首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

工业设计论文参考文献英文

发布时间:

工业设计论文参考文献英文

工业设计industrial design产品设计product design

工业设计 Industrial Design designIndustrial design is an applied art whereby the aesthetics and usability of products may be improved for marketability and production. The role of an Industrial Designer is to create and execute design solutions towards problems of engineering, usability, marketing, brand development and sales.Definition of industrial designGeneralIndustrial Designers are a cross between a mechanical engineer and an artist. They study both function and form, and the connection between product and the user. They do not design the gears or motors that make machines move, or the circuits that control the movement. And usually, they partner with engineers and marketers, to identify and fulfill needs, wants and expectations.In Depth"Industrial Design (ID) is the professional service of creating and developing concepts and specifications that optimize the function, value and appearance of products and systems for the mutual benefit of both user and manufacturer." According to the IDSA (Industrial Design Society of America)Design, itself, is often difficult to define to non-designers because the meaning accepted by the design community is not one made of words. Instead, the definition is created as a result of acquiring a critical framework for the analysis and creation of artifacts. One of the many accepted (but intentionally unspecific) definitions of design originates from Carnegie Mellon's School of Design, "Design is the process of taking something from its existing state and moving it to a preferred state". This applies to new artifacts, whose existing state is undefined and previously created artifacts, whose state stands to be improved.According to the (Chartered Society of Designers) design is a force that delivers innovation that in turn has exploited creativity. Their design framework known as the Design Genetic Matrix (TM) determines a set of competences in 4 key genes that are identified to define the make up of designers and communicate to a wide audience what they do. Within these genes the designer demonstrates the core competences of a designer and specific competences determine the designer as an 'industrial designer'. This is normally within the context of delivering innovation in the form of a three dimensional product that is produced in quantity. However the definition also extends to products that have been produced using an industrial process. Industrial design is rapidly becoming an obsolete term as 'products' can now be industrially produced as 'one-offs' by the use of Rapid Prototyping Machines. In a post-industrial era and with the emergence of strategic design definitions such as this are incumbering designers and the advancement of design practice.According to the ICSID, (International Council of Societies of Industrial Design) "Design is a creative activity whose aim is to establish the multi-faceted qualities of objects, processes, services and their systems in whole life-cycles. Therefore, design is the central factor of innovative humanization of technologies and the crucial factor of cultural and economic exchange.Process of designAlthough the process of design may be considered 'creative', many analytical processes also take place. In fact, many industrial designers often use various design methodologies in their creative process. Some of the processes that are commonly used are user research, sketching, comparative product research, model making, prototyping and testing. These processes can be chronological, or as best defined by the designers and/or other team members. Industrial Designers often utilize 3D software, Computer-aided industrial design and CAD programs to move from concept to production. Product characteristics specified by the industrial designer may include the overall form of the object, the location of details with respect to one another, colors, texture, sounds, and aspects concerning the use of the product ergonomics. Additionally the industrial designer may specify aspects concerning the production process, choice of materials and the way the product is presented to the consumer at the point of sale. The use of industrial designers in a product development process may lead to added values by improved usability, lowered production costs and more appealing products. However, some classic industrial designs are considered as much works of art as works of engineering: the iPod, Coke bottle, and VW Beetle are frequently-cited examples.Industrial design has no focus on technical concepts, products and processes. In addition to considering aesthetics, usability, and ergonomics, it can also encompass the engineering of objects, usefulness as well as usability, market placement, and other concerns such as seduction, psychology, desire, and the sexual or affectionate attachment of the user to the object. These values and accompanying aspects on which industrial design is based can vary, both between different schools of thought and among practicing designers.Product design and industrial design can overlap into the fields of user interface design, information design and interaction design. Various schools of industrial design and/or product design may specialize in one of these aspects, ranging from pure art colleges (product styling) to mixed programs of engineering and design, to related disciplines like exhibit design and interior design.Also used to describe a technically competent product designer or industrial designer is the term Industrial Design Engineer. The Cyclone vacuum cleaner inventor James Dyson for example could be considered to be in this category (see his autobiography Against The Odds, Pub Thomson 2002).Industrial design rightsIndustrial design rights are intellectual property rights that make exclusive the visual design of objects that are not purely utilitarian. An industrial design consists of the creation of a shape, configuration or composition of pattern or color, or combination of pattern and color in three dimensional form containing aesthetic value. An industrial design can be a two- or three-dimensional pattern used to produce a product, industrial commodity or handicraft. Under the Hague Agreement Concerning the International Deposit of Industrial Designs, a WIPO-administered treaty, a procedure for an international registration exists. An applicant can file for a single international deposit with WIPO or with the national office in a country party to the treaty. The design will then be protected in as many member countries of the treaty as desired.

第17 卷第4 期 皮 革 科 学 与 工 程 Vol117 ,No142007 年8 月L EATHER SCIENCE AND ENGINEERING Aug1 2007Artical ID :1004 - 7964 (2007) 04 - 0003 - 06Received Date :20072052213 P. Mokrejs :Corresponding author. Phone N°: + 420 57 603 1230 ;Fax N°: + 420 57 603 1563 ;e2mail :mokrejs @f t . utb. c2Recycling Technology for Waste Tanning LiquorsP. Mok rejs1 3, D. J anacova2 ,M. Mladek1 , K. Kolomaz nik2 , F. L angmaier1 ,V . V asek2(1. Tomas B ata University , Faculty of Technology , Department of Protein and Leather , nam.TGM 275 , 762 72 Zlin, The Czech Republic ;2. Tomas B ata University , Faculty ofA p plied Inf ormatics , Institute of Processing Cont rol and A p plied Computer Science ,N ad S t ranemi 4511 , 760 05 Zlin, The Czech Republic)Abstract :Tannery belongs to typical indust rial branches which during t he technological processp roduce considerable quantities of liquid and solid wastes cont ributing to polluting t he environ2ment . The presented work describes dechromation of waste tanning liquor utilising chrome sludgep roduced t hrough enzymatic hydrolysis of chrome2tanned leat her wastes. The principle of dechro2mation consist s in sorption of chrome f rom waste liquor af ter tanning to chrome sludge. Recy2cling technology is characterised by an almost 99 % efficiency , simplicity and low investment re2quirement s.Key words :solid waste ;liquid waste ;chrome sludge ;waste tanning liquor ;chrome recoveryCLC number :X 794 Document code :A鞣制废液的循环技术摘 要:制革属于典型的工业分支,制革工业中会产生大量的污染环境的废液和废固。该论文利用铬鞣革废物的酶法水解用铬污泥除去鞣制废液中的铬。除去铬的原理是鞣后的铬污泥从废液中吸收铬。该循环技术回收率可达99 % ,操作简单、成本低廉。关键词:固体废弃物;液体废弃物;铬污泥;鞣制废液;铬回收1 INTRODUCTIONThe tanning indust ry p rocesses wastes of themeat indust ry , raw hides , and t ransforms t hemt hrough chemical , chemico2p hysical and mechani2cal processes into leather s. During t he technologi2cal process , solid and liquid wastes arise which ,particularly as a consequence of t he cont rover sialchrome t hey contain , burden the environment .Processing one met ric ton of raw hide produces ap2prox. 200 kg finished leat her . About 30 , 000 kgwastewaters arise through processing and moret han 70 % chrome passes into liquid and solidwastes [1 ] .In classic tanning , approx. 40 % chrome (t hestarting charge of 15 - 17 kg Cr / t ) remains inleat her , 26 % - 30 % chrome passes into solidwastes and 30 % - 34 % chrome remains in liquidwastes. In t he tanning of hides using technologicalprocedures ensuring high removal of chrome com2pounds by white hide , 54 % - 57 % chrome remains© 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. leat her , 31 % - 38 % chrome passes into solidwastes and 5 % - 15 % remains in liquid wastes [2 ] .For modifying t he tanning process , organic acids ,e. g. are used , which cont ribute to improving theremoval of chrome ions.1. 1 Liquid wasteManufacture of chrome2tanned leat hers pro2duces 115 - 2 times quantities of wastewater s t hanmanufact ure of vegetable2tanned leat her s [3 ] . Los2ses of chrome compounds in waste tanning liquor smay be prevented in several ways. The simplestapproach is the direct recycling method consistingin re2using exhausted liquor in t he tanning process.The main shortcoming of t his method is a negativeeffect of salt s and other contaminating substanceson quality of finished leather . Af ter being recycledseveral times , wastewater has to be discharged intosewage [4 ] . Anot her potential met hod is indirectrecycling , in which chrome is obtained f rom ex2hausted sludge t hrough precipitation using a suit2able alkaline agent , e. g. sodium hydroxide , sodi2um carbonate , sodium hydrogen carbonate , mag2nesium oxide , calcium sulp hate , calcium hydroxide[5 ] . A f urt her met hod consist s in employing elabo2rate techniques , e. g. elect ro2dialysis , membraneseparation , ion exchangers , wit h which chromemay be separated f rom ot her salt s contained in ex2hausted sludge. Chrome thus obtained is character2ised by much higher p urity than that obtainedt hrough indirect recycling. Disadvantages are ahigh cost and limited po ssibilities of applying t hesedemanding technologies in tanning factories [ 4 ] .Unutilised chrome in liquid wastes , apartf rom significant economic losses for tanneries , al soposes great hazard for t he environment and forman. The most stable and most important oxida2tion state is Cr ( III) . Compounds of Cr (VI) occurin t he form of chromates and dichromates and ex2hibit quite st rong oxidative properties [6 ] .Chrome is found in liquid tanning wastes in it st rivalent form , there exist s , however , potentialdanger of it s oxidising to hexavalent compounds ,particularly when t reating groundwater s to drink2ing waters. Hexavalent compounds , when com2bined wit h calcium or magnesium ions , are st rong2ly carcinogenic[7 , 8 ] .An extensive research exploring negativeeffect s of tanning wastewaters f rom local tannerieson t he adjacent ecosystem was conducted in Indi2a[9 ] . Highest level s of chrome contained in soilwere found in t he vicinity of tanneries , at approx.60 g/ kg. Highest chrome accumulation was ob2served in cauliflower stalks (72 mg/ kg) in locali2ties near tanneries. In st udies investigating Cr ac2cumulation in fish organs it was found t hat mostchrome accumulates in t he liver (approx. 22 mg/kg) and least in muscles (approx. 1 mg/ kg) . Thepo ssible t ransfer of hazardous Cr doses into t hefood chain and consequently to human beings ist hus quite obvious.112 Sol id wasteTannery processing al so produces a considera2ble quantity of solid chrome2tanned wastes whichpresent a significant problem due to t heir chromecontent . The problem of solid wastes has beensolved so far by land filling which , of course , be2side ever increasing land filling co st s al so bringst he danger of chrome escaping into t he ecosystem.Due to t heir containing a sizeable proportion ofprotein material , solid tanned wastes started to beprocessed. Enzymatic hydrolysis has being em2ployed to considerable extent in latest year s , wit hit s particular advantages being mild reaction condi2tions and economic cost2effectiveness [10 , 11 ] . Themain product of enzymatic hydrolysis is collagenhydrolysate , whose application possibilities arebroad , e. g. as feed additive , nit rogenous fertili2ser , raw material for preparing adhesives , corro2sion inhibitor s , etc. The remaining waste productaf ter enzymatic hydrolysis (chrome sludge) has notyet found lucrative application. It s employment ,due to chrome content , has not been much adoptedfor preparing combined tanning bat hs.Subject of the presented work is potential use4 皮革科学与工程 第17 卷© 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. t he waste product af ter enzymatic hydrolysis ofchrome2tanned solid wastes (chrome sludge) for i2solating chrome compounds f rom waste tanningliquor s.2 MATERIALS AND METHODSSolid was determined according to ISO 4684[12 ] , ash according to ISO 4047 : 1998[13 ] , nit rogenaccording to ISO 5397 : 1984 [14 ] , Cr2 O3 accordingto ISO 5398 [ 15 ] , Cr according to ISO 9174 : 1998[16 ] and Mg according to ASTM D511203 [ 17 ] .Chrome sludge is a waste product of enzymatichydrolysis of chrome2tanned solid waste and it scomposition is given in Tab. 1. Typical composi2tion of chrome2tanned solid waste is given in Tab.2.Tab11 Composition of chrome sludge1)表1 铬污泥成份Parameter ValueTS/ % 1614Ash/ % 3410N / % 114Cr2O3 / % 1215MgO / % 1115 1) based on total solidsTab12 Composition of chrome2tanned solid waste1)表2 铬鞣革固体废弃物成份Parameter ValueTS/ % 6911Ash/ % 1019N/ % 2011Cr2O3 / % 415 1) based on total solidsTab13 Composition of waste tanning liquor表3 鞣制废液成份Parameter ValueTS/ % 718Ash/ %1) 8713N/ %1) 018Cr/ (mg/ kg) 1 ,769Mg/ (mg/ kg) 693p H 412colour blue2green 1) based on total solidsWaste tanning liquor was obtained f rom tan2ning of cowhides and it s composition is presentedin Tab. 3.The experimental part was divided into twopart s. The fir st part contained five selected massratio s of chrome sludge ∶ waste liquor and threevarious dechromation times , see Table 4. Practicaldechromation was performed under laboratory con2ditions by stirring chrome sludge with waste tan2ning liquor at room temperat ure in accordance wit ht he scheme shown in Fig. 1. Af ter dechromation ,t he heterogeneous mixt ure was cent rif uged. A partof supernatant was analysed for Cr content . Theinvestigated object in view was quantity of residualchrome in waste tanning liquor af ter dechromation.The second part of test s followed up result s ofwaste liquor dechromation efficiency in t he first ex2perimental part . The mass ratio of chrome sludge∶waste liquor producing greatest dechromation ef2ficiency was selected and a series of test s per2formed to t he p urpo se of st udying dechromation re2action kinetics.Fig1 1 Scheme of dechromation of waste tanning liquor图1 鞣制废液的脱铬流程3 RESULTSTest s and dechromation result s at variousmass ratios of chrome sludge ∶waste liquor and va2rious dechromation times are shown in Tab14.Tab15 t hen shows dechromation result s at mass ra2tio of chrome sludge ∶waste liquor = 1 ∶1 and va2rious dechromation times. Each test was performedt hreefold and arit hmetic mean calculated , standarddeviation ranged wit hin ±5 %.第4 期 P. Mokrejs ,et al :Recycling Technology for Waste Tanning Liquors 5© 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. Dechromation results of waste tanning liquor at mass ratios of Cr sludge/ waste liq. and dechromation times表4 铬污泥与废液不同质量比以及不同脱铬时间条件下鞣制废液的脱铬结果TestNo.Batch( g)sludge :liquort/ minIn2processpHCr liq. /( mg/ kg)Eff iciency/ %1 7114 ∶50 30 6134 - 7108 807 54142 90 190 89123 180 116 93154 20183 ∶50 30 6195 - 7148 146 91175 90 58 96176 180 33 98117 35171 ∶50 30 7121 - 7168 53 97108 90 33 98119 180 36 981010 50 ∶50 30 7130 - 7190 24 981711 90 23 981712 180 17 991013 70 ∶50 30 7148 - 8102 41 971714 90 32 981215 180 79 9516 1) Starting content of chrome in waste tanning liquor = 1769 mg/ kgTab1 5 Dechromation results of waste tanning liquor andtimes1)表5 铬污泥与废液质量比为1 ∶1 不同脱铬时间条件下鞣制废液的脱铬结果TestNo.t/ minIn processpHCr liq./ ( mg/ kg)Eff iciency/ %1 4 7120 - 7133 438 75122 8 7127 - 7145 351 80123 12 7151 - 7189 299 83114 16 7176 - 7194 230 87105 20 7180 - 7191 206 88146 24 7181 - 7194 200 88177 28 7181 - 7196 139 92118 32 7182 - 7199 43 97169 36 7188 - 8103 32 981210 40 7190 - 8104 19 981911 60 7186 - 8106 28 981412 80 7187 - 8107 22 981813 100 7180 - 8111 35 9810 1) Starting content of chrome in waste tanning liquor =1769 mg/ kg ;mass ratio of chrome sludge ∶waste liquor = 1∶1Figure 2 shows column plot s representing re2sidual chrome content in waste tanning liquor af tert he dechromation procedure at various chromesludge ∶waste liquor ratios and various dechroma2tion times. With a mass ratio of 1 ∶7 af ter 30 mindechromation , a drop of chrome in liquor exceeding50 % was found , af ter 180 min the dechromationefficiency was greatest . Wit h a ratio of 1 ∶214 ,t he tendency of chrome content in liquor to de2crease wit h time was at it s greatest , residualchrome content in liquor coming down to 3314 ppmwhich represent s dechromation efficiency exceeding98 %. Wit h a ratio of 1 ∶114 t he tendency ofchrome decrease is similar , when t he greatest dropof chrome content in liquor was already recordedaf ter 90 min of dechromation ( to 3312 mg/ kg) .Wit h a ratio of 1 ∶1 , lowest level s of residualchrome in liquor were already at tained in 30 min ofdechromation app rox. 24 mg/ kg , representing al2most 99 % dechromation efficiency. A f urt her in2crease in dechromation times produced but negli2gibly decreased chrome content in liquor . Wit h aratio of 114 ∶1 , t he greatest drop of chrome con2tent in liquor was recorded af ter 90 min dechroma2tion. Fig13 shows dechromation kinetics of wastetanning liquor at mass ratio of chrome sludge ∶waste liquor = 1 ∶1 and various dechromationtimes. From result s it is obvious t hat af ter 40 min6 皮革科学与工程 第17 卷© 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. chrome content in waste tanning liq2uor decreased to approx. 20 mg/ kg , which com2pared wit h starting content of chrome in waste tan2ning liquor ( 1769 mg/ kg) signifies almost 99 %chrome removal efficiency. Further increases indechromation time did not show in markedly in2creased chrome removal efficiency , and values ofresidual chrome content in slurry fluct uated be2tween 20 and 35 mg/ kg.4 DISCUSSIONDuring past decades , a t ransfer occurred of anotable part of tanning plant s f rom economicallyadvanced west European count ries to developingcount ries and to count ries of t he Asian continent .In latest year s , however , t he environmental loadproduced by t hese plant s became unsustainable andintensive negotiations on resolving t he mat ter gotunder way. When rest ructuring existing and con2st ructing new tanning plant s , issues coming partic2ularly under consideration are solid and liquidwastes containing chrome. Contamination ofgroundwater s wit h liquid wastes containing chromeis obvious. Release of chrome f rom solid wastes第4 期 P. Mokrejs ,et al :Recycling Technology for Waste Tanning Liquors 7© 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. proceed particularly t hrough elution by rainwith great hazard of groundwater contamination.The danger of Cr ( III) oxidising to Cr (VI) was al2ready mentioned in t he fir st part of this cont ribu2tion.Test result s showed t he solid waste product ,chrome sludge , may be successf ully employed to i2solate chrome f rom waste tanning liquors , and t hatwith an efficiency of app rox. 99 %. The advanta2ges of recycling technology may primarily comprisesimplicity and low demand for investment cost s ,which make it ideally applicable when recyclingwaste tanning liquor s especially in tanning plant sin t he developing world.Utilisation of chrome2enriched sludge remainsan open issue. A feasible alternative is it s combus2tion and separation of chrome , which may be used ,e. g. in pigment manufacture. A particular compli2cation is presented by accompanying magnesium ,which is undesirable for t hese applications. Isola2ting magnesium f rom chrome sludge will be subjectof a following research. Employment of chrome2enriched sludge for p reparing f resh tanning bathsal so remains an open issue.5 CONCLUSIONRecycling technology developed for removingchrome f rom waste tanning liquors wit h applicationof waste chrome sludge achieves almost 99 % effi2ciency. Dechromed waste liquor represent s a mini2mal load on t he environment . Chrome2enrichedsludge , following isolation of ot her accompanyingelement s (especially magnesium and calcium) com2plicating it s f urther processing , could serve to pre2pare pigment s. Result s of experimental measure2ment s and an elaborated mat hematical model of re2cycling technology will serve to propose an algo2rit hm of enclosed dechromation cycle cont rol whichwill be t he subject of pilot2plant test s.Acknowledgements : The aut hors would like tot hank to The Minist ry of Education of The CzechRep ublic for financial support to t his work execu2ted under MSM Grant No : 7088352102.References :[1 ] Process technology for recovery and recycling of chromi2um f rom leather waste and sludge , BLC , EV5VO542(1994 1996) .[2 ] Ludvik J . Chrome balance in leather processing [ J ] .UNIDO , US/ RAS/ 92/ 120/ 11 - 51 (2000) .[3 ] Mladek M ,et al . Leather indust ry waste t reatment [M] .State Technical Literature Publishing , Prague ( 1971) :261 - 265.[4 ] Rajamani S. A system for recovery and reuse of chromi2um f rom spent tanning liquor using magnesium oxide andsulphuric acid[J ] . UNIDO (2003) .[ 5 ] Covington A D , Sykes R L , Barlow J R , et al. A practi2cal chrome recovery system using magnesium oxide[J ] . JSoc Leather Technol Chem ,1985 , (69) :166 - 174.[6 ]Cotton F , Wilkinson G. Advanced Inorganic Chemist ry( A Comprehensive Text ) [ M ] . Academia , Prague(1973) . 788 - 803.[7 ] Hartford W H. Proceedings Chromium Symposium [J ] .Indust rial Health , Foundation , Pitt sburg (1989) .[8 ]Vijayalakshm R . A Study of the interaction of Cr ( III)complexes and their selective binding with B2DNA. Amolecular modelling approach[J ] . J Biom St ruc Dynam ,2002 (19) :1063 - 1072.[9 ] Chattopadhyay B. The environmental impact of wastechromium of tannery agglomerates in the east Calcuttawetland ecosystem[J ] . J Soc Leather Technol Chem ,2000(84) :94 - 100.[ 10 ] Cabeza L F. Isolation of protein product s f rom chromi2um2containing leather waste using two consecutive en2zymes and purification of final chromium product : Pilotplant studies [ J ] . J Soc Leather Technol Chem , 1999(83) :14 - 19.[11 ] Langmaier F. Product s of enzymatic decomposition ofchrome2tanned leather waste [J ] . J Soc Leather TechnolChem , 1999 (83) :187 - 195.[12 ] ISO 4684 , Determination of volatile matter.[ 13 ] ISO 4047 : 1998 , Determination of sulphated total ashand sulphated water insoluble ash.[14 ] ISO 5397 : 1984 , Determination of nit rogen and hidesubstance.[15 ] ISO 5398 , Determination of chromic oxide.[16 ] ISO 9174 :1998 , Water quality 2 Determination of chro2mium 2 Atomic absorption spect romet ric methods.[17 ]ASTM D511 - 03 , Standard test methods for calciumand magnesium in water.8 皮革科学与工程 第17 卷© 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved.

工业设计 Industrial Design 帮楼主找了些很全面的资料哦,英文版本华文版本 designIndustrial design is an applied art whereby the aesthetics and usability of products may be improved for marketability and production. The role of an Industrial Designer is to create and execute design solutions towards problems of engineering, usability, marketing, brand development and sales.Definition of industrial designGeneralIndustrial Designers are a cross between a mechanical engineer and an artist. They study both function and form, and the connection between product and the user. They do not design the gears or motors that make machines move, or the circuits that control the movement. And usually, they partner with engineers and marketers, to identify and fulfill needs, wants and expectations.In Depth"Industrial Design (ID) is the professional service of creating and developing concepts and specifications that optimize the function, value and appearance of products and systems for the mutual benefit of both user and manufacturer." According to the IDSA (Industrial Design Society of America)Design, itself, is often difficult to define to non-designers because the meaning accepted by the design community is not one made of words. Instead, the definition is created as a result of acquiring a critical framework for the analysis and creation of artifacts. One of the many accepted (but intentionally unspecific) definitions of design originates from Carnegie Mellon's School of Design, "Design is the process of taking something from its existing state and moving it to a preferred state". This applies to new artifacts, whose existing state is undefined and previously created artifacts, whose state stands to be improved.According to the (Chartered Society of Designers) design is a force that delivers innovation that in turn has exploited creativity. Their design framework known as the Design Genetic Matrix (TM) determines a set of competences in 4 key genes that are identified to define the make up of designers and communicate to a wide audience what they do. Within these genes the designer demonstrates the core competences of a designer and specific competences determine the designer as an 'industrial designer'. This is normally within the context of delivering innovation in the form of a three dimensional product that is produced in quantity. However the definition also extends to products that have been produced using an industrial process. Industrial design is rapidly becoming an obsolete term as 'products' can now be industrially produced as 'one-offs' by the use of Rapid Prototyping Machines. In a post-industrial era and with the emergence of strategic design definitions such as this are incumbering designers and the advancement of design practice.According to the ICSID, (International Council of Societies of Industrial Design) "Design is a creative activity whose aim is to establish the multi-faceted qualities of objects, processes, services and their systems in whole life-cycles. Therefore, design is the central factor of innovative humanization of technologies and the crucial factor of cultural and economic exchange.Process of designAlthough the process of design may be considered 'creative', many analytical processes also take place. In fact, many industrial designers often use various design methodologies in their creative process. Some of the processes that are commonly used are user research, sketching, comparative product research, model making, prototyping and testing. These processes can be chronological, or as best defined by the designers and/or other team members. Industrial Designers often utilize 3D software, Computer-aided industrial design and CAD programs to move from concept to production. Product characteristics specified by the industrial designer may include the overall form of the object, the location of details with respect to one another, colors, texture, sounds, and aspects concerning the use of the product ergonomics. Additionally the industrial designer may specify aspects concerning the production process, choice of materials and the way the product is presented to the consumer at the point of sale. The use of industrial designers in a product development process may lead to added values by improved usability, lowered production costs and more appealing products. However, some classic industrial designs are considered as much works of art as works of engineering: the iPod, Coke bottle, and VW Beetle are frequently-cited examples.Industrial design has no focus on technical concepts, products and processes. In addition to considering aesthetics, usability, and ergonomics, it can also encompass the engineering of objects, usefulness as well as usability, market placement, and other concerns such as seduction, psychology, desire, and the sexual or affectionate attachment of the user to the object. These values and accompanying aspects on which industrial design is based can vary, both between different schools of thought and among practicing designers.Product design and industrial design can overlap into the fields of user interface design, information design and interaction design. Various schools of industrial design and/or product design may specialize in one of these aspects, ranging from pure art colleges (product styling) to mixed programs of engineering and design, to related disciplines like exhibit design and interior design.Also used to describe a technically competent product designer or industrial designer is the term Industrial Design Engineer. The Cyclone vacuum cleaner inventor James Dyson for example could be considered to be in this category (see his autobiography Against The Odds, Pub Thomson 2002).Industrial design rightsIndustrial design rights are intellectual property rights that make exclusive the visual design of objects that are not purely utilitarian. An industrial design consists of the creation of a shape, configuration or composition of pattern or color, or combination of pattern and color in three dimensional form containing aesthetic value. An industrial design can be a two- or three-dimensional pattern used to produce a product, industrial commodity or handicraft. Under the Hague Agreement Concerning the International Deposit of Industrial Designs, a WIPO-administered treaty, a procedure for an international registration exists. An applicant can file for a single international deposit with WIPO or with the national office in a country party to the treaty. The design will then be protected in as many member countries of the treaty as desired.

工业设计专业论文参考文献

在一篇论文中,引用参考文献论证自己的观点或者理念是十分必要的。下面是我带来的关于的内容,欢迎阅读参考! 一 [1]刘瑞江,张业旺,闻崇炜,汤建.正交试验设计和分析方法研究[J].实验技术与管理,2010. [2]刘胧,汤佳懿,高静.基于感性工学工作流程的汽车内饰设计研究[J].现代制造工程,2010,11:37-38. [3]朱燕元.正交试验设计在柴油机试验研究中的应用[J].武汉造船武汉造船工程学会会刊.19906:44-49 [4]占园.正交试验与AHP评价在健身车感性设计中的应用研究[D].秦皇岛:燕山大学,2013:39-43. [5]马宁.基于感性工学的农业机械装备的设计研究[J].农机化研究,2010. [6]潘旭辉.某舰炮转弹机非线性结构动力学分析及优化设计[D].江苏科技大学学位论文,2011:48-51. [7]日朝昌直已,林品章等译.艺术设计的色彩构成[M],台北:龙溪图书,1999. [8]刘佳.面向维修的飞机总体布置设计技术研究[D].南京:南京航空航天大学,2010:3-10. [9]叶祖达,梁俊强,李巨集军等.我国绿色建筑的经济考虑--成本效益实证分析[J].动感生态城市与绿色建筑,2011,12:13. [10]顾智原,马莉,张林强,雷雨春,高海涛.玉米剥皮机部件的改进[J].农业工程,20124:55-57. 二 [1]刘熙瑞.服务型 *** --经济全球化背景下中国 *** 改革的目标选择[J].中国行政管理,2002,7:5-7. [2]候玉兰.论建设服务型 *** :内涵及意义[J].前沿论坛,2003,23:16-17. [3]范逢春.我国地方 *** 建设服务型 *** 述论[J].安徽大学学报哲学社会科学版,2004,4:76-80. [4]孙友祥.公民治理视角下的公共服务型 *** 建设[J].国家行政学院学报,2009,5,40-41. [5]贺培育.新行政文化与服务型 *** 建设[J]新视野,2008,7:56-58. [6]周鸿.顾客导向型理念视角下的服务型 *** 建设[J].山东行政学院学报,2009,12:19-21. [7]张康之.限制 *** 规模的理念[J]人文杂志,2001,3:55-60. [8]孙红英.新公共管理理论借鉴与 *** 治理转变[J],法制与社会,2007,03,42-44. [9]刘文华.分析与比较:行政改革与地方治理[M].北京:中国社会文献出版社,2007,03:332-351. [10]吴玉宗.服务型 *** :缘起和前景[J].社会科学研究,2004,3:10-13. 三 [1]李贵军.店面实景1000例.吉林:吉林美术出版社,2009.5~26 [2]高迪国际出版有限公司.商业展示设计.大连:大连理工大学出版社,2012.6~294 [3]凤凰空间.华南编辑部,区扬.软装配饰手册.江苏:江苏人民出版社,2012.12~236 [4]建筑设计资料集编委会.建筑设计.建筑设计资料集.1994,1:5~168 [5]YIDAO.空间设计杂志.display&space,2013,1:8~188 [6]YIDAO.空间设计杂志.display&spacevol.2,2013,2:9~159 [7]Choi'sGallery.设计杂志.ExhibitionDesign2,2012,2:32~278 [8]优秀作品集.SPA-DEVol.20,2014,1:3~158 [9]海军.设计成功.设计管理,2014,13:3~173 [10]香港视界国际出版有限公司.国际展台设计.香港:香港视界国际出版有限公司,2012.13~234

[1] 【英】莱夫特瑞;欧美工业设计5大材料顶尖创意;上海人民美术出版社,2007-1[2] 【丹】阿德里安•海斯;西方工业设计300年;吉林美术出版社,2003-3

3D打印技术在工业设计的应用论文

摘要 :3D打印技术是一项具有工业革命意义的先进制造技术,可推动工业设计模式发生变革,拓展工业设计的内涵,促使工业设计思维的解放,缩短设计周期,节省研发成本,降低企业风险。本文阐述了3D打印的技术体系,探讨了3D打印技术在工业设计上的应用,分析了3D打印技术对工业设计的影响。

关键词 :3D打印;工业设计;应用;影响

一、3D打印技术

(一)3D打印技术原理。3D打印技术最早称为快速成形技术或快速原型制造技术,是在当代CAD/CAM技术、机械工程、分层制造技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的一种先进制造技术。它是以计算机三维数字模型为蓝本,用软件将其分解成若干层平面切片,然后由数控成型系统利用激光束、热熔喷嘴等方式将可粘合材料进行逐层堆积黏结,最终叠加成型,制造出产品。

(二)3D打印技术的常见细分类别及可使用材料。常见的3D打印技术根据成型技术的不同可以分为下表几个类别:

(三)3D打印的优势。3D打印技术是大批量生产形式向小批量、个性化生产形式发展的引领技术,其突出优势在于生产结构、外观复杂的物品而不增加成本、多样化不增加成本,在于无须组装、零时间交付、设计空间无限、零技能制造、不占空间、便携制、减少废弃副产品、材料无限组合及精确的实体复制。

二、3D打印在工业设计中的应用

(一)概念模型、功能原型的制作。在工业设计的流程中,需要反复制作不同作用和类型的零件、模型,传统的方法有着制作周期长、劳动强度高、精度差、成本高等诸多缺点,而使用3D打印技术可以快速、轻松、精准的得到所需的零件、模型。

(二)工业设计过程中所需工具的制作。工业设计是一个充满创造力活动,不同的产品、不同的设计师在设计过程中需要用到各种各样的器材和工具来辅助,这些工具大多数都是设计师根据需要自行制作。这时,可以通过3D打印机完成,而不是耗费大量的时间、精力通过各种加工方式去制作。3D打印设备在工具制作上不仅可以缩短时间,降低成本,还可以构造出结构更加精密、质量更加轻盈、更加符合人体工程学的产品,大幅度提高设计的效率。

(三)小批量产品生产。随着3D打印技术的发展,其打印成本和打印时间进一步下降,可以打印的材料、方式不断丰富,使其在小批量产品生产上与传统加工制造工艺相比,有着生产流程短、时间少、成本低等巨大优势,而且不受时间、空间、机床、模具的限制,只要有需要便可以随时暂停生产,对设计进行修改,解除了传统制造业的技术、成本、工期等限制,这样,设计的产品不但快速而且灵活的得以生产。

三、3D打印对工业设计的.影响

(一)解放束缚,改变设计理念。传统的设计造型受产品的生产、组装等工艺制约,使得设计师的创造力、想象力受到束缚。而随着3D打印技术的发展和成熟,结构、外观再复杂的产品都能通过3D打印机打印出来,且浑然一体。如此,设计师可以将精力集中在产品形态、外观创意和功能创新、改进上,使产品的造型设计多元化、结构设计一体化、使用人性化趋势逐渐显现,在其技术、经济、美学、环境、人机等属性因素中,人机属性和美学属性因素所占的比例得到提高。传统的工业设计是建立在传统的大批量生产方式之上的,这就要求设计是根据一个模型来进行的,即使是所谓的个性化设计也只是将模型的生成范围缩小了。这意味着使用者的心理、生理及使用时间、环境等差异性在设计过程中难以体现。如鼠标设计就是这种典型的设计方式:传统设计模式是让使用者手掌的大小、使用的习惯、个性需求等去适应有限的规格、型号,而3D打印技术则可根据使用者的手形、习惯、个性需求等设计、生产出与其完全匹配的产品。3D打印技术使产品的个性化设计与生产成为可能,利用3D打印技术可以实现产品的量身定做,真正实现以人为本。

(二)3D打印技术对工业设计流程及成本的影响。在设计过程中,顺畅而高效的设计交流是工业设计开发取得成功的重要保证。其中各种类型的模型是交流的重要手段之一,手工制作的模型在精度、质感、触感等方面与概念的设计预期都存在较大偏差,而3D打印能克服这些缺点,使设计团队中的每个成员及用户都能够直观地看到和触摸这些概念模型,比较它们之间的结构、外形和功能的差别与优劣。另外,工业设计过程中的模型如果用手工制作的话将耗费相当长的时间,是缩短产品上市时间的最大障碍,采用3D打印可大大缩短概念模型和产品原型的制作时间,从以往的几天乃至几个星期缩短到几小时。近年来,随着产品复杂化和个性化的发展趋势,设计过程中模型加工和制造的成本非常高,复杂模型甚至要求制作专用模具和加工工艺以保证模型的精度和真实效果,而3D打印技术可实现模型随时、随地制作,大幅度降低设计成本。

(三)3D打印技术对设计产业的影响。传统的工业设计模式受到固有减式生产方式所制约,由专业设计师主导。但随着3D打印技术的日趋成熟,独立设计师对于传统加工业的依赖性将越来越小。对于那些具有较强的创新意识,具备一定的设计、研发能力的消费者很可能变成设计师和生产商。随着3D打印技术所带来的社会化制造,独立设计师和品牌也将崛起。

四、3D打印在工业设计中所面临的问题

3D打印由设计师、设计软件、设备、材料等共同作用,相互影响。在工业设计领域,3D打印技术解放了设计束缚,激发了设计师的创作灵感,但用于3D打印技术的设计软件、模型输出格式等方面依然需要进一步发展与完善。目前,3D打印技术可以与设计完美地结合在一起已经在诸多产品上得以证实,并获得了广泛的认可,但是如何让其在更多的产品生产中发挥应有的作用,仍是一个需要不断探讨的问题。同时,3D打印技术其本身又存在先天性不足,例如:打印尺寸受技术和打印机的限制、产品打印时间过长及大批量生产时无成本优势等,这些原因使3D打印仍不能代替传统制造工艺。结论:3D打印技术在工业设计领域已经获得了重大的发展和应用。在工业设计领域,3D打印技术不仅可以满足当下人们对个性化、订制化产品的要求,还可以实现结构、外观复杂产品的制造,提高设计制造精度,大大缩短设计周期,降低设计成本,激发了设计师的创作灵感,为产品设计带来新的生命力,同时催生了大量独立设计师及设计品牌,有良好的发展前景。同时,3D打印技术也存在一些技术和推广上的缺点与不足,但随着3D打印技术的发展、成熟及设计人员的不懈努力,一定会在工业设计领域得到越发广泛的应用。

参考文献:

[1]蔺薛菲.3D打印技术对制造业产品设计的影响研究[J].艺术与设计(理论),2015,08:103-105.

[2]付航,李鹏.3D打印技术在产品设计中的应用概况[J].美与时代(城市版),2015,10:85-87.

英语作业设计论文参考文献

英语论文参考文献格式如下:

1、引用中的省略。原始资料的引用:在正文中直接引用时,应给出作者、年份,并用带括号的数字标出页码。若有任何资料省略,使用英文时,应用3个省略号在句中标出……,中文用6个若两句间的资料省略,英文应用4个省略号标出‥‥,中文用6个……。

2、大段落引用。当中文引用超过160字时,不使用引号,而使用“块”的形式引用起于新的一行,首行缩进4个空格,两端对齐,之后每行都缩进。

3、基本格式。同作者在同一段中重复被引用时,第一次必须写出日期,第二次以后则日期可省略。英文文献:In a recent study of reaction times, Walker (2000) described the method…Walker also found…。

4、单一作者,英文文献:姓氏出版或发表年代或姓氏,出版或发表年代。例如:Porter 2001…或…Porter,2001。

初中英语作业创新设计探索的论文

摘要: 英语作为国际上通用的语言,在生活中的作用是非常大的,要想提高国民的英语水平,就要从学校教育抓起。我国一直在践行这一政策,并开始使用英语新课标教学,新课标主要强调的就是互动式的学习方式,不少学者也在研究这种教学方式,以多元智能理论为基础,对英语作业进行创新研究与设计,可以有效激发学生的学习兴趣,提高他们对英语知识的掌握程度。

关键词: 多元智能理论;初中英语作业;创新措施

作业对于学生来说,是对课堂所学内容的一种巩固,学生在做作业的过程中也能发现自己学习上的一些问题,英语作业作为课堂教学的扩展,对于培养学生课后自主学习能力是非常重要的。但是,在目前的英语教学过程中,部分英语教师却忽略了这一点,还在采用传统的英语作业布置的模式,使得学生渐渐失去了写作业的兴趣,课后作业也达不到预期的效果。

一、传统英语作业的不足

课堂作业可以有效地向教师反馈课堂的教学效果,让教师了解到学生对知识的掌握程度。但是,部分英语教师只注重课堂的教学方式的创新,往往忽略了课后作业也是需要精心设计的。所以大多数教师在布置作业的时候,只注重对课堂知识的了解,并没有注重其灵活性以及新颖性。传统的作业模式有以下几个方面的不足:

(1)没有目标地布置作业。很多教师在布置英语作业的时候,只是让学生单纯地写单词或者单纯地写作文,没有针对性,使得学生为了完成作业而写作业,英语水平也无法提高。

(2)作业布置过于死板,没有考虑到学生的实际情况,不同的学生对于英语的学习水平是不一样的,学习成绩也是参差不齐的,比如有的学生写作能力就很好,但是对单词掌握得就不好,有的学生能记住单词,但是对于语法掌握得不好;另一方面,所有学生的作业都一样,导致学习成绩差的学生渐渐失去了学习英语的兴趣,学习好的学生也因为作业过于简单而放低对自己的要求。所以,教师要考虑到学生的基本情况。

(3)英语作业的形式过于简单化。大多数教师只是单纯追求成绩的提升,并没有注重英语能力的上升,所以教师布置作业的目的是为了考试,过分注重手写作业的布置,但是,学生本身对于作业来说是不喜欢的,这种只注重书面的作业只能让学生失去学英语的兴趣。

二、以多元智能理论为基础,对初中英语作业进行创新与探究

(一)什么叫做多元智能理论

因为人本身的潜能就是多元化的,比如除了言语上的潜能,人对于音乐、人际交往、自我意识以及肢体都是有一定潜能的。所以,多元智能理论就是不断开发学生的潜能,将潜能开发至最大化。

(二)基于多元智能理论分析初中英语作业的功能和特征

以人教版的初中英语为例,在七年级英语下册的学习中就是通过对学生的教学,知道并了解一些国家与城市的读法,在此基础上会拼写国家与城市,并且学习“where”引导的疑问句,掌握其基本结构。对于这一教学目标,教师首先要关注学生学习层次的不同,有的学生比较喜欢国外文化,对这一单元的学习可能就比较感兴趣,但有的学生就不喜欢,针对这些国家英文名称的记忆,有的`学生就喜欢在纸上不断写,多写几遍自然而然就记住了,有的学生喜欢一边听音乐一边记忆,有的学生习惯于通过在网上查找相关国家的一些信息,先了解这些国家,基于对这些国家的深入了解,在记忆方面可能就比较容易。所以说,多元智能理论就比较灵活,教师要针对不同学生在学习方法上的差异性,对英语作业的功能及特点进行重新认识。

1.在新课标的实行基础上,丰富内容。即初中英语作业的设计不应再单纯地基于课本内容来进行,而应该加强一些课外内容的覆盖面,丰富作业内容,也丰富了学生的课外知识,增强学习英语的兴趣。

2.以学生为本进行作业的设计。一个班级,虽然教师都是一样的,教学内容也是一样的,但是学生的学习能力是参差不齐的,所以,要根据不同学生的学习能力,将作业的难易程度层次化。

3.注重形式上的灵活性。作业不一定要在作业本上完成,也可以通过不同的形式,比如要求学生掌握“where”句式,就可以让学生寻找一些外国人进行聊天,将这种句式使用进去,这样不但掌握了这一句式,更有助于口语能力的锻炼与提高。

4.开放式的布置作业。设计作业的时候,可以针对一个问题,让学生展开自己的想象力,多角度进行思考,并主动去探究,让学生在完成作业的过程中更加注重综合能力的培养与提升。

三、将多元智能理论应用于初中英语作业之中

(一)对初中英语作业进行创新设计,可采用音乐辅助记忆的方法

因为大多数人对于音乐都是非常喜欢的,就像好多学生,喜欢边听音乐边写作业,这样不但缓解了压力,更有助于作业的完成。将音乐运用于作业,更有助于开发学生的音乐潜能。比如人教版的初中英语,在七年级第九单元的学习中,教学目标是通过了解各种类型电影的英文表达方式,并比较各类电影的特点,在学习过程中了解一些核心的单词,比如一些描述性的形容词,因为这些形容词有的非常长,记忆起来并不容易,而且因为单词本身就是枯燥乏味的,有的学生反映对于单个的单词能记住,但放入句子中就不知道单词是什么意思了,多元智能理论就解决了这一问题,学生在学习这些单词的时候,可以根据单词的重音所在的位置和音节的数量敲出一定的节奏,这时可以两个人一组,并把完成的结果用音标的形式记录下来。在进行课文背诵的时候,学生可以根据自己的理解,为课文配上音乐,还可以在一篇课文中,根据不同阶段发生事情的不同,配上感情不一样的音乐,这样不仅有效地记忆了课文,而且对于口语也是一种练习。

(二)加强肢体智能,在英语作业的设置中增添新的血液

肢体智能表现为人用肢体表达思想或情感,这种方法在课堂上使用的话,因为时间太长而不适合,但可以运用于作业的设计中,比如人教版的初中英语,在七年级第五单元的学习中,教学目标是通过对不同国家常见的体育运动,如棒球、篮球、网球以及橄榄球的了解,比较Americanfootball和soccerball的区别,在此基础上,教师可以组织学生进行这些球类的学习或者是比赛,加强学生对这些球类的认知,也可以将这些拍成照片,以更好地记忆。这样也可以增加学生学习英语的兴趣,丰富了课后作业的形式。本文主要分析了传统初中英语作业存在的不足,分析了多元智能理论在初中英语作业创新中的基本概念与特征、表现与应用,并以人教版英语的相关内容为例,提出一些创新初中英语作业设计的措施,为初中英语教师在作业布置方面提供参考。

参考文献:

[1]胡晓芸.英语作业中的注意事项[J].课程教材教学研究:小教研究,2014(Z2).

[2]陈燕华.优化小学英语作业的设计[J].教书育人,2014(11).

[3]江茹祎.小学英语作业有效设计的研究[D].华中师范大学,2014.

工业设计论文英文文献

工业设计 Industrial Design 帮楼主找了些很全面的资料哦,英文版本华文版本 designIndustrial design is an applied art whereby the aesthetics and usability of products may be improved for marketability and production. The role of an Industrial Designer is to create and execute design solutions towards problems of engineering, usability, marketing, brand development and sales.Definition of industrial designGeneralIndustrial Designers are a cross between a mechanical engineer and an artist. They study both function and form, and the connection between product and the user. They do not design the gears or motors that make machines move, or the circuits that control the movement. And usually, they partner with engineers and marketers, to identify and fulfill needs, wants and expectations.In Depth"Industrial Design (ID) is the professional service of creating and developing concepts and specifications that optimize the function, value and appearance of products and systems for the mutual benefit of both user and manufacturer." According to the IDSA (Industrial Design Society of America)Design, itself, is often difficult to define to non-designers because the meaning accepted by the design community is not one made of words. Instead, the definition is created as a result of acquiring a critical framework for the analysis and creation of artifacts. One of the many accepted (but intentionally unspecific) definitions of design originates from Carnegie Mellon's School of Design, "Design is the process of taking something from its existing state and moving it to a preferred state". This applies to new artifacts, whose existing state is undefined and previously created artifacts, whose state stands to be improved.According to the (Chartered Society of Designers) design is a force that delivers innovation that in turn has exploited creativity. Their design framework known as the Design Genetic Matrix (TM) determines a set of competences in 4 key genes that are identified to define the make up of designers and communicate to a wide audience what they do. Within these genes the designer demonstrates the core competences of a designer and specific competences determine the designer as an 'industrial designer'. This is normally within the context of delivering innovation in the form of a three dimensional product that is produced in quantity. However the definition also extends to products that have been produced using an industrial process. Industrial design is rapidly becoming an obsolete term as 'products' can now be industrially produced as 'one-offs' by the use of Rapid Prototyping Machines. In a post-industrial era and with the emergence of strategic design definitions such as this are incumbering designers and the advancement of design practice.According to the ICSID, (International Council of Societies of Industrial Design) "Design is a creative activity whose aim is to establish the multi-faceted qualities of objects, processes, services and their systems in whole life-cycles. Therefore, design is the central factor of innovative humanization of technologies and the crucial factor of cultural and economic exchange.Process of designAlthough the process of design may be considered 'creative', many analytical processes also take place. In fact, many industrial designers often use various design methodologies in their creative process. Some of the processes that are commonly used are user research, sketching, comparative product research, model making, prototyping and testing. These processes can be chronological, or as best defined by the designers and/or other team members. Industrial Designers often utilize 3D software, Computer-aided industrial design and CAD programs to move from concept to production. Product characteristics specified by the industrial designer may include the overall form of the object, the location of details with respect to one another, colors, texture, sounds, and aspects concerning the use of the product ergonomics. Additionally the industrial designer may specify aspects concerning the production process, choice of materials and the way the product is presented to the consumer at the point of sale. The use of industrial designers in a product development process may lead to added values by improved usability, lowered production costs and more appealing products. However, some classic industrial designs are considered as much works of art as works of engineering: the iPod, Coke bottle, and VW Beetle are frequently-cited examples.Industrial design has no focus on technical concepts, products and processes. In addition to considering aesthetics, usability, and ergonomics, it can also encompass the engineering of objects, usefulness as well as usability, market placement, and other concerns such as seduction, psychology, desire, and the sexual or affectionate attachment of the user to the object. These values and accompanying aspects on which industrial design is based can vary, both between different schools of thought and among practicing designers.Product design and industrial design can overlap into the fields of user interface design, information design and interaction design. Various schools of industrial design and/or product design may specialize in one of these aspects, ranging from pure art colleges (product styling) to mixed programs of engineering and design, to related disciplines like exhibit design and interior design.Also used to describe a technically competent product designer or industrial designer is the term Industrial Design Engineer. The Cyclone vacuum cleaner inventor James Dyson for example could be considered to be in this category (see his autobiography Against The Odds, Pub Thomson 2002).Industrial design rightsIndustrial design rights are intellectual property rights that make exclusive the visual design of objects that are not purely utilitarian. An industrial design consists of the creation of a shape, configuration or composition of pattern or color, or combination of pattern and color in three dimensional form containing aesthetic value. An industrial design can be a two- or three-dimensional pattern used to produce a product, industrial commodity or handicraft. Under the Hague Agreement Concerning the International Deposit of Industrial Designs, a WIPO-administered treaty, a procedure for an international registration exists. An applicant can file for a single international deposit with WIPO or with the national office in a country party to the treaty. The design will then be protected in as many member countries of the treaty as desired.

工业设计industrial design产品设计product design

第17 卷第4 期 皮 革 科 学 与 工 程 Vol117 ,No142007 年8 月L EATHER SCIENCE AND ENGINEERING Aug1 2007Artical ID :1004 - 7964 (2007) 04 - 0003 - 06Received Date :20072052213 P. Mokrejs :Corresponding author. Phone N°: + 420 57 603 1230 ;Fax N°: + 420 57 603 1563 ;e2mail :mokrejs @f t . utb. c2Recycling Technology for Waste Tanning LiquorsP. Mok rejs1 3, D. J anacova2 ,M. Mladek1 , K. Kolomaz nik2 , F. L angmaier1 ,V . V asek2(1. Tomas B ata University , Faculty of Technology , Department of Protein and Leather , nam.TGM 275 , 762 72 Zlin, The Czech Republic ;2. Tomas B ata University , Faculty ofA p plied Inf ormatics , Institute of Processing Cont rol and A p plied Computer Science ,N ad S t ranemi 4511 , 760 05 Zlin, The Czech Republic)Abstract :Tannery belongs to typical indust rial branches which during t he technological processp roduce considerable quantities of liquid and solid wastes cont ributing to polluting t he environ2ment . The presented work describes dechromation of waste tanning liquor utilising chrome sludgep roduced t hrough enzymatic hydrolysis of chrome2tanned leat her wastes. The principle of dechro2mation consist s in sorption of chrome f rom waste liquor af ter tanning to chrome sludge. Recy2cling technology is characterised by an almost 99 % efficiency , simplicity and low investment re2quirement s.Key words :solid waste ;liquid waste ;chrome sludge ;waste tanning liquor ;chrome recoveryCLC number :X 794 Document code :A鞣制废液的循环技术摘 要:制革属于典型的工业分支,制革工业中会产生大量的污染环境的废液和废固。该论文利用铬鞣革废物的酶法水解用铬污泥除去鞣制废液中的铬。除去铬的原理是鞣后的铬污泥从废液中吸收铬。该循环技术回收率可达99 % ,操作简单、成本低廉。关键词:固体废弃物;液体废弃物;铬污泥;鞣制废液;铬回收1 INTRODUCTIONThe tanning indust ry p rocesses wastes of themeat indust ry , raw hides , and t ransforms t hemt hrough chemical , chemico2p hysical and mechani2cal processes into leather s. During t he technologi2cal process , solid and liquid wastes arise which ,particularly as a consequence of t he cont rover sialchrome t hey contain , burden the environment .Processing one met ric ton of raw hide produces ap2prox. 200 kg finished leat her . About 30 , 000 kgwastewaters arise through processing and moret han 70 % chrome passes into liquid and solidwastes [1 ] .In classic tanning , approx. 40 % chrome (t hestarting charge of 15 - 17 kg Cr / t ) remains inleat her , 26 % - 30 % chrome passes into solidwastes and 30 % - 34 % chrome remains in liquidwastes. In t he tanning of hides using technologicalprocedures ensuring high removal of chrome com2pounds by white hide , 54 % - 57 % chrome remains© 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. leat her , 31 % - 38 % chrome passes into solidwastes and 5 % - 15 % remains in liquid wastes [2 ] .For modifying t he tanning process , organic acids ,e. g. are used , which cont ribute to improving theremoval of chrome ions.1. 1 Liquid wasteManufacture of chrome2tanned leat hers pro2duces 115 - 2 times quantities of wastewater s t hanmanufact ure of vegetable2tanned leat her s [3 ] . Los2ses of chrome compounds in waste tanning liquor smay be prevented in several ways. The simplestapproach is the direct recycling method consistingin re2using exhausted liquor in t he tanning process.The main shortcoming of t his method is a negativeeffect of salt s and other contaminating substanceson quality of finished leather . Af ter being recycledseveral times , wastewater has to be discharged intosewage [4 ] . Anot her potential met hod is indirectrecycling , in which chrome is obtained f rom ex2hausted sludge t hrough precipitation using a suit2able alkaline agent , e. g. sodium hydroxide , sodi2um carbonate , sodium hydrogen carbonate , mag2nesium oxide , calcium sulp hate , calcium hydroxide[5 ] . A f urt her met hod consist s in employing elabo2rate techniques , e. g. elect ro2dialysis , membraneseparation , ion exchangers , wit h which chromemay be separated f rom ot her salt s contained in ex2hausted sludge. Chrome thus obtained is character2ised by much higher p urity than that obtainedt hrough indirect recycling. Disadvantages are ahigh cost and limited po ssibilities of applying t hesedemanding technologies in tanning factories [ 4 ] .Unutilised chrome in liquid wastes , apartf rom significant economic losses for tanneries , al soposes great hazard for t he environment and forman. The most stable and most important oxida2tion state is Cr ( III) . Compounds of Cr (VI) occurin t he form of chromates and dichromates and ex2hibit quite st rong oxidative properties [6 ] .Chrome is found in liquid tanning wastes in it st rivalent form , there exist s , however , potentialdanger of it s oxidising to hexavalent compounds ,particularly when t reating groundwater s to drink2ing waters. Hexavalent compounds , when com2bined wit h calcium or magnesium ions , are st rong2ly carcinogenic[7 , 8 ] .An extensive research exploring negativeeffect s of tanning wastewaters f rom local tannerieson t he adjacent ecosystem was conducted in Indi2a[9 ] . Highest level s of chrome contained in soilwere found in t he vicinity of tanneries , at approx.60 g/ kg. Highest chrome accumulation was ob2served in cauliflower stalks (72 mg/ kg) in locali2ties near tanneries. In st udies investigating Cr ac2cumulation in fish organs it was found t hat mostchrome accumulates in t he liver (approx. 22 mg/kg) and least in muscles (approx. 1 mg/ kg) . Thepo ssible t ransfer of hazardous Cr doses into t hefood chain and consequently to human beings ist hus quite obvious.112 Sol id wasteTannery processing al so produces a considera2ble quantity of solid chrome2tanned wastes whichpresent a significant problem due to t heir chromecontent . The problem of solid wastes has beensolved so far by land filling which , of course , be2side ever increasing land filling co st s al so bringst he danger of chrome escaping into t he ecosystem.Due to t heir containing a sizeable proportion ofprotein material , solid tanned wastes started to beprocessed. Enzymatic hydrolysis has being em2ployed to considerable extent in latest year s , wit hit s particular advantages being mild reaction condi2tions and economic cost2effectiveness [10 , 11 ] . Themain product of enzymatic hydrolysis is collagenhydrolysate , whose application possibilities arebroad , e. g. as feed additive , nit rogenous fertili2ser , raw material for preparing adhesives , corro2sion inhibitor s , etc. The remaining waste productaf ter enzymatic hydrolysis (chrome sludge) has notyet found lucrative application. It s employment ,due to chrome content , has not been much adoptedfor preparing combined tanning bat hs.Subject of the presented work is potential use4 皮革科学与工程 第17 卷© 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. t he waste product af ter enzymatic hydrolysis ofchrome2tanned solid wastes (chrome sludge) for i2solating chrome compounds f rom waste tanningliquor s.2 MATERIALS AND METHODSSolid was determined according to ISO 4684[12 ] , ash according to ISO 4047 : 1998[13 ] , nit rogenaccording to ISO 5397 : 1984 [14 ] , Cr2 O3 accordingto ISO 5398 [ 15 ] , Cr according to ISO 9174 : 1998[16 ] and Mg according to ASTM D511203 [ 17 ] .Chrome sludge is a waste product of enzymatichydrolysis of chrome2tanned solid waste and it scomposition is given in Tab. 1. Typical composi2tion of chrome2tanned solid waste is given in Tab.2.Tab11 Composition of chrome sludge1)表1 铬污泥成份Parameter ValueTS/ % 1614Ash/ % 3410N / % 114Cr2O3 / % 1215MgO / % 1115 1) based on total solidsTab12 Composition of chrome2tanned solid waste1)表2 铬鞣革固体废弃物成份Parameter ValueTS/ % 6911Ash/ % 1019N/ % 2011Cr2O3 / % 415 1) based on total solidsTab13 Composition of waste tanning liquor表3 鞣制废液成份Parameter ValueTS/ % 718Ash/ %1) 8713N/ %1) 018Cr/ (mg/ kg) 1 ,769Mg/ (mg/ kg) 693p H 412colour blue2green 1) based on total solidsWaste tanning liquor was obtained f rom tan2ning of cowhides and it s composition is presentedin Tab. 3.The experimental part was divided into twopart s. The fir st part contained five selected massratio s of chrome sludge ∶ waste liquor and threevarious dechromation times , see Table 4. Practicaldechromation was performed under laboratory con2ditions by stirring chrome sludge with waste tan2ning liquor at room temperat ure in accordance wit ht he scheme shown in Fig. 1. Af ter dechromation ,t he heterogeneous mixt ure was cent rif uged. A partof supernatant was analysed for Cr content . Theinvestigated object in view was quantity of residualchrome in waste tanning liquor af ter dechromation.The second part of test s followed up result s ofwaste liquor dechromation efficiency in t he first ex2perimental part . The mass ratio of chrome sludge∶waste liquor producing greatest dechromation ef2ficiency was selected and a series of test s per2formed to t he p urpo se of st udying dechromation re2action kinetics.Fig1 1 Scheme of dechromation of waste tanning liquor图1 鞣制废液的脱铬流程3 RESULTSTest s and dechromation result s at variousmass ratios of chrome sludge ∶waste liquor and va2rious dechromation times are shown in Tab14.Tab15 t hen shows dechromation result s at mass ra2tio of chrome sludge ∶waste liquor = 1 ∶1 and va2rious dechromation times. Each test was performedt hreefold and arit hmetic mean calculated , standarddeviation ranged wit hin ±5 %.第4 期 P. Mokrejs ,et al :Recycling Technology for Waste Tanning Liquors 5© 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. Dechromation results of waste tanning liquor at mass ratios of Cr sludge/ waste liq. and dechromation times表4 铬污泥与废液不同质量比以及不同脱铬时间条件下鞣制废液的脱铬结果TestNo.Batch( g)sludge :liquort/ minIn2processpHCr liq. /( mg/ kg)Eff iciency/ %1 7114 ∶50 30 6134 - 7108 807 54142 90 190 89123 180 116 93154 20183 ∶50 30 6195 - 7148 146 91175 90 58 96176 180 33 98117 35171 ∶50 30 7121 - 7168 53 97108 90 33 98119 180 36 981010 50 ∶50 30 7130 - 7190 24 981711 90 23 981712 180 17 991013 70 ∶50 30 7148 - 8102 41 971714 90 32 981215 180 79 9516 1) Starting content of chrome in waste tanning liquor = 1769 mg/ kgTab1 5 Dechromation results of waste tanning liquor andtimes1)表5 铬污泥与废液质量比为1 ∶1 不同脱铬时间条件下鞣制废液的脱铬结果TestNo.t/ minIn processpHCr liq./ ( mg/ kg)Eff iciency/ %1 4 7120 - 7133 438 75122 8 7127 - 7145 351 80123 12 7151 - 7189 299 83114 16 7176 - 7194 230 87105 20 7180 - 7191 206 88146 24 7181 - 7194 200 88177 28 7181 - 7196 139 92118 32 7182 - 7199 43 97169 36 7188 - 8103 32 981210 40 7190 - 8104 19 981911 60 7186 - 8106 28 981412 80 7187 - 8107 22 981813 100 7180 - 8111 35 9810 1) Starting content of chrome in waste tanning liquor =1769 mg/ kg ;mass ratio of chrome sludge ∶waste liquor = 1∶1Figure 2 shows column plot s representing re2sidual chrome content in waste tanning liquor af tert he dechromation procedure at various chromesludge ∶waste liquor ratios and various dechroma2tion times. With a mass ratio of 1 ∶7 af ter 30 mindechromation , a drop of chrome in liquor exceeding50 % was found , af ter 180 min the dechromationefficiency was greatest . Wit h a ratio of 1 ∶214 ,t he tendency of chrome content in liquor to de2crease wit h time was at it s greatest , residualchrome content in liquor coming down to 3314 ppmwhich represent s dechromation efficiency exceeding98 %. Wit h a ratio of 1 ∶114 t he tendency ofchrome decrease is similar , when t he greatest dropof chrome content in liquor was already recordedaf ter 90 min of dechromation ( to 3312 mg/ kg) .Wit h a ratio of 1 ∶1 , lowest level s of residualchrome in liquor were already at tained in 30 min ofdechromation app rox. 24 mg/ kg , representing al2most 99 % dechromation efficiency. A f urt her in2crease in dechromation times produced but negli2gibly decreased chrome content in liquor . Wit h aratio of 114 ∶1 , t he greatest drop of chrome con2tent in liquor was recorded af ter 90 min dechroma2tion. Fig13 shows dechromation kinetics of wastetanning liquor at mass ratio of chrome sludge ∶waste liquor = 1 ∶1 and various dechromationtimes. From result s it is obvious t hat af ter 40 min6 皮革科学与工程 第17 卷© 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. chrome content in waste tanning liq2uor decreased to approx. 20 mg/ kg , which com2pared wit h starting content of chrome in waste tan2ning liquor ( 1769 mg/ kg) signifies almost 99 %chrome removal efficiency. Further increases indechromation time did not show in markedly in2creased chrome removal efficiency , and values ofresidual chrome content in slurry fluct uated be2tween 20 and 35 mg/ kg.4 DISCUSSIONDuring past decades , a t ransfer occurred of anotable part of tanning plant s f rom economicallyadvanced west European count ries to developingcount ries and to count ries of t he Asian continent .In latest year s , however , t he environmental loadproduced by t hese plant s became unsustainable andintensive negotiations on resolving t he mat ter gotunder way. When rest ructuring existing and con2st ructing new tanning plant s , issues coming partic2ularly under consideration are solid and liquidwastes containing chrome. Contamination ofgroundwater s wit h liquid wastes containing chromeis obvious. Release of chrome f rom solid wastes第4 期 P. Mokrejs ,et al :Recycling Technology for Waste Tanning Liquors 7© 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. proceed particularly t hrough elution by rainwith great hazard of groundwater contamination.The danger of Cr ( III) oxidising to Cr (VI) was al2ready mentioned in t he fir st part of this cont ribu2tion.Test result s showed t he solid waste product ,chrome sludge , may be successf ully employed to i2solate chrome f rom waste tanning liquors , and t hatwith an efficiency of app rox. 99 %. The advanta2ges of recycling technology may primarily comprisesimplicity and low demand for investment cost s ,which make it ideally applicable when recyclingwaste tanning liquor s especially in tanning plant sin t he developing world.Utilisation of chrome2enriched sludge remainsan open issue. A feasible alternative is it s combus2tion and separation of chrome , which may be used ,e. g. in pigment manufacture. A particular compli2cation is presented by accompanying magnesium ,which is undesirable for t hese applications. Isola2ting magnesium f rom chrome sludge will be subjectof a following research. Employment of chrome2enriched sludge for p reparing f resh tanning bathsal so remains an open issue.5 CONCLUSIONRecycling technology developed for removingchrome f rom waste tanning liquors wit h applicationof waste chrome sludge achieves almost 99 % effi2ciency. Dechromed waste liquor represent s a mini2mal load on t he environment . Chrome2enrichedsludge , following isolation of ot her accompanyingelement s (especially magnesium and calcium) com2plicating it s f urther processing , could serve to pre2pare pigment s. Result s of experimental measure2ment s and an elaborated mat hematical model of re2cycling technology will serve to propose an algo2rit hm of enclosed dechromation cycle cont rol whichwill be t he subject of pilot2plant test s.Acknowledgements : The aut hors would like tot hank to The Minist ry of Education of The CzechRep ublic for financial support to t his work execu2ted under MSM Grant No : 7088352102.References :[1 ] Process technology for recovery and recycling of chromi2um f rom leather waste and sludge , BLC , EV5VO542(1994 1996) .[2 ] Ludvik J . Chrome balance in leather processing [ J ] .UNIDO , US/ RAS/ 92/ 120/ 11 - 51 (2000) .[3 ] Mladek M ,et al . Leather indust ry waste t reatment [M] .State Technical Literature Publishing , Prague ( 1971) :261 - 265.[4 ] Rajamani S. A system for recovery and reuse of chromi2um f rom spent tanning liquor using magnesium oxide andsulphuric acid[J ] . UNIDO (2003) .[ 5 ] Covington A D , Sykes R L , Barlow J R , et al. A practi2cal chrome recovery system using magnesium oxide[J ] . JSoc Leather Technol Chem ,1985 , (69) :166 - 174.[6 ]Cotton F , Wilkinson G. Advanced Inorganic Chemist ry( A Comprehensive Text ) [ M ] . Academia , Prague(1973) . 788 - 803.[7 ] Hartford W H. Proceedings Chromium Symposium [J ] .Indust rial Health , Foundation , Pitt sburg (1989) .[8 ]Vijayalakshm R . A Study of the interaction of Cr ( III)complexes and their selective binding with B2DNA. Amolecular modelling approach[J ] . J Biom St ruc Dynam ,2002 (19) :1063 - 1072.[9 ] Chattopadhyay B. The environmental impact of wastechromium of tannery agglomerates in the east Calcuttawetland ecosystem[J ] . J Soc Leather Technol Chem ,2000(84) :94 - 100.[ 10 ] Cabeza L F. Isolation of protein product s f rom chromi2um2containing leather waste using two consecutive en2zymes and purification of final chromium product : Pilotplant studies [ J ] . J Soc Leather Technol Chem , 1999(83) :14 - 19.[11 ] Langmaier F. Product s of enzymatic decomposition ofchrome2tanned leather waste [J ] . J Soc Leather TechnolChem , 1999 (83) :187 - 195.[12 ] ISO 4684 , Determination of volatile matter.[ 13 ] ISO 4047 : 1998 , Determination of sulphated total ashand sulphated water insoluble ash.[14 ] ISO 5397 : 1984 , Determination of nit rogen and hidesubstance.[15 ] ISO 5398 , Determination of chromic oxide.[16 ] ISO 9174 :1998 , Water quality 2 Determination of chro2mium 2 Atomic absorption spect romet ric methods.[17 ]ASTM D511 - 03 , Standard test methods for calciumand magnesium in water.8 皮革科学与工程 第17 卷© 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved.

The industry design- future master of Chinese industry"What is the industrial design?" This question caused the people which multitudinous has not involved regarding this has the understanding desire actually to have the psychology which confused, did not know should by among what kind of status, what way involvement. And what is more believed that, the industrial design is the simple packing. They cannot understand any is "industry designer". They thought the designer must be the branch industry, for instance designs the toy to call "toy designer", designs the furniture to call "furniture designer", designs the automobile to call "automobile designer". Actually, the industrial design is the outward appearance design not merely. Now is cramped to the industrial design understanding very much, regards as it is the modelling design merely, therefore it must go naturally with the craft comparison, the Chinese industry designer basically all is an outward appearance modelling design. The handset sells the fire such, actually changging is the outward appearance. The plan is others, the patent is others, we only can go to trade the color to trade the outer covering. We only are in tidy up to the product, do not have the solution basic question. Since the industrial design has said is in fact the Industrial Revolution people's design. Since the Industrial Revolution appeared the big division of labor, some people study the market specially, some people study the marketing specially, some people study the technical development specially, some people study people's life demand specially. This time, designed is separated, this time design was called the industrial design. The industrial design takes to the enterprise the huge benefit. The industrial design occupies the big ingredient in a product value, not greatly easy quantification, because it is contains in inside, is a soft value, its content is the cultural value, is the national mechanism, the horizontal ability one kind manifests. The overseas some similar analogies, like US has this kind of view, certainly is not very precise: In the enterprise if invested in the technical equipment renews has brought benefit, that industrial design brought the benefit was its 5 times. If invests 1,000 US dollars, brings the benefit on the equipment is 10% speech, that this 1,000 US dollars will throw the benefit which will bring to the design will be 780%, at least 560%, because its added value high, the profit will be high. England's Madame Thatcher as early as had said in 20 years ago, England may not have the government, but may not not design. England's success mainly depends on its design impetus. The industrial design is belongs to the modern industry product, the product structure, the industrial structure carries on the specialty which the plan design, innovates unceasingly. Its core is take "human" as the center, the design creation achievement must be able fully to adapt, satisfiedly to take "human" the demand. Humanity's demand never can pause on some, thus the industry is the design also is needs "to redesign" the specialty. The industrial design is the scientific research technology achievement transforms as the product, forms the commodity, conforms to the demand, the beneficial environmental protection core process, is the technical innovation and the knowledge innovation touchdown target, is system approach which the product, the commodity, the thing, the waste product transforms mutually. The industrial design essence is "artificial thing science". Before the reform and open policy, our country basically has not formed own industrial design ability. In the modern industry product, extremely little belongs to our country to originate. Two, under the planned economy system, the product uniform purchase has exclusive selling rights, falls short of demand, is the seller market, under such historical condition, also does not need the industrial design. In the recent 20 years, our country industrial design enterprise had the very big progress. The at the beginning of 1980s, the universities, colleges and institutes start to establish the industrial design specialty, now, our country had more than 200 colleges and universities to open this specialty, some big enterprises also one after another established the industrial design department, the industrial design started in the product modelling design aspect to win initial success. As a result of the industrial design advancement, causes the enterprise product modelling diversification, but looked from society's overall, the industrial design still was at the early time development phase in our country, but also has not been able to like the developed country to be same, created the high benefit with extremely active "productive forces" "industrial". The big market concept essence is not by "the modelling" design primarily, but is serves the "user take" as "this". Therefore, the industrial design true duty, is carries on the conceptual design to the new life style demand which the localization of target, the research analysis and determined from this. This leading direction on for the work which met down had found the very good starting point. At present " sells fixes production quotas " " the small market " mechanism, the force enterprise falls into vicious circle " noisy crowd ", “the price war " eddy current is inescapably involved. Its primary cause has not grasped industrial design this methodology, therefore has not been able in the enterprise industrial structure, in the product mix adjustment strategy and even " brand ", “in the quality " concept, serves the " customer for central " " the " goal to take truly the enterprise profit the basic condition, but only grasps " hardware ", the technology, the processing quality, the advertisement, the marketing and the enterprise vivid strategy and so on these methods. Does not stress the basic market localization, the market goal variation strategy, namely did not stress the industrial design, enterprise's technological innovation has lost the goal, created the enormous resources waste, finally, enterprise's competition only paused in the low level. Cites an example to explain malpractice: The developing nation development automobile industry has two paths, one is the South Korean path, through the independent development, the development nationality industry, becomes the multinational corporation the competitor; One take the Latin American nations as representative, runnings in the capital path, degenerates into the multinational corporation the dependency. But our country produces early compared to South Korea the automobile for several years, several big automobile group company is basic until now independently has not developed the passenger vehicle ability. Are increasingly many with the foreign joint capital automobile enterprise, in the world the famous multinational corporation nearly all arrived China to pool capital. Most important, uses our technology to fire our brand, carries forward the national industry to need the industrial design in the final analysis. In the independent brand time, the design will become the commercial strategy a part, the design strategy becomes the enterprise strategy the important part. Perhaps the design can create the new business model in this time. Because is too early, we are impossible to this kind of strategy industrial design understanding in extremely clearly, but some tendencies we are may estimate. One is the product image distinguishes into possibly, each brand all must have own individuality, this kind of individuality will also manifest in enterprise's all product family member; Two, the design object can have the development. Its real situation and the thing equally important, the product and the service is worth taking equally. Not only enterprise sales product, but also sells the service. Again to looks out into the distance the vision looks, the experience design not does not have possibly. Three, in the design method even more emphasized the team cooperation, the team members will come from a broader domain. In fact, because has the special status and the function in the industrial promotion and the development, now many countries already the industrial design took the national innovation strategy the important constituent, establishes the special control section in abundance, the investment huge fund, and gives the support in the industrial policy. England is equipped with National Design Committee, manages the nation industrial design advancement work; Japan proposed " builds the nation on the basis of scientific and technical development, the design leads the way the " national policy, is equipped with the design promotion hall, the design policy hall as well as the industrial promotion in the Ministry of International Trade and Industry can use in advancing this work; South Korean Government is proposed in the industrial development summary that, hoped becomes the world to 2010 to design the powerful nation. Then our country if hoped can through enhance the high-tech product the added value to strengthen our comprehensive strength, then should start from the present to take the industrial design, sets up the special government control section and the profession association, and provides the capital source for it. Government to industrial design fund investment, also must have the special allocation, set up the fund. Under so environment, not only can develop the native place to design, but also can have the formidable rallying point to attract more international resources.

美工设计论文参考文献

flash论文的开题报告2009-04-29 15:13[摘要]本文介绍了用Fash8开发的体育网络多媒体课件的特点及体育多媒体课件适应网络应用的结构设计方法,并结合实际阐述了利用Fash8开发体育网络多媒体课件的一些方法与经验。 [关键词]Flash8 体育 网络 多媒体课件 体育多媒体教学课件融文字、图像、声音、动画等多种媒体信息于一体,以独特的交互性、巧妙的构思、生动的画面、形象的演示将课堂教学引人全新的境界,极大的增强教学效果。目前,制作体育多媒体课件的软件很多,用Fash制作的课件能支持图形、图像、声音、视频、三维动画等各种媒体,Fash本身又是功能强大的动画制作软件,还具备完善的面向对象的程序设计,实现多媒体课件各种类型的交互功能。用Fash开发的课件体积小,便于在网络上播放和交流,Fash制作体育网络多媒体课件具有其它软件所无法比拟的优势。自从Macromedia公司针对网络应用推出Fash软件以来,该公司已推出最新Fash8版本,随着版本的升级,Fash功能也随之强大,目前不但在网络上多媒体应用广泛,也越来越多的被广大体育教师所采用,逐渐成为制作体育多媒体课件流行的软件之一。 一、Flash制作体育网络多媒体课件的特点 1.复合性好、交互性强 Fash可以把文本、图形、图像、音频、视频、动画等多种信息集成。在Flash中动画片断和场景的跳转都可以使用Action来实现控制,Fash提供了多种交互类型,可以创建出具有强大交互功能的课件,使用者还可以通过鼠标、键盘等输入工具与课件交互,为制作者提供的强大的功能满足需要。 2.强大的绘图、动画功能 Fash具有较强的图形绘制能力,体育课件中一般的运动场地、人体运动简图都可用它来绘制,并且在运动中根据需要使对象加速或减速。Fash支持逐帧动画、形状渐变动画、运动渐变动画和遮罩动画等。Fash能导入常见格式的图像,无失真缩放,采用图形矢量格式,放大或缩小都不会影响课件画面质量,大屏幕播放效果好。 3.文件容量小、网上运行快捷 Fash采用了当前网络上流行的流媒体体技术,文件小,传输速度快,适合网络传输和共享。Fash文件能实现一边下载一边播放,不会由于网络的原因造成播放的不连贯,影响播放效果。学生通过网络获得教学资源,可以方便地在学校建立的局域网上实现基于Web学习。 4.强大的兼容性、脚本语言 Fash动画格式的课件可以被其他类型的课件引用,如可以在PowerPoint、Authorwaer课件中插人Flash课件,在Dream weaver网页制作中插人Flash课件。使用Fash的Action Script语言能制作出丰富多彩的动化,并能通过XML语言访问数据库,实现Fash与Web数据库的联系,为课件制作者提供了更广阔的应用空间。Flash课件还可以通过在“发布设置”中,选择“HTML”选项,系统自动会生成了一个同名的“HTML”的网页文件。 二、Fash开发体育网络多媒体课件的结构设计 用Fash制作体育网络多媒体教学课件,要认真研究Fash写作系统的特点及实现方法,并根据其特点,合理、科学地构建合理的课件整体结构布局,使课件整体结构逻辑性强、结构清晰,简单易读。Fash开发课件的结构常见类型有:动画模拟演示课件、单场景交互型、多场景导航型、程序脚本类、练习与测试类等。根据笔者从实践积累的经验,Fash开发体育网络多媒体课件的结构通常采用多场景导航型。多场景导航型的课件结构一般是由封面、教学内容、封底三部分构成。封面主要说明多媒体课件的名称、作者、版权等,一般采用图形、动画、声音等多种手段,以增强课件的艺术气氛和感染力;封底主要说明多媒体课件资料来源、鸣谢等。教学内容由主界面和学习模块组成,其中学习模块是课件的核心部分,学习内容由若干学习模块组成。为了实现课件的网络化应用,可以将各个学习模块制作成独立的Fash文件,利用LoadMovie命令实现各个学习模块之间的相互调用。用这种思想设计出来的课件能使课件具备很强的网络特征,有利于课件的维护和可持续开发。模块化结构设计课件的特点是在播放时不需要把全部的课件模块都装载到计算机的内存中,只需先装载课件的主控模块,需要时,再通过点击主控界面上的控制按钮,把其它课件的模块装载运行。通过这样的结构设计,把一个大型体育多媒体课件分解成若干小课件,因为单个小课件的体积较小,易于网络实时下载播放,能充分发挥Fash基于流媒体的传播技术。 三、利用Fash制作体育网络多媒体课件 1.文字处理 在体育网络多媒体课件中文字的出现是常见的,Fash可以编辑文本内容,改变字符的形状,设置文本属性,可使文本像图形对象一样进行移动、旋转、变形,还可以根据需要制作文字动化,如课件的标题可以制作“光影、飞行文字”等效果以增强课件的吸引力。Fash还可将外部文本导人到Fash中并支持CSS,这样就可方便改变文本样式而不需要改变Fash源程序,减少了文件的体积,更加适合网络潘放。 2.图形处理 Fash软件可以绘制各种各样的图形,支持导入多种类型的现有图形格式,包括矢量格式和位图格式,Fash可以用自带工具对图形进行简单修改、艺术加工,对图片的处理要求较高的,可以使用Photoshop Cs、CorelDraw等图片处理软件把图片加工好后再导入Fash,以达到课件设计者的要求。值得一提的是在导入位图格式之前可以根据需要缩小文件或导入后进行矢量化处理,这样就可以降低生成课件后文件的大小。 3.动画设计 Fash动画的形式有很多种,有逐帧动画、运动补间动画、形状补间动画、引导层动画、遮罩动画,利用Action Script编程设计等。例如:在讲解足球越位规则时,为了让学生理解什么情况下越位,可以用Action Script设计一个演示板,用鼠标拖动场上的队员和球来给学生讲解,学生就会很清楚,接着可以用逐帧动画设计慢速一帧一帧的播放,看清传球一刹那,队员是否处在越位位置,学生就会加深理解。如在讲解挺身式跳远动作时,可以用运动引导层动画,让起跳角度沿着设计好的抛物线引导层起跳、腾空、落地。抛物线设计成低弧度、中弧度、高弧度,再分别做低弧度、中弧度、高弧度按钮。当点击相应按钮时,运动员分别沿着三种路线起跳、腾空、落地,让学生更好地理解起跳角度对远度的影响。在制作课件过程中,应根据教材的特点和实际的需要采用适合的动画形式。用Fash设计的逐帧动画比运动补间动画和形状补间动画占用的空间大,建议少用逐帧动画,这样可以尽量减小影片的尺寸,使动画体积变小,有利于动画的播放和在网上的传输。 4.声音处理 Fash支持MP3压缩格式和流式声音播放技术。在体育多媒体课件中,声音是个很重要的构成要素。随着MP3格式的声音文件出现,声音文件比原来要少很多,利用GoldWave软件可以对MP3文件进行任意截取。在Fash中还可将声音文件打碎放在Fash的最小时间单位一帧中进行播放。从而保证了在网上播放时,能做到声音与图像同步。 5.视频处理 Flash8支持的视频有MPEG、MOV、DV、AVI等,在Flash8中,可以对导入的对象进行缩放、旋转、扭曲等处理。体育多媒体课件经常要对插入的视频有比赛片段、运动技术的慢放等,这时就有必要对影片进行剪切、编辑、格式转换等处理,这方面常用的软件有Premiere。、After Effects和会声会影等。 6.交互功能 Fash提供了丰富的交互手段,主要有:按钮交互,Fash可创建按钮并为按钮设定在某一事件发生时所要执行的动作。在Fash中按钮可以是Fash舞台上的任何对象,如文字、图形、图片等元素;菜单导航,Fash可以制作出出各种各样的菜单,如下拉式菜单等。通过菜单,可以按需要播放Fash影片的各个部分,就如同书目录一样,方便学生浏览所需的部分;表单交互,表单是把按钮、动画、可编辑文本框组织一起,通过表单可以把信息传递给本地的其他应用程序或者远程服务,主要应用于网上调查、评分、搜索界面等;文本交互,Fash中可创建可编辑文本框,并可设定可编辑文本框的属性如输人字符的长度、单行或多行、字体大小等。常用于多媒体课件中需用户输入内容的时候。实际上通常是将几种交互方式结合起来使用,如可以创建一个既是动画又是按钮的对象,让它既可播放一定的动画又可接受鼠标事件。综合运用Fash中的这些交互功能,就可用制作出任意播放控制、跳转设置的按钮等具有丰富交互方式的体育多媒体课件。 四、Fash制作体育网络多媒体课件应注意的问题 1.制作一个优秀的Fash课件,不仅需要教师教学经验和知识结构的支持,还要求制作者具备策划、设计美工、动画制作、音乐、编程能力等,体育教师只有不断加强自身的信息技术素养才能制作出好的Fash课件。 2.在利用Fash课件开发过程中,广大体育教师应该注重运用现代教育观念、现代教育技术、系统观念解决实际教学问题,并寻求教学效果的最优化。Fash网络多媒体教学课件作为体育教学的辅助手段,应发挥其优势,正视传统教学手段中的实用价值,才能合理、正确地运用在体育教学中。 参考文献: 〔1〕李宁,周峰柏.网络课程建设的研究与探索〔J〕.中国电化教育,2005,(6). 〔2〕李耀麟.论交互型多媒体课件的整体结构布局〔J〕.中国电化教育,2006,(1). 〔3〕王振靖.谈如何用F1ashMX2004制作体育多媒体教学课件〔J〕.辽宁体育科技,2006,(6). 〔4〕祝智庭,钟志贤.现代教育技术[M].上海:华东师范大学出版社,2003.

到这里来求助吧

防伪。现代科技的高速发达,一般的包装防伪技术对造假者已产生不了作用。强化包装设计的视觉效果和加强包装印刷工业技术已成为打假维权行动中的一个有力的武器。我们可以在包装设计中采用特殊纹理的纸张、特定的颜料与包装工艺技术如全息图像、正品检验封印、浅浮雕压纹等来获得特定的效果,使那些假冒伪劣商品因复制成本过高或效果不逼真,知难而退。因此包装设计的创新方法与融汇高新科技成果的印刷工业技术强强联手,追求精辟独到的原创性和独特视觉效果是未来包装业可持续发展的又一方向。     3、商品个性化包装的逐渐盛行。由于科学技术的不断发展,越来越的数字印刷包装设计越来越得到企业的认可,且已经逐渐成为品牌商用来吸引客户的有效方式之一,比如,可口可乐就采用了这种形式,通过不同包装瓶印刷个性化的标签扩大了市场份额,很好地提高了企业品牌影响力,获得了市场的高度认可。

一、本科学生毕业论文的目的和内容 本科学生在毕业之前必须做毕业论文,其目的是通过毕业论文,让学生独立开发一个具体的计算机应用项目,系统地进行分析总结和运用学过的书本知识,以巩固本科阶段所学的专业理论知识,并给予一个理论联系实际的机会。 为了便于实施和管理,规定网络学院计算机相关专业本科学生毕业论文主要以开发一个管理信息系统为毕业实践的课题,每个毕业生通过独立开发一个具体的管理信息系统,掌握开发一个比整完整的管理信息系统的主要步骤,并从中获得一定的实际经验。 二、管理信息系统开发的主要步骤 管理信息系统开发的主要步骤及各步骤的基本内容如下: 1、 系统分析 主要工作内容有以下几项:确定系统目标,系统可行性分析 2、 系统调查 系统的组织结构、职能结构和业务流程分析。其中系统的组织结构图应画成树状结构。 系统业务流程分析、业务流程图 3、 数据流程分析 数据流程图(系统关联图、顶层图、一层数据流图、二层数据流图)、数据词典、代码设计 4、 管理信息系统的功能设计 系统的功能结构图,每个功能模块的主要工作内容、输入输出要求等。 系统控制结构图 5、 数据库设计 概念模型设计:实体、实体间的联系、E-R图 关系模式设计:E—R图->关系模式的转换规则 关系模式 数据库表设计:数据库表结构 6、 系统物理配置方案 7、 人机界面设计 8、 模块处理概述 9、 系统测试和调试:测试计划、测试用例、测试结果 三、开发工具和注意事项 1、开发工具 开发工具可由学生任选。如Delphi、FoxPro、VB、Access等,这些工具的使用全由学生自学。 2、注意事项 (1)项目开发步骤的完整性(系统需求分析、概念设计、物理设计、系统环境和配置、系统实施以及系统测试和调试等) (2)每个开发步骤所得结果的正确性(业务流程图、数据流程图、数据词典、HIPO图、E-R图、关系模式、人机界面设计及模块处理等的详细分析和说明) (3)论文整体结构的完整性(前言、各个具体步骤的叙述和分析、结语、参考文献和有关附录) (4)提供软件系统的可执行盘片及操作说明书 (5)参考资料(列出必要的参考资料) 四、毕业论文撰写格式 注意: 1.每个步骤都要有文字说明和论述 2.各个步骤必须是有机的组合,不可以支离破碎不成一体。 一、封面 二、摘要 用约200-400字简要介绍一下论文中阐述的主要内容及创新点 三、主题词 用一、二个词点明论文所述内容的性质。(二和三要在同一页面上) 四、目录 一般采用三级目录结构。 例如第三章 系统设计3.1系统概念结构 3.1.1概念模型 五、正文 第一章 前言 简要介绍: 组织机构概况、项目开发背景、信息系统目标、开发方法概述、项目开发计划等。 第二章 系统需求分析 本章应包含: (1)现行业务系统描述 包括业务流程分析,给出业务流程图。 具体要求:业务流程图必须有文字说明,图要完整、一定要有业务传递的流程。 (2)现行系统存在的主要问题分析 指出薄弱环节、指出要解决的问题的实质,确保新系统更好,指出关键的成功因素。 (3)提出可能的解决方案 (4)可行性分析和抉择 包括技术可行性、经济可行性、营运可行性分析和抉择。 第三章 新系统逻辑方案 针对用户需求,全面、系统、准确、详细地描述新系统应具备的功能。 (1)数据流程分析 最主要的是给出数据流程图,要求满足以下条件: A.数据流程图必须包括系统关联图、系统顶层图、第一层分解图和第二层分解图组成。B.系统关联图确定了从外部项到系统的数据流和从系统向外部项的数据流,这些数据流在其它层次的数据流中不允许减少,也不允许增加。各层次内部的数据流不受关联图的限制。 C. 数据流应有名字。 D. 外部项和数据存储之间不得出现未经加工的数据流。 E. 数据流程图的分解中,必须保持每个分层同其上层加工中的外部项和输入输出流相一致。 F. 各加工之间一般不应出现未经数据存储的数据流。 G. 数据存储之间不得出现未经加工的数据流。 H. 数据存储可以分解。 I. 若有查询处理,应在数据流程图中表达。 J. 统计和打印报表不在数据流图中表达。 (2) 数据词典描述 可采用图表格式或较紧凑的记录格式描述 A、若采用图表格式,可只写出数据流、数据元素、加工、数据存储和外部项各一个表。 B、若采用紧凑的记录格式,则应列出全部成分。如数据元素: 编号 名称 存在于 数据结构 备注 E1 入库数据 F1/F3/F11/F15 入库单号+日期+货号+数量 E2 出库数据 F1/F3/F11/F15 出库单号+日期+货号+数量 C、据流程图中系统顶层图的数据加工都必须详尽写出。 (3) 基本加工小说明 可采用结构化语言、数学公式等描述各个基本加工。 第四章 系统总体结构设计 (1) 软件模块结构设计 A、系统软件模块结构图,并由此导出功能分解图及层次式菜单结构。 B、系统的模块结构应与数据流程图的顶层图的加工一致。 (2)数据库设计 A、应按下列次序阐述各个元素:实体、实体的属性、实体间联系、E-R图、转换规则、关系模式。 B、在介绍实体的属性时,不应包括联系属性,联系属性直至关系模式中才出现。 C、数据流程图中的每个数据存储可隐含于E-R图中的多个实体。 D、 E-R图中的实体要与数据流程图中的数据存储相对应。每个实体要指出实体的标识码(主码)。对每个实体或联系应列出其应有的属性(用列举的方法)。 E、E-R图中至少要有一个多对多的联系。 F、必须严格按照转换规则从E-R图产生数据关系模式集,需要时作必要的优化,并说明理由。 G、对于一对一的联系,只应把任一个实体的主码放在另一个实体中作为外码。 H、一对多联系也可以产生新的关系模式,如要这样做,必须说明理由。 I、多对多联系,或三元联系必须产生新的关系模式。 J、关系模式的个数和名字要与E-R图中的实体和联系相一致。 K.、每个关系模式中要用下横线标出主码,后随的符号“#”标出外码。 L、若有代码对照表可在最后列出,需另加说明。 (3) 计算机系统配置方案的选择和设计 给出硬件配置,系统软件配置,网络通信系统配置(可选)等内容。 (4) 系统总体安全性、可靠性方案与措施。 第五章 系统详细设计 (1)代码设计 基本数据项的代码格式。 (2)人机界面设计 给出人机界面视图(输入输出接口,屏幕格式设计等) (3)模块处理过程 根据软件环境做不同处理。 可采用脚本、程序流程图、结构化的PDL语言等。 第六章 实施概况 (1)实施环境和工具的比较选择 (2)编程环境、工具、实现与数据准备概况 (3)系统测试概况 主要包括测试计划、测试用例、测试记录。 (4)系统转换方案及实现概况 (5)系统运行与维护概况 六、结束语 (1)系统特色、局限与展望 (2)实施中遇到的挫折、创新、体会与致谢 七、参考文献 列出毕业论文设计中主要参考书籍 序号、书名或文章名、作者名、出版社或杂志名、出版日期或杂志期号。 八、附录 (1) 列出部分有一定代表性的程序代码段 (2) 操作说明书 五、论文评分标准 1、A等 系统正确无误,系统功能完善,设计步骤完整正确,实用性强,有一定的创新性,论文结构严谨,表述流畅。 2、B等 系统基本正确,系统功能基本完善,设计步骤基本完整正确,有一定的实用性,论文结构良好,表述基本流畅。 3、C等 系统有少量错误,系统功能不够完善,设计步骤欠完整,基本上没有实用性,论文结构一般,表述基本清楚。 4、不及格 因有以下所列某种原因,均作论文不及格评分。 系统有较大的错误、系统功能不完善,缺少主要设计步骤或主要设计步骤有严重错误,论文结构混乱,表述不清楚

相关百科

热门百科

首页
发表服务