首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

电池正极材料研究成果分析论文

发布时间:

电池正极材料研究成果分析论文

节约自然资源和保护环境。通过化学方法脱出锰酸锂中的锂离子,可以制备出性能优异的Mn02催化剂,为废旧锂离子电池的回收处理提供了新途径。在废旧锂离子电池中,尤其是正极材料的回收及再利用对节约自然资源和保护环境显得非常重要。锂离子电池是一种二次电池(充电电池),它主要依靠锂离子在正极和负极之间移动来工作。

先说现在锂离子电池的应用和优点,然后说你这个项目用的什么正极材料,和其他锂离子电池相比有什么优势。比如现在类似的锂离子电池阻抗是多少我们用新的正极材料阻抗可以降低到多少

做锂电池负极材料论文格式

成果简介

高容量硅 (Si) 被公认为高性能锂离子电池 (LIB) 的潜在负极材料。但是,放电/充电过程中的大体积膨胀阻碍了其面积容量。 本文,上海交通大学微纳米科学技术研究院张亚非教授课题组在《ACS Appl. Mater. Interfaces》期刊 发表名为“Binder-Free, Flexible, and Self-Standing Non-Woven Fabric Anodes Based on Graphene/Si Hybrid Fibers for High-Performance Li-Ion Batteries”的论文, 研究设计了一个柔性石墨烯纤维织物(GFF)为基础的三维导电网络,形成无粘合剂且自支撑的高性能锂离子电池的硅负极。

Si 颗粒被牢固地包裹在石墨烯纤维。起皱引起的大量空隙石墨烯在纤维中能够有效地适应锂化/脱锂过程中硅的体积变化。GFF/Si-37.5% 电极在 100 次循环后在0.4 mA cm –2的电流密度下表现出优异的循环性能,比容量为 920 mA hg –1。此外,GFF/Si-29.1% 电极在 400 次循环后在0.4 mA cm –2的电流密度下表现出 580 mA hg –1的优异可逆容量。GFF/Si-29.1% 电极的容量保持率高达 96.5%。更重要的是,质量负载为 13.75 mg cm –2的 GFF/Si-37.5% 电极实现了 14.3 mA h cm –2的高面积容量,其性能优于报道的自支撑 Si 阳极。这项工作为实现用于高能 LIB 的无粘合剂、柔性和自立式 Si 阳极提供了机会。

图文导读

图 1. (a) 自立式 GFF/Si - X电极制造过程示意图。(b)醋酸溶剂中的 GOF/Si、(c)GOFF/Si 和(d)GFF/Si- X 的数码照片,揭示了其柔韧性。(e) GFF/Si-37.5% 电极冲压成面积为 1.12 cm 2 的小圆盘。

图 2. (a) GFF/Si-37.5% 低倍率的 SEM 图像和 (b) 部分放大的 SEM 图像,揭示了两个独立的纤维在两者相遇的点合并为一个。(c,d) GFF/Si-37.5% 表面和横截面的 SEM 图像。

图 3. GFF/Si- X电极在 0.4 mA cm –2电流密度下的电化学特性;所有比容量均以自立式电极的总质量为基础计算。(a) 第一次循环充电/放电电压曲线。(b) ICE 的比较分析。(c) 循环性能比较。(d) GFF/Si-37.5% 电极在 0.2 mV s –1扫描速率下的CV 测量值。(e) GFF/Si-37.5% 的倍率性能。(f) 具有不同阳极重量的 GFF/Si-37.5% 电极的面积容量

图 4. GFF/Si-HI、GFF/Si-37.5% 和 GFF/Si-800 C 电极的循环性能比较

图 5. GFF/Si-HI、GFF/Si-37.5% 和 GFF/Si-800 C 的成分分析:(a) XRD 图,(b) 拉曼光谱,(c) GFF/Si-的 TGA 曲线N 2气氛中的HI ,和 (d) FT-IR 光谱。

图 6. (a,b) GFF/Si-37.5% 电极在循环前后的拉曼光谱和 XRD 图案。GFF/Si-37.5% 电极在 100 次放电/充电循环后的形态研究:(c,d) 锂化/脱锂后低倍和高倍率的 SEM 图像;插图是循环后 GFF/Si-37.5% 电极的数码照片;(e,f) TEM 和 HRTEM 图像;插图是低倍放大的 SAED 图像;(g) 元素映射。

小结

在这项研究中,基于 GFF 的 3D 导电网络被设计用于无粘合剂和自立式 Si 阳极。GFF 结构在放电/充电循环期间成功地抑制了 Si 的体积膨胀。提出了一种新策略,用于制造用于高性能 LIB 的无粘合剂、柔性和自立式 Si 阳极。

文献:

化学电池化学电池将化学能直接转变为电能的装置。主要部分是电解质溶液、浸在溶液中的正、负电极和连接电极的导线。依据能否充 电复原,分为原电池和蓄电池两种 化学电池的种类 化学电池按工作性质可分为:一次电池(原电池);二次电池(可充电电池);铅酸蓄电池。其中:一次电池可分为:糊式锌锰电池、纸板锌锰电池、碱性锌锰电池、扣式锌银电池、扣式锂锰电池、扣式锌锰电池、锌空气电池、一次锂锰电池等。二次电池可分为:镉镍电池、氢镍电池、锂离子电池、二次碱性锌锰电池等。铅酸蓄电池可分为:开口式铅酸蓄电池、全密闭铅酸蓄电池。 1.锌锰电池 锌二氧化锰电池(简称锌锰电池) 又称勒兰社(Leclanche)电池,是法国科学家勒兰社(Leclanche,1839-1882)于1868年发明的由锌(Zn)作负极,二氧化锰(MnO2)为正极,电解质溶液采用中性氯化铵(NH4Cl)、氧化锌(ZnCl2)的水溶液,面淀粉或浆层纸作隔离层制成的电池称锌锰电池,由于其电解质溶液通常制成凝胶状或被吸附在其它载体上而呈现不流动状态,故又称锌锰干电池。按使用隔离层区分为糊式和板式电池两种,板式又按电解质液不同分铵型和锌型电池纸板电池两种。 干电池用锌制筒形外壳作负极,位于中央的顶盖上有铜帽的石墨棒作正极,在石墨棒的周围由内向外依次是A:二氧化锰粉末(黑色)------用于吸收在正极上生成的氢气(以防止产生极化现象);B:用饱和了氯化铵和氯化锌的淀粉糊作为电解质溶液。 电极反应式为:负极(锌筒):Zn +– 2e === Zn(NH3)2Cl2↙+2H+ 正极(石墨):2NH4+ === 2NH3 ↑+ H2↑ H2O + 2MnO2 + 2e === 2MnOOH+ 2OH- 总反应:Zn + 2NH4Cl + 2MnO2 === Zn(NH3)2Cl2↙+2MnOOH 干电池的电压大约为1.5V,不能充电再生。 2.碱性锌锰电池 20世纪中期在锌锰电池基础上发展起来的,是锌锰电池的改进型。电池使用氢氧化钾(KOH)或氢氧化钠(NaOH)的水溶液做电解质液,采用了与锌锰电池相反的负极结构,负极在内为膏状胶体,用铜钉做集流体,正极在外,活性物质和导电材料压成环状与电池外壳连接,正、负极用专用隔膜隔开制成的电池。 3.铅酸蓄电池 1859年法国普兰特(Plante)发现,由正极板、负极板、电解液、隔板、容器(电池槽)等5个基本部分组成。用二氧化铅作正极活性物质,铅作负极活性物质,硫酸作电解液,微孔橡胶、烧结式聚氯乙烯、玻璃纤维、聚丙烯等作隔板制成的电池。 铅蓄电池可放电也可以充电,一般用硬橡胶或透明塑料制成长方形外壳(防止酸液的泄漏);设有多层电极板,其中正极板上有一层棕褐色的二氧化铅,负极是海绵状的金属铅,正负电极之间用微孔橡胶或微孔塑料板隔开(以防止电极之间发生短路);两极均浸入到硫酸溶液中。放电时为原电池,其电极反应为: 负极:Pb + SO42-- 2e === PbSO4 正极:PbO2 + 4H+ + SO42- + 2e === PbSO4 + 2H2O 总反应式为:Pb + PbO2 + 2H2SO4 ====== 2PbSO4 + 2H2O 当放电进行时,硫酸溶液的的浓度将不断降低,当溶液的密度降到1.18g/ml 时应停止使用进行充电,充电时为电解池,其电极反应如下: 阳极:PbSO4 + 2H2O- 2e === PbO2 + 4H+ + SO42- 阴极:PbSO4 + 2e === Pb + SO42- 总反应式为:2PbSO4 + 2H2O ====== Pb + PbO2 + 2H2SO4 当溶液的密度升到1.28g/ml时,应停止充电。 上述过程的总反应式为: 放电 Pb + PbO2 + 2H2SO4 ====== 2PbSO4 + 2H2O 充电 4.锌银电池 一般用不锈钢制成小圆盒形,圆盒由正极壳和负极壳组成,形似纽扣(俗称纽扣电池)。盒内正极壳一端填充由氧化银和石墨组成的正极活性材料,负极盖一端填充锌汞合金组成的负极活性材料,电解质溶液为KOH浓溶液。电极反应式如下: 负极:Zn + 2OH- -2e=== ZnO + H2O 正极:Ag2O + H2O + 2e === 2Ag + 2OH- 电池的总反应式为:Ag2O + Zn ====== 2Ag + ZnO 电池的电压一般为1.59V,使用寿命较长。 5.镉镍电池和氢镍以及金属氢化物镍电池 二者均采用氧化镍或氢氧化镍作正极,以氢氧化钾或氢氧化钠的水溶液作电解质溶液,金属镉或金属氢化物作负极。金属氢化物电池为20世纪80年代末,利用吸氢合金和释放氢反应的电化学可逆性发明制成,是小型二次电池主导产品。 6.锂电池 锂电池是一类以金属锂或含锂物质作为负极材料的化学电源的总称通称锂电池,分为一次锂电池和二次锂电池。 7.锂离子电池 指能使锂离子嵌入和脱嵌的碳材料代替纯锂作负极,锂的化合物作正极,混合电解液作电解质液制成的电池。锂离子电池是1990年有日本索尼公司研制出并首先实现产品化。国内外已商品化的锂离子电池正极是LiCoO2,负极是层状石墨,电池的电化学表达式为(—) C6▏1mol/L LiPF6-EC+DEC▏LiCoO2(+) 8.氢氧燃料电池 这是一种高效、低污染的新型电池,主要用于航天领域。其电极材料一般为活化电极,具有很强的催化活性,如铂电极、活性碳电极等。电解质溶液一般为40%的KOH溶液。电极反应式如下: 负极:2H2 + 4OH- -4e=== 4H2O 正极:O2 + 2H2O + 4e=== 4OH- 总反应式:2H2 + O2 === 2H2O 9.熔融盐燃料电池 这是一种具有极高发电效率的大功率化学电池,在加拿大等少数发达国家己接近民用工业化水平。按其所用燃料或熔融盐的不同,有多个不同的品种,如天然气、CO、---熔融碳酸盐型、熔融磷酸盐型等等,一般要在一定的高温下(确保盐处于熔化状态)才能工作。 下面以CO---Li2CO3 + Na2CO3---空气与CO2型电池为例加以说明: 负极反应式:2CO + 2CO32--4e === 4CO2 正极反应式:O2 + 2CO2 + 4e=== 2CO32- 总反应式为:2CO + O2 === 2CO2 该电池的工作温度一般为6500C 10.海水电池 1991年,我国科学家首创以铝---空气---海水为材料组成的新型电池,用作航海标志灯。该电池以取之不尽的海水为电解质,靠空气中的氧气使铝不断氧化而产生电流。其电极反应式如下: 负极:4Al – 12e === 4Al3+ 正极:3O2 + 6H2O + 12e === 12OH- 总反应式为:4Al + 3O2 + 6H2O === 4Al(OH)3 这种电池的能量比普通干电池高20---50倍! 新型化学电池 (1碱性氢氧燃料电池 这种电池用30%-50%KOH为电解液,在100°C以下工作。燃料是氢气,氧化剂是氧气。其电池图示为 (―)C|H2|KOH|O2|C(+) 电池反应为 负极 2H2 + 4OH―4e=4H2O 正极 O2 + 2H2O + 4e=4OH 总反应 2H2 + O2=2H2O 碱性氢氧燃料电池早已于本世纪60年代就应用于美国载人宇宙飞船上,也曾用于叉车、牵引车等,但其作为民用产品的前景还评价不一。否定者认为电池所用的电解质KOH很容易与来自燃料气或空气中的CO2反应,生成导电性能较差的碳酸盐。另外,虽然燃料电池所需的贵金属催化剂载量较低,但实际寿命有限。肯定者则认为该燃料电池的材料较便宜,若使用天然气作燃料时,它比唯一已经商业化的磷酸型燃料电池的成本还要低。 (2) 磷酸型燃料电池 它采用磷酸为电解质,利用廉价的炭材料为骨架。它除以氢气为燃料外,现在还有可能直接利用甲醇、天然气、城市煤气等低廉燃料,与碱性氢氧燃料电池相比,最大的优点是它不需要CO2处理设备。磷酸型燃料电池已成为发展最快的,也是目前最成熟的燃料电池,它代表了燃料电池的主要发展方向。目前世界上最大容量的燃料电池发电厂是东京电能公司经营的11MW美日合作磷酸型燃料电池发电厂,该发电厂自1991年建成以来运行良好。近年来投入运行的100多个燃料电池发电系统中,90%是磷酸型的。市场上供应的磷酸型发电系统类型主要有日本富士电机公司的50KW或100KW和美国国际燃料电池公司提供的200KW。 富士电机已提供了70多座电站,现场寿命超过10万小时。 磷酸型燃料电池目前有待解决的问题是:如何防止催化剂结块而导致表面积收缩和催化剂活性的降低,以及如何进一步降低设备费用。 化学电源的重大意义: 化学能转换为电能的原理的发现和各式各样电池装置的发明,是贮能和供能技术的巨大进步,是化学对人类的一项重大贡献,极大地推进了现代化的进程,改变了人们的生活方式,提高了人们的生活质量。

尖晶石型锰酸锂正极材料的合成及电化学性能研究 在线阅读 整本下载 分章下载 分页下载 【英文题名】 The Study of Electrochemistry Performance for Synthesize Spinel Li-Mn-O Materials on the Lithium-ion Battery 【作者】 卢星河; 【导师】 唐致远; 【学位授予单位】 天津大学; 【学科专业名称】 应用化学 【学位年度】 2005 【论文级别】 博士 【网络出版投稿人】 天津大学 【网络出版投稿时间】 2007-07-10 【关键词】 锂离子电池; 正极材料; 尖晶石型锰酸锂; 阴阳离子复合掺杂; 包覆改性; 电化学性能; 高温性能; 【英文关键词】 lithium-ion battery; cathode material; spinel LiMn_2O_4; doping; surface modification; electrochemical performance; elevated temperature performance; 【中文摘要】 锂离子电池因质量比容量大、平均开路电压高和循环寿命长等优点已广泛应用于移动、便携式电器。目前锂离子电池的正极材料主要采用层状钴酸锂。由于钴资源的短缺、大电流充放电和高温环境使用的不安全因素,研究开发新一代高性能正极材料成为一项重要课题。尖晶石型LiMn_2O_4材料具有原料资源丰富、易制备和环境友好等优点,特别是因为充放电电压高、循环性能好、比容量高和使用安全等优良的电化学性能,该材料成为本研究的重点: 本研究首先对尖晶石型锰酸锂正极材料的研究现状、存在问题和解决方案等进行了较系统的探讨,先后制定了多项改善和提高尖晶石型锰酸锂电化学性能的措施。合成研究了分别和同时掺杂阴、阳离子正极材料Li_(1.02)M_xMn_(2-x)Q_yO_(4-y)的充放电比容量、循环性能、高温(55℃)性能和大电流充放电性能等,表征了合成材料的晶体结构、表观形态、粒径及粒径分布规律,进一步探讨了表面包覆(修饰)改性和电解液及其组成对锰酸锂正极材料的作用和影响。 以实验室合成的尖晶石型锰酸锂LiCo_xCr_yMn_(2-x-y)O_4材料为母体材料,以SiO_2... 【英文摘要】 The lithium-ion batteries have been widely used in portable electronic products such as, cell phones, notebook computers and cameras because of its high-capacity (2.5 times as large as the Ni-Cd batteries and 1.5 times as large as the Ni-MH batteries) and high average open voltage, that is, 3.7 V in contrast with the 1.2V of Ni-MH batteries. In the near future, the lithium-ion battery will used in the motive-batteries. As key parts of the battery,the anode and cathode have become one of the hott... 【DOI】 CNKI:CDMD:1.2007.078634 【更新日期】 2007-07-25 【相同导师文献】 导师:唐致远 导师单位:天津大学 学位授予单位:天津大学[1] 高飞.锂离子电池正极材料LiFePO_4的合成与电化学性能研究[D]. 中国博士学位论文全文数据库,2008,(08)[2] 黄娟.循环冷却水新型加酸工艺配方的研究[D]. 中国优秀硕士学位论文全文数据库,2008,(08)[3] 常林荣.铝轻型板栅在铅酸电池中的应用及聚苯胺的电化学合成[D]. 中国优秀硕士学位论文全文数据库,2008,(08)[4] 穆雪梅.新型高效氧电极催化剂的研究与评价[D]. 中国优秀硕士学位论文全文数据库,2008,(08)[5] 邱瑞玲.固相法合成LiFePO_4及其改性研究[D]. 中国优秀硕士学位论文全文数据库,2008,(08)[6] 王倩.柔性纸质电池的研制[D]. 中国优秀硕士学位论文全文数据库,2008,(08)[7] 赵松鹤.锂离子电池负极材料钛酸锂的研究[D]. 中国优秀硕士学位论文全文数据库,2008,(08)[8] 张联忠.两种锂离子电池负极材料的研究[D]. 中国优秀硕士学位论文全文数据库,2006,(08)[9] 肖成伟.车用锂离子动力电池循环性能的研究[D]. 中国优秀硕士学位论文全文数据库,2007,(08)[10] 樊勇利.锂离子电池正极材料氧化镍钴锰锂的研究[D]. 中国优秀硕士学位论文全文数据库,2007,(08)

现在商业化用的正极材料主要有钴酸锂,锰酸锂,磷酸铁锂负极材料基本上都是石墨,钛酸锂发展也不错

钠电池负极研究论文

钠电池的研究始于1960年。高温钠硫电池首先被开发出来。该电池采用熔融的金属钠作为负极,熔融的单质硫作为正极,并采用具有钠离子电导率的固态电解质作为隔膜。但由于其存在巨大的安全隐患,近些年来有关钠电池的研究主要集中在降低电池的工作温度上。在70年代末期和80年代初期,对常规锂离子和钠离子插层型材料的研究工作开始引起全世界的关注。但是由于缺少合适的负极材料,钠离子电池的商业化并没有进入到实质阶段。但由于钠资源储量丰富以及分布广泛,钠离子电池被认为是未来大规模、低成本储能系统的理想候选产品。自2009年以来,与钠电池有关的论文数量有着显着增长。由于传统的石墨负极材料的储钠性能远远低于储锂性能。目前大多数研究活动都致力于开发高性能负极材料以提高钠离子电池的能量密度。 最近,由于其较高的理论比容量(1166 mA h g-1)和较低的电极电势,科学人员的研究兴趣重新集中在钠金属负极的研究上。采用金属钠为负极的电池,例如室温钠硫(Na-S)电池,室温钠氧(Na-O2)电池和室温 ZEBRA型钠金属卤化物电池具有非常大的潜力成为新一代高比能量、低成本的储能装置。但目前关于钠金属负极的研究仍处于起步阶段,其在电池充放电反应过程中的复杂机理还没有被完全了解。为了在实际的可充电电池系统中有效使用钠金属负极,需要克服诸多挑战。首先,抑制钠枝晶的生长可以提高电池的安全性能。其次,提高电极循环过程中的库仑效率可以最大程度地减少所需金属钠的用量,从而降低材料成本,增加整个电池系统的能量密度。同时出色的循环性能可以延长电池的使用寿命以满足客户的需求

钠,铝,碱液能否形成原电池,这也太快了,不能控制住速率的!太多危险! 如用Na,也有钠硫电池,是一种以金属钠为负极、硫为正极、陶瓷管为电解质隔膜的二次电池。在一定的工作度下,钠离子透过电解质隔膜与硫之间发生的可逆反应,形成能量的释放和储存。 卡内基·梅隆大学的官方网站显示,贝廷格和惠特克发明了一种可食用的钠电池,并在4月发表了相关论文。这种电子药丸能在患者体内检测体征情况,精确性把药物送到需要治疗的患处,并且最终能被人体消化吸收。值得注意的是,4月初,一家专门研制钠电池的初创公司-阿奎恩能量公司获得了比尔·盖茨领投的3500万美元融资。阿奎恩成立于2007年,与卡耐基·梅隆大学一样坐落于匹兹堡市。而公司的创始人、现任的首席技术官,正是惠特克教授。 新的研究表明,钠充电电池可以取代锂离子电池,以支持电子产品和电动车。这将需要使用一个含有铁的新电极材料,而不是镍和钴。钠和铁的广泛使用可降低成本,同时还能创造更高密度的电池。电池将需要重新设计,以容纳不同的化学反应和较大的钠原子。东京理科大学以Shinichi Komaba为首的研究人员提出了混合三氧化二铁,氧化钠,氧化锰等材料成粉末,然后放入一个球,并在摄氏900度加热12个小时。由此产生的材料配方是NA2/ 3[Fe1/2Mn1/2] O2,以及被用来形成电池正极与负极的金属钠,平均电压为2.75V。

研究亮点(1)利用原位磁性监测技术研究了一个典型的Fe3O4/Li电池内部电子结构的演化;(2)揭示了Fe3O4/Li体系中,表面电荷容量是额外容量的主要来源;(3)金属纳米粒子的表面电容机制可以推广到大范围的过渡金属化合物中。图文导读1.结构表征和电化学性能用传统的水热法合成了单分散的空心Fe3O4纳米球,在100 mA g−1电流密度下充放电(图1a),第一次放电容量为1718 mAh g−1,在第二次和第三次分别为1370 mAh g−1和1364 mAh g−1,远远超过926 mAh g−1的理论预期。完全放电产物的BF-STEM图像(图1b-c)表明,经锂还原后,Fe3O4纳米球转化为尺寸约为1-3nm的更小的Fe纳米颗粒,分散在Li2O中。为了证明在电化学循环过程中磁性的变化,获得了完全放电至0.01V后的磁化曲线(图1d),显示了由于纳米铁颗粒的形成而产生的超顺磁性行为。图1(a)在100 mA g−1电流密度下循环的Fe3O4/Li电池的恒流充放电曲线;(b)全锂化Fe3O4电极的BF-STEM图像;(c)团聚体中存在Li2O和Fe的高分辨率BF-STEM图像;(d)Fe3O4电极在锂化过程前(黑色)和之后(蓝色)的磁滞曲线,以及后者(紫色)的Langevin拟合曲线。2.结构和磁演化的实时检测为了将电化学与Fe3O4的结构和磁性变化联系起来,对Fe3O4电极进行了原位X射线衍射(XRD)和原位磁性监测。在从开路电压(OCV)到1.2V的初始放电过程中,一系列XRD衍射图中的Fe3O4衍射峰在强度和位置上都没有明显的变化(图2a),表明Fe3O4只经历了Li插层过程。当充电到3V时,Fe3O4的反尖晶石结构仍然保持完好,这表明在这个电压窗口中的过程是高度可逆的。进一步进行了与恒流充放电试验相结合的原位磁性监测,以研究磁化是如何实时演变的(图2b)。图2原位XRD和磁性监测表征。(a)原位XRD图;(b)研究了Fe3O4在3 T外加磁场下的电化学充放电曲线及相应的可逆原位磁响应。为了从磁化强度变化的角度对这种转换过程有一个更基本的了解,实时收集了磁性响应,以及伴随电化学驱动反应的对应相变(图3)。很明显,第一次放电时,Fe3O4电极的磁化响应与其他循环不同,这是由于第一次锂化过程中Fe3O4发生不可逆相变所致。当电位降至0.78V时,Fe3O4的反尖晶石相转变为含Li2O的FeO类盐石结构,Fe3O4相在充电后无法恢复。相应地,磁化强度迅速下降至0.482μbFe−1。随着锂化的进行,没有新相形成,(200)和(220)类FeO衍射峰的强度开始减弱。当Fe3O4电极完全锂化时,没有明显的XRD峰保留(图3a)。注意到当Fe3O4电极从0.78V放电到0.45V时,磁化强度(从0.482 μb Fe−1增加到1.266μbFe−1),这归因于FeO到Fe的转化反应。然后,在放电结束时,磁化强度缓慢下降至1.132 μB Fe−1。这一发现表明,完全还原的金属Fe0纳米颗粒仍可能参与锂存储反应,从而降低电极的磁化强度。图3相变和磁响应的原位观测。(a)Fe3O4电极第一次放电过程中采集的原位XRD图;(b)Fe3O4/Li电池在外加磁场3 T下电化学循环的原位磁力测定。3.Fe0/Li2O体系的表面电容Fe3O4电极的磁性变化发生在低电压下,在该电压下最有可能产生额外的电化学容量,这表明电池内存在未发现的电荷载体。为了探索潜在的储锂机理,利用XPS、STEM和磁性能谱等手段,研究了Fe3O4电极在0.01V、0.45V和1.4V的磁化峰,以确定磁性变化的来源。结果表明,磁矩是影响磁性变化的关键因素,因为测量到的Fe0/Li2O体系的Ms不受磁各向异性和粒子间耦合的影响。为了进一步了解Fe3O4电极在低压下的动力学性质,在不同的扫描速率下进行了循环伏安测量。如图4a所示,矩形循环伏安曲线出现在0.01V和1V之间的电压范围内(图4a)。图4b表明Fe3O4电极上发生了电容响应。伴随恒流充放电过程的高度可逆磁响应(图4c),电极的磁化强度在放电过程中从1V下降到0.01V,在充电过程中又重新增加,说明Fe0的类电容表面反应是高度可逆的。图4在0.01–1 V下的电化学性能和原位磁性表征。(a)循环伏安曲线。(b)利用峰值电流与扫描速率的相关性确定b值;(c)在5 T外加磁场下,磁化强度相对于充放电曲线的可逆变化。上述Fe3O4电极的电化学、结构和磁性特征表明,额外的电池容量是由Fe0纳米粒子的自旋极化表面电容引起的,并伴随磁性变化。自旋极化电容是界面上自旋极化电荷积累的结果,在充放电过程中可以显示磁响应。对于Fe3O4基电极,在第一次放电过程中,分散在Li2O基底中的细Fe纳米颗粒具有较大的表体积比,由于高度局部化d轨道,可实现费米能级的高状态密度。根据Maier的空间电荷储存理论模型,作者提出在金属Fe纳米粒子的自旋分裂带中,可以储存大量电子,这可能会在Fe/Li2O纳米复合材料中产生自旋极化表面电容(图5)。图5Fe/Li2O界面自旋极化电子的表面电容示意图。(a)铁磁性金属颗粒表面(放电前后)的自旋极化态密度示意图,与铁的体自旋极化相反;(b)超储锂表面电容模型中空间电荷区的形成。总结与展望通过先进的原位磁性监测,研究了TM/Li2O纳米复合材料内部电子结构的演变,以揭示该锂离子电池额外存储容量的来源。结果表明,在Fe3O4/Li模型电池系统中,电化学还原的Fe纳米颗粒能够储存大量的自旋极化电子,导致过大的电池容量和明显改变的界面磁性。实验进一步验证了CoO、NiO、FeF2和Fe2N电极材料中存在这种电容,说明锂离子电池中金属纳米粒子的自旋极化表面电容的存在,并为这种空间电荷存储机制在其它过渡金属化合物基电极材料上的应用奠定了基础

燃料电池阴极催化剂研究现状论文

燃料电池的演化及发展探析摘要:对燃料电池的工作原理进行了详细的分析;对其演化过程进行了简述;对其最新技术进行了详细的研究;对国内燃料电池技术的发展提供了参考意见。关键词:燃料电池;碱性燃料电池;磷酸型燃料电池;熔融碳酸型燃料电池;固体氧化物燃料电池;直接醇类燃料电池;固体高分子膜燃料电池随着工业化过程的进一步加强,大气中二氧化碳的排放量和污染程度加剧,导致了温室效应越来越明显,因此环保问题引起了各国政府的重视。为此,绿色能源技术引起了各国的普遍关注,并且正在逐步成为一种趋势。经过了各方的互相协作和努力,燃料电池技术正日趋成熟。作为一项重要技术,从本质上讲,它是一种电化学的发电装置,等温地按电化学方式,直接将化学能转化为电能而不必经过热机过程,不受卡诺循环限制,因而能量转化效率高,且无噪音,无污染,因此正在成为理想的替代能源。1 燃料电池的演化过程1.1 燃料电池的演化过程燃料电池是一种新型的无污染、高效率汽车、游艇动力和发电设备,在本质上是一种能量转化装置。1839年,格罗夫发表了第一篇有关燃料电池研究的报告。1889年,蒙德和朗格尔采用了浸有电解质的多孔非传导材料为电池隔膜,一铂黑为电催化剂,以钻孔的铂或金片为电流收集器组装出燃料电池。但此后的一段时间里,奥斯卡尔德等人在探索燃料电池发电过程的实验都因为反映速度太慢而使实验没有成功。与此同时,热机研究却取得了突破性进展并成功运用而迅速发展。因此燃料电池技术在数十年内没能取得大的进展。直到1923年,由施密特提出了多孔气体扩散电极的概念,在此基础上,培根提出了双孔结构电池概念,并成功开发出中温度培根型碱性燃料电池。以此为基础,经过一系列发展,这项燃料电池技术得到了突飞猛进的发展。在20世纪60年代由普拉特一惠特尼公司研制出的燃料电池系统,并成功应用于宇航飞行,使得燃料电池进入了应用阶段。1.2 燃料电池的基本工作原理燃料电池是一种能量转化装置,它就是按电化学原理,即原电池工作原理,等温地把贮存在燃料和氧化剂中的化学能直接转化为电能,因而实际过程是氧化还原反应。从本质上说是水电解的一个“逆”装置。电解水过程中,通过外加电源将水电解,产生氢和氧;而在燃料电池中,则是氢和氧通过电化学反应生成水,并释放出电能。因此,燃料电池的基本结构与电解水装置是相类似的,它主要由4部分组成,即阳极、阴极、电解质和外部电路。其阳极为氢电极,阴极为氧电极。通常,阳极和阴极上都含有一定量的催化剂,目的是用来加速电极上发生的电化学反应。两极之间是电解质,电解质可分为碱性型、磷酸型、固体氧化物型、熔融碳酸盐型和质子交换膜型等类型。燃料电池的工作原理如下(以磷酸型或质子交换膜型为例):(1)氢气通过管道或导气板到达阳极;(2)在阳极催化剂的作用下,1个氢分子解离为2个氢离子,即质子,并释放出2个电子;(3)在电池的另一端,氧气(或空气)通过管道或导气板到达阴极,同时,氢离子穿过电解质到达阴极,电子通过外电路也到达阴极;(4)在阴极催化剂的作用下,氧与氢离子和电子发生反应生成水;与此同时,电子在外电路的连接下形成电流,通过适当连接可以向负载输出电能。1.3 燃料电池的特点由上所述可知,燃料电池在本质上是电化学转化装置,它能够通过电化学过程直接将化学能转化为电能和热能,因而具有如下优点:1)干净清洁。利于环保,可减少二氧化碳的排放;无噪音,并自给供水;2)高效。由于其转化过程没有经过热机过程,因此效率高。3)适用性。由于污染小,无噪音,可靠,可使用于终端用户,因而可减少各种损失,并节省设备投资。4)可调制性。由于它是组合的结构,因而可以调节,以满足需求。5)燃料多样性。由于燃料可以是氢气、天然气、煤气、沼气的功能碳氢化合物燃料。基于以上特点。燃料电池成为绿色能源技术发展的重点。成为本世纪最有发展前途的技术之一。2 国内外燃料电池的最新进展2.1 碱性燃料电池(AFC)AFC技术是第一代燃料电池技术,已经在20世纪60年代就成功地应用于航天飞行领域。它是最早开发的燃料电池技术。目前德国一家公司开发的AFC在潜艇动力实验上获得了成功。国内对AFC的研究工作是从20世纪60年代开始的,主要是集中在中科院的下属研究机构。武汉大学和中科院长春应化所在上世纪60年代中期即开始对AFC进行基础研究。上世纪70年代,由于航天工业的需求,天津电源研究所研制出lkW AFX2系统。与此同时,A型号(即以纯氢、纯氧为燃料和氧化剂)、B型号(即以N2H4分解气、空气氧为燃料和氧化剂)燃料电池系统也在中科院大连化物所研制成功。此外,其它的研究机构也都展开了对AFC的研究。2.2 磷酸型燃料电池(PAFC)PAFC也是第一代燃料电池技术,也是目前最为成熟的应用技术。已经进入了商业化应用和批量生产。目前美国、日本、欧洲各国已有100多台200KW 发电机组投入使用或在安装中,最长的已经运行了37000小时。因此已经证实了PAFC是高度可靠的电源。只是由于其成本太高,目前只能作为区域性电站来现场供电、供热。国内对PAFC的研究工作相对较少。尽管如此,在对PAFC的研究过程中仍进行了卓有成效的工作,取得了不俗成绩。如国内学者魏子栋等人在对氧化还原发应的电催化剂研究过程中发现了Fe、Co对Pt的锚定效应。2.3 熔融碳酸型燃料电池(MCF℃)MCFC是属于第二代燃料电池技术。目前对MCF℃ 的研究国家有美国、日本和西欧,主要是应用于设备发电,目前还处于试验阶段。美国对MCFC的研究单位有国际燃料电池公司和能源研究公司及M—C动力公司。而日本对MCFC的主要是NEIX)公司、电力公司、煤气公司和机电设备厂商组成的MCFC研究开发组。大坂工业技术研究所从1991年开始10kW的MCFC单电池的长期运行试验,到1995年l1月止,累计运行了4万小时,确证了MCFC实用化的可能。德国MTU宣布在MCFC技术方面取得了突破。由该公司开发出来的世界上最大的280kW 的单电池还在运行。国内对MCFC的研究是中科院大连化物所从1993年开始的。现在正处于组合电池的研究阶段。而经过多年的艰苦努力与创新突破,上海交通大学科研人员率先在国内成功进行了1~1.5l 的熔融碳酸型燃料电池(M ℃)发电实验,取得了在国外一些国家至少需要6年甚至10年左右时间才能获得的成果。参加项目评审的专家认为,它整体水平达到了当前国内领先水平、国际20世纪90年代初同类技术的先进水平。2.4 质子交换膜型燃料电池系统(PEMF℃)PEMFC是属于第三代燃料电池技术。20世纪60年代,美国就已将PEMFC应用于宇航飞行,但由于技术问题,使得在其发展过程中受到了影响。直到20世纪80年代,加拿大Ballad公司才展开对PEMFC的研究工作。并取得了突破性进展。目前开发出来的电池组合功率达到了1000W/L、700W/kg的指标,因此这一技术引起了各国的广泛关注。目前Ballad公司在这一技术领域处于领先地位。国内对PEMFC的研究是从20世纪70年代天津电源研究所展开一聚苯乙烯蟥酸膜为电解质的PEM—FC基础研究。但进展缓慢。而国外在这一领域发展较快。因此在90年代开展了PEMFC的跟踪研究。目前,在PEM 方面,国内技术在多个方面取得了突破,北京富原新技术开发总公司已出现了50W、75W、150W、5KW 等样机。而上海神力科技有限公司已研制出5KW,10KW 的大功率型质子交换墨燃料电池系统,这大大缩小了与世界先进水平的距离。

作者: Raymond George Klaus Hassmann【摘要】燃料电池具有非同寻常的性能: 电效率可达60%以上,而且可以在带着部分负荷运行的情况下进行维修,除了有低比率碳氧化物排放外几乎没有任何有害的排放物。文章介绍按温度划分的4种主要燃料电池(PEMFC、PAFC、MCFC和SOFC)的性能,重点介绍高温固体氧化物燃料电池(SOFC)的应用及其发展前景。 With demonstration projects fuel cells are Well uder way toward penetrating the power market,covering a wide range of application.This paper introduces the main four types of fuel cells which are PEMFC,PAFC,MCFC and SOFC.Then it puts the emphasis on SOFC and its application market. 燃料电池是通过由电解液分隔开的2个电极中间的燃料(如天然气、甲醇或纯净氢气)的化学反应直接产生出电能。与汽轮发电机生产的电能相比,燃料电池具有非同寻常的特性:它的电效率可达60%以上,可以在带部分负荷运行的情况下进行维修,而且除了排放低比率碳氧化物外,几乎没有任何其他的有害排放物。1 燃料电池的分类 目前研制的燃料电池技术在运行温度上有不同的类型,从比室温略高直到高达1000℃的范围。大多数工业集团公司的注意力集中在以下4种主要类型上:(1)运行温度在60-80℃之间的聚合物电解液隔膜型燃料电池(PEMFC);(2)运行温度在160-220℃之间的磷酸类燃料电池(PAFC);(3)运行温度在620-660℃之间的熔融碳酸盐类燃料电池(MCFC);(4)运行温度在880-1000℃之间的固体氧化物燃料电池(SOFC)。 可以将这些类型的燃料电池划分为低温型(100℃及以下)、中温型(约200℃左右)及高温型(600-l000℃)燃料电池。 表1简要地列出了各种类型燃料电池的性能。中温型和高温型燃料电池适于用在静止式装置上,而低温型燃料电池对于静止装置和移动式装置都适用。 实用装置的功率容量差别也很大,可以给笔记本电脑及移动电话供电(数以W计),也可以给居民住宅(数kW)或是分散的电热设备和动力设备(数百KW到数MW)供电。 最适于用来驱动汽车的是低温型燃料电池。 根据使用期限成本进行的经济性比较结果表明,就发电成本而言,SOFC型燃料电池要PEM型低30%。这个结果是根据SOFC型燃料电池的电效率比PEM型的高,这2种燃料电池最终都可以达到l000美元/KW的投资成本这一假设条件而推导出来的。 2 高温燃科电池 高温型燃料电池具有许多适于在静止式装置上使用的特性。但是在高温型燃料电池产生出电能之前需要较长的加热过程,因而这种技术不能应用于要求在短时间内频繁起动的各种实用装置。此外,高温型燃料电池还具有以下特点: (1)不需要使用贵金属来催化电化学反应。一般情况下使用陶瓷材料。 (2)对CO完全没有限制。CO参加到电化学反应过程并像H2一样被氧化。 (3)对燃料表现出高度灵活性。可以给这类燃料电池发电设备供应天然气,天然气在设备内部被转换成H2和CO。这意味着无需任何外部燃料,从而大大简化了发电设备的平衡问题。 (4)高温可以将燃气轮机连接到该系统上,在这种情况下,燃料电池发电设备是在300kPa压力下运行,并在不考虑燃气轮机输出的情况下将燃料电池的功率密度提高约20%,因此使总的电效率提高10%,可成倍地降低使用期限成本。 (5)较高的运行温度也为排热提供了更多的灵活性。在电效率达60%或更高水平的联合循环系统中可限制废热排放,而在单循环下则会排放出更多的热量。 MCFC和SOFC是这类高温型燃料电池的2种技术。它们使用的材料不同。MCFC是在一只陶瓷容器中放入液态的金属碳酸盐作为电解液,如果没有采取防止电极老化的措施,燃料电他的使用寿命会受到影响。 在MCFC中电化学反应是由CO3离子引发的。MCFC采用的是颊型电池,和SOFC型的管形设计方案相比,这种颊型电他的功率密度要稍微高一些。这在成本上要比SOFC型装置优越。但在另一方面,由于SOFC所用的陶瓷材料非常稳定,可以用在950-1000℃范围内,所以SOFC装置在抗老化性能上更具优越性。到目前为止,所有的长期电池试验和正在运行的试验性机组都表明SOFC型装置的使用寿命可以达到70 000-80 000h,是MCFC型的2倍。 MCFC和SOFC 2种技术在进行100-250kW功率范围的单循环现场试验中,成本都有大幅度的下降。目前在MCFC开发上占有主导地位的是美国的Fuel Cell Energy公司及其在德国的授权单位MTU,日本的Ishikawajima-Harima重工(IHI)和三菱公司等。而Siemens Westinghouse在SOFC开发上处于领先水平。3 中温型燃料电池 目前磷酸类燃料电池(PAFC)是具有最先进技术的燃料电池。80年代,IFC(国际燃料电池公司)决定对其前期商业化生产线进行投资,制造和销售200kW的PAFC装置,并将其投入市场。东芝公司在80年代末就已经努力使PAFC技术进入商用市场。从此,PAFC技术就一直在静止燃料电池的市场中占据着显赫的位置。迄今为止,全球已经安装了150多套PAFC燃料电池装置。 研究表明,这种燃料电池未能实现市场商业化的原因大致有以下几方面: (1)电效率最高为40%,超过维修期限后会降到35%甚至更低水平。通常情况下设备的使用期限不超过20 000运行h。 (2)有些试验性的设备(如东芝公司管理的1套11MW设备未能达到顶期的性能水平。 (3)美国和日本政府大幅度削缩用于PAFC技术研究和开发的投资。 (4)从迄今积累的经验及在改善设计参数和降低产品成本方面的潜力来看,让PAFC技术成功地跻身于当今的市场中的可能性是极低的。4 SOFC在配电市场方面的潜力 Siemens Westinghouse公司根据对市场的分析,决定采取必要的措施加快SOFC技术进入市场的步伐。预计在2003-2004年提供第l批产品,进入商业性生产前的试验阶段,装置容量从目前的2MW扩大到15MW。 北美和欧洲被认为是SOFC燃料电池技术最有希望的市场。Hagler Bailly公司和西门子公司对功率范围为250 kW-l MW的市场进行了调查,结果表明到2005年SOFC燃料电池的市场容量为每年10000MW。北美和欧洲几乎各占50%。考虑到北美洲用户的结构和他们的需求,在北美洲各类小型发电机组的总容量在2010年可能达到每年约1000MW,其中600MW可能是燃料电池发电装置。在各种类型的燃料电池中,SOFC的市场份额约占40%,到2010年在北美洲SOFC的全年销售额将达到2.4亿美元。 在竞争日益激烈的配电市场中的另一个获胜者是微型燃气轮机,主要是作为备用电源或辅助电源。由于SOFC和微型燃气轮机的特性适于不同的应用场所,SOFC效率高但投资成本也高,而微型燃气轮机成本低但效率也低,因而这2种技术不会产生市场上竞争。而往复式发动机会逐渐失去其在市场中的份额。 欧洲电网要比北美洲电网强大得多,欧洲电网强化了集中的大型发电厂的作用。因此在北美洲经常出现的分散式电热设备和动力装置的供电质量和供电可靠性问题在欧洲是不突出的。但另一方面,在欧洲对能量储存更为敏感。 此外,一些国家政府将颁布新的规程和法律及新的能源价格,预计欧洲各国之间市场份额会有重大差异。在有些情况下这个过程会给SOFC用于配电装置起到一定的促进作用。此外,欧洲的自由化近程落后于北美洲。因此,市场预测结果会有很大程度的不确定性。5 SOFC技术应用的扩展 使用天然气作为燃料的SOFC是车载式装置,其扩展应用可有以下几种形式:(1)家庭应用:新一代燃料电池将是扁平管型的,其功率密度是目前所用圆柱型燃料电池技术的2倍,因而将制造出5kW的燃料电池装置。这种设计方案是可行的,在配电市场中可以替代圆柱型燃料电池。(2)l0MW以上的系统装置:很显然,只要SOFC技术占有了功率范围在250-10MW的市场,那么下一步最必然的是要争取占有l0MW以上更大规模发电设备的市场。通过把更多SOFC链接起来便能实现这个目标,也满足了高效率低成本的要求。20MW级规模燃料电池的电效率已经接近甚至超过70%。(3)用液态燃料运行:使用天然气作为燃料将SOFC的应用局限在靠近天然气供气网的区域内,从而使这项新技术的应用受到限制。因此存在着让SOFC使用液态燃料的迫切要求。因此,应与大型石油公司合作进行该课题的研究开发,选择一种适宜的液体燃料并设计出最适于使用这种新燃料的SOFC发电装置,以便为边远的用户服务。 (4)C02的分离:Shell公司和 Siemens Westinghouse公司正在共同研制一种能将CO2从完全反应后的燃料中分离的SOFC设飞方案。例如,当把其装在用于回收油的平台上时,可以把CO2用泵压到地下储层中,这不但可省去CO2的排放税,还可提高原油的产出量。 (5)综合性应用:CO2分离装置可能是点火的火花装置,它使得SOFC在一种封闭且可再生的能量循环中成为关键性部件。经过-段时间,SOFC能产生出热量和电力,例如用于大型暖房的设施中,SOFC装置产生的C02可用来加快植物的生长。而任何一种农作物收获后的剩余有机物都可以转化为气体供给SOFC作燃料。

印度研究成果分析论文

FDI促进了中国商品出口迅速增长,1989年到2001年中国年均出口增长率为15%。1989年外资企业占中国总出口不足9%,到2002年其份额已占到一半。在某些高科技产业,2000年外资企业占电子电路产品总出口的比重高达91%,占手机总出口的比重高达96%。2000-2001年中国吸收的FDI中大约有2/3投到了制造业部门。相反,在印度,FDI推动印度出口增长的作用不是很明显(除信息产业外)。流入印度制造业的FDI主要是寻求市场型投资。90年代由FDI产生的出口只占印度总出口的3%,即使到现在,FDI占印度制造业出口的比重估计也不足10%。2000-2001年,中国大部分FDI都流入了大范围的制造业。而在印度,多数FDI流向了服务业、电子电气设备产业,以及工程和计算机行业。表 中国和印度部分FDI指标比较,1990,2000-2002年项目国家1990200020012002FDI流入量(100万美元)中国3,48740,77246,84652,700印度3794,0296,1315,518FDI储量中国24762348346395192447892印度1,96129,87636,00741,525FDI流入增长率(年度%)中国2.81.114.912.5印度-6.116.152.2-10FDI储量占GDP比重(%)中国732.333.236.2印度0.66.57.48.3FDI流入量占固定资本形成总额的比重(%)中国3.510.310.5..印度0.545.8..人均FDI流入量(美元)中国33236.540.7印度0.4465.3总出口中外资企业所占比重(%)中国12.647.950..印度4.5......GDP(10亿美元)a中国3881,0801159.11237.2印度311463484502实际GDP增长率(%)中国3.887.38印度65.44.24.9来源:UNCTAD, FDI/TNC 数据库,a当前值如何解释两国存在的这些差异?影响FDI的因素包括:基本因素、发展战略与政策,以及海外关系网。基本因素在影响FDI流入的经济基本因素方面,中国比印度具备更优越的条件。中国的GDP总值和人均GDP都高于印度,对于寻求市场型FDI来说,中国的市场更具吸引力。中国的教育程度也比印度高,劳动力技术水平更娴熟,对于寻求效率型投资者来说,中国也比印度更具吸引力。此外,中国蕴藏丰富的自然资源,基础设施更具竞争力,特别是沿海地区。然而,印度在技术人才(特别是信息技术人才)方面具有更大优势,国民的英语水平也更高。通过分析两国吸收的FDI的组成成份,可以发现两国具有的不同的竞争优势。在信息和通信技术方面,国际跨国公司的参与,如宏基、爱立信、通用电气、日立、现代、英特尔、LG、微软、神达、摩托罗拉、NEC、诺基亚、飞利浦、三星、索尼、台积电、东芝和其他大型跨国公司,使得中国成为硬件设计和制造中心。而印度专攻于IT服务业、呼叫中心、企业后勤业务(back-office operations),以及R&D。由于中国经济迅速增长,本国消费者对耐用品和非耐用品的需求正在增加,如家用电器、电子设备、汽车、住房和休闲产业。国内需求的迅速增长,以及具有竞争力的企业环境和基础设施,吸收了大批寻求市场型的投资者,同时也促进了从事制造业辅助服务的本土公司的发展。中国对待FDI的态度和政策,以及FDI审批手续也足以说明为什么中国在吸引FDI方面更出色。中国比印度更具“商业导向性”,拥有更多的“FDI友好型”政策。中国的FDI审批手续更简便、决策更迅速。中国的劳动法更灵活,企业用工环境更佳、企业进入市场与退出市场的手续更简便。最近,在对企业环境进行调查中发现,中国在宏观经济环境、市场机会、和FDI政策方面比印度更具吸引力。印度在政治环境、税收和融资方面的得分高于中国。2002年对跨国公司投资计划调查中发现,中国第一次取代美国成为FDI首选的目的地,而印度只排在第15位。印度工商联合会(FICCI)的调查也表明,中国在FDI政策框架、市场增长、消费者购买力、投资回报率、劳动法规和税收方面都优于印度。发展战略和政策中印两国在FDI方面的不同表现也与两国FDI自由化时机、自由化进程、自由化内容,以及发展战略上的不同有关。中国于1979年对FDI开放市场,并逐渐地实现了投资体制自由化。印度开放的时间比中国要早很多,但直到1991年才采取了全面的步骤实行投资自由化。两国吸引的FDI类型不同,追求的工业发展战略也不同。印度长期采取的是进口替代政策,并依赖国内资源和国内企业推动这一战略,其只在高科技产业方面才鼓励FDI流入。尽管中国改革开放后,采取的是渐进的自由化方式,并强迫外资企业采取合资形式,同时还限制FDI进入某些特定领域,但中国赋予FDI(而非国内企业)许多优惠条件,特别是对出口导向型的FDI。上述政策不仅吸引到大量的FDI,也导致迂回资金(中国国内企业把资金转入香港,然后再投资回中国,以逃避政策限制或获得给予外国投资者的特殊优惠条件)的出现。在印度,迂回资金(主要是通过毛里求斯)很少,而且主要是为了避税。由于中国国内市场不完善,并且在外包、管理、本土投入品中存在问题,导致在中国运作的跨国公司的生产活动“过于内化”。所以,制造业跨国公司在中国的投资中,有部分FDI是对中国市场环境不健全做出的“次优选择”。印度的情况有一些不同。企业家精神在印度国内的企业中得到了迅速发展。此外,由于必要的法律和制度环境已经具备,同时对FDI的限制政策一直沿续到90年代,在印度的跨国公司通常采取“外化”的生产模式(如授权经营和其他契约性安排)。即使在实行了广泛的FDI自由化政策后,“内化”模式也没能成为主导模式。在信息技术产业,向印度私人企业采购零部件,这种做法的效率更高,印度国内有众多合格的分包商。2001年入世后,中国实行了对FDI更加有利的政策。随着中国服务业进一步自由化,中国的投资环境将进一步得到改善,例如,2004年中国将允许外国独资企业进入租赁业、仓储业和批发零售业,2005年允许进入广告业和联运业,2006年允许进入保险代理业,2007年允许进入货物运输业。中国已经开放了零售业市场,并吸引了几乎所有的大型零售企业和超市的投资,如欧尚、家乐福、Diary Farm、伊藤洋华堂、吉之岛、万客隆、麦德龙、普尔斯马特、7-11便利店和沃尔马。印度政府正在计划向FDI开放更多的领域,进一步放宽外资企业持股上限。为了确定吸引更多FDI流入的方式,印度计划委员会于2001年8月成立了FDI指导委员会,并且学习中国的模式,成立了经济特区。在促进贸易和吸引FDI方面,中国的经济特区比印度的出口加工区更加成功。海外关系网除了经济和政策因素外,另一个足以说明中国能吸引大量FDI的因素是:对于海外华人企业和个人来说中国是其投资目的地,特别是亚洲的华人。海外华人商业网络巨大,且能向中国大陆大量投资,而印度海外商业网和其向印度投资的规模都很小。这是为什么呢?海外华人数量众多,更具企业家精神,重视与中国国内亲属的关系,并且有兴趣和财力在中国投资,此外当其向中国投资时,他们往往受到贵宾的待遇。而海外印度人数量较少,且多为专业人士,而且与中国人不同,印度人不经常与国内亲属联络,也缺乏向印度投资的财力。中国和印度都是跨国公司转移其劳动密集型产业的候选国,跨国公司是促进中国出口迅速增长的主要因素。然而,在印度,跨国公司主要集中于服务业,特别是信息通信产业,几乎所有的美欧大型信息技术企业都在印度设有机构,而且多数位于班加罗尔,例如美国运通、英国航空公司、美国大型保险金融集团Conseco、戴尔计算机和GE Capital公司都把其后勤业务放到了印度。其他公司,如亚马逊和花旗银行,也向印度本国企业和驻印度的外国企业外包其服务业务。外国公司控制着印度的呼叫中心业务,其占印度此行业年营业额15亿美元的60%。作为投资首选地,中国境内的投资者的信心正在增强,财富500强企业中有80%都在中国进行了投资,37%的财富500强企业向印度外包其业务。尽管印度相关政策环境得到了改善,但跨国公司的投资兴趣依然冷淡,也有一些例外,如信息和通信产业。如果中国和印度能在其发展中协调FDI所发挥的作用,两国在吸引FDI流入方面前景十分乐观。巨大的市场规模与市场潜力,技术型的劳动力资源及低工资成本,都仍将是其吸引FDI流入的主要动力。中国将继续吸引大量的FDI流入,印度则是其最大的竞争对手。如果印度的政策继续得到改善、政府承诺把吸引FDI作为其主要目标,在充满活力的国内企业的支持下,流入印度的FDI将开始增加。

拉马努金(1887-1920)是印度史上最伟大的数学天才之一,与中国的数学家华罗庚一样,也是自学成才,但与华罗庚又有很大的不同,因为华罗庚是在老师的指导下自学成才的,受到了正规的数学训练,而拉马努金则是纯粹的自学成才,纯粹的野生野长,在他成才前从没接受过正规的数学指导和训练,在才能方面,如果说华罗庚是一位数学天才,那么,拉马努金则是一位超级数学天才,其数学才华远高于华罗庚。华罗庚在小学阶段,数学成绩很差,勉强及格,只是到中学后,遇到了两位优秀的数学老师,在他们的精心指导下,华对数学产生了极大兴趣,从此数学成绩扶摇直上,后被清华大学破格录用,进入清华后,华在数学教授们的指导下继续自学数学,再后来,又被推荐到英国剑桥大学的著名数学教授哈代门下,在其指导下进一步钻研数学,最终成为一名了不起的数学家,可见,华罗庚虽然主要是自学成才的,但并没有脱离传统数学的正规,而拉马努金则不然,他在成才前从没接受过正规的数学指导和训练,正因如此,他开创了一条全新的数学道路,其成就也远高于华罗庚,只可惜,他只活了32岁,如果也能象牛顿那样活到80多岁,他也许会成为世界上最伟大的数学家。天才与贫困。1887年12月22日,拉马努金出生于印度泰米尔纳德邦埃罗德县的一个没落的婆罗门家庭。父亲是一家布店的小职员,每月只有20卢比的工资,一家7口人就靠这点微薄的收入维持生活。 拉马努金的母亲出身于书香世家,很有教养,而且很有心机,从小就很注重对孩子的启蒙和培养,拉马努金出生后的7年内,先后出生的三个弟妹都早年夭折了,这又导致了父母对他的溺爱,把全部心血都用在了对他一个的关爱和培养上,所以,拉马努金从小他就喜欢思考问题,曾问老师在天空闪耀的星座的距离,以及地球赤道的长度。在12岁时开始对数学发生兴趣,曾问高班同学:“什么是数学的最高真理?”当时同学告诉他“毕达哥拉斯定理”(即中国人称“勾股定理”)可以作为代表,这引起了他对几何学的兴趣。差不多在这个时候,他对等差级数和等比级数的性质自己做了研究。他那时的同学后来回忆说:“我们,包括老师,很少可以理解他,并对他‘敬而远之’”。 他15岁时高中快毕业时,朋友借给他英国数学家卡尔(G. Carr)写的《纯粹数学与应用数学基本结果汇编》一书。该书收录了代数、微积分、三角学和解析几何的五千多个方程,但书中没有给出详细的证明。这正好符合拉马努金的胃口,给了他很大的自由发挥空间,他把每一个方程式当成一个研究题,尝试对其进行独特的证明,而且还对其中一些进行推广,这花去了他大约5年的时间,留下几百页的数学笔记。他证明了其中的一些方程,更重要的是,在此过程中,他开辟了一条新的数学道路,并从中发现了很多新公式、新定理,培养出了一种超常的直觉思维能力,这是此书给他的最大益处,同时这本书也使他成了一个超级数学天才,彻底改变他的命运和人生道路。 拉马努金在贡伯戈纳姆读高中,毕业时各项成绩突出,被校长形容为“用满分也不足以说明他如此出色”。但进入当地著名的贡伯戈纳姆学院后,由于《纯粹数学与应用数学基本结果汇编》这本书使他着了魔,把全部精力投入数学研究,导致其他科目不及格;他不仅失去了奖学金,而且被学校开除。1905年,18岁的他为此离家出走3个月。一年后,拉马努金被马德拉斯的帕凯亚帕学院录取,但这个数学成绩优异的学生,还是难以逃脱被开除的命运,他的5门文科课程两次不及格。此后拉马努金开始做家教维持生计,同时从图书馆借来数学书,然后把自己的研究结论写在笔记本里。 拉马努金的现状让他的父母非常担忧,他的研究成果已远远超出了当地的水平,在印度没人能懂,他还没有大学毕业证,很难找工作,连生存都成问题,于是,聪明的母亲想出了一个好办法,给他找个媳妇,1909年为他安排了婚事,妻子是一个9岁的女孩,根据印度的习俗,这在当时的印度这是相当常见的。有了家而且是长子,必须帮助家里解决一些生活费用,他不得不极力地四处寻找工作,后来朋友艾亚尔(S. Aiyar)推荐他去找马德拉斯港务信托处官员拉奥(R. Rao)。拉奥是一个有钱的人,也是一个数学爱好者,他很赏识拉马努金的数学才能。他认为拉马努金只适合搞数学而不适合做其他工作,因此宁愿每个月给他一些钱,让他挂名不上班,在家专心从事数学研究。 拉马努金只好接受这些钱,又继续他的研究工作。每天傍晚时分才在马德拉斯的海边散步和朋友聊天作为休息。有一天一个老朋友遇到他,就对他说:“人们称赞你有数学的天才!”拉马努金听了笑道:“天才?你看看我的臂肘吧!”他的臂肘的皮肤显得又黑又厚。他解释他日夜在石板上计算,用破布来擦掉石板上的字太花时间了,他每几分钟就用肘直接擦石板的字。朋友问他既然要作这么多计算为什么不用纸来写。拉马努金说他连吃饭都成问题,哪里有钱去买纸来算题呢!原来拉马努金觉得依靠别人生活心里很是惭愧,已经有一个月不去拿钱了。1911年,拉马努金的第一篇论文“关于伯努利数的一些性质”发表在《印度数学会会刊》上,从此他开始了与数学界同行的正式交流。拉马努金在他的第二篇论文里发表了一系列共14条关于圆周率π的计算公式;神奇的是,其中一条公式每计算一项就可以得到8位的十进制精度。 拉马努金的成长道路决定了其必然与众不同,他对现代学术意义上的严谨一无所知,在某种程度上他不知道什么叫证明,他惯以直觉(或者是跳步)导出公式,不喜作证明(事后往往证明他是对的)。他留下的那些没有证明的公式,引发了后来的大量研究。拉马努金是印度在过去一千年中所诞生的超级伟大的数学家。他的直觉的跳跃甚至令今天的数学家感到迷惑,在他死后70多年,他的论文和研究日记中埋藏的秘密依然在不断地被挖掘出来。他发现的定理被应用到他活着的时候很难想象到的领域。他有着很强的直觉洞察力(可称之为“数感”),虽未受过严格数学训练,却能独立发现了近3900个数学公式和命题。他经常宣称在梦中娜玛卡尔女神给其启示,早晨醒来就能写下不少数学公式和命题。他所预见的数学命题,日后有许多得到了证实。如比利时数学家德利涅(V. Deligne)于1973年证明了拉马努金1916年提出的一个猜想,并因此获得了1978年的菲尔兹奖。 除了在纯粹数学方面做出卓越的成就以外,拉马努金的理论还得到了广泛的应用。他发现的好几个定理在包括粒子物理、统计力学、计算机科学、密码技术和空间技术等不同领域起着相当重要的作用,甚至晶体和塑料的研制也受到他创立的整数分拆理论的启发,而他在黎曼ζ函数方面的研究成果,现在已经与齿轮技术的进步挂上了钩,还被用于测温学及冶金高炉的优化。他生命中的最后一项成果——模仿θ函数有力地推动了用孤立波理论来研究癌细胞的恶化和扩散以及海啸的运动;最近有专家认为,这一函数很可能被用来解释宇宙黑洞的部分奥秘,而令人吃惊的是,当拉马努金首次提出这种函数的时候,人们还不知道黑洞是什么。 一位后来在马德拉斯认识他的人说:“在找工作和推销自己的那时期里,他总足很友善很合群,……总是很有趣,爱讲泰米尔语和英语的同音双关语,爱说笑话,有时讲很长的故事,讲起来就自己先笑个不停,头巾都会散开,他就一面讲一面系头巾’有时还没有讲到要紧关头,自己就笑得停不下来,只好从头再讲,“他是那么带劲,伤感的眼睛闪闪发光 … … 他 什 么 都 能 谈 , 不 喜欢 他 是 很 难的” 拉 马 努 金 并 不 是 跟 谁 都 很 随 便 的, 大多数时候他很腼腆,只在和几个亲密的朋友相处时才显得快活。他对人与人之间的微妙关系也常常视而不见,他在贡伯戈纳姆的一位同班同学哈里•拉奥讲过一段常被人忆起的趣事:他到马德拉斯来看拉马努金,“他马上打开他的笔记本句我讲解那些古怪的数学定理和公式,全然没有顾及我对数学一窍不通。”他根本就想不到这一点,拉马努金一旦沉醉在数学电,他旁边的人就好像不存在似的,不可思议的是,他迷人的地方,正是他这种对于人际关系的全然尤知,他的这个短 处 , 从 另 个 角 度 来 看 则 是 他 的 天真、诚恳,所有认识他的人都看到了这•点。 拉马努金和华罗庚一样,都很幸运地遇到了自己的伯乐,由于印度当时的数学水平不高,国内几乎没有人能看懂拉马努金的研究成果,于是,拉马努金的一个朋友艾亚尔建议他把研究成果寄给英国数学家,最初的两个数学家都未回音。1913年1月16日,他再次鼓起勇气写信给第三个数学家——剑桥大学教授哈代(G. Hardy);信是这样开头的,“尊敬的先生,谨自我介绍如下:我是马德拉斯港务信托处的一个职员……我未能按常规念完大学的正规课程,但我在开辟自己的路……本地的数学家说我的结果是‘惊人的’……如果您认为这些内容是有价值的话,请您发表它们……”他还给哈代寄去了一大堆自己研究得出的数学公式和命题;由于没有证明的过程,有些连哈代也不大明白。哈代在咨询了另一个英国数学家、他的合作伙伴李特尔伍德(J. Littlewood)之后,认定拉马努金是一个难得的数学天才。拉马努金多少有些运气,哈代的慧眼识金,使得拉马努金能够在1914年进入剑桥大学。这则动人故事如今已成为数学史乃至科学史上的传奇故事之一,同时作为两个人学术生涯的转折点——拉马努金因哈代而崭露头角,哈代因拉马努金而增光溢彩。德国数学家克莱因曾经说过,"推进数学的,主要是那些有卓越直觉的人,而不是以严格的证明方法见长的人."无疑,拉马努金正是一位有着卓越的数学直觉的天才。拉马努金的亦师亦友哈代曾感慨道:“我们学习数学,拉马努金则发现并创造了数学。”他更喜欢公开声称的是,自己在数学上最大的成就是“发现了拉马努金”。他在自己设计的一种关于天生数学才能的非正式的评分表中,给自己评了25分,给另一个杰出的数学家李特尔伍德评了30分,给他同时代最伟大的数学家希尔伯特(D. Hilbert)评了80分,而给拉马努金评了100分。他甚至把拉马努金的天才比作至少与数学巨人欧拉(L. Euler)和雅可比(C. Jacobi)相当。 拉马努金与哈代之间的数学研究合作非常成功,被后人称作“天作之合”。哈代收到拉马努金来信的时候,正处于学术创造的高峰.更为重要的是,如同数学史家斯诺所评价的,哈代是"我所见到过的最远离忌妒情感的人","彻底摆脱了人生的种种卑鄙狭隘的个性".另一方面,牛津大学的一位经济学家曾经这样回忆哈代,"他对于卓越性的感觉是绝对敏锐的;稍有逊色的从来不屑一顾."哈代看了拉马努金的《笔记》,便确信他的数学天赋高于自己,决心把他邀请到剑桥来. 1913年,由于哈代在给拉马努金的回信中对其成就做了很高的评介,印度当地的数学学会和地方政府都很重视这件事,视拉马努金为当地的骄傲,于是大学和政府当局打破惯例破格录取拉马努金为马德拉斯大学的研究生(拉马努金当时只有高中学历),并给予其很高的奖学金,有了这笔奖学金,拉马努金及其家人从此过上了富裕的生活,拉马努金再也不用为生计发愁了,使他能够一心一意地研究数学,这时远在英国的哈代急于请拉马努金到剑桥大学深造,同时也好与他合作一起研究数学问题,但由于婆罗门教有严格的教规,不允许漂洋过海远去他乡,拉马努金虽然也想去英国,但一时不能成行,这需要说服他的父母和家人,正巧三一学院年轻的助教内维尔要到印度去,哈代便委托他去会见拉马努金.同时做一些说服工作,并带拉马努金回英国,经过将近一年的努力,终于,1914年春,拉马努金告别家人,乘船到了英国,剑桥大学破格录用拉马努金为研究生(拉马努金只有高中学历),并提供优厚的奖学金使他衣食无忧。拉马努金和哈代二人可谓各有特长,优势互补,拉马努金擅长直觉发现,从中得出数学定律,但不擅于定律的证明,也没有受过正规的数学训练,哈代则正好相反,所以,二人合在一处,真是如虎添翼,从1914至1919年的五年间,取得了丰硕的合作研究成果,共同发表了多篇非常重要的数学论文,同时,在合代的提名和帮助下,拉马努金还先后取得了英国皇家学会和剑桥大学研究员的光荣资格。 拉马努金独立发现了近四千个公式,其中一些是欧拉、高斯等欧洲数学家前辈们发现过的,他只不过是又重新发现了一次(由于自学成才,又没有受过正统的数学训练,他以前没有见过这些公式),哈代感慨道:一个印度人孤独地对抗着欧洲积累百年的智慧。 不幸的是,由于第一次世界大战的爆发,剑桥大学和整个英国的生存条件都严重恶化,物价飞涨,食品短缺,再加上工作繁忙、劳累过度,以及他的严格素食主义导致的营养不良和不适应英国的严寒气候等原因,拉马努金在战争后期患上了肺结核,战争结束后,他于1919年回到印度老家,并于1920年病逝,年仅32岁。 为了激励年轻人刻苦学习和奋发向上,马德拉斯大学于1950年建立了一个用拉马努金的名字来命名的高等数学研究所,并在研究所门前为他矗立一个大理石半身像;后来该所培养了不少优秀数学人才。印度人在纪念拉马努金时,把他和圣雄甘地(M. Gandhi)、诗人泰戈尔(R. Tagore)等人一道,称作“印度之子”。在1962年拉马努金诞辰75周年之际,印度发行了一套纪念他的邮票。1975年印度成立了“拉马努金学会”,1986年开始出版会刊。到1987年即拉马努金诞辰100周年之际,印度已拍摄了3部有关他生平的电影。1987年在拉马努金的故乡马德拉斯,当容纳他最后一年心血的遗著《失散的笔记本》出版时,印度前总理甘地(R. Gandhi)亲自赶去祝贺并参加了首发式。美国佛罗里达大学于1997年创办了《拉马努金期刊》,专门发表“受到他影响的数学领域”的研究论文;该校还成立了一个国际性的拉马努金数学会。千禧年时,《时代》周刊选出了100位20世纪最具影响力的人物,其中就有拉马努金,并称赞他是一千年来印度最伟大的数学家。现在国际上有两项以拉马努金命名的数学大奖,专门颁发给“与他有相同研究方向”的杰出青年数学家;已获奖的华人数学家有洛杉矶加州大学教授陶哲轩、北京大学教授史宇光、北京清华大学访问学者张伟和斯坦福大学教师恽之玮。 为纪念拉马努金对数学的贡献,印度总理辛格(M. Singh)于2012年2月26日宣布其诞辰为“印度数学日”(每年12月22日)及2012年为“印度数学年”。在拉马努金诞辰125周年之际,印度举办了一系列纪念他的活动。美英等国的一些著名科学家在报上发表纪念文章,向拉马努金表示崇高的敬意。《美国数学会志》在2012年12月号和2013年1月号上连续刊发纪念拉马努金的系列文章,高度评价了他对数学作出的巨大贡献。有趣的是,谷歌网站为纪念拉马努金诞辰125周年专门绘了一张描述他少年学习情景的涂鸦。 值得一提的是,由于拉马努金的传奇色彩,世界上有多种关于他的传记版本。其中麻省理工学院科学写作教授卡尼格尔(R. Kanigel)1991年所著的《知无涯者:拉马努金传》(2008年被中国数学家、武汉大学前校长齐民友等翻译成中文)最为成功,在美国成为畅销书,并曾获1992年“美国书评界传记奖”。美国数学科普大师加德纳(M. Gardner)对该书的评语是:“至今出版过的关于当代数学家的传记中,这是最好的、文献最丰富的作品之一……你一定会发现,对本世纪最杰出、谜一般的智者之一的光辉的研究会吸引住你。” 一,天才并非先天的,而是与后天的专一、勤奋和独特的成长环境密切相关。在专一方面,拉马努金在高中阶段不太偏科,因此他的各门成绩都很优秀,但到了大学阶段后,却过于偏科,把所有的精力都用在了数学上,以致于其它多门学科不及格,被大学开除,最终也没有哪到大学毕业证,可见,拉马努金并非在数学方面天生就比别人强,这就好比打井一样,天才只所以比别人打得深,是因为他们太专一了,常人只所以打不深,是因为他们不专一,经常换地方,这个地方还没打出水,就换另一个地方了。在勤奋方面,拉马努金从不做体育锻炼,也很少和朋友娱乐闲聊,把大部分时间都用在了学习和思考上,他的勤奋也是超常的。在独特成长环境方面,由于他出身于婆罗门教,是印度四个种性中最高一级的精神贵族,婆罗门注重知识、精神和教养,而不看重金钱和财富,如果一个婆罗门教徒精神富有,但身无分文、四处流浪,不会被人看不起,相反,这是高贵的标志,此外,拉马努金的母亲出身于书香世家,很有教养,且很聪明,很注重子女的早期教育,再加上后于拉马努金出生的三个子女都早年夭折了,这又使她把所有心血都倾注到拉马努金身上,所以,他从小就很聪明,很爱思考,在中小学阶段各门课程都很优秀,中国有句古话叫“逆境出人才”,拉马努金出身高贵,却又家庭贫穷,所以他能发奋学习,再加上遇到了卡尔那本奇书,在他15岁时这个智力开发的关键时期,激发出他的极大的好奇心和智慧潜力,所以,他的成功也就不足为奇了。 二,专一或偏科既有优点也有缺点。一方面,只有专一才能更快地出类拔萃,另一方面,太专一了,往往会导致个人的知识不全和能力的欠缺,最终给个人造成不利的一些后果,比如,缺乏心理保健和身体健康方面的知识和能力,这样,在遇到人生挫折时,就会给心理健康和身体健康造成很大的伤害,甚至是早年夭折,也就是人们常说的天才早夭,拉马努金就是这样,他只活了32岁,类似的例子很多,比如,挪威天才数学家尼尔斯·阿贝尔,27岁,法国天才数学家埃瓦里斯特·伽罗瓦,21岁,俄国天才文学家普希金,38岁,荷兰天才画家梵高,37岁,奥地利人天才作曲家莫扎特,35岁。 三,历史上有很多天才由于没遇到伯乐而被埋没,比如上面的挪威天才数学家尼尔斯·阿贝尔、法国天才数学家埃瓦里斯特·伽罗瓦,遗传学之父孟德尔等,他们的研究成果在生前都没有被世人发现或认可,象华罗庚、拉马努金和爱因斯坦等天才如果没有遇到伯乐,他们的研究成果也许到现在还不为世人所知,由此我们完全可以推测,历史上被埋没的天才和其研究成果一定还有很多。 四,野生野长的天才有时候更容易开创出一条全新的道路。历史上的一些天才,如上述拉马努金、梵高、孟德尔以及微生物学之父列文虎克、精神分析学派创始人弗罗伊德等,正因为他们成才前没有受到过正规的专业训练,或被排除在主流学术圈之外,所以,他们往往更有机会开创出一种全新的道路,又如,中外历史上都曾出现过一些速算神童,上世纪中期,其数学计算机速度甚至超过了当时的计算机,只所以如此,是因为他们的计算方法与常人完全不同,不过,其中的有些速算神童,在掌握了正常人的数学计算方法后,他们的速算才能反而消失了,变得和常人一样了。 五,天才是人群中的极少数,超级天才更是曲指可数,世界上的超级天才除了拉马努金外,还有牛顿、爱因斯坦、达尔文、哥白尼以及中国的老子(李耳)等。天才都是后天的,不是天生的,超级天才同样也是后天的,而非先天的,成为超级天才的关键是要做到超级专注(专一),在一段时期内(比如数年内)高度地专注于一件事(一项研究),但要做到这一点实在太难了,因为人生中所面对的诱惑太多了,很容易被诱离要点,所谓“逆境出人才”,一个重要原因就是因为逆境中的诱惑远少于顺境,当然逆境不是成为天才的必要条件,比如哥白尼、达尔文、卡文迪许等天才都出身于顺境。超级天才们做到了超级专注,所以他们能成为超级天才。超级天才们大多都有这样一个共同特征:在人际关系方面很幼雏,通俗地讲就是:有儿童相,虽有成人的年龄,但在人际关系方面却象儿童一样单纯和幼雏,这就是超级天才们最大的外在特征!只有做到超级专注的人,才会表现出这样的外在特征。 六,通过天才教育大规模培养超级天才完全是可行的,而且人造天才会比天然的天才更杰出,更有创造力。既然成为超级天才的最大障碍是诱惑太多,那么我们正好需要建立这样一所天才学校,它能够建立一道防火墙,使学生不接触各种诱惑信息,这样学生们就能做到高度专一了,专一于他们的学习和研究,这样十年内就可把学生培养成某一领域里的超级天才,反省心理学起源于对天才和人脑思维的研究,经过数十年的研究和实践,目前已成功破解天才之谜,并找到了培养天才的有效方法,笔者相信,这件事一定能够成功! 拉马努金的传记电影:

相关百科

热门百科

首页
发表服务