个方面:①旋风除尘器及沉砂池装置:物体在高速旋转的过程当中会产生一定的离心力,进而导致物体气固相分离。上述两种装置基于流体力学对称性特征进行应用,除尘效果显著;②生物法:现阶段城市工业废水及生活污水的处理多以生物法方式进行,配合相应的脱硫与脱氮技术确保环境工程质量的稳定性。
4 结束语
综上所述,环境工程不仅关系到城市的发展和建设,也对城市居民的健康和城市的定位和规划问题有着非常重要的影响。环境工程的核心在于防治环境污染,提高环境质量。在人类活动不断深化发展的背景作用之下,环境污染形势的日益研究要求环境工程对其做出控制与改善。如何将环境工程相关职能发挥到最大限度,确保环境质量提升的高效性与稳定性,已成为现阶段相关工作人员最亟待解决的问题之一。
参考文献
[1]张燕,陈进.水环境保护工程的经济评价方法[J].水利经济,2003.21.(05).46-47.
[2]王虎虎.加强环境保护推进科学发展的思考[J].品牌,2011.(08).43.
[3]王晓晶.环境保护工程[J].黑龙江科技信息,2010.(03).201.
试论房屋建筑工程施工与环境保护
摘要:随着科学技术的进步和社会生产力的发展,人类文明进程得到前所未有的发展,但是与此同时,人类社会也面临着一系列重大环境与发展问题。人口剧增、资源过度消耗、气候变异、环境污染和生态破坏等问题威胁着人类的生存与发展。在严峻的现实面前,人们逐渐认识到,人类本身是自然系统的一部分,与环境息息相关。在房屋建筑工程施工过程中,我们必须优先考虑生态环境问题,并将其置于与经济和社会同等重要的地位上才能实现社会繁荣。
关键词:建筑工程 施工与环保 环保 措施
现代建筑是一种过分依赖有限能源的建筑。能源对于那些大量使用人工照明和机械空调的建筑意味着生命,而高能耗、低效率的建筑,不仅是导致能源紧张的重要因素,并且是使之成为制造大气污染的元凶。为了减少对不可再生资源的消耗,环保建筑主张调整或改变现行的设计观念和方式,使建筑由高能耗方式向低能耗方向转化,依靠节能技术,提高能源使用效率以及开发新能源,使建筑逐步摆脱对传统能源的过分依赖,实现一定程度上能源使用的自给自足。
1 房屋建筑施工的技术组织措施
1.1 平面管理
总平面管理是针对整个施工现场监理的管理,其最终要求是:严格按照各施工阶段的施工平面布置图规划和管理,具体表现在:
①施工平面图规划具有科学性、方便性、施工现场严格按照文明施工的有关规定管理。
②在明显的地方设置工程概况、施工进度计划、施工总平面图、现场管理制度、防火安全保卫制度等标牌。
③供电、给水、排水等系统的设置严格遵循平面图的布置。
④所有的材料堆场、小型机构的布设均按平面图要求布置,如有调整将征得现场监理或业主的同意。
⑤在做好总平面管理工作的同时,经常检查执行情况,坚持合理的施工顺序,不打乱仗,力求均衡生产。
1.2 文明施工管理
1.2.1 在过往行人和车辆密集的路口施工时,与当地交警部门协商制定交通示意图,并做好公示与交通疏导,交通疏导距离一般不少于50m。封闭交通施工的路段,留有特种车辆和沿线单位车辆通行的通道和人行通道。
1.2.2 因施工造成沿街居民出行不便的,设置安全的便道、便桥;施工中产生的沟、井、槽、坑应设置防护装置和警示标志及夜间警示灯。如遇恶劣天气应设专人值班,确保行人及车辆安全。
1.2.3 在进行地下工程挖掘前,向施工班组进行详细交底。施工过程中,与管线产权单位提前联系,要求该单位在施工现场设专人做好施工监护。并采取有效措施,确保地下管线及地下设施安全。
如因施工需要停水、停电、停气、中断交通时,采取相应的措施,并提前告之沿线单位及居民,以减少影响和损失。
2 房屋建筑工程施工环境保护措施
为了保护和改善施工现场的生活环境,防止由于建筑施工造成的作业污染,保障施工现场施工过程的良好生活环境是十分重要的。切实做好建筑施工现场的环境保护工作,主要采取以下措施:
2.1 建筑垃圾及粉尘控制的技术措施
①对施工现场场地进行硬化和绿化,并经常洒水和浇水,以减少粉尘污染。
②装卸有粉尘的材料时,要洒水湿润或在仓库内进行。
③建筑物外脚手架全封闭,防止粉尘外漏。
④严禁向建筑物外抛掷垃圾,所有垃圾装袋运出。现场主出入口外设有洗车台位,运输车辆必须冲洗干净后方能离场上路行驶;对装运建筑材料、土石方、建筑垃圾及工程渣土的车辆,派专人负责清扫及冲洗,保证行驶途中不污梁道路和环境。
⑤严格执行工程所在地有关运输车辆管理的规定。
2.2 噪音控制的技术措施
①施工中采用低噪音的工艺和施工方法。
②建立定期噪音监测制度,发现噪音超标,立即查找原因,及时进行整改。
③建筑施工作业的噪音可能超过建筑施工现场的噪音限值时,应在开工前向建设行政主管部门和环保部门申报,核准后再施工。
④调整作业时间,混凝土搅拌及浇筑等噪音较大的工序禁止夜晚作业。
2.3 施工期间振动污染的防治措施
①在可供选择的施工方案中尽量选用振动小的施工艺及施工机械。
②将振动较大的机械设备布置在运离施工红线的位置,减少对施工红线外振动的影响。
③对振动较大的施工机械,在中午(12时~14时)及夜间(20时~次日7时)休息时间内停机,以免影响附近居民休息。
2.4 施工期间水污染(废水)的防治措施
①加强对施工机械的维修保养,防止机械使用的油类渗漏进入地下水中或市政下水道。
②施工人员集中居住点的生活污水、生活垃圾(特别是粪便)要集中处理防治污染水源,厕所需设化粪池。③冲洗集料或含有沉淀物的操作用水,应采取过滤沉淀池处理或其他措施,使沉淀物不超过施工前河流、湖泊的随水排入的沉淀物量。
2.5 施工期间固体废物的防治措施
①注意环境卫生,施工项目用地范围内的生活垃圾应倾倒至围墙内的指定堆放点,不得在围墙外堆放或随意倾倒,最后交环保部门集中处理。
②对施工期间的固体废弃物应分类定点堆放,分类处理。
③施工期间产生的废钢材、木材,塑料等固体废料应予回收利用。
④严禁将有害废弃物用作土方回填料。
2.6 施工现场周围的环境保护
施工过程中积极对现场周围的环境进行保护。在整个工程的施工过程中特别是土方工程施工阶段对进出现场的车辆进行冲洗,严防污染路面。施工时如果现场出现古树、文物等阻碍施工情况时,应立即停止施工并采取隔离措施,报有关单位治理完后再恢复施工。
2.7 其他环保措施
①建立环境保护管理小组,由项目经理主管,成员由专业骨干组成,做好日常环境管理,并建立环保管理资料。
②建立健全环境工作管理条例,施工组织设计中应有相应环保内容。
③对地下管线应妥善保护,不明管线应事先探明,不允许野蛮施工作业。施工中如发现文物应及时停工,采取有效封闭保护措施,并及时报请业主处理,任何人不得隐瞒或私自占有。
④建立公众投诉电话,主动接受群众监督。
⑤施工期间应防止水土流失,做好废料石的处理,做到统筹规划、合理布置、综合治理、化害为利。
3 房屋建筑施工环境保护的意义
3.1 保护和改善施工环境是保证人们身体健康和社会文明的需要
采取专项措施防止粉尘、噪声和水源污染,保护好作业现场及其周围的环境,是保证职工和相关人员身体健康、体现社会总体文明的一项利国利民的重要工作。
3.2 保护和改善施工现场环境是消除对外部干扰保证施工顺利进行的需要
随着人们的法制观念和自我保护意识的增强,尤其在城市中,施工扰民问题反映突出,应及时采取防治措施,减少对环境的污染和对市民的干扰,也是施工生产顺利进行的基本条件。
3.3 保护和改善施工环境是现代化大生产的客观要求
现代化施工广泛应用新设备、新技术、新的生产工艺,对环境质量要求很高,如果粉尘、振动超标就可能损坏设备、影响功能发挥,使设备难以发挥作用。
3.4 节约能源、保护人类生存环境、保证社会和企业可持续发展的需要
人类社会即将面临环境污染和能源危机的挑战。为了保护子孙后代赖以生存的环境条件,每个公民和企业都有责任和义务来保护环境。良好的环境和生存条件,也是企业发展的基础和动力。
参考文献:
[1]张建国.建筑施工的环境影响分析[J].中国住宅设施,2009,(04).
[2]熊士斌.建筑施工中的环境保护措施分析[J].现代商贸工业,2008,(11).
[3]刘岩.建筑行业环境保护与绿色施工[J].内蒙古环境科学,2007,(02).
[4]张健.建筑施工环境因素分析及污染防治[J].低温建筑技术,2007,(05).
[5]吴柏松.试论建筑施工的环境保护[J].重庆环境科学,1988,(03).