首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

为什么要重视数学建模研究论文

发布时间:

为什么要重视数学建模研究论文

随着我国基础 教育 课程改革的不断深入,数学建模越来越受到重视,在小学数学中的地位也逐渐显著。下面是我带来的关于小学数学建模小论文的内容,欢迎阅读参考!小学数学建模小论文篇1 浅谈小学数学教学中的数学建模 什么是数学建模呢?下面我从两个方面谈谈小学数学教学中的数学建模。 一、从建模的角度解读教材 小学数学教材中的大部分内容已经按照数学建模的思想编排,即“创设问题情境——对问题进行分析——建立数学模型——模型应用、拓展”的模式,只是大部分数学教师还没有意识到这一点。数学教师首先要从数学建模的角度解读教材,充分挖掘教材中蕴含的建模思想,运用建模思想创造性的解释运用教材。 例如人教版三年级上册,第一章“测量”的第一节“毫米的认识”这一内容,书中是这样编排的: 1、通过插图创设问题情境:(1)、让学生估计数学书的长、宽、厚大约是多少厘米,再让学生测量“数学书的长、宽、厚的长度”。(2)、学生汇报测量的结果:“我量出的宽不到15厘米,还差------”,“我量出的宽比14厘米多,多------”,“数学书的厚不到1厘米是------”这里让学生量的数学书的宽和高都不是整厘米,学生不会表述。(3)、小精灵提出数学问题:“当测量的长度不是整厘米时,怎么办?” 2、将实际问题数学化,建立数学模型: 当测量的长度不到1厘米时怎么办呢?这时学生就会产生“有比1厘米更短的长度单位吗?”的念头,然后教师启发学生:“数学家们把1厘米平均分成10格,每1小格的长度叫1毫米,请同学们看自己的直尺,数一数1厘米的长度里有几小格?1厘米里有几毫米呢?”。在这里教师一定要帮助学生建立“毫米”这个数学模型的概念。 3、解释、应用与拓展: (1)、请同学们看实物1分钱硬币,它的厚是1毫米。(2)、让学生再次测量数学书的宽、厚各是多少?(学生测量后汇报:宽是14厘米8毫米,厚是6毫米)。(3)、请同学们说一说生活中的哪些物品一般用“毫米”作单位? 二、让学生亲身经历数学模型的产生、形成与应用过程 小学阶段的数学建模重在让学生体验建模的过程。从学生亲身经历的现实问题情境出发,将实际问题数学化,使学生经历数学模型建立的过程,再运用建立的数学模型解决实际问题。例如人教版六年级上册“圆的周长”一课教师可以这样设计。 1、让学生亲身经历问题产生的过程: 出示主题图:一个学生绕着圆形花坛骑自行车。教师提出问题“骑一圈大约有多少米?”。自行车绕着圆形花坛骑一圈的轨迹是一个圆,它的长度就是这个圆的周长(如果忽略自行车行走时与花坛的距离)。学生产生疑问:怎样才能知道一个圆的周长呢?什么是圆的周长? 2、让学生亲身经历猜测、分析、验证的过程: (1)、师:请同学回忆什么是周长?正方形、长方形的周长怎么求?与什么有关系? (2)、师:什么是圆的周长?同桌互相指一指自己桌面上的圆形物体的周长。 (3)、师:猜想圆的周长与什么有关?(生1:我认为圆的周长与半径有关,自行车的半径越大车轮就越大。生2:我认为圆的周长与直径有关,圆形花坛的直径越大圆形花坛的周长就越长。) (4)、学生动手验证自己的猜想 a、请同学拿出课前准备的学具(两个大小不同的圆,一个直径5厘米,另一个直径10厘米),同桌合作分别量出两圆的周长,验证生1与生2的猜测是否正确。 b、学生汇报交流自己测量的结果,并谈谈自己的看法。(生1:我用细绳绕直径是10厘米的圆一周,然后量出细绳的长大约是31.2厘米。生2:我在作业本上画了一条直线,让直径是5厘米的圆沿直线滚动一周,量出一周的直线长大约是15.5厘米。生3:我认为刚才我们的猜想是正确的,直径是10厘米,周长大约是31.2厘米;直径是5厘米,周长大约是15.5厘米。直径越大周长越长,直径越小周长越短,所以圆的周长与直径、半径有关。) 3、让学生亲身经历数学模型(圆周率π)的产生过程 刚才同学们已验证了圆的周长与直径有关,那么它们到底有怎样的关系呢? (1)、师:正方形的周长是边长的4倍,猜猜圆的周长与直径有倍数关系吗?如果有,你认为是几倍?仔细观察下图后回答。 (2)、师:同学们的猜想有道理吗,让我们利用前面测量过的圆的直径与周长的数据来算一算圆的周长是直径的几倍,学生计算后汇报交流。(生1:第一个圆的周长与直径的比值是:31.2÷10=3.12,第二个是:15.5÷5=3.1。生2:我发现周长与直径的比值都是3倍多一些,难道它也和正方形的一样,比值是个固定值吗?)师:你的猜想太对了,发现了一个数学秘密。一个圆的周长与它的直径的比值是一个固定值,数学家们把它叫做圆周率,用字母π表示。 (3)、介绍中国古代数学著作《周髀算经》与数学家祖冲之1500年前就计算出圆周率应在3.1415926和3.1415927之间的 故事 。然后课件呈现:π是一个无限不循环小数,再呈现小数点后面4百位的分布情况。 师:π的小数部分有很多位数。为了计算方便,一般把它保留两位小数,取近似值3.14。刚才同学们用自己测量的周长与直径算出的比值分别是3.12和3.1,虽然存在误差,但是老师认为你们已经很不错了,不仅发现了圆的周长与直径有关,而且还发现他们的比值是一个固定值。 4、让学生归纳、 总结 、应用圆的周长计算公式 师:既然圆的周长与它的直径的比值是一个固定值π,那么圆的周长怎样求?(生:圆的周长=直径×π)。请同学们利用公式计算“骑一圈大约有多少米?”【量得圆形花坛的直径是20米,学生计算3.14×20=62.8(米)。】 反思 :建构主义认为,知识是不能简单地进行传授的,而必须通过学生自身以主动、积极的建构方式获得。这里从贴近学生的生活背景出发,提出“绕着圆形花坛骑一圈大约有多少米?”的问题,到“怎样求圆的周长”,再到学生不断地猜想验证“圆的周长与直径有关”,“圆的周长与它的直径的比值是一个固定值”,最后得到“圆的周长计算公式”这个数学模型,学生亲身经历了猜测、分析、验证、交流、归纳、总结的过程,实际上这就是一个建立数学模型的过程。在这个建模过程中培养了学生的初步建模能力,自觉地运用数学 方法 去发现、分析、解决生活中的问题的能力,培养了学生的数学应用意识。 小学数学建模小论文篇2 浅谈小学数学的数学建模教学策略 摘 要:小学数学的“数学建模”是教学方式中新的改革亮点。近年来许多学校都陆续展开小学数学的“数学建模”活动。希望通过积极的实践为小学数学教育总结出一条全新的教育模式。 关键词:小学数学;数学建模;教学策略探究 数学教育是引导学生形成具有缜密逻辑性的思想方式。建立和解析数学模型能够有效提高学生的数学学习热情,降低数学学习的难度,使学生运用数学知识更加轻松自然。然而,在小学的数学教育内容中,就已经包含许多初级的数学模型。所以,在研究“数学建模”的过程中,教育界的学者们认为,小学的“数学建模”需要注意三个方面:小学“数学建模”的意义与目标;小学“数学建模”的定位;小学“数学建模”的教学演绎。 一、小学“数学建模”的意义与目标 1、小学“数学建模”的意义 小学的“数学建模”活动早已经有学校展开研究。从目前研究资料来分析,小学数学建模是指:学生在教师设计的生活情景之中,通过一定的数学活动建立能够解读的数学模型并以此为学习数学的基本载体,进行学习相关的数学知识。 小学数学建模在建模目的、活动方式、背景知识三方面,与传统数学模型存在较大差异。(1)建模目的方面:小学的数学建模目的是让学生了解数学知识,通过数学模型掌握新吸收的数学知识和争强对数学知识的正确应用,使学生在潜移默化中形成数学思考能力。(2)活动方式方面:小学的数学建模是为了培养学生的学习数学兴趣和更好掌握数学知识的教学方式,所以在教学活动方式上需要教师精心设计活动内容,由教师引导逐渐参与和体会数学世界的丰富和与现实生活的紧密联系。(3)知识背景方面:小学的数学建模,是在小学生毫无数学基础的情况下进行构建数学模型,所以在小学的数学建模中,需要简单的数学知识,以此为学生的数学知识结构打下良好基础。 通过上述三个方面的分析,小学“数学建模”的意义,在于通过数学教育方式的改进,引导小学生发现数学与生活的紧密联系,提高小学生对数学知识的兴趣,培养小学生数学思维能力和学习能力,为日后的数学学习打下结实基础。 2、小学“数学建模”的目标导向 小学的数学建模,其目标导向是培养小学生的建模意识。通过培养建模意识来提升数学思维能力,积累数学知识,提升数学素养。建模意识的培养需要通过挖掘教学内容中蕴涵的建模元素,采用教师引导、学生寻找、以生活内容加强记忆的方式,使学生掌握数学建模的过程和通过数学模型解决生活问题的能力,在不断反复的学习和锻炼中组建使学生提升数学建模的意识。 二、小学“数学建模”的定位 数学建模,是建立数学模型并且通过使用数学模型,解决生活中存在的数学问题,整体过程的简称。 如果通过大学或高中的教学视角审视数学建模,无疑会对学生日后学习和工作产生积极的影响。不过,从小学生的视角考虑数学建模,就需要特别注意建模的合理性定位,既不能失去数学建模的意义,又不能过于拔苗助长,导致教学效果的反向反弹。所以“数学建模”的定位要适合小学生的生活 经验 和环境,同时适合小学生的思维模式。 1、定位于 儿童 的生活经验 在小学对小学生的数学教学过程中,提供学生探讨研究的数学问题,其难易程度和复杂程度需要尽量贴近小学生的日常生活。在设计教学内容的时候,需要多设计小学生常见的生活数学问题,使学生因为好奇心而对学习产生动力,通过思考探索,体会数学模型的存在。 同时,在教学的过程中需要循序渐进,随着学生的年龄争长,认知度的加强,生活关注内容的变化,适时地增加数学问题的难度。在此过程中,既需要照顾学生们的学习差异性,又要尊重学生的学习兴趣和个性。 2、定位于儿童的思维模式 小学生的思维模式比较简单。在小学数学的建模过程中,需要根据学生的具体学习程度循序渐进,通过由简入深的学习过程,让学生具有充分的适应过程。只有适应学生思维模式的教学定位,才能使学生的数学意识得到提高,并且通过循序渐进的学习过程掌握运用数学模型解决实际问题的能力。 举例:在小学二年级,关于认知乘法和除法的过程中,将时间、路程、速度引入教学场景之中。学生跟随教师引导,逐渐发现时间与路程的关系,并且结合所学的数学知识,乘法与除法,找到了“一乘两除”的数学原型。从而使学生通过“数量关系”中,认知到生活与数学的关系。 三、小学“数学建模”的教学演绎 小学“数学建模”的教学演绎,主要分析以下两个方面。 1、在小学“数学建模”中促进结构性生长 因为小学生的 逻辑思维 能力还处于发展构成阶段,所以必须在数学建模教学过程中从学生的“逻辑结构图式”出发,充分考虑小学生的知识结构和认知规律,通过整合实际问题,从数学问题角度为学生整合抽象的、具有清晰结构认知性的,数学教育模型,从而使小学生能够直接清晰地对数学模型拥有直观深刻的认知。 2、在小学“数学建模”中促进学生自主性建构 在小学“数学建模”中教师需要引导和帮助学生,运用已学习的数学知识,构建具有应用性的数学模型。在教学过程中,教师需要对学生们习以为常的事物进行剖析,使事物露出具有吸引性的数学问题,通过激发学生的好奇心,引导学生探索生活中存在的数学问题,帮助学生发现生活中隐藏的数学问题和解决问题,最终促使学生能够独立自主地根据实际问题建立数学模型。 小学数学的“数学建模”是教学方式中新的尝试,它作为一种学习数学的方式、方法、策略和将生活与数学紧密联系的纽带,对引导学生更好的认识数学、学习数学、运用数学、具有十分积极的作用。小学生学习建模过程,实际就是锻炼逻辑思维能力的过程,对学生日后学习学习知识和 兴趣 爱好 都有显著的帮助。 参考文献: [1] 陈进春.基于数学建模视角的教学演绎[J].江苏教育,2013(4). [2] 储冬生.小学数学建模的分析讨论[J].湖南教育,2012(12). [3] 陈明椿.数学教育中的数学建模方法[J].福建师范大学,2014(1). 小学数学建模小论文篇3 浅析数学建模在小学数学中的应用 摘 要:小学阶段进行数学基础知识的教学时,适时适度渗透数学思想模式,不仅成为一种可能,也成为一种必需。学校教育由于长期受“应试教育”的影响,学生中存在着知识技能强,实际应用差的情况.为此,本文引入了“数学模型”这一概念,就此讨论如何帮助学生建立数学模型以及建立数学模型的意义,旨在促进学生的学习兴趣,提高他们的实际应用能力。 关键词:小学数学 模型 概念 应用 一、数学教学中数学模型应用的缺乏 数学课程改革的思路之一就是数学应强化应用意识,允许非形式化。事实上,数学课程中数学的应用意识早已成为发达国家的共识,而我国目前应用意识却十分淡薄,与世界数学课程的发展潮流极不合拍。 当前使用的数学教材中的习题多是脱离了实际背景的纯数学题,或者是看不见背景的应用数学题,这样的训练,久而久之,使学生解现成的数学题能力很强,而解决实际问题的能力却很弱。教师要独具慧眼,善于改造教材,为学生创造一个可操作,可探索的数学情境,引领他们探索知识的生成过程,再现数学知识的生活底蕴。因此,引入“数学模型”这一概念。 二、概念界定 何谓数学模型?数学模型可描述为:对于现实世界的一个特定对象,为了一个特定的目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到一个数学结构,而建立数学模型的过程,则称之为数学建模。 三、数学建模在小学数学中的应用 1、 让学生经历数学概念形成的过程,探索数学规律。《新课标》的总体目标中提出,要让学生“经历将一些实际问题抽象为数与代数的问题的过程,掌握数与代数的基础知识和基本技能,并能解决简单的问题。”让学生经历就必须有一个实际环境。学生在实际环境中通过活动体会数学、了解数学、认识数学。 在教学中“鱼段中烧”常常存在。没有在教学的应用上给予足够的注意和训练,即没有着意讨论和训练如何从实际问题中提炼出数学问题(鱼头)以及如何应用数学来满足实际问题中的特殊需求(鱼尾),很少给学生揭示有关数学概念及理论的实际背景和应用价值。为了避免这一情况,教师要帮助学生建立数感,在自己的水平上探索不同的数学模型。比如:在教学连减应用题时,可以让学生进行模拟购物。小售货员讲一讲自己怎样算帐,体会两种方法的不同:小强带了90元钱去买了一只 足球 45元,一只 排球 26元,要找回几元?大部分小售货员都这样算:先用90元钱去减一只足球的钱,再减去一只排球的钱,求出来的就是要找回的钱。算式是90-45-26=19(元)。也有一小部分售货员列出了这样的算式:45+26=71(元) 90-71=19(元)两种方法我都给予肯定,并总结:遇到求剩余问题的题目时都用减法来做。并总结出求大数用加法,求小数用减法的模型。学生只要在做题中知道求的是大数还是小数就可以了,从而培养了学生从数学的角度去观察和解释生活。 2、 开设数学活动课,重视实践活动,为学生解决问题积累经验。开设数学活动课,让学生自己动脑、动手解决问题,可以使他们获取数学实际问题的背景、情境,理解有关的名词、概念,有助于学生正确理解题目意思,建立数学模型,是培养学生主动探究精神和实践能力的自由天地。 比如:在上“几个与第几个”的拓展课时,出现一道题:从左往右数,小华是第9个,从右往左数,小华是第8个,这一排有多少人?在解这道题之前,我让一个组6个人站起来,数其中的一个人,发现就直接3+4=7,会多出一人来。为什么会这样?学生讨论后得出:其中的那个人多数一次了,要把他减掉。于是,得到一个模型:左边数过来的数+右边数过来的数-1=总人数。有了这个模型之后,解决这一类问题就容易多了。 3、 引导学生用图形解决问题,确立从代数到几何的过渡。代数与几何并不是孤立的两块。他们也有相通之处。我们可以用几何的观念来解代数问题。图形对于低段学生来说是更直观、更有效的形式。 例:让学生观察热水瓶、茶杯、可乐罐、电线杆、大树、房屋柱子等,通过现代教学手段(如用CAI课件或实物投影仪),学会撇开扶手柄、树枝、颜色等非本质特征,分析主体部分的形状,再配以必要的假设,得出它们的共同属性:只能往一个方向滚动,且上下两个底面是大小相同的圆面,抽象出“圆柱体”这一数学模型。这样通过向学生展示上述数学建模的过程,使学生知道数学来源于实际生活,生活处处有数学,在此基础上再引导学生把数学知识运用到生活和生产的实际中去。又如,在教学应用题时,我们往往借助线段图来解,将文字题有效地转化为图形,使题目变得浅显易懂。 四、数学模型在小学数学中的现实意义 1、 通过数学建模理论的学习研讨,有利于提高教师的数学素养。一般地说,在建模过程中,原始问题中的本质特征应被保留下来,当然也要简化,这种简化基于科学,而不完全基于数学,另一方面,一定的简化又是必须的,以便得到的数学体系是易处理的。这就需要教师必须具备精深的专业知识,能帮助学生建立准确的数学模型。 2、 建立数学模型能有效地激发学生的求知欲望。数学模型是数学基础知识与数学应用之间的桥梁,建立和处理数学模型的过程,更重要的是,学生能体会到从实际情景中发展数学,获得再创造数学的绝好机会,学生更加体会到数学与大自然和社会的天然联系。因而,在小学数学教学中,让学生从现实问题情景中学数学、做数学、用数学应该成为我们的一种共识。 3、 数学建模是培养学生建模能力的重要途径。数学建模就是找出具体问题的数学模型,求出模型的解,验证模型解的全过程。由于小学生以形象思维为主,因此他们的数学模型大多和形象图有关。引导学生从画实物图、矩形图、线段图开始,逐步做到自觉主动地构建数学模型,并把它作为一种极好的解决问题的工具,使他们在这个过程中提高兴趣,增强能力。 4、 现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现或应该体现于基础数学中的具有奠基性、总结性和最广泛的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的。通过数学思想的培养,数学的能力才会有一个大幅度的提高。 五、结束语 学生的建模思想的培养是长期的、复杂的过程,采用的方法是多样、灵活的。只要教师用心设计,耐心诱导,全体学生都能建立不同水平的数学模型。 猜你喜欢: 1. 数学建模教学相关小论文 2. 小学数学建模优秀论文 3. 关于小学数学建模论文 4. 学习数学建模心得体会 5. 小学数学教学小论文

建模作用:

建模意义:

为什么重视研究可靠性论文

1.前言地下结构和其它岩土工程一样,在整个设计过程中存在大量的不确定性。传统方法设计时用一个笼统的安全系数来考虑众多不确定性的影响。对各参数、变量都假定未定值。这就是常规的定值设计法。虽然以后对某些参数(如材料的强度)取值时也用数理统计方法找出其平均值或某个分位值,但未能考虑各参数的离散性对安全度的影响。所以安全系数法不能真正反映结构的安全储备。60年代末期,数理统计和概率方法在结构设计中成功应用,鼓励和启发了隧道工作者寻求用概率方法研究地下工程中各种不确定性并估计他们的影响。进入70年代,可靠度分析方法扩大到更多的设计领域。但是,这种方法仍然受到一些岩土工作者的反对和质疑。原因在于岩土工程本身的机理比较复杂,有些问题还没有充分认识;岩土工程概率方法还处在发展阶段,不少概念还不很明确,计算方法也不够简便;一些人对概率论和方法不很熟悉。这些困难也促使一些岩土工作者潜心钻研,他们吸收地面结构概率分析成果,针对岩土和地下工程的特点开展专题攻关,虽未完全解决技术上的关键,也取得了可喜的成果。研究表明,概率和可靠度分析方法在不确定性越严重的问题中越能显示出活力来。1992年,国家技术监督局发布《工程结构可靠度设计统一标准》,作为其它各类工程结构设计共同遵循的准则。铁路、公路、水利、港口等行业先后开展结构设计统一标准的编制工作。作为上述各类工程的重要组成部分的隧道及地下工程,采用概率极限状态设计也提到日程上来。一些技术难题有待继续攻克,实用化问题也要同时解决。目前,可靠度分析在地下工程中的应用正在经历由粗糙到精细,由简单到复杂再回到简单并进入实用这一过程。2.岩土参数概率特征的研究确定围岩的物理力学参数和原始应力状态时分析地下结构力学行为的先决条件。对于重要的大型结构(如水电站地下厂房等)通常要在周围地层钻孔取样并进行一系列试验以取得有关参数。交通用途隧道纵向长度比横向长度大得多,经过的围岩也回变化,通常按各类围岩的综合力学参数进行计算。引入可靠度后,必须考虑这些物性参数的概率特征。这方面的研究成果对地下结构可靠度分析至关重要。2.1围岩分级判据的可靠性研究一般隧道设计时都要现场确定该隧道所处的围岩类别。各种围岩分类法都有各自的一套标准。但由于标准本身常存在模糊性或不确定性,或者不同人对标准的理解和处理不尽相同,不同人对同一围岩的评价结果总体会趋于一致,具体还不会完全同一。围岩分类的随机性值得我们进一步研究。我国在围岩分类和分级方面已有不少成果,可惜各部门还不统一。东北大学林韵梅教授等提出围岩稳定性动态分级法,李强提出模糊聚类分析法。在动态分析法中对分级判据的分布进行初步分析,应用数理统计方法对分级判据进行研究。在定义分级判据可靠性的函数上,用柯尔莫洛夫法对其分布规律进行检验。还提出了分级标准和分级方法的评价准则。2.2地质资料的概率处理对于大型地下工程和重点长大隧道都要进行比较细致的地质勘探。但要从有限的勘探资料中获得隧道全长或大型地下工程周边围岩的地质状况和有关参数,必然存在不确定性和偶然性。用概率法可减少误判的机率。例如长江科学院包承纲研究员等以概率方法处理水坝地基钻孔之间的地层分界线,取得更为合理的结果。地层中常有一些异常地质点存在,如软弱夹层、空洞等。他们对地下工程施工和运营有很大影响。为此,首先要弄清楚它们出现的可能性、大概的位置及其性质,然后通过可靠度分析法去分析它们的影响。Bercher(1979)及Tang(1987)等都对某地区在给定钻孔布置与地质历史推断情况下,对异常地质出现的概率和统计特征做过估计,先给予一个不出现异常的先验概率,然后根据一系列钻孔资料按Bayesion 公式推得修正的不出现概率和联合分布。2.3土性参数的随机场研究据研究,土性参数变异系数可达0.29,比计算模型的不定性影响大得多。土性参数概率特征经历了两个阶段。早期研究建立在随机变量基础上。后期研究集中在随机场理论的应用上。不难理解,岩土工程的性状是由某一空间范围内岩土的平均特征所控制。根据一个个试样求得的统计特征称为点特征。点特征与空间特性之间由一定的关系。空间平均特征的方差应小于点特征的方差。控制岩土工程可靠度的是土性参数的空间平均值方差而不是点方差。因此,土性参数的概率分析是一个随机场问题。对于空间分布的地层,由于沉积和埋藏等条件的联系,不同点之间虽有差别又有一定的相关性。这种相关性将随二点距离的增大而减弱。相关距离是岩土可靠度随机场研究中的一个重要参数。有关学者提出了相关距离的物理意义、集合意义及实际计算方法,提出了不同地层相关距离的年经验值。研究了不同统计方法的参数对可靠度分析的影响。2.4岩体特性统计特征的研究有待加强近几年由于土坡稳定、桩基承载力及地基承载力等方面可靠度分析实用化的需要,推动了土体概率特征的研究。而土性概率特征的研究成果又促进了上述几种典型工程实用可靠度分析。由于岩体的本构关系更为复杂,节理、裂隙、层状等对岩体特性影响更多,岩石地下工程计算模型不定性更为突出。对于众多不定性相互作用的岩石工程,更需要可靠度分析。国内勘察设计部门也积累过大量岩石资料,但用概率方法加以整理的参加横过较少。日本在这方面做过的工作值得重视。他们对各类围岩(如花岗岩、闪绿岩、砾岩、砂岩、泥岩等)的主要指标(如单轴抗压强度、压缩变形系数、抗剪强度、干密度等)的分布特征,均值及变异性以及相互关系等都做过分析整理,这些资料可供参考。3.作用效应随机分析方法的成果作用效应是可靠度分析中重要的综合随机变量,它占用很大的计算工作量。地下结构作用效应的定值分析方法不论是“荷载—结构”模式或“地层—结构”模式,目前大多采用有限元分析,考虑空间作用时还用三维有限元。对裂缝、节理发育的岩石地层主要有两种方法:a.仍然利用连续介质力学理论,但要寻求反映不连续岩体特点的本构关系或把节理裂隙的力学性质作为附加条件加以考虑,然后求解;b.应用块体理论,寻求关键块。利用量测到的位移信息反求地层的力学指标也是常用的方法。引入可靠度以后如何在上述各方法基础上进行随机分析时必须解决的问题。3.1随机有限元的进展有限元法在随机介质中的应用始于70年代初期。当时主要用于岩土理论与应力分析。其基本思路是采用蒙特卡洛模拟法。该法建立在大量确定性计算基础之上,费用较为昂贵。结构静力计算的随机有限元法70年代中期由瑞典的K.Handa首先提出,80年代末日本的Hisada和Nagagri等对随机有限元作了较为系统的研究。至此以后随机有限元理论朝着两个方向发展,一是基于摄动展开的有限元统计分析;另一是随机场的局部平均。具体的方法有:纽曼随机有限元法;随机有限元最大熵法;有限元一次二阶矩法;随机有限元响应面法;摄动随机有限元法等。上述各种方法各有其特点,有的理论上较为严密,但计算量大;有的较近似而计算简便。响应面法,摄动法及蒙特卡洛法在我国隧道可靠度分析中都已实际应用。作为随机有限元的深入,有人还提出非线性随机有限元,但该理论正处于尝试中。采用目前流行的随机有限元通常只能确定荷载效应的某些数值特征,如均值、方差、相关矩等,难以确定荷载效应的概率分布及高阶矩,故还不能很好的满足可靠度分析的要求。蒙特卡洛法可求出概率分布,但计算量较大。成都电子科技大学张新培教授提出了改进的随机有限元法。该法以有限元为基础,利用荷载列阵与刚度矩阵各元素之间特征函数确定结构各单元荷载效应的特征函数,再根据特征函数与分布密度函数及数字特征的关系,求出荷载效应分布密度函数积极数字特征。此法概念简单,容易实行,较好地满足可靠度分析的要求。3.2随机块体理论的提出和应用块体理论是我国学者石根华和美国学者R.Goodman首先提出的岩体工程分析方法,为岩体洞室和边坡稳定分析开辟了新的途径,在国际上受到重视并得到日益广泛的应用。块体理论中关于岩体被不连续的空间平面切割成分离块体以及切割面上的力学参数c、Φ等都作为定值。由于实际岩体不连续面形成因素复杂,同一组不连续面的产状在一定范围内发生变化,连续空间平面切割成的变形状空间块体具有随机性。切割面力学参数也使随机变量。因此更适合概率分布。河海大学王保田、吴世伟提出的随机块体理论,用随机抽样法寻找可动块体的概率,并用一次二阶矩法求关键块的概率。二者结合可较好的解决已知结构面产状概型和力学性态是随机值的问题。南京航空专科学校的张广健等应用随机块体理论编制出计算程序,用以对隧道围岩稳定性进行可靠度分析,求得各类围岩的块体稳定可靠指标。所得结论与设计和施工经验基本一致。若能用现场实测数据统计分析,其结果将更能反映工程实际。3.3三维随机边界元法的提出地下结构的有限元分析特别是三维分析需要划分许多单元,计算机工作量和对计算机内存的要求都很大。特别对无限区域的课题,在一定范围内离散将忽略外方广大区域的影响而带来误差。因此人们的注意力又转到一些边界解法上,相应的边界单元法得到发展。隧道的边界元分析有其明显的优点,日益受到国内外重视。针对地下结构分析中参数都具有明显不确定性的特点,随机边界元法的研究和应用将对隧道可靠度分析起到新的推进作用。武汉水利电力学院潘国宁等提出的三维随机边界法是将边界元计算过程作为函数转换过程,再参数取值时对函数过程做泰勒展开。通过边界计算得到应力和位移的均值;然后计算有关变量对参数的一阶导数和二阶导数在取均值时的值。最后考虑参数的变异性来分析计算结果的变异性。此法公式简洁,计算工作量小,对隧道分析有重要参考价值。3.4围岩参数的随机反分析由于围岩的物理力学指标不容易确定,现场取样试验或直接测试资料也只是得到点特性而不是我们所要求的围岩空间平均特性。因此,利用施工监测得到的位移信息反演求出围岩参数的方法在一定条件下能满足地下结构分析的要求。目前定值的反演分析比较成熟,已开发出很多程序可供应用。但是反演分析所依据的信息实际是带有一定离散性的随机变量,可靠度分析也要求反分析的结果能表示出概率特征。因此,随机反分析也逐渐受到重视。专门著作《反演理论》对反分析概率化有重要论述。同济、北方交大、西南交大岩土和地下工程专业的博士研究生的论文都曾涉及隧道随机反分析问题。目前采用的方法有传统的蒙特卡洛法、随机摄动法。4.针对岩土工程特点的可靠度分析方法的新发展《工程结构可靠度设计统一标准》在附录一中推荐用一次二阶矩法计算结构的可靠指标。同时指出对于变异系数很大、极限状态方程非线性程度很高等情况,宜用更精确的方法计算。岩土物性变异性比较大,常呈现一定的相关性,如内摩擦角与内聚力之间负相关,容重与压缩模量、内聚力等正相关。忽视这些相关性,会使计算结果出现误差。而一次二阶矩法是假定基本变量间是相互独立的。目前针对相关性提出两种一次二阶矩的改进方法。一是将相关变量变为互不相关的变量,新变量的方差矩阵是由原变量标准化后的方差矩阵构成。另一方法是将极限状态方程的标准差展开后求得分离变量作为新变量的灵敏系数,在新的灵敏系数重反映与之相关的另一变量的影响。前法适用于多个相关的基本变量,后法只适用于两个相关变量。对于非线性极限状态方程,用当量正态法有时计算误差过大,有时不易收敛。此时将蒙特卡洛模拟引入可靠度分析中,只要模型次数多就能得到精确的失效概率值。对于很小的失效概率需要很大的模拟次数。为节省机时,可从计算方法上改进。为避免概型拟和引入的误差,采用高阶矩发值得进一步探索。对于一些判别准则易受人为因素影响的问题,也可将模糊数学方法引入可靠度分析中,发展成为模糊可靠度分析法。坑道稳定性位移判别的方法和准则就有很多主观和客观不确定性因素,坑道稳定性模糊概率分析法,把“坑道稳定性”作为一模糊随机事件,求其模糊概率,用模糊统计分析试验法结合专家综合评判来确定地下坑道周边位移与坑道稳定性的隶属函数,推导出坑道稳定性可靠度计算的一般表达式。 5.围绕《铁路隧道设计规范》的修订,隧道可靠性铁路隧道在我国地下工程中占很大比例,第二层次的《铁路工程可靠度设计统一标准》也已发布。第三层次的铁路各专业设计规范可靠度设计修订工作已提上日程。针对人们对可靠度理论在隧道中的应用有怀疑态度甚至否定这一情况,铁道部先组织几批专家进行“以可靠性理论为基础修订铁路隧道设计规范的可行性研究”,得出可行的结论,并分别从“荷载—结构”模式、“地层—结构”模式和以工程类比为基础的经验设计模式等几个方面提出实现可靠度设计的途径和需要攻关研究的课题。该项研究经铁道部组织专家评审验收,人为结论正确,所建议的隧规改革目标明确,路径可行,可作为今后隧规改革的指导性文件。为了使铁路隧道设计规范按可靠度设计加以修订这一难度较大的工作能逐步深入开展,铁道部主管部门已立项开展《按可靠度理论修改隧规的基础性研究》。研究内容包括围岩物性指标及深埋隧道围岩松动压力统计特征研究;浅埋隧道覆土荷载统计特征研究;明洞、棚洞填土荷载统计特征试验研究;衬砌混凝土偏压构件抗力计算方法及偏压强度统计特征研究;隧道衬砌几何特征研究等。由铁路各高校分别承担。铁路高校研究生论文选题也开始转向隧道可靠度设计这一领域。与此同时,有关院校对人防工程按可靠度设计也提出过方法及若干建议。水电部门针对工程特点正对隧道工程的作用及作用效应进行统计参数整理。6.结束语我国岩土工程领域可靠度研究虽然起步较晚,但发展很快。涉及的课题很多,有些方面研究的广度与规模可能超过国外。地下工程及作为岩石工程的重要组成部分其可靠度研究也在相互影响和推动下相继展开。但由于难度大,牵涉面广,总体上还处于发展阶段。岩石隧道方面研究较少;针对岩土特点的可靠度分析法还有待拓宽;可靠性研究与岩土力学机制之间的紧密结合有待加强。可靠度涉及是地下结构设计发展的必然要求,必然推动工程技术界去进一步开拓。更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:

会计相关性与可靠性的协调论文好写吗写财务会计相关性与可靠性协调论文可以说是一种挑战,因为它要求作者综合分析研究财务会计相关性和可靠性之间的相互关系,并建立起一个合理的理论框架,使用合理的定义和模型来推导出各种结论。在写作过程中,我们首先要熟悉财务会计的相关理论,然后根据具体的情况分析相关性和可靠性的关系,采用合理的定义和模型来推导出各种结论,在理论和实证分析中把握关键点,最后结合框架和研究结果,提出具有指导意义的结论和建议。

华为杯研究生数学建模论文模板

楼主你好,数学建模论文一般分为以下几个部分:首先是摘要,这个是全文的概述,里面包括这个模型的主题,以及几个需要解决问题的总体答案,比如对模型结果的阐述,或者对原来的安排评价是否合理等等。另外摘要最好控制在word一页内(小四宋体),不要太多。下面是论文的主体:1. 问题重述主要是对需要解决的问题用自己的语言进行描述,这个就看你自己的文笔功底了。2. 模型假设对你将要建立的模型进行理想假设,比如说将一些可能对结果影响不显著,但考虑起来需要很多时间的的问题理想化。3. 符号说明将你要建立的模型中的一些参量用符号代替表示。4. 模型建立这个是介绍你模型建立的原理和步骤,以及最终的模型结果,一般是一个评价函数,也可以是另外的形式,不过一定要给出一个能解决问题的大的方法5. 问题一、二、三(视具体的需要回答问题的个数而定,最好分条回答)利用你上面建立的模型,对题目提出的问题进行求解,这个部分需要你通过程序来实现,最后给出这个问题的结果,如果是满不满意这样的问题,需要给出明确回答满意或不满意,如果是一个量的结果,就需要把通过你的模型以及代码得到的准确结果进行阐述。6. 模型改进解决完上面题目提出的问题之后,可以对你的模型不足的地方再提出来,并提出改进的方案,以完善整个模型。7. 参考文献最后将你的参考文献写上,包括你在网上查的的资料,以及别人的论文或者书籍等等。如果最后需要你一并交上程序代码的话,还需要一个附录,里面包括程序代码,或者如果你上面的问题的结果太长的话(比如要给出几百个点的坐标这样的),可以将这些结果也放在这一块。如果楼主需要看论文样式的话,推荐一个网站:这是北京航空航天大学的数学建模网站,里面包括了该学校从92年开始到09年的各届论文,里面不乏一些比较好的论文,楼主如果需要参考样式的话,可以看看这些论文。最后祝楼主好运。

随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。

大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。

一、数学建模的含义及特点

数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。

1.准备阶段

主要分析问题背景,已知条件,建模目的等问题。

2.假设阶段

做出科学合理的假设,既能简化问题,又能抓住问题的本质。

3.建立阶段

从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。

4.求解阶段

对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。

5.验证阶段

用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。

二、加强数学建模教育的作用和意义

(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质

数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。

(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力

数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。

(三)加强数学建模教育有助于培养学生的创造性思维和创新能力

所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。

很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].

(四)加强数学建模教育有助于提高学生科技论文的撰写能力

数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。

(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].

三、开展数学建模教育及活动的具体途径和有效方法

(一)开展数学建模课堂教学

即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:

案例的选取和课堂教学的组织。

教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。

1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。

2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。

3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。

案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].

(二)开展数模竞赛的专题培训指导工作

建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。

(三)建立数学建模网络课程

以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]

(四)开展校内数学建模竞赛活动

完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。

如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。

(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛

全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。

四、结束语

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。

参考文献:

[1]辞海[M].上海辞书出版社,2002,1:237.

[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.

[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.

[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.

[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.

[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.

大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。

对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。

一、数学建模的概念

想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。

二、在小学数学教学中运用数学建模的策略

1.根据事物之间的共性进行数学建模

想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。

教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。

2.认识建模思想的本质

建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。

建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。

3.发挥教材在数学建模上的作用

教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。

数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。

1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。

2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。

3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。

4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。

Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。

5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。

7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。

8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司A.K.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。

9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。

10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈(H.W.Kuhn) 和托克 (A.W.Tucker) 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。

数学建模全国优秀论文相关 文章 :

★ 数学建模全国优秀论文范文

★ 2017年全国数学建模大赛获奖优秀论文

★ 数学建模竞赛获奖论文范文

★ 小学数学建模的优秀论文范文

★ 初中数学建模论文范文

★ 学习数学建模心得体会3篇

★ 数学建模论文优秀范文

★ 大学生数学建模论文范文(2)

★ 数学建模获奖论文模板范文

★ 大学生数学建模论文范文

二、论文格式规范

(一)   “论文首页”编写

竞赛论文首页为“编号页”,只包含队号、队员姓名、学校名信息,第二页起为摘要页和正文页。参赛队有关信息不得出现于首页以外的任何一页,包括摘要页,否则视为违规。

(二)   “论文摘要页”编写

竞赛使用“统一摘要面”。为了保证评审质量,提请参赛研究生注意摘要一定要将论文创新点、主要想法、做法、结果、分析结论表达清楚,如果一页纸不够,摘要可以写成两页。

(三)   “论文文本”要求————“全国研究生数学建模竞赛论文格式规范”

l  每个参赛队可以从A、B、C、D、E题中任选一题完成论文。(赛题类型以比赛下载为准)

l  论文用白色A4版面;上下左右各留出至少2.5厘米的页边距;从左侧装订。

l  论文题目和摘要写在论文封面上,封面页的下一页开始论文正文。

l  论文从编号页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1 ”开始连续编号。

l  论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。

l  论文题目用三号黑体字、一级标题用四号黑体字,并居中。论文中其他汉字一律采用小四号宋体字,行距用单倍行距。程序执行文件,和源程序一起附在电子版论文中以备检查。

l  请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),请认真书写(注意篇幅一般不超过两页,且无需译成英文)。全国评阅时对摘要和论文都会审阅。

l  引用别人的成果或其他公开的资料(包括网上甚至在“博客”上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:

[编号] 作者,书名,出版地:出版社,出版年。

参考文献中期刊杂志论文的表述方式为:

[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。

参考文献中网上资源的表述方式为:

[编号] 作者,资源标题,网址,访问时间(年月日)。

全国研究生数学建模竞赛评审委员会

研究生数学建模论文需要查重吗

对引用他人成果而不注明出处的行为,一经发现一律按抄袭处理。 对大段文字相同、公式或图表多处相同或相似的参赛论文,一律按照相互抄袭处理(标明引用出处的论文除外)。对附录中给出的程序运行不通,以及尽管程序能够运行但得不到论文中说给结果的参赛论文,一律按照弄虚作假行为处理。至于你说的将赛题重述,一般是不会被收录的,系统检测的时候是检测不回来的,但是如果有人为检查的话,如果不多还没事,太多的话是不行的。

答:一般规定不得超过15%,严格要求不得超过10%。

数学建模其实就是根据实际问题来建立数学模型,根据对数学模型求解的结果进行求解来解决实际问题。所以理工科专业的毕业论文是十分严谨的,其考核过程自然也会比较严格,这些专业的高校以及毕业生一般是选择知网论文查重系统进行论文查重。

数学建模论文需要非常严格严谨,这类需要通过大量的专业知识来进行阐述,并且开展相关实验研究。大家一定要认真对待数学建模论文,不要因为查重率过高前功尽弃了呢,至于降低数学建模知网重复率,只要用心修改,一定会降低数学建模知网查重率的。

不会参与查重。

这里先介绍代码的降重方法,这是很多人容易忽略的,数学建模竞赛还会对大家在附录提交的代码进行一个查重。

方法一:给代码加上自己的注释

大家比赛时肯定会参考很多现成的代码,但是这就有了重复率的风险。在大家照搬其他人代码后,可以按照自己的理解对代码进行一个自己的注释,可以对代码的逻辑,数值传递,甚至是一些现有函数的功能进行注释这样就可以有效的降低代码的重复率。

方法二:改变代码的变量名称

大家可以选择改变代码中的变量名称来降低重复率,在文本中搜索时可以用(Ctrl+F)做到一键替换、可以将变量的名称改为全称或者简称,从而进行简单有效的降重。

方法三:利用公式编辑器

大家在降低重复率时可以选择用公式编辑器将重复率高的部分全部换为公式,或者插入文本框。这是最简单快捷的,但是作者对这种行为并不提倡,希望大家可以用自己的想法写出自己的文章。

方法四:做成表格

将自己的数据或者其他的罗列换成表格形式,可以有限避免查重。

问题重述主要是把问题说清楚就行,不管你用什么语言表达,最好是用你自己的话来说!问题分析主要是把你建模的思路说清楚,就是怎么开始建模的,一般这个不是太重要,可以省略这一步的,主要在模型的建立和优化方面下工夫,最后你把摘要写得漂亮点,获奖不是问题!所以问题重述不是抄一遍,而是通过自己的思维转述一遍,这样是不会有什么重复率的。

研究生为什么论文要查重

论文查重主要两个目的:一是看论文是否严重抄袭,违反了基本的学术要求。二是看论文是否引用得到,遵循了基本的学术规范要求。从论文查重报告中可以看出,如果论文内容严重抄袭,证明此文存在重大问题,需要重大修改甚至换题目。如果论文重复部分主要是引用不规范导致,则通过论文内容调整、修改并增加论文注释和参考文献等方法降低重复率就可以符合要求。

你是不是也有过毕业论文多次查重的经历?查重率是毕业论文最终能通过,进而顺利毕业的一个硬性条件。在论文答辩通过后和向学校提交论文终稿前,学生对自己的毕业论文必须进行查重,进而多次修改直到查重率符合学校的要求。接下来就为条友们好好说说为什么毕业论文需要多次查重。 毕业论文周期比较长,一篇毕业论文历经搜集材料,开题,调查研究,实验,初稿,修改,初审,答辩,查重,定稿等多个环节,少则一、两个月,多则一、两年。在你完成毕业论文期间,知网查重数据库会定期更新,很有可能会出现和你毕业论文高度相似的论文发表,及时查重,能够避免高重复率的情况出现。毕业论文终稿查重率过高,不仅会影响你毕业,并且会影响你的导师明年能否带研究生。即使你不主动去对毕业论文查重,你导师也会逼着你去查重,他怕你坑他。

证明是你自己的劳动成果啊,你全抄的,肯定过不了啊。

1、为顺利毕业作好准备 对毕业生而言,了解论文查重非常重要,有的同学对它有一点了解,但多多少少也会听说过。想要顺利通过查重并顺利毕业,那么论文重复率绝对是一个非常重要的指标。 2、节约时间 我们了解如何进行论文查重后,这样能节约不少时间,注意从头到尾都要有意识地避开一些重复性的问题。特别是论文格式,因为格式可能会直接影响到重复率,如果文献格式不符合学校要求,也会被当成正文一起查重的,所以对于整体的重复率影响还是比较大的。 3、能否顺利毕业 论文查重的意义就在于自己是否能顺利毕业,毕业论文毕业生们必须要完成的一份作业,学校会对论文进行评定,并且导师也会审核,之后论文查重系统还会进行检测。

相关百科

热门百科

首页
发表服务