大学数学是大学生必修的课程之一,如何提升大学生数学学习兴趣,培养数学型人才,是每一个大学数学教师都需要思考的。下面是我为大家整理的大学数学论文,供大家参考。
大学数学论文 范文 一:大学数学网络 教育 论文
一、教师要转变观念
意识是行动的主宰者。首先,教师要充分认识到网络教学资源对大学数学教学所产生的深刻影响。在网络信息快速发展的当今时代,如果仍旧拘泥于传统教学方式,势必将会处于落伍的境地。不仅影响教学效率,往深层次讲,还会影响学生 毕业 走向社会的适应能力以及生存能力。因此,教师要积极主动投身于教学改革的先行者行列中,构建现代化网络教学平台、加强网络教学资源的建设。
二、进行有效引导
在现代网络信息资源的基础上,学生能够变传统被动接受知识为主动探索知识。因此,教师要进行适当引导,指导学生掌握有效运用现代网络资源的 方法 ,不断发挥学生的主观能动性,培养学生的自主学习与探索能力,进而实现学生主动探索、教师指导的理想教学模式。 课前预习 、课中学习、课后巩固等这些环节,教师均可以让学生先自主学习,而后再进行有效指导。
三、有效整合教学资源
现代网络为我们带来丰富多彩的教学资源的同时,也带来了一些垃圾信息。因此,在大学数学教学中,教师要具备有效甄选、整合教学资源的能力。要根据课程内容,选择适合课时内容的资源融入到教学中。在选择网络资源时要遵循趣味性原则、实用性原则以及内容相符原则。运用网络教学资源进行大学数学教学是提高大学数学教学质量与教学效率的有效途径与方法,也是教育教学发展的必然趋势。教师应当转变传统的教学观念,充分重视网络信息资源,以教材为中心,有效整合网络资源,并运用于教学中,提高学生的学习兴趣,不断培养学生的自主学习能力。
大学数学论文范文二:大学数学教学中网络教育资源研究
一、如何利用网络教育资源提高大学数学教育质量
(一)加强教师对网络教育资源的认知
以前的大学数学教学方式单一,与学生的交流也少之又少,但是随着网络资源的发展,这一切将会有很大的变化,这也是适应社会的发展,提高数学教学质量的一种必然趋势。学校也应加大网络资源建设,顺应社会发展的潮流,不要封闭在传统的教育理念之中。大学教师也应适应社会的发展,不断的学习,摆脱落伍的危机。
(二)教师要把网络教育资源的内容融入到教学之中
教师应该适应网络的发展,把网络教育资源融入到现代教学之中,但是不要盲目的引进,首先就要考虑引进内容的适用性,所引进的内容要与所学的内容有相关性,能起到补充,扩充的作用,这样能够开拓学生们的视野。其次引进的内容还要具有适用性,能够让学生们把所学的内容融入到生活,融入到社会,达到学生们能认识数学,应用数学,培养他们的能力。最后还要具有一定的趣味性,这样才能令学生更能接受所学内容,更愿意去学习数学,应用数学。所以教师合理的引进网络教育资源使十分重要的。
(三)教师要引导学生们自主利用网络教育资源
教师不但要学习引进网络教育资源,还要充分的引导学生利用网络资源,培养他们自主学习数学, 爱好 数学的良好作风。以前的数学教育中,以老师讲解为主,学生被动的接受知识,学习过后学生们无法应用,这是一个很大的失败,而现在的网络发展情况下,老师可以引导学生们更好的利用网络资源,引导学生们自主学习,可以布置学生做课前预习,到网络上寻求资料,还可以让学生们课后巩固学习内容,网上寻求交流,以便达到巩固知识的作用。
(四)增强学生自主学习能力和兴趣
现在大学数学教育尽管很重视学生的学习,教师又会安排课余时间组织学生们给他们进行答疑解惑,但是受到时间性和地域性的限制,效果往往是不太理想,现在网络资源的丰富,不再受时间和地域的限制, 网络技术 可以让学生和老师间进行多样化的交流和辅导,也可以让学生们通过一些论坛,邮箱,视频等等不断的学习巩固自己的知识。学习不再有时间地域的限制,学生们的积极性会大大提高,兴趣也会越来越高,提高数学成绩不再是难事。
二、结束语
大学数学教育充分有效的利用网络课程资源是提高大学数学教育质量的有效办法,教师应该打破传统教学的局限性,以课材为中心,充分利用网络资源融入到现在教学之中,补充课本上的不足,增强教育之中的趣味性,这样会开拓学生们的视野,培养学生们的 兴趣爱好 ,让他们更加具备学习数学的激情,更加具备自主学习的能力。只有这样学生们才会更加有发展,大学数学的教育才会更加成功。
大学数学论文范文相关 文章 :
1. 大学生论文范文
2. 大学论文格式范文
3. 大学生论文范文模板
4. 大学毕业论文范文
5. 大学生毕业论文范文
6. 大学毕业生论文范文
生活中,数学无处不在。建高楼要画几何图,发射火箭要经过无数的计算。
我们一般加减乘除都是由0~9十个数字构成的十进制的算是组成的,而电脑里却用了二进制。
我一直都想不明白,直到我做了这道题目:小明有511块糖,分别放在9个盒子里。你只要告诉他糖的块数,(不多于511),他就可将几个盒子里的糖全部拿出,凑成你要的块数,这几个盒子里各有多少块糖?
我有些丈二和尚摸不着头脑,怎样也想不出来。我只好一个一个排,排了5个后,我发现是一个很有规律的数列:1.2.4.8.16.都是这个数乘2得到下一个数的。我照着排下去:1.2.4.8.16.32.64.128.256,刚好为511,原来电脑里面有二进制是因为可以算出所有数呀!
我有看到了一种问题-----“牛吃草”。一牧场上的青草匀速的生长,可供27头牛吃6天,工23头牛吃9天,18头牛吃了6天后增加了12头牛,还要几天吃完?牛吃草有原有量和增长量,一部分牛吃原来就有的草,一部分牛吃长出来的草,吃增长量的牛无论什么时候都有的吃,而吃原有量的牛吃完了就没有了,所以应先求原有量和增长量,27×=162(份),(将牛一天吃的草视为一份),23*9=207(份),207-162)÷(9-6)=15(份),增长量为15份,162-6×15=72(份),原有量为72份,18头牛吃6天,共吃72-(18-15)×6=54(份)草,54÷(3+12)=3.6(天),答:还要3.6天吃完。
书上也是可以获得知识的。书的页码也有学问。如:甲.乙两册书用了8642个数码,且甲册比乙册多20页,甲书有多少页?首先要知道1~页要1×9=9(个)数码,10~9需要2×90=180(个)数码,100~999需要2700个数码,(2700+180+9)×2 8642个,所以甲乙书都印到了四位数。20页有20×4=80(个)数码,甲书有(86742+80)÷2=4361(个)数码,4361-(9+180+270)=1472(个)数码,1472÷4=368(页),999+368=1367(页),答:甲书有1367页。
生活中,数学真是无处不在……
“数学来源于生活,也服务于生活。”数学,经常从人们身边走过,生活中人们都离不开它,它为人们的生活作出了巨大的贡献。在我们的班级中经常要使用到数学,例如算单元平均分、统计校园电费……等等数不胜数,和我们的生活息息相关。
有一次,我和爸爸妈妈去购物,买过年吃的糖。超市里糖的花样可多了,有脆皮糖15.80元一斤,牛皮糖10.50元一斤,牛奶糖8.00元一斤,酥酥糖23.9元一斤,巧克力糖21.9元一斤……但主要分为散称和包装。爸爸妈妈问我:“儿子,你希望买什么糖呢?”我望着玲琅满目的“糖果世界”,不知如何抉择是好,但我自幼喜好巧克力,所以我就选了巧克力糖。这时妈妈又给我出题了,他说:“那儿子,你说我们是买散称的呢,还是买包装的呢?”这我就摸不着头脑了,立即心算起来:散称的巧克力糖21.9元一斤,包装的则58.9一盒。散称的巧克力糖一包才10克,包装的巧克力糖一盒就有1000克呢!不过,单单看重量还不能决出胜负,就让我仔细算算——其实算这个并不难,直接用1000克=1千克 1千克=2斤 58.9÷2=29.45(元) 29.45元>21.9元 所以散称比包装更划算!我高兴的把我得出的结果告诉妈妈,妈妈高兴的点了点头,夸我爱动脑筋,因此我也就成为了妈妈的"小会计"。
在生活中,各式各样的事情都能从一个普普通通毫不起眼的小事变成一个个生动有趣的数学题。我们常做的应用题,就是在生活中取材,再稍加改编而成的题目。这不,我又在做数学题时发现了一道趣题:
大河上有一座东西向横跨江面的桥,人通过需要五分钟。桥中间有一个 亭子。亭子里有一个看守者,他每隔三分钟出来一次。看到有人通过,就叫 他回去,不准通过。有一个从东向西过桥的聪明人,想了一个巧妙的办法, 终于通过了大桥。
我初看这道题,一点头绪也没有,难不成坐船过去?这是不可能的。难道走了一会往回走?唉,这好像行得通……
我经过反复的计算,先想到了走到2分59秒的时候把头转回去,看守的人就会让我往回走,这样不就过去了吗?后来又想了一会,得出只要在走了2分30秒至2分59秒的时候往回走(最好不要到2分59秒的时候走,因为可能你还没转过头来,看守的人就发现了。),就可以成功过桥。
大家肯定都会说这么容易的题谁都会做,我拿出来吹嘘什么?不,这样子你就错了,我并没有在炫耀自己,我是在告诉大家数学在于联系生活思考,在于全心全意去领悟,而不是拿着别人的成果炫耀。
我每次做数奥都是拿起一道题拉起来就做,因为我觉得这样做起来很快。可是今天做数奥时,有一道题改变了我的看法,做得快不一定是做得对,主要还是要做对。
今天,我做了一道题目把我难住了,我苦思冥想了好几个小时都没有想出来,于是我只好乖乖地去看基础提炼,让它来帮我分析。
这道题目是这样的:求3333333333的平方中有多少个奇数数字?分析是这样的:3333333333的平方就是3333333333×3333333333,这道乘法算式由于数字太多使计算复杂,我们可以运用转化的方法化繁为简,也就是把一个因数扩大3倍,另一个因数缩小3倍,积不变。使题目转化为求9999999999×1111111111=(10000000000-1)×1111111111=11111111110000000000-1111111111=11111111108888888889因此,乘积中有十个奇数数字。这道题,我们还可以位数少的两个数相乘算起,就能发现积中奇数的数字个数。即3×3=9→积中有1个奇数数字。33×33=1089→积中有2个奇数数字。333×333=110889→积中有3个奇数数字。3333×3333=11108889→积中有4个奇数数字。……
从上面试算中,容易发现积是由1,0,8,9四个数字组成的,1和8的个数相同,比一个因数中的3的个数少1,0和9各一个,分别在1和8的后面。积中奇数的数字个数与一个因数中3的个数相同,可以推导出原题的积是:11111111108888888889,积中有10个奇数数字。
做了这道题,我知道做数奥不能求快,要求懂它的方法。
孙一、王二、张三、李四四位水手乘坐的小船不幸被大风吹到了一座荒岛边,可整个岛上除了椰子树就是灌木林与野草。为了生存他们只好把所有的椰子都采摘下来,堆放在一起。天黑了,大家又累又困来不及分摊椰子就躺下睡着了。
夜里1点钟,孙一醒来,肚子饿得咕咕直叫。他看伙伴们睡得正香,就轻手轻脚地爬起来,走到椰子旁,把椰子分成相等的4份,见还多出1个,就把那个椰子吃了,然后把自己的一份藏起来后躺下继续睡觉。 夜里2点钟,王二醒了过来。他见伙伴们呼呼大睡,也轻手轻脚地爬起来,走到椰子旁,把椰子分成相等的4份,见还多了1个,就把多出的那个椰子吃了,然后把自己的一份藏好后躺下继续睡觉。
夜里3点钟,张三又醒了。他看伙伴们睡得很香,就轻手轻脚地爬起来,走到椰子旁,把椰子分成相等的4份,见还多了1个,就把那个椰子吃了,然后把自己的一份藏好后躺下继续睡觉。夜里4点钟,李四又醒了。四周静悄悄的,伙伴们都在睡梦中。李四就轻手轻脚地爬起来,走到椰子旁,把椰子平均分成相等的4份,见还多了1个,就把那个椰子吃了,然后把自己的一份藏起来躺下继续睡觉。
天亮了,大家都装着什么也没发生,吵着说:“饿死了,快分椰子吃。” 椰子正好可分成4份,每份60个。分完后大家低头吃了起来。
半小时后,李四觉得良心有些不安,心想:“如果我不在夜里4点吃了一个椰子并藏起一份,大家就可以分到更多的椰子了。”于是他红着脸向大家坦白了所作所为,承认了错误。大家就算出李四4点起来前的椰子数目应该为((60*4)/3)*4+1=321(个)。张三听后脸上发烫,也交待了他的所作所为。大家就又算出张三3点起来前的椰子数目应该为(321/3)*4+1=429(个)。接着王二觉得心里有愧,也低着头交待了他的所作所为。大家就又算出王二2点起来前的椰子数目应该为
(429/3)*4+1=573(个)。
伙伴们都承认了自己的错误后,孙一也坐不住了,如实交待了他在1点的所作所为。大家终于明白昨天采摘的椰子总共应有(573/3)*4+1=765(个)。
通过这件事,四位水手认识到:只有大家坦诚相待,才能同舟共济、共渡难关。
大学数学论文范文
导语:无论是在学校还是在社会中,大家都写过论文,肯定对各类论文都很熟悉吧,论文是探讨问题进行学术研究的一种手段。怎么写论文才能避免踩雷呢?以下是我收集整理的论文,希望对大家有所帮助。
论文题目: 大学代数知识在互联网络中的应用
摘要: 代数方面的知识是数学工作者的必备基础。本文通过讨论大学代数知识在互联网络对称性研究中的应用,提出大学数学专业学生检验自己对已学代数知识的掌握程度的一种新思路,即思考一些比较前沿的数学问题。
关键词: 代数;对称;自同构
一、引言与基本概念
《高等代数》和《近世代数》是大学数学专业有关代数方面的两门重要课程。前者是大学数学各个专业最重要的主干基础课程之一,后者既是对前者的继续和深入,也是代数方面研究生课程的重要先修课程之一。这两门课程概念众多,内容高度抽象,是数学专业学生公认的难学课程。甚至,很多学生修完《高等代数》之后,就放弃了继续学习《近世代数》。即使对于那些坚持认真学完这两门课程的学生来讲,也未必能做到“不仅知其然,还知其所以然”,而要做到“知其所以然,还要知其不得不然”就更是难上加难了。众所周知,学习数学,不仅逻辑上要搞懂,还要做到真正掌握,学以致用,也就是“学到手”。当然,做课后习题和考试是检验是否学会的一个重要手段。然而,利用所学知识独立地去解决一些比较前沿的数学问题,也是检验我们对于知识理解和掌握程度的一个重要方法。这样做,不仅有助于巩固和加深对所学知识的理解,也有助于培养学生的创新意识和自学能力。笔者结合自己所从事的教学和科研工作,在这方面做了一些尝试。
互连网络的拓扑结构可以用图来表示。为了提高网络性能,考虑到高对称性图具有许多优良的性质,数学与计算机科学工作者通常建议使用具有高对称性的图来做互联网络的模型。事实上,许多著名的网络,如:超立方体网络、折叠立方体网络、交错群图网络等都具有很强的对称性。而且这些网络的构造都是基于一个重要的代数结构即“群”。它们的对称性也是通过其自同构群在其各个对象(如:顶点集合、边集合等)上作用的传递性来描述的。
下面介绍一些相关的概念。一个图G是一个二元组(V,E),其中V是一个有限集合,E为由V的若干二元子集组成的集合。称V为G的顶点集合,E为G的边集合。E中的每个二元子集{u,v}称为是图G的连接顶点u与v的一条边。图G的一个自同构f是G的顶点集合V上的一个一一映射(即置换),使得{u,v}为G的边当且仅当{uf,vf}也为G的边。图G的全体自同构依映射的合成构成一个群,称为G的全自同构群,记作Aut(G)。图G称为是顶点对称的,如对于G的任意两个顶点u与v,存在G的自同构f使得uf=v。图G称为是边对称的,如对于G的任意两条边{u,v}和{x,y},存在G的自同构f使得{uf,vf}={x,y}。
设n为正整数,令Z2n为有限域Z2={0,1}上的n维线性空间。由《近世代数》知识可知,Z2n的加法群是一个初等交换2群。在Z2n中取出如下n个单位向量:
e1=(1,0,…,0),e2=(0,1,0,…,0),en=(0,…,0,1)。
●n维超立方体网络(记作Qn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei,其中1≤i≤n。
●n维折叠立方体网络(记作FQn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei(1≤i≤n)或者v-u=e1+…+en。
●n维交错群图网络(记作AGn)是一个以n级交错群An为顶点集合的图,对于AGn的任意两个顶点u和v,{u,v}是AGn的一条边当且仅当vu-1=ai或ai-1,这里3≤i≤n,ai=(1,2,i)为一个3轮换。
一个自然的问题是:这三类网络是否是顶点对称的?是否边对称的?但值得我们注意的是,这些问题都可以利用大学所学的代数知识得到完全解决。
二、三类网络的对称性
先来看n维超立方体网络的对称性。
定理一:n维超立方体网络Qn是顶点和边对称的。
证明:对于Z2n中的任一向量x=(x1,…,xn),如下定义V(Qn)=Z2n上面的一个映射:f(x):u→u+x,u取遍V(Qn)中所有元素。容易验证f(x)是一个1-1映射。(注:这个映射在《高等代数》中已学过,即所谓的平移映射。)而{u,v}是Qn的一条边,当且仅当v-u=ei(1≤i≤n),当且仅当vf(x)-uf(x)=ei(1≤i≤n),当且仅当{v(fx),u(fx)}是Qn的一条边。所以,f(x)也是Qn的一个自同构。这样,任取V(Qn)中两个顶点u和v,则uf(v-u)=v。从而说明Qn是顶点对称的。
下面证明Qn是边对称的。只需证明:对于Qn的任一条边{u,v},都存在Qn的自同构g使得{ug,vg}={0,e1},其中0为Z2n中的零向量。事实上,{uf(-u),vf(-u)}={0,v-u},其中v-u=ei(1≤i≤n)。显然,e1,…,ei-1,ei,ei+1,…,en和ei,…,ei-1,e1,ei+1,…,en是Z2n的两组基向量。由《高等代数》知识可知存在Z2n上的可逆线性变换t使得t对换e1和ei而不动其余向量。此时易见,若{a,b}是Qn的一条边,则a-b=ej(1≤j≤n)。若j=1,则at-bt=ei;若j=i,则at-bt=e1;若j≠1,i,则at-bt=ej;所以{at,bt}也是Qn的一条边。由定义可知,t是Qn的一个自同构。进一步,{0t,(v-u)t}={0,e1},即{uf(-u)t,vf(-u)t}={0,e1}。结论得证。
利用和定理一相似的办法,我们进一步可以得到如下定理。
定理二:n维折叠立方体网络FQn是顶点和边对称的。
最后,来决定n维交错群图网络的对称性。
定理三:n维交错群图网络AGn是顶点和边对称的。
证明:首先,来证明AGn是顶点对称的。给定An中的一个元素g,如下定义一个映射:R(g):x→xg,其中x取遍An中所有元素。容易验证R(g)为AGn顶点集合上上的一个1-1映射。(注:这个映射在有限群论中是一个十分重要的'映射,即所谓的右乘变换。)设{u,v}是AGn的一条边,则vu-1=ai或ai-1,这里1≤i≤n。易见,(vg)(ug)-1=vu-1。所以,{vR(g),uR(g)}是AGn的一条边。因此,R(g)是AGn的一个自同构。这样,对于AGn的任意两个顶点u和v,有uR(g)=v,这里g=u-1v。这说明AGn是顶点对称的。
下面来证明AGn是边对称的。只需证明对于AGn的任一条边{u,v},都存在AGn的自同构g使得{ug,vg}={e,a3},其中e为An中的单位元。给定对称群Sn中的一个元素g,如下定义一个映射:C(g):x→g-1xg,其中x取遍An中所有元素。由《近世代数》知识可知,交错群An是对称群Sn的正规子群。容易验证C(g)是AGn的顶点集合上的一个1-1映射。(注:这个映射其实就是把An中任一元素x变为它在g下的共轭。这也是有限群论中一个十分常用的映射。)令x=(1,2),y(j)=(3,j),j=3,…,n。下面证明C(x)和C(y(j))都是AGn的自通构。取{u,v}为AGn的任一条边,则vu-1=ai或ai-1。从而,vC(x)(u-1)C(x)=(x-1vx)(x-1u-1x)=x-(1vu-1)x=ai-1或ai。
因此,{uC(x),vC(x)}也是AGn的一条边。从而说明C(x)是AGn的自通构。同理,若j=i,有vC(y(j))(u-1)C(y(j))=a3-1或a3;若j≠i,则有vC(y(j))(u-1)C(y(j))=ai-1或ai。这说明{uC(y(j)),vC(y(j))}也是AGn的一条边,从而C(y(j))是AGn的自通构。现在,对于AGn的任一条边{u,v},令g=u-1,则{uR(g),vR(g)}={e,vu-1}={e,ai}或{e,ai-1}。若i=3,则{e,a3-1}C(x)={e,a3}。而若i≠3,则{e,ai}C(y(j))={e,a3}而{e,ai-1}C(y(j))={e,a3-1}。由此可见,总存在AGn的自同构g使得{ug,vg}={e,a3},结论得证。
至此,完全决定了这三类网络的对称性。不难看出,除了必要的图论概念外,我们的证明主要利用了《高等代数》和《近世代数》的知识。做为上述问题的继续和深入,有兴趣的同学还可以考虑以下问题:
1、这些网络是否具有更强的对称性?比如:弧对称性?距离对称性?
2、完全决定这些网络的全自同构群。
实际上,利用与上面证明相同的思路,结合对图的局部结构的分析,利用一些组合技巧,这些问题也可以得到解决。
三、小结
大学所学代数知识在数学领域中的许多学科、乃至其他领域都有重要的应用。笔者认为任课教师可以根据自己所熟悉的科研领域,选取一些与大学代数知识有紧密联系的前沿数学问题,引导一些学有余力的学生开展相关研究,甚至可以吸引一些本科生加入自己的课题组。当然,教师要给予必要的指导,比如讲解相关背景知识、必要的概念和方法等。指导学生从相对简单的问题入手,循序渐进,由易到难,逐步加深对代数学知识的系统理解,积累一些经验,为考虑进一步的问题奠定基础。
结束语
本文所提到的利用《高等代数》和《近世代数》的知识来研究网络的对称性就是笔者在教学工作中曾做过的一些尝试。在该方面,笔者指导完成了由三名大三学生参加的国家级大学生创新实验项目一项。这样以来,学生在学习经典数学知识的同时,也可以思考一些比较前沿的数学问题;学生在巩固已学知识的同时,也可以激发其学习兴趣,训练学生的逻辑思维,培养学生的创新思维,以及独立发现问题和解决问题的能力。
【摘要】
随着数学文化的普及与应用,学术界开始重视对于数学文化的相关内容进行挖掘,这其中数学史在阶段我国大学数学教学之中,具有着重要的意义。从实现大学数学皎月的两种现象进行分析,在揭示数学本质的基础上,着重分析数学史在我国大学数学教育之中的重要作用,强调在数学教学之中利用数学史进行启发式教学活动。本文从数学史的角度,对于大学数学教学进行全面的分析,从中分析出适合我国大学数学教育的主要意义与作用。
【关键词】
数学史;大学数学教育;作用
一、引言
数学史是数学文化的一个重要分支,研究数学教学的重要部分,其主要的研究内容与数学的历史与发展现状,是一门具有多学科背景的综合性学科,其中不仅仅有具体的数学内容,同时也包含着历史学、哲学、宗教、人文社科等多学科内容。这一科目,距今已经有二千年的历史了。其主要的研究内容有以下几个方面:
第一,数学史研究方法论的相关问题;
第二,数学的发展史;
第三,数学史各个分科的历史;
第四,从国别、民族、区域的角度进行比较研究;
第五,不同时期的断代史;
第六、数学内在思想的流变与发展历史;
第七,数学家的相关传记;
第八,数学史研究之中的文献;
第九,数学教育史;
第十,数学在发展之中与其他学科之间的关系。
二、数学史是在大学数学教学之中的作用
数学史作为数学文化的重要分支,对于大学数学教学来说,有着重要的作用。利用数学史进行教学活动,由于激发学生的学习兴趣,锻炼学生的思维习惯,强化数学教学的有效性。
笔者根据自身的教学经验,进行了如下总结:首先,激发学生的学习兴趣,在大学数学的教学之中应用数学史,进行课堂教学互动,可以最大限度的弱化学生在学习之中的困难,将原本枯燥、抽象的数学定义,转变为简单易懂的生动的事例,具有一定的指导意义,也更便于学生理解。
从学生接受性的角度来讲,数学史促进了学生的接受心理,帮助学生对于数学概念形成了自我认知,促进了学生对于知识的透彻掌握,激发了学生兴趣的产生。其次,锻炼学生的创新思维习惯,数学史实际意义上来说,有很多讲授数学家在创新思维研发新的理论的故事,这些故事从很多方面对于当代大学生据有启迪作用。例如数学家哈密顿格拉斯曼以及凯利提出的不同于普通代数的具有某种结构的规律的代数的方法代开了抽象代数的研究时代。用减弱或者勾去普通代数的各种各样的假设,或者将其中一个或者多个假定代之一其他的假定,就有更多的体系可以被研究出来。这种实例,实际上让学生从更为根本的角度对于自己所学的代数的思想进行了了解,对于知识的来龙去脉也有了一定的认识,针对这些过程,学生更容易产生研究新问题的思路与方法。
再次,认识数学在社会生活之中的广泛应用,在以往的大学数学教学之中,数学学科往往是作为一门孤立的学科而存在的,其研究往往是形而上的研究过程,人们对于数学的理解也是枯燥的,是很难真正了解到其内涵的。但是数学史的应用,与其在大学数学教学之中的应用,可以让学生了解到更多的在社会生活之中的数学,在数学的教学之中使得原本枯燥的理论更加贴近生活,更加具有真实性,将原本孤立的学科,拉入到了日常生活之中。从这一点上来说,数学史使得数学更加符合人类科学的特征。
三、数学史在大学数学教学之中的应用
第一,在课堂教学之中融入数学史,以往枯燥的数学课堂教学,学生除了记笔记验算,推导以外,只能听老师讲课,课堂内容显得比较生硬,教师针对数学史的作用,可以在教学之中融入数学史,在教学活动之中将数学家的个人传记等具有生动的故事性的数学史内容,进行讲解,提高学生对于课堂教学的兴趣。例如一元微积分学的相关概念,学生在普通的课堂之中,很难做到真正意义的掌握,而更具教学大纲,多数老师的教学设计是:极限——导数与微分——不定积分——定积分。这种传统的教学方式虽然比较呼和学生的一般认知规律,但是却忽视了其产生与又来,教师在教学之中可穿插的讲授拗断——莱布尼茨公式的又来,将微积分艰难的发展史以故事的形式呈现出来,更加便于学生理解的同时也激发了学生的学习热情。
第二,利用数学方法论进行教学,数学方法论是数学史的之中的有机组成部分,而方法论的探索对于大学数学教学来说,也具有着重要的意义,例如在极限理论的课堂教学来说,除了单纯的对于极限的相关概念进行讲解的基础上,也可以将第二次数学危机以及古希腊善跑英雄阿基里斯永远追不上乌龟等相关故事,融入到课堂之中。这种让学生带着疑问的听课方式,更进一步促进了学生对于教学内容的兴趣,全面的促进了学生在理解之中自然而然的形成了理解极限的形成思想,并逐渐的享受自身与古代数学家的共鸣,从而促进自身对于数学的理解,提高学生的学习兴趣,进一步提高课堂的教学效果。所以,在大学数学课堂教学之中,融入数学史的相关内容,不仅具有积极的促进作用,同时在实践之中,也具有一定的可操作性。这种教学模式与方法对于提高我国大学数学教学的质量有着积极的推动作用,同时也更进一步推动了大学数学教学改革的进行。
作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。
一、高等数学教学的现状
(一)教学观念陈旧化
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
(二)教学方法传统化
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用
对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体措施
(一)在公式中使用建模思想
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
(二)讲解习题的时候使用数学模型的方式
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
(三)组织学生积极参加数学建模竞赛
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
小学数学教学实践活动是小学数学教学过程中的一个重要部分,加强小学数学教学实践水平有助于提高小学数学教学效率,进一步增强学生对数学的学习兴趣。下面是我为大家整理的小学数学方面的论文,供大家参考。
一、趣味性激发学生的学习兴趣
教师在教学过程中要特别注意对学生学习兴趣的培养,力求生动有趣。激发学生学习的兴趣,找准新旧知识的连接点。学生在学习数学中完全陌生的内容是很少见的,对学习的内容总是感到既熟悉又陌生。要让学生在新旧知识的比较中找出共同点与区别点,顺利地完成正迁移,通过类似的探索解决新的问题。教师授课应采用启发自主式,教师学做导演,让学生扮演主角,让学生积极参与课堂教学的全过程,真正体现“以学生为主体的课堂教学模式”。教师应鼓励学生大胆举手踊跃发言,提出质疑,展开讨论。教师要积极评价学生回答的问题,保护学生学习的积极性。在教学中,教师运用多变的教学方法,尽可能创造轻松、愉快、和谐的学习环境,使学生轻松地掌握所学知识。例如,教师可根据所学的内容以故事的形式讲一些相关的人或事,创设情境增加学生的好奇心,营造出一个轻松和谐的氛围。教师还可以根据所学内容以游戏的方式,让学生体会到学习兴趣之乐。如在低年级教学中用开火车、开房门、找朋友、夺红旗、放鞭炮等游戏,使学生“动”起来、“活”起来,真正成为课堂的主体,使学生在轻松、愉快的气氛中学到数学知识。这样,不但吸引了学生的注意力,也更容易让学生理解和接受新知识,学生十分欢迎,兴趣更浓,教学效果也更好。
二、竞争情境激发学生的学习兴趣
好胜心是每个学生的天性,在教学中充分激发学生的好胜心,让学生得到进取之乐。如,在口算时看谁算得又快又准确,在回答时实行抢答,看谁先回答出来。在进行简便运算时,看谁的方法最简便。在解答计算分数百分数应用题难度较大的时,看谁最先解答出来,比一比谁用的方法对,并亲自讲解争当小老师。学生的参与欲望是一个不容忽视的因素,而学生的认知环节是学生学习动机的源泉,也是学生积极参与思维学习的原因。所以,教师在教学中要不断设置认知环节,激发学生的参与竞争的欲望。
三、树立标杆激发学生的学习兴趣
人无论大小,都有自己的理想和目标,只是理想和目标不同而已。所以,一定要给学生树立一个理想和目标,无论是本班的,还是本校的,或是从本校走出去的成功人士,都可成为学生的标杆性人物。俗话说,榜样的力量是无穷的。有了这样一个榜样,就会使学生有一个努力的方向和奋斗的目标。有了这个目标,学生就会为实现这个目标,而更加刻苦和努力。同时,也会激发出学生的学习兴趣。
四、严格管理强促学生的学习兴趣
子不教父之过,教不严师之惰。在学生成长的道路上,教师要经常和学生的家长进行沟通,让家长充分了解自己孩子的学习状况。在教师和家长的共同努力下,对学生进行针对性的管理,从而强促学生的学习兴趣,使学生在不断进步中成长。有成绩要表扬,有错误要及时纠正,让学生永远在正确的轨道上前行。虽然要严格管理,但是要注意严中有松,张弛有度。在教学中努力解放学生的嘴巴,让学生敢说、爱说、喜说。例如,在教学“两位数加法”时,先放一段优美动听的儿歌:“小白兔,白又白……”然后问:“这首歌大家熟悉吗?今天小白兔和小灰兔进行一场拔萝卜比赛,我们一起去看看好吗?”(出示主题画),鼓励学生大胆说出图上内容,说出两只小兔各自的位置,说出它们的表情及内心活动,还有对话内容。在得出算式“28+41”的时候,我不急于教给学生算法,而是通过小组讨论的形式,让人人动口,说出自己的想法,在组内交流后,将合理的算法说给教师和同学听。在学生得出用计算器、口算、竖式算等方法的时候,我又发动学生讨论哪种方法更好些?为什么?学生有的说用计算器方法好,最准,但携带麻烦;有的说,口算最好,速度快,但有可能出现错误;有的说竖式算得好,又快又准确,不过要注意数位对齐,又费稿纸……课堂气氛活跃起来。在课结束时,我让学生总结出本节课学会了什么?学生争先巩后地抢着说,热情很高,不仅说出了这节课所学的全部知识点,还体验到了求得新知的喜悦。
五、巧用游戏激发学习兴趣
游戏是孩子的天性。在低年级数学教学中,艺术性地使用游戏,能大大激发学生的兴趣,满足学生爱玩、好动的心理需要,使他们在欢乐活跃、气氛高涨的氛围中学习知识。例如,教学“面积和面积单位”一课时,在学习了平方厘米这一面积单位后,教师故意让学生用它度量教室地面的面积,学生都非常踊跃地参与到这个活动中,当他们忙着忙着自然会产生“要有一个更大的面积单位”的需要。这时,教师顺势抛疑:“这个更大的面积单位就请你们创造一个,叫什么呢?”诱导学生从平方厘米、平方分米的名称创造出平方米,进而根据三者所具有的共同因素帮助学生类推出平方米的意义。这样的游戏活动,使学生体验到了数学学习的乐趣。总之,教无定法,人各有法,引起兴趣就是最好的方法。兴趣是最好的老师。因此,教师和家长一定要千方百计地从方方面面激发和培养学生的学习兴趣,让他们在快乐中学习,他们会受益无穷。
一、整合练习内容,提高练习的实效性
教材为师生的教与学活动提供了大量生动、有趣的习题,它们是教师传授知识、学生习得技能的重要载体。但在当前的小学数学教学中,很多教师对习题的处理仍然停留在浅尝辄止的层面上,或者是简单机械的重复,缺少对习题本身的思考,甚至是为了练习而练习,以至于不能完全发挥教材习题的功能。叶圣陶先生曾经说过:“教材只能作为教课的依据,要教得好,使学生受益,还得靠老师的善于运用。”因此,教师作为学生学习的指导者,应该在深入钻研课程标准、教材和学生学情的基础上,立足并尊重教材,对教材的习题资源进行深度解读,让教学行为基于教材但又不为教材所束缚,正确领会教材编写的意图,从实际出发,对教材进行适度开发,整合练习的内容,以提高课堂练习的实效性。如教学苏教版四年级下册“乘法运算律”以后,教材在“试一试”、“练一练”的基础上又安排了大量的题组练习,但在实际教学中因受教学课时的划分及一节课教学时间的限制,逐条解决所有习题显然费时费力,也难以完成既定的教学任务。因此笔者在教学时在认真领会编者意图的基础上,根据实际情况,将几个内在联系存在高度一致的习题重新组合,赋予新的题组一个更为清晰的教学方向。例如将几组题型单一的利用乘法运算律进行简便运算的题目放在一起,在小组接力的活动中通过比赛来做,可以使单调乏味的习题解答变得轻松有趣、简单高效。
二、丰富练习形式,激发练习的趣味性
“兴趣是最好的老师。”数学学习兴趣是培养小学生良好学习品质的有效途径,是实现有效教学的前提。在练习中,教师结合学生已有知识设计生动活泼、富有情趣的习题,让学生能感受到数学的趣味性,对数学产生亲切感,这样有助于激发学生数学学习的兴趣,也有利于培养学生的思维能力和创新意识。教师可根据儿童的心理特点,呈现新颖的题型、丰富练习的形式,让学生做练习的主人,充分发挥学生的主体性。如设计改错题,让学生做医生;设计判断题,让学生当法官;设计操作实验题,让学生成为设计师……教学中可根据教材特点,多采用游戏性、趣味性、竞赛性的练习,设置悬念,引起认知冲突,激发学生的求知欲望。如猜谜语、讲故事、做游戏、模拟表演等。这种寓教于乐的练习,既培养了学生做练习的兴趣,又能取得满意的练习效果,使学生在轻松、愉悦的氛围中学习,在具体的情境中理解和认识数学知识。
三、关注个性差异,体现练习的层次性
新课程的基本理念指出:“义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。”学生是有差异的个体,每个学生在认知水平,心理特点等方面都存在着差异。这就要求教师在使所有学生获得共同的数学教育的同时,还要让更多的学生有机会接触、了解或是钻研自己感兴趣的数学问题,最大限度的满足每一个学生的数学需要。教师应该设计不同类型、不同层次的练习题,从模仿性的基础练习到提高性的变式练习,再到拓展性的思考练习,照顾不同层次的学生,让所有学生都能“跳一跳摘到属于自己的果子”,都有体验成功的机会。
四、贴近生活实际,增强练习的应用性
数学教学绝不是简单的知识传授,教师要认识到教学过程是一个创造过程,每个教师都要研究教与学的相互作用,将教学过程视为师生共在的探索真理的过程。本文是我为大家整理的数学教研论文 范文 ,欢迎阅读! 数学教研论文范文篇一:中专数学教学的研究与思考 一、中专数学教学的现状分析 由于中专 教育 主要是面向社会为社会培养人才,因此,在实际的教学中,教师需要对学生进行实践教学,但是,在中专数学教学中,教师主要进行理论知识的教学,实践教学课非常的少,这样就导致学生虽然具备一定的数学理论知识,但是却不能很好的进行实际的应用.由此可见,中专数学理论教学与实际操作的脱节,不利于学生的长远发展. 二、进一步优化数学教学的 措施 分析 1.明确教学目标 在中专数学教学中,教师应该明确教学的目标.教师进行数学教学的主要目的就是通过对学生进行系统的数学教育,使学生具有一定的数学能力,使学生通过数学的学习,能够解决生活中的实际问题,提高学生的生活能力.另外,在生活中,很多生活中的问题都需要数学知识进行解决,因此,教师对学生进行数学的教学,主要就是为了更好的培养学生的生活能力,促进学生的不断发展[2].例如,在进行函数教学的时候,教师在课堂教学的开始,就应该告知学生学习函数能够解决生活中的哪些问题,函数在生活中用途非常的广泛,函数能够解决纳税问题,票价问题,销售利润问题等. 2.更新教材内容 随着社会经济的发展和科学技术的不断进步,数学知识也在不断的发展,很多前沿的知识学生在中专数学课堂的学习中无法学到,由于中专教材不是一年一更新,需要五年到十年左右更新一次[3].因此,很多前沿的知识无法在教材上体现,因此,教师应该不断的对教材内容进行更新,将最先进的数学知识加入到教材中去,使学生能够学习到最前沿的知识,促进学生的不断发展和进步. 3.提高教师教学水平 在中专数学教学中,应该不断的提高教师的教学水平,不断的加强师资队伍建设,中专学校应该拥有一批专业知识过硬,专业技能扎实,教学水平高,具有创新精神的数学教师,教师在教学中能够及时的发现教学中不适于学生发展的因素,并且通过创新,提出合理化的建议,不断的促进学生学习上的进步.另外,中专数学教师还应该多参加培训和学习,提高自身的专业素质,为学生的学习提供最好的师资保证. 4.教学中注重激发学生的学习兴趣 教师只有在教学中不断的激发学生的学习兴趣,才能够收到最好的教学效果.传统的 教学 方法 主要就是教师在课堂上对学生进行提问,学生通过思考完成教师的提问,在这个过程中,由于学生无法提起学习的兴趣,在课堂上的暂时性记忆也随着时间淡忘,无法收到满意的教学效果,课堂教学效率不高,学生的学习水平也无法全面的提高.因此,教师应该采取相应的教学策略,激发学生的学习兴趣,使学生能够主动去学习,爱上学习,进而收获知识.在数学教学课堂上,教师可以从学生的兴趣出发,在列举教学案例的时候,教师可以列举一些学生感兴趣的教学案例,激发起学生学习的积极性,提高学生的课堂效率,促进学生学习上的进步.例如,在进行函数教学的时候,由于函数及其图象在高中数学中占有很重要的位置.如何突破这个既重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心.因此,教师在教学中,学生在课堂活动中通过同伴合作、自主探究培养学生积极主动、勇于探索的学习方式.并且在教学过程中努力做到生生对话、师生对话,在对话之后重视体会、 总结 、 反思 ,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法,并且不断的激发学生的学习兴趣.总之,在教学中,教师应该树立正确的教学目标,掌握有效的教学方法,并且在教学中注意运用多种教学策略,才能够不断的提高学生的学习水平,培养学生的学习能力,促进学生的全面进步. 作者:张丽 工作单位:南京市玄武中等专业学校 数学教研论文范文篇二:高校数学信息技术整合方法研究 一、高校数学教学中使用多媒体的优势 有利于促使高校数学课堂教学实现因材施教。多媒体辅助高校数学教学过程中所使用的课件与传统教学中所使用的板书有本质的区别,在高校数学教学中以板书为核心的教学需要学生花费很大的精力做笔记,而多媒体辅助高校数学教学中的课件通过下载就能够查阅和利用,并且不会出现传统教学中因为笔记不全而难以顺利巩固和复习知识的情况。在此过程中,教师也可以根据实际的教学效果对课件进行进一步的合理化与完善化并提供给学生,学生可以完全摆脱课程设置的限制并按照自身数学实际水平找出学习侧重点并自主安排学习进度,所以多媒体辅助高校数学教学与传统高校数学教学相比具有更强的教学针对性,对落实因材施教的教学理念具有重要的意义。 二、现代教育技术与高校数学教学整合的方法 与传统的高校数学课堂教学相比,多媒体辅助高校数学教学拥有很大的优势,但是如果在高校数学课堂教学中不能对多媒体进行合理利用,则容易产生事倍功半的效果,所以在多媒体辅助高校数学教学的优化过程中,教师要处理好多媒体辅助高校数学教学中的几种关系,从而在正确利用多媒体技术开展高校数学教学的基础上最大限度地发挥多媒体技术对高校数学教学质量提高所具有的推动作用。 1.确保教学手段与教学目的关系的协调。新课程理念下的高校数学教学的目的在于通过高校数学教育使学生具备良好的人文素质、创新精神、科学素养、思维能力等,所以多媒体辅助高校数学教学活动的目的在于通过对多媒体辅助教学技术的利用,使学生的智力以及思维能力得到良好的发展并实现高校数学教学的目标。在此目的的指导下,教师必须在多媒体辅助高校数学教学的过程中,以新课程教学目标为核心开展教学过程。而在实际教学中,一些教师由于不能做到合理使用多媒体教学技术而导致了事倍功半的效果,针对这一问题,教师首先要突出教学目的在教学过程中的主线作用,让多媒体辅助教学技术为教学目标的实现服务,如果二者存在冲突则应当舍弃这种教学手段;其次教师要以教学和学生的需求为依据对多媒体的表现手段做合理选择。如多媒体的表现手段包括声音、动画等,在高校数学教学中需要有针对性地选取高效率的表现手段,这里所说的针对性包括教学内容的针对性以及教学目标的针对性。 2.确保多媒体演示与教师讲授关系的协调。在高校数学课堂教学中,多媒体辅助教学有明显的优势,它能够提高学生自主学习、合作学习、探究性学习等方面的能力,同时也有利于课堂情境的塑造。但是在高校数学课堂教学过程中,师生之间的互动以及学生与学生之间的互动是不能舍弃的,所以有必要将多媒体演示和教师讲授良好地结合起来,让多媒体辅助教学技术发挥辅助教师授课的作用。在现代的教学理论中,高校数学教师被认为是高校数学教学活动中的主导,学生是高校数学教学活动中的主体,而多媒体是高校数学教学活动中的辅助工具,其中教师本身主导地位不容忽视的原因主要体现在两个方面:一是高校数学教学活动开展的过程也是学生与教师交流的过程,通过这种交流,教师可以向学生传授高校数学知识,也可以利用自身人格魅力影响学生以提高学生的综合素质,尤其是道德品质素质,教师的这一作用是多媒体教学技术不可取代的;二是多媒体辅助高校数学教学活动的开展依赖教师的操作,无论是可见设计,还是教学演示,都需要教师进行,所以教师的主导地位实质上没有变化。 3.确保情感交流与知识传授关系的协调。在高校数学课堂教学中,学生和教师的交流是双向的互动关系,这个过程既是传授知识和反馈信息的过程,也是情感交流的过程,而教师、学生与多媒体之间是单向的没有情感的交流,所以人际之间的交流是无法发挥与师生交流同等作用的。这就要求在多媒体辅助高校数学教学中教师首先要控制多媒体辅助教学技术的使用时间,从而突出教师在知识传授中的主导地位;其次要选择合理的多媒体辅助教学技术使用的时机和方式,从而突出学生在整个教学过程中的主体地位;最后教师要善于利用自身的激情调动学生学习的热情,通过充满情感的体态和话语将自己的情感体验传达给学生,在关注学生情绪变化的基础上对学生在体验教学内容中的情感和思想进行合理地引导。 作者:朱彦生 工作单位:吉林农业工程职业技术学院 数学教研论文范文篇三:高等数学教学现状探讨 1高等数学教学中渗透数学史的提出 数学史研究的任务在于,弄清数学发展过程中的基本史实,再现其本来面貌,同时透过这些历史现象对数学成就、理论体系与发展模式作出科学、合理的解释、说明与评价,进而探究数学科学发展的规律与 文化 本质。作为数学史研究的基本方法与手段,常有历史考证、数理分析、比较研究等方法。 1.1高等数学教学中渗透数学史的提出背景 数学史主要是对数学概念、数学方法和数学思想的起源与发展进行研究,并且与社会政治、经济和一般文化相联系的一门科学。数学史首先对于揭示数学知识的现实来源和应用有一定的意义;其次,对于引导学生体会真正的数学思维过程,激发学生对数学的兴趣,培养探索精神有一定的意义;最后,对于揭示数学在文化史和科学进步史上的地位与影响,进而揭示其人文价值也有重要意义。对于高等数学教师来说,在教学过程中渗透数学史的内容,是一种极有意义的方法。数学史有很强的教育功能,将数学史融入高等数学的教学过程是必然的趋势。 1.2高等数学教学中渗透数学史的存在意义 1.2.1渗透数学史的科学意义 数学史既有其历史性又有其现实性。其现实性首先表现在科学概念与方法的延续性方面,今日的科学研究在某种程度上是对历史上科学传统的深化与发展,因此我们无法割裂科学现实与科学史之间的联系。诸如费尔马猜想、哥德巴赫猜想等历史上的难题,长期以来一直是现代数论领域中的研究 热点 ,比如古代文明中形成的十进位值制记数法和四则运算法则,我们今天仍在使用。总之,数学传统与数学史材料可以在现实的数学研究中获得发展。 1.2.2数学史的文化意义 美国数学史家M.克莱因曾经说过:“一个时代的总的特征在很大程度上与这个时代的数学活动密切相关。这种关系在我们这个时代尤为明显。”[1]毫不夸张地说,数学史可以从一个侧面反映人类的文化史。许多历史学家通过数学这面镜子,了解古代其他主要文化的特征与价值取向。例如,罗马数学史告诉我们,罗马文化是外来的,罗马人缺乏独创精神而注重实用。而古希腊数学家则强调严密的推理并由此得出的结论,这就十分容易理解,古希腊具有很难为后世超越的优美文学、极端理性化的哲学[2]。 1.2.3数学史的教育意义 了解数学史的人,自然会有这样的感觉:数学发展的实际情况与我们今日所学的数学书不是很一致。我们今日中学所学的数学内容基本上属于17世纪微积分学以前的初等数学知识,而大学数学学习的大部分内容则是17—18世纪的高等数学。这些数学课本已经过千锤百炼,它们是将历史上的数学材料按照一定的逻辑结构和学习要求加以取舍编纂的知识体系,这样就必然舍弃了许多数学概念和方法形成的实际背景、演化历程以及导致其发展的各种因素,因此仅凭数学教材的学习,难以获得数学的原貌和全景,而弥补这方面不足的最好途径就是进行数学史的学习。 2高等数学教学中渗透数学史的几点做法 2.1通过数学史的渗透加深学生对数学的理解 数学史的渗入可以丰富我们的教学内容,为学生提供新的学习途径。因为历史上的问题是真实的,因而更有趣;历史知识的介绍一般都非常自然,它或者揭示了实质性的数学思想方法,或者直接提供了相应数学内容的现实背景,这对于学生理解数学内容和方法都是重要的,所以在教学上要有所创新。在教学中,适时结合数学史内容进行教学,可以帮助学生了解数学知识是怎样形成的,可以极大地调动学生学习数学的积极性,有的同学甚至自己去找数学家的 故事 书看;有的同学通过对数学史的了解,不仅更好地理解了数学知识,而且转变了学习数学的态度,对问题的探讨由不耐烦到独立解决,喜欢对问题追根究底。 2.2通过数学史的渗透培养学生正确的数学 思维方式 首先,将数学家们获得重大发现的思想活动的历史记录以及经历的百感交集的体验引入课堂,是培养学生思维能力的最好教材;其次,还可以结合历史环境介绍一些数学史中的反例,让学生了解数学的发展并不是一帆风顺的,历史上任何一项数学成果的取得都是经历了重重曲折的;介绍数学的发展史,让学生了解数学家的思维方式,以此影响自己的思维方式。 2.3通过数学史的渗透激发学生学习数学的兴趣 高等数学以其抽象的内容、广泛的应用、严谨的结构、连续的发展而别于其他学科;实际教学中,学生在学习高等数学时只注重字母、公式的记忆,对概念、定理的产生缺乏正确的认识,知识死记硬背,因而,乏味、枯燥、难理解成为学生对数学这门学科的印象,看不到活的数学,更不用说对这门学科产生浓厚的兴趣了,再加上学习过程中随着对理解和接受数学知识要求的不断提高,从而也加大了学生学习高数的难度,学习兴趣不可避免会受到影响,学习效果当然会大打折扣。如果教师在教学过程中能够把抽象的概念同具体的 历史故事 、数学人物有机结合起来,适时地穿插一些学生感兴趣又有知识性的历史事件或名人故事,充分调节课堂气氛、诱发学生学习兴致,增强数学的吸引力,就可以使枯燥的教学变得生动,消除学生对数学的恐惧感,从而有助于提高学生学习的兴趣和积极性。 2.4通过数学史的渗透使学生以史为鉴 目前,德育教育不仅是政治、语文、历史学科的事了,数学史内容的加入使数学具有更强大的德育教育功能,通过介绍数学史让学生们以史为鉴。首先,通过数学史可以对学生进行爱国主义教育。现行的教材既有国外的数学成就,也有我国在数学史上的贡献,比如数学书中有:刘徽的“割圆术”、鸡兔同笼问题、秦九韶算法、更相减损之术等数学问题,还有我国的祖冲之、祖暅、秦九韶等一批优秀的数学家[3],还有很多具有世界影响力的数学成就,在我国很多问题的研究甚至比国外早很多年。在课程的要求下,除了增强学生的民族自豪感外,还可以培养学生的“国际意识”,了解更多的世界名家,就是让学生认识到爱国主义不是“以己之长,说人之短”,而是全人类互相借鉴、互 相学 习、共同提高。其次,通过介绍著名数学家的成长史和研究史,让学生学习数学家的优秀品质。数学家们的精神令人钦佩,他们坚持真理、不畏权威、努力追求的精神,很多人甚至付出毕生的精力。数学家的可贵精神对那些在平时学习中遇到稍微烦琐的计算和稍微复杂的证明就打退堂鼓的学生来说,是一个很好的榜样,对他们养成良好的数学品质有积极的作用。 3对高等数学教学过程中渗透数学史的启示 因为在高等数学中渗透数学史,有如此重大的意义,所以要求教师应加强数学史的学习与研究。然而,经研究发现大部分教师的实践效果并不是很好,原因并不是教师们不接受新的教育理念,也不是不愿意承认数学史的融入、落实文化渗透的理念,而是由于数学史的知识匮乏导致理念难以落实,因此数学教师应注意多方学习数学史知识,多方研究数学史。在数学史融入高等数学教学的行动研究中,发现对数学史的学习研究可以分为以下三个层次:了解性学习、掌握性学习、研究性学习。第一层次要求知道数学史的发展概况,了解起过重要作用的数学家,影响深远的数学思想、方法等。第二层次可以从数学史中适当提取相关内容,用于数学研究、教学、学习之中。第三个层次以文献资料为线索,研究不同时期的数学发展,数学家活动,数学思想、方法的进展等,并对数学的发展趋势提出预见性分析。 4结束语 总而言之,数学史在中学数学教学中的作用是非常重要的。因此我们需要把数学史融入高等数学教学中,并将文化理念落实于课堂教学。所以要把数学史融入课堂教学看成一种教学现象,用行动研究的理论来研究这种教育现象。在研究的过程中,要坚持学习行动研究的理论,并用行动研究的理论指导对数学史融入课堂教学的实践,在实践的过程,积累大量的问题,通过这些问题的解决,促进对行动研究理论的重新认识,提高对教育理论的应用。 作者:刘菊芬 吴芳 工作单位:铜仁学院教育科学系
在学习、工作中,大家都经常看到论文的身影吧,借助论文可以有效训练我们运用理论和技能解决实际问题的的能力。如何写一篇有思想、有文采的论文呢?下面是我整理的数学教学议论文范文,仅供参考,欢迎大家阅读。
《数学课程标准》明确指出:义务教育阶段的数学课程,其基本出发点是推动学生全面、持续、和谐的发展,它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际理由抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。因此,我们要充分注意学生各种能力的培养,从实际出发,努力激发学生的学习兴趣,充分调动学生的学习积极性和主动性,教会学生学习,教会学生深思,教会学生探索,使学生真正成为学习的主人,在新课标的指导下,我认为新的课堂教学应该注意以下理由:
一、激发学生潜能,鼓励探索创新
建构主义学习理论认为,知识不是通过教师传授而得到的,而是学习者在一定的社会文化背景下,借助其他人(包括教师、家长、同学)的帮助,利用必要的学习资源,主动地采用适合自身的学习策略,通过作用建构的方式而获得的,这要求教师在课堂教学中,要根据教学内容创设情境,激发学生的学习热情,挖掘学生的潜能,鼓励学生大胆创新与实践,要让学生在自主探索和合作交流过程中获得基本数学知识和技能,使他们觉得每项知识都是他们实践创造出来的,而不是教师强加给他们的。
二、转变教育观念,发扬教学民主
数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,在教学过程中,教师要转变思想,更新教育观念,把学习的主动权交给学生,鼓励学生积极参与教学活动,教师要走出演讲者的角色,成为全体学生学习的组织者、激励者、引导者、协调者和合作者,学生能自己做的事教师不能代劳,教师的主要任务应是在学生的学习过程中,在恰当的时候给予恰当的引导与帮助,要让学生通过亲身经历、体验数学知识的形成和应用过程来获取知识,发展能力。例如在学习同类项概念时,我针对初一学生的年龄特点,组织找同类项朋友的游戏。具体做法是这样的:把事先准备好的配组同类项卡片发给每个学生,一个同学找到自己的同类项朋友后,被挤出座位的另一个学生再去找自己的同类项朋友,比一比谁找得既快又准。这种生动的形式和有趣的策略能使学生充分活动,学习兴趣大增,学生在愉悦的气氛中掌握了确定同类项的策略和合并同类项的法则。
三、联系生活实际,培养学习兴趣
某些学生不想学习或讨厌学习,是因为他们觉得学习枯燥无味,认为学习数学就是把那些公式、定理、法则和解题规律记熟,然后反反复复地做题。新教材的内容编排切实体现了数学来源于生活又服务于生活的思想,通过生活中的数学理由或我们身边的数学事例来阐明数学知识的形成与发展过程,在教学过程中,教师要利用好教材列举的.与我们生活息息相关的数学素材和形象的图表来培养学生的学习兴趣。教师要尊重学生,热爱学生,关心学生,经常给予学生鼓励和帮助,学习上要及时总结表彰,使学生充分感受到成功的喜悦,感受到学习是一件愉快的事情,要通过自己的教学,使学生乐学、愿学、想学,感受到学习是一件很有趣的事情,值得为学习而勤奋,不会有一点苦的感觉。
例如在学习实践与探索中的储蓄理由时,我提前一周布置学生到本镇的几家银行去调查有关不同种类储蓄的利率理由。教学中,让每个学生先展示自己所到银行收集到的各种各样有关储蓄的信息,然后再按每四人一组根据收集到的信息编写有关储蓄的应用题,教师可以有选择地展示学生的学习成果,让全班学生相互讨论、合作攻关,最后选派一些小组的代表作总结发言,老师点评,对做得较好的同学进行表扬。通过这样教学,学生在愉快中学到了知识,收到了良好的效果。
新教材中编排的有关内容,如地砖的铺设、图标的收集、打折销售等等,教师都可以充分利用,让学生走出课堂去学习,体会数学与生活的密切联系,培养学生的学习兴趣。
四、关注个体差异,促使人人发展
《数学课程标准》指出:数学教育要面向全体学生,实现:人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展,数学教育要推动每一个学生的发展,即要为所有学生打好共同基础,也要注意发展学生的个性和特长,由于各种不同的因素,学生在数学知识、技能、能力方面和志趣上存在差异,教师在教学中要承认这种差异,因材施教,因势利导,要从学生实际出发,兼顾学习有困难和学有余力的学生,通过多种途径和策略,满足他们的学习需求,发展他们的数学才能。
新教材设计了不少如深思、探索、讨论、观察、试一试、做一做等理由,教师可根据实际情况组织学生小组合作学习,在小组成员的安排上优、中、差各级知识水平学生要合理搭配,以优等生的思维方式来启迪差生,以优等生的学习热情来感染差生,在让学生独立深思时,要尽量多留一些时间,不能让优等生的回答剥夺差生的深思,对于数学成绩较好的学生,教师也可另外选择一些较灵活的理由让他们深思、探究,以扩大学生的知识,提高数学成绩。
五、媒体辅助教学,提高教学效益
《数学课程标准》指出:教师要充分利用现代教育技术辅助教学,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决理由的有力工具,致力于转变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。因此,在课堂教学中,教师要根据教学内容恰当地运用计算机进行辅助教学,为学生提供更为广阔的自由活动的时间和空间,提供更为丰富的数学学习资源。
大学数学是大学生必修的课程之一,如何提升大学生数学学习兴趣,培养数学型人才,是每一个大学数学教师都需要思考的。下面是我为大家整理的大学数学论文,供大家参考。
大学数学论文 范文 一:大学数学网络 教育 论文
一、教师要转变观念
意识是行动的主宰者。首先,教师要充分认识到网络教学资源对大学数学教学所产生的深刻影响。在网络信息快速发展的当今时代,如果仍旧拘泥于传统教学方式,势必将会处于落伍的境地。不仅影响教学效率,往深层次讲,还会影响学生 毕业 走向社会的适应能力以及生存能力。因此,教师要积极主动投身于教学改革的先行者行列中,构建现代化网络教学平台、加强网络教学资源的建设。
二、进行有效引导
在现代网络信息资源的基础上,学生能够变传统被动接受知识为主动探索知识。因此,教师要进行适当引导,指导学生掌握有效运用现代网络资源的 方法 ,不断发挥学生的主观能动性,培养学生的自主学习与探索能力,进而实现学生主动探索、教师指导的理想教学模式。 课前预习 、课中学习、课后巩固等这些环节,教师均可以让学生先自主学习,而后再进行有效指导。
三、有效整合教学资源
现代网络为我们带来丰富多彩的教学资源的同时,也带来了一些垃圾信息。因此,在大学数学教学中,教师要具备有效甄选、整合教学资源的能力。要根据课程内容,选择适合课时内容的资源融入到教学中。在选择网络资源时要遵循趣味性原则、实用性原则以及内容相符原则。运用网络教学资源进行大学数学教学是提高大学数学教学质量与教学效率的有效途径与方法,也是教育教学发展的必然趋势。教师应当转变传统的教学观念,充分重视网络信息资源,以教材为中心,有效整合网络资源,并运用于教学中,提高学生的学习兴趣,不断培养学生的自主学习能力。
大学数学论文范文二:大学数学教学中网络教育资源研究
一、如何利用网络教育资源提高大学数学教育质量
(一)加强教师对网络教育资源的认知
以前的大学数学教学方式单一,与学生的交流也少之又少,但是随着网络资源的发展,这一切将会有很大的变化,这也是适应社会的发展,提高数学教学质量的一种必然趋势。学校也应加大网络资源建设,顺应社会发展的潮流,不要封闭在传统的教育理念之中。大学教师也应适应社会的发展,不断的学习,摆脱落伍的危机。
(二)教师要把网络教育资源的内容融入到教学之中
教师应该适应网络的发展,把网络教育资源融入到现代教学之中,但是不要盲目的引进,首先就要考虑引进内容的适用性,所引进的内容要与所学的内容有相关性,能起到补充,扩充的作用,这样能够开拓学生们的视野。其次引进的内容还要具有适用性,能够让学生们把所学的内容融入到生活,融入到社会,达到学生们能认识数学,应用数学,培养他们的能力。最后还要具有一定的趣味性,这样才能令学生更能接受所学内容,更愿意去学习数学,应用数学。所以教师合理的引进网络教育资源使十分重要的。
(三)教师要引导学生们自主利用网络教育资源
教师不但要学习引进网络教育资源,还要充分的引导学生利用网络资源,培养他们自主学习数学, 爱好 数学的良好作风。以前的数学教育中,以老师讲解为主,学生被动的接受知识,学习过后学生们无法应用,这是一个很大的失败,而现在的网络发展情况下,老师可以引导学生们更好的利用网络资源,引导学生们自主学习,可以布置学生做课前预习,到网络上寻求资料,还可以让学生们课后巩固学习内容,网上寻求交流,以便达到巩固知识的作用。
(四)增强学生自主学习能力和兴趣
现在大学数学教育尽管很重视学生的学习,教师又会安排课余时间组织学生们给他们进行答疑解惑,但是受到时间性和地域性的限制,效果往往是不太理想,现在网络资源的丰富,不再受时间和地域的限制, 网络技术 可以让学生和老师间进行多样化的交流和辅导,也可以让学生们通过一些论坛,邮箱,视频等等不断的学习巩固自己的知识。学习不再有时间地域的限制,学生们的积极性会大大提高,兴趣也会越来越高,提高数学成绩不再是难事。
二、结束语
大学数学教育充分有效的利用网络课程资源是提高大学数学教育质量的有效办法,教师应该打破传统教学的局限性,以课材为中心,充分利用网络资源融入到现在教学之中,补充课本上的不足,增强教育之中的趣味性,这样会开拓学生们的视野,培养学生们的 兴趣爱好 ,让他们更加具备学习数学的激情,更加具备自主学习的能力。只有这样学生们才会更加有发展,大学数学的教育才会更加成功。
大学数学论文范文相关 文章 :
1. 大学生论文范文
2. 大学论文格式范文
3. 大学生论文范文模板
4. 大学毕业论文范文
5. 大学生毕业论文范文
6. 大学毕业生论文范文
数学这门古老而又充满生命力同时兼顾理论性和应用性的课程,被誉为“思维的 体操 ”,其中无论是理论(纯数学)还是实践(应用数学),都包含丰富的知识和思维的技巧。下文是我为大家搜集整理的关于数学论文的内容,欢迎大家阅读参考!
浅析小学数学学习特点对教学的影响
小学数学是知识学习的起始点,与人类的学习比起来,小学数学的学习更有具体性。小学生对数量关系和空间形式知识的学习,具有抽象性,需要学生认真思考。要从学生的实际情况出发,分析学生在学习小学数学前在知识、能力、情感态度价值观等方面所达到的水平,使教师根据小学数学学习特点策划教学方案,为教学提供理论依据。本文从学习内容、学习过程以及学习方式三点来论述小学数学学习特点对教学的影响。
一、学习内容的抽象性与形象性
1.抽象性和形象性的特点
教材编写人员将富有抽象的数学知识转变为 儿童 易理解的形象化数学知识,通过转化,它不但没有失去数学学科的抽象性、逻辑性和严密性,而且更加形象生动。大大提高了学生的学习兴趣。教材通过丰富多样的图片和 故事 ,把数学知识以多种方式呈现在学生面前。使学生想学爱学。虽然小学数学学习内容很抽象,但经过多种方式的呈现,使知识更形象生动。这种 方法 解决了数学知识特点与小学生思维之间的矛盾问题。
2.抽象性和形象性特点对小学数学教学的影响
教师在讲解小学数学时要使形象性与抽象性相结合,通过各种教学方式把抽象的数学知识形象化。因此教师需恰当地解决具体与抽象之间的联系,即要解决以下四个问题:第一,怎样将学习内容的形象性与数学的本质结合起来;第二怎样进行抽象概括;第三,怎样对数学知识的理解深入到学生心中;第四,使学生学会用自己的语言来描述数学问题。
二、学习过程的渐进性和系统性
1.渐进性和系统性的特点
教学模式开发和应用的过程,是一个随着 教育 理论和教学实践不断发展的过程。它具有渐进性和系统性。这两种特性遵循了小学生的发展规律,对知识的学习是一个循环渐进的过程。在教学中要充分考虑学生的年龄特点和小学数学学习的特点,在具体活动中引导学生多动手、动脑和动口,调动各种感官参与活动,提高学习效率。渐进性和系统性是学生学习过程中的特点,它主要表现在,数学知识的逻辑性和系统性,数学知识具有扩展性,每个知识点要相互渗透,形成全面系统的知识。学会举一反三。对小学数学循序渐进学习。
2.渐进性和系统性特点对小学数学学习的影响
根据小学数学渐进性和系统性的特点,合理地选择教学方式。在教学过程中遵循学生发展的规律。将小学数学学习的渐进性和系统性恰当的结合起来,从而制定有效的教学方案,使得小学数学的教学有计划、高效的开展。适应这个特点需要满足以下两个方面:第一个方面,按照教科书为学生制定的数学学习顺序进行学习;第二个方面,在学习原理的基础上,使小学数学学习过程具有系统性。
三、学习方式的接受性和探索性
1.接受性和探索性在小学数学学习活动中的体现
小学数学的学习方式分为接受学习和发现学习两种。无论是哪种学习方式,都是学生将已存在的数学知识转化为自己知识的过程,来提高数学水平。转化知识的过程既是学生自己发现探索的过程,也是接受原有知识的过程。通过学生对数学学习方式的探索,小学数学的学习是在接受性和探索性及两者统一的基础上表现出来的。而对数学知识的再发现决定了小学数学学习的探索性,对数学知识的传递决定了其学习的接受性。接受性和探索性是小学数学学习的必要条件。
在教学过程中,教师要正确地认识和承认学生的差异,通过独立思考和小组合作交流,使学生能在不同的基础上得到发展,并能从教师对每一种方法的肯定中获得成功的喜悦。可以让学生选择自己喜欢的计算方法与同学交流,增加本节课学习的兴趣,提高教学效率。
2.接受性和探索性特点对小学数学教学的影响
接受性和探索性特点是通过教与学的方式对小学数学教学产生影响。教师要以学生为主体,在小学数学的教学过程中起引导作用,教师要采用多种教学方式引导学生思考,且根据学生接受的程度和讲授的数学知识恰当地选择教授方法,这样学生既能运用多种方法学习数学,又能掌握知识,小学数学教学过程的进步需要靠多样的学习方式和先进的 教学方法 来完成,使学生能够在玩中学,提高学习兴趣,达到教学目的。在教学过程中需要关注以下三点:第一,以多种多样的学习方式指导学生;第二,在教学过程中,要注重培养学生自己探索发现数学问题及解决数学问题的能力;第三,根据小学数学的学习特点采用多种教学方式提高学生学习的主动性和积极性。
四、结语
小学数学教学过程中必须要关注小学生学习数学的特点,根据其特点采用多种教学方法进行教学。教学内容应生动形象而不缺抽象,教授过程中要把系统性与渐进性相结合,接受性与探索性相结合,遵循小学数学学习的特点,循环渐进地掌握知识,达到期望的教学目标。小学数学学习的特点对教学既有指导性,也有探索性,只要充分理解其特点,才能使小学数学的教学向着有利于学生接受的方向迅速前进,从而提高教学效率,达到教学目标。
浅析新课改下高中数学导数教学的发展
最近几年来,伴随着我国市场经济的飞速发展,社会也在不断的发生着变化,同期我国的科学技术水平也迈上了一个新的台阶。为了能够更好的发展,同期也需要我们的自然学科进行相应的发展,这样可以更好的适应社会发展的需要。众所周知,数学学科是高中素质教育中不可或缺的重要组成部分之一,自从我国教育体制开始形成之时,数学科目就开始存在,所以说数学在素质教育中占据的地位非常重要,而导数作为帮助学生解决函数、数列等难点的工具,同时又能紧密联系其他学科,更是有着十分重要的地位。在实行新课改后,微积分作为教学内容而列入高中数学教材,这对学生的导数知识掌握能力提出了更高的要求。因此本文对新课改实施背景下,如何通过教学方法的改进来提高学生导数掌握能力进行研究。
一.现阶段高中数学导数教学的现状
(1)教学模式单一,对学生 学习方法 引导不够
在文理分科的背景下,导数在高中数学学科中是作为一门选修课程来学的,这造成了文科学生由于对导数的应用了解不深而不能很好地掌握,利用导数求解函数参数问题也就无从谈起。同时由于实行新课改后,数学学科的课时被压缩,很多教师为了在短时间内完成大纲规定的内容,在教学过程中一般来说都是采取的教师讲授或者板书,毫无疑问,在整个教学的过程中学生都是被动听课的方式进行教学的,这种教学方式在一定程度上大大压制了学生思维的活跃性和课堂参与的积极性。这就造成了学生由于导数内容太难而失去学习激情,这更加不利于导数知识的掌握,不利于教学活动的开展。
(2)应试教育观念导致的教学僵化
一直以来,我国的应试教育体制在教育体系中的地位都比较稳固,甚至到现在为止还没有得到完全的消除。即使实行了新课改,很多教师由于教学观念没有转换过来,在教学过程中过于重视考试题型的讲解和练习,而忽视了帮助学生对数学思想和内涵进行正确认识,这导致了学生在导数学习中纯粹以考试为目的,机械式地背诵公式,无法将所学导数知识运用于生活和其他学科的内容学习中,这与新课改提倡的素质教育理念是不相符的。导数教学的难点在于学生对于导数的认识不足,难以理解导数概念,这需要老师利用物理学科或者生活中的场景进行深入了解,而不是用纯粹的理论化的数学概念来对学生进行“填鸭教育”。
二、新课改下提高数学导数教学质量的 措施
(1)帮助不同的学生制定不同的 学习计划
总的来说,学习方法是学生进行有效学习的基础,而且在一定程度上对学生的学习起着举足轻重的作用。正确的学习方法是学生有效掌握所学知识的保证,这就要求数学教师在课堂教学中除了对学生进行课堂内容讲解外,还需要通过一定的测试和沟通来了解学生的导数内容掌握情况,对于掌握不足的学生应该帮助制定相应的学习计划,测试的目的不是为了成绩,而是为了掌握学生的学习情况,同时针对学生的学习情况对教学计划进行适当的调整,如果后续的学习计划制定没有跟上,那么测试也就失去了意义。
(2)借助案例帮助学生加深对导数的理解
导数由于其对于高中学生来说过强的理论性,造成了学生对于导数的理解和应用往往掌握不够,这种情况下纯粹的理论教学只会造成学生进一步的不理解,这十分不利于学生的学习效率和老师的课堂效率,所以在导数的课堂教学中,老师要注意借助导数应用案例来激发学生的学习热情,比如物理运动的速度变化问题、加速度变化问题等,这样不仅能够帮助学生更好地理解导数内涵,而且能够使学生在加强对其他学科知识的理解的同时主动思考导数知识在生活中的应用,大大提高了教学质量和效率。
(3)加强导数技巧性和应用训练
在平时的教学中应该多鼓励学生应用导数内容求解函数等相关问题,这样可以进一步提高学生对导数的理解程度和应用水平。同时老师也可以针对导数的应用多出一些技巧性的题目对学生进行训练,比如利用导数知识来画出二阶、三阶函数的图像等,学生要做出这种题目就需要一定的技巧,随着解答的技巧性题目数量的增多,学生对于导数的应用也就更熟练。同时在导数的初学阶段,由于学生对于导数理解不够,老师可以出一些含有生活案例的题目让学生来解答,比如将学生骑车时速度变化的问题加入到导数题目中,这样可以促使学生主动思考导数知识,加深对导数的理解,为以后的导数深入学习打下基础。
三、结语
综上所述,我们可以知道,高中数学的导数教学具有其一定的独特性,究其原因是因为在一定程度上不但具有数学学科严密的逻辑性,而且同时还具有初中数学不具备的抽象性,所以在教学中需要教师根据高中数学的特点进行相应的教学。高中导数的有效教学不但需要教师采用积极引导的教学,同时还需要学生培养出数学思维进行学习,只有通过教师和学生共同努力,这样才能在新课改的情况下,让高中数学导数教学得到稳定可持续的发展。
浅谈初中生数学问题意识的培养
一、初中生问题意识培养的意义
问题意识即在学科学习过程中能够主动思考、认真探究,从而针对某个方面提出问题的思想准备。在数学课堂上,学生常常不敢或不愿回答课堂提问,不能或不善提出问题,能够经常积极回答问题的只有少数学生,能够在课堂中提出问题的学生更是少之又少。学生缺少问题意识,不能提出问题,不利于学生思维的发展,不利于学习能力的进一步提升。朱永新关于新课程的核心理念之一:教给学生一生有用的东西。而学生自主学习、勤学好问的习惯一定是学生一辈子受益的。心理学研究表明,意识到问题的存在是思维的起点,学生没有问题本身就是大问题.被称为现代科学之父的爱因斯坦曾指出:“提出一个问题往往比解决一个问题更重要。”初中生数学问题意识的培养,是学习习惯和学习能力培养的重要方面,是新课程改革的需要。
二、初中生问题意识培养策略
如何培养学生问题意识呢?我们通过教学实践进行了相关探索,并初步形成了一些策略。
1、改变评价方式,鼓励提问
造成学生问题意识缺失的原因是多方面的。我们的评价导向不利于学生问题意识的培养是原因之一,多数时候我们对回答问题对、考试分数高大加赞赏,对于学习有困难的学生缺少鼓励指导。大批循规蹈矩的学生,不敢也不会去质疑。学生学习中的问题本应该由学生主动提出,而实际教学中常常是学生被老师问。如何改变这一现状?我们可以采用多种方式鼓励学生提问。(1)注意运用表扬或激励性语言,逐步使学生感受到课堂中能提出问题和敢于回答问题一样都是值得肯定和鼓励的。(2)把学生课堂提问是否积极作为对学生评价的一个重要方面。(3)有目的进行一些提问竞赛等活动。
2、夯实学习基础,让学生能问
教学实践中我们体会到学生能否提出问题与学生学习基础有密切关系,学习基础较好的学生更容易提出问题。因此,教师要注重夯实学习基础、培养学生勤学好问的品质,让学生坚实的学习基础成为产生问题的土壤.
3、营造轻松学习氛围,使学生敢问
数学课堂上学生没有提出问题,并不是没有问题,更多时候是因为紧张等原因导致有问题不敢提出。学生只有在宽松、和谐的氛围中,思维潜力才会得到最大限度的开启。为了消除学生在课堂上的紧张和害怕的情绪,教师需要尽可能营造轻松、和谐、民主的学习氛围,可以先让学生在学习小组内交流、质疑,再让学生在全班内提出或解答问题。教师以微笑、平和、宽容、鼓励的心态指导学生,与学生交流探讨,帮助学生树立自信,拉近师生情感距离,使学生做到想问就问。
数学教学应教会学生会思考。让学生经历观察、猜想、操作、实验、合情推理的过程,不仅有利于培养学生的独立性、能动性和创新精神,而且学生在轻松学习氛围中能够 消除紧张 因素,有问题时敢于提出。
4、教师示范引领,诱导学生善问
如果一个人没有问题,就不会有新的发现,就不会有真正的成长。学生没有问题意识就会学得被动低效,教师没有问题意识就会阻碍专业成长。教师要让学生有问题意识,就首先自己具有问题意识。教师强烈的问题意识能起到很好的示范作用,能促进学生的问题意识发展。
案例2.三角形三边关系教学
(1)让生拿出课前准备好的三根长度不一样的塑料吸管。
(2)把这三根吸管“首尾顺次连结”你有何发现?这时学生发现有的能构成三角形,有的却不能。
(3)教师再继续提出三个问题:①你的三根吸管的长度各是多少?②三根吸管的长度具有怎样关系时能“首尾顺次连结”组成三角形?③是否具有任何长度的三条线段都能“首尾顺次连结”构成三角形?
在上述探究过程中,正是教师不断追问诱导,集中学生的思维,引发了学生的不断质疑,思考层层深入,结果不断涌现,惊喜不断。长此以往,学生就会善于提问。
5、利用现代媒体技术,促学生提问
《义务教育课程标准(2011版)》(以下简称《标准》)指出:数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程的整合。把信息技术作为学生学习数学和解决问题的有力工具,有效地改进教和学的方式,使学生乐意投入到现实的、探索性的数学活动中。现代信息技术应用于数学教学能达到其他方式无法比拟的效果,有力于学生在“问题空间”自主探究。教师为学生设置环境,提供他们需要使用的工具与资源,促使学生提出问题并进行探索,激发学生解答问题,实现学生自己建构知识。
现代信息技术为数学活动的开展提供了广阔的天地,只要学生投入到运用媒体软件做数学的活动过程中,必然发现或提出各种问题、引发自主探究。
三、结语
总之,真正的教育应该是以学生的发展为本,老师不仅关注如何教,更应该关心学生如何学.我们要求学生创造出能够提出问题、敢于提出问题、善于提出问题的学习环境,从而培养学生的问题意识和创新精神.
在中学数学中最厉害的期刊有:
1、《福建中学数学》:福建师范大学数学系2、《数学教学》:华东师范大学(上海中山北路3663号)3、《中学数学》:湖北大学4、《中学数学教学参考》:陕西师范大学5、《中学数学教与学》:江苏,扬州大学瘦西湖校区。6、《中学数学教育》(初中版)(中国教育学会中学数学教学专业委员会会刊)辽宁沈阳市皇姑区宁山中路15号
其他普通期刊:
1、《高中数理化》国家级期刊,知网收录。教育部主管,刊期:22年 9-12月,主要栏目:学习辅导、复习指南、思路方法、专题精析、巧解妙算、自我检测、高专模拟。
2、《数学学习与研究》省级期刊,知网收录。主要栏目:数学天地、专题研究、解题技巧、创新思路、交流平台、学习心得、德育渗透、教材分析、教法感悟、教学管理、教学艺术、学习方法、课改前沿、师生关系、本刊专稿等。
国内主要数学教育期刊 1.《数学教育学报》ISSN 1004—9894,CN12—1147/G4,代号6—132,季刊,天津师范大学主办,编辑部地址:天津师范大学北院数学系,邮政编码:300073。2.《数学通报》ISSN 0533—1458,CN11—2254/O1,代号:2—501,月刊,中国数学会、北京师范大学主办,编辑部地址:北京师范大学,邮政编码:1008753.《数学通讯》ISSN 0488—7395,CN42—1152,代号38—23,月刊,湖北省数学会、武汉市数学会、华中师范大学主办。编辑部地址:武汉华中师范大学数学系,邮政编码:430079。4.《数学教师》ISSN 1003—2770,CW41—1225/O1,代号36—83,月刊,河南省教科所主办,编辑部地址:河南省郑州市顺和路17号,邮政编码:450003。5.《数学教学》CN31—1024,代号4—357,双月刊,华东师范大学数学系主办,编辑部地址:上海市华东师范大学数学系,邮政编码:200062。6.《中学生数学》ISSN 1003—1901,CN11—1531/O1,代号2—518(初中版),2—519(高中版),双月刊,中国数学会普工委、北京市数学会、首都师范大学数学系主办。编辑部地址:北京市首都师范大学数学系,邮政编码:100037。7.《中等数学》CN12—1121,代号6—75,双月刊,中国数学会普工委、天津市数学会、天津师范大学数学系主办。编辑部地址:天津市河西区八里台,天津师范大学数学系,邮政编码:300074。8.《中学数学教学参考》ISSN1002—2171,CN61—1058/G4,代号:52—30,月刊,陕西师范大学主办,编辑部地址:西安市陕西师范大学数学系,邮政编码:710062。9.《数学教学通讯》ISSN 1001—8875,CN51—1182/G4,代号:78—120(初一卷)、78—121(初二卷)、78—122(初三卷)、78—123(高一卷)、78—124(高二卷)、78—125(高三卷),双月刊,重庆市数学会、西南师范大学数学系主办。编辑部地址:重庆市西南师范大学数学系,邮政编码:400715。10.《中学数学研究》CN44—1140/O1,代号:46—82,月刊,华南师范大学数学系主办。编辑部地址:广州市华南师范大学数学系,邮政编码:510631。11.《中学数学》ISSN 1004—1176,CN32—1270/G4,代号:28—75,月刊,江苏省数学会、苏州大学数学科学学院主办。编辑部地址:苏州大学数学科学学院,邮政编码:215006。12.《中学数学教与学》(高中版)ISSN 1007—1830,CN32—1398/O1,代号:28—151,月刊;(初中版)ISSN 1007—1849,CN32—1392/G4,代号:28—152,月刊,扬州大学主办。编辑部地址:扬州大学师范学院数学系,邮政编码:225002。13.《上海中学数学》CN31—1572/G4,代号:4—369,双月刊,上海师范大学数学系主办。编辑部地址:上海师范大学数学系,邮政编码:200234。14.《中学数学教学》ISSN 1002—4123,CN34—1070/O1,代号:26—7,双月刊,安徽省数学会、安徽师范大学数学系、安徽教育学院主办。编辑部地址:合肥市安徽教育学院,邮政编码:230061。15.《福建中学数学》CN35—1084/O1,代号:34—9,双月刊,福建省数学会、福建师范大学数学系主办。编辑部地址:福州市福建师范大学数学系,邮政编码:350007。16.《湖南数学通讯》ISSN1003—7381,CN43—1112/O1,代号:42—14,双月刊,湖南省数学会、湖南长沙教育学院主办。编辑部地址:湖南省长沙市熙宁街43号,邮政编码:410008。17.《中学数学》ISSN 1002—7572,CN42——1167/O1,代号:38—69,月刊,湖北省中学数学教育研究会、湖北大学数学系主办。编辑部地址:武汉市湖北大学,邮政编码:430062。18.《中学数学杂志》ISSN 1002—2775,CN37—1116/O1,代号:24—68,双月刊,山东省高师数学会、曲阜师范大学主办。编辑部地址:山东省曲阜师范大学,邮政编码:273165。19.《数学教学研究》CN62—1042/O1,代号:54—50,双月刊,甘肃省数学会,西北师范大学主办。编辑部地址:兰州市西北师范大学数学系,邮政编码:730070。20.《中学教学研究》CN36—1100/O1,代号:44—33,双月刊,江西师范大学数学与信息科学学院主办。编辑部地址:南昌市江西师范大学数学系,邮政编码:330027。21.《中学教研(数学)》ISSN 1003—6407,CN33—1069/G4,代号:32—17,月刊,浙江师范大学主办。编辑部地址:浙江省金华市浙江师范大学,邮政编码:321004。
《物理教师》
《中学数学月刊》 《中学数学杂志(高中版)》 《中学生数学》 《中学数学》 《中学数学研究》 《数理天地(高中)》 《纯粹数学与应用数学》 《数学通报》 《数学进展》 《高等数学研究》 《高等学校计算数学学报》 《高校应用数学学报A辑》 《工程数学学报》 《工科数学》 《海南数学学习》 《湖南数学年刊》 《计算数学》 《计算数学(英文)》 《经济数学》 《中国数学文摘》 《应用数学》 《应用数学和力学(英文)》 《应用数学学报》 《应用数学与计算数学学报》 《系统科学与数学》 《数理统计与管理》 《数学的实践与认识》 《数学理论与应用》 《数学年刊A辑》 《数学年刊B辑(英文)》 《数学通报》 《数学通讯》 《数学学报》 《数学学报(英文)》 《数学学习(高等数学)》 《数学学习与研究》 《数学研究与评论》 《偏微分方程(英文)》 《模糊系统与数学》 《高等学校计算数学(英文版)》 《代数集刊(英文)》