相信都有心得体会,下面我就谈一下我对数学学习的一些体会.一,牢牢把握基础,紧扣定义,才能深刻理解新知识数学是一门统一的整体性很强的学科,各个知识点之间是紧密相关的,有人说大学数学的学习与初中和高中学习的关系不大,这种说法是科学的,数学是一门严谨的学科,数学的学习要有一个循序渐进的过程,因此,学习数学是应该重视基础的我们来看下面的例子:求y=x在原点处的切线用中学的知识,我们很容易画出y=x的图形,但是由图象上看y=x在原点出似乎应该是无切线的,其实不然,我们用高中的方法可以求出y=x在原点切线的斜率k=0,即切线为y=0,但是当时我们并不知道这是为什么.现在我们学过了导数和微分中导数的几何意义后,很容易用切线的定义来解释这个问题,目前,切线的定义为:割线的极限,这样看来,y=0确为y=x在原点出的切线,所以,数学的学习是个有基础的学习,只有牢牢把握基础,遇到问题要有打破沙锅问到底的态度,才能学好数学,不仅"知其然"更要"知其所以然".二,归类,总结比较我们学过的数学知识中有许多看似相似的,但却有着本质的不同.这时我们就需要把它们放在一起,找出相同和不同的地方.进行归类总结.然后进行比较.例如高等代数(线性代数)中行列式与矩阵的比较:一个数乘以行列式是用这个数乘以这个行列式中一行的元素,而一个数乘以一个矩阵是指用这个数乘以这个矩阵中的每一个元素,即=再如:空间解析几何中,在空间内建立在线和建立平面方法的比较;点到线,线到线,线到面等距离公式的归纳比较;数学分析(高等数学)中数列极限与函数极限的比较;函数的连续性,可导性与可微性的比较;罗尔定理,拉格朗日定理与柯西中值定理的比较等等.我们分别学这些东西时也许会混淆,但当我们把它们拉到 一块儿放在同一张纸上时,它们的区别和联系也就一同了然了.这样不仅学起来轻松;记起来也很牢固.三,从未知中找已知中理解未知这点是大家常用的.每次上新课,老师都是由已知引出未知,然后由我们从未知中找已知的知识来理解,领悟.其实,不光课上要这样,在课下中的学习中也应该这么做.我们学的越扎实,找的"已知"就越多,做题时分析的就越深,从而精益求精,达到事半功倍的效果.四,特殊知识特殊记忆.用例子帮助记忆.举一反三.这也是学习数学的重要方法,数学的知识很多,有的需要特别的进行记忆.这时,我们可以用例子来帮助记忆,对一个例题进行透彻的分析后,把其中的知识点记牢,再遇到其他同类型问题时可以做到举一反三.例如:符号函数sgn x 狄利克雷函数黎曼函数我们学习函数时,要把它的图象弄明白,学清楚,用数形结合的方法学习函数再如:当我们记忆"函数f在点x可导,则在x连续;但反之不成立."这一命题时,只要举一例子:函数y=,在x=0处连续但不可导.反映到图像上即为在点(0,0)处图象不光滑.另外,学习数学还要多学,多练,多思.切忌眼高手低,心浮气躁.而且认真完成作业也是必要的,在完成作业的同时,我们可以认识到自己的缺点和不足把模糊的知识点清晰化完美自己的知识体系.浅谈数学学习的方法0494051119 刘 影我们从幼儿园到现在的大学都和数学有过很深的接触,出于本人对数学的喜好,对数学产生了深厚的感情.我相信大家对数学的学习方法并不陌生,无论何时学习数学,万变不离其宗,方法也不过如此.最重要的是持之以恒的决心!以下是我对数学学习的方法总结:一,抓住课堂理科学习重在平日功夫,不适于突击复习.平日学习最重要的是课堂时间,听讲要聚精会神,思维要紧跟老师.同时要说明一点,许多同学容易忽略老师所讲的数学思想,数学方法,而注重题目的解答,其实思想方法远远重要于某道题目的解答.二,高质量完成作业所谓高质量是指高正确率和高速度.写作业时,有时同一类型的题重复练习,这时就要有意识的考查速度和准确率,并且在每做完一次时能够对此类题目有更深层的思考,诸如它考查的内容,运用的数学思想方法,解题的规律,技巧等.另外对于老师布置的思考题,也要认真完成.如果不会决不能轻易放弃,要发扬"钉子"精神,一有空就静心思考,灵感总是突然来到你身边的.最重要的是,这是一次挑战自我的机会.成功会带来自信,而自信对于学习理科十分重要;即使失败,这道题也会给你留下深刻的印象.三,做好预习,勤思考,多提问要做好预习,对不懂的题目做好标记,作为听课重点.对于老师给出的规律,定理,不仅要知"其然"还要"知其所以然",做到刨根问底,这便是理解的最佳途径.学习任何学科都应抱着怀疑的态度,尤其是理科.对于老师的讲解,课本的内容,有疑问应尽管提出,与同学讨论,与老师讨论.总之,思考,提问是清除学习隐患的最佳途径.四,总结比较,理清思绪
你参考搜索电路分析,文库有很多,全是计算电容电感的微分方程应用题
呵呵```我高数最烂了帮不了你
我的毕业论文题目是矩阵的乘法及其应用~个人感觉相当简单~我是数学与应用数学专业
1、在电脑上打开word应用程序,在界面的右上角找到公式选项,并点击打开。2、在跳转的公式编辑器界面中插入矩阵外边的括号。3、插入里面的行和列,点击,会出来一个矩阵对话框,我们在里面输入行数和列数。4、在跳转的矩阵界面中,输入矩阵的相关参数。5、之后在矩阵图中输入数字即可。
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法
所以算出A的广义逆A+,然后验证上述条件即可。
矩阵是工程技术以及经济管理等领域的不可缺少的数学工具,凡是用到矩阵的地方,基本上都要涉及广义逆矩阵,尤其数值分析与数理统计有着重要作用.广义逆矩阵共15类,但最常用有5类,包括A{1},A{1,2},A{1,3},A{1,4},A{1,2,3,4}.主要讨论这5类广义逆矩阵的计算及其应用.作 者: 马秀珍 韩静华 MA Xiu-zhen HAN Jing-hua 作者单位: 沈阳航空工业学院理学系,辽宁,沈阳,110034 刊 名: 沈阳航空工业学院学报 英文刊名: JOURNAL OF SHENYANG INSTITUTE OF AERONAUTICAL ENGINEERING 年,卷(期): 2005 22(2) 分类号: O175.14 关键词: 广义逆矩阵 矩阵方程 自反广义逆 最小范数广义逆 通解 机标分类号: 机标关键词: 广义逆矩阵应用数值分析数学工具数理统计经济管理工程技术计算 基金项目:
逆矩阵和广义逆矩阵的区别如下。1、若A为非奇异矩阵,则线性方程组Ax=b的解为x=A^(-1)b,其中A的逆矩阵A^(-1)满足A^(-1)A=AA^(-1)=I(I为单位矩阵)。2、若A是奇异阵或长方阵,Ax=b可能无解或有很多解。3、若有解,则解为x=Xb+(I-XA)у,其中у是维数与A的列数相同的任意向量,X是满足AXA=A的任何一个矩阵,通常称X为A的广义逆矩阵,用A^g、A^-或A^(1)等符号表示,有时简称广义逆。4、当A非奇异时,A^(-1)也满足AA^(-1)A=A,且x=A^(-1)b+(I-A^(-1)A)у=A^(-1)b。故非异阵的广义逆矩阵就是它的逆矩阵,说明广义逆矩阵确是通常逆矩阵概念的推广。
很多应用啊。。。比如工程上的,控制上的。你可以多看看书,上面都有应用的例子。比如应用数值线性代数,控制论中的矩阵计算等等。。
告诉你拟就会写吗。不如我给你写得了
矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。 在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。
一类特殊对称矩阵的特征值与特征向量陆全 徐仲 【摘要】:【作者单位】:西北工业大学西北工业大学【关键词】:矩阵的特征值正交特征向量特征值与特征向量对称矩阵实对称阵特征问题矩阵A正交变换《线性代数》正交阵【分类号】:O151【DOI】:CNKI:SUN:XUSJ.0.1997-04-013【正文快照】:同济大学《线性代数》第130页例10要求一个正交变换.把二次型化为标准形,其中需要求矩阵的特征值与单位正交特征向量。事实上,这个矩阵R是一种具有特殊对称性的矩阵。这类矩阵的特征问题有如下的一般结论。考虑如下的特殊对称矩阵其中A、B均为m阶实对称阵,u是m维列向量,
逆矩阵求法有三种,分别是伴随矩阵法、初等变换法和待定系数法。
一、伴随矩阵法。根据逆矩阵的定义(对于n阶方阵A,如果有一个n阶方阵B满足AB=BA=E,则A是可逆的。),可以得出逆矩阵的计算公式:A^(-1)=1/|A|乘以A*,其中,A*为矩阵A的伴随矩阵。例题如下:
伴随矩阵法解题过程
注:用伴随矩阵法计算逆矩阵时需要运用代数余子式和余子式的相关知识,即代数余子式(Aij)和余子式(Mij),其中,i表示第几行,j表示第几列。
二、初等变换法。根据矩阵初等行变换的计算方式,然后引入单位矩阵E(矩阵对角线所对应的三个数字均为1,其他数字均为0的矩阵)。矩阵 A与单位矩阵E组成一个大矩阵,而后通过行变换将原来A的位置转变为E,此时,变换后的E就是所求的逆矩阵。
本人手写笔记
三、待定系数法。根据矩阵定义的推论,利用矩阵A乘以它的逆矩阵A^(-1)等于单位矩阵E的计算公式求得逆矩阵的方法。这种计算过程繁琐,需要列多组方程组,耗时,不建议使用。
题主可根据以上三种计算方法计算逆矩阵,希望对题主有帮助。
矩阵的逆等于伴随矩阵除以矩阵的行列式,所以现在只要求原矩阵的行列式即可。
A^*=A^(-1)|A|,
两边同时取行列式得
|A^*|=|A|^2 (因为是三阶矩阵)
又|A^*|=4,|A|>0,所以|A|=2
所以A^(-1)=A^(*)/2,就是伴随矩阵除以2。
特殊求法:
(1)当矩阵是大于等于二阶时 :
主对角元素是将原矩阵该元素所在行列去掉再求行列式,非主对角元素是原矩阵该元素的共轭位置的元素去掉所在行列求行列式乘以 , x,y为该元素的共轭位置的元素的行和列的序号,序号从1开始。主对角元素实际上是非主对角元素的特殊情况,因为x=y,所以 ,一直是正数,没必要考虑主对角元素的符号问题。
(2)当矩阵的阶数等于一阶时,伴随矩阵为一阶单位方阵。
(3)二阶矩阵的求法口诀:主对角线元素互换,副对角线元素加负号。
矩阵性质
矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷。逆矩阵又是矩阵理论的很重要的内容,逆矩阵的求法自然也就成为线性代数研究的主要内容之一。
设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩B,使得: AB=BA=E。 则我们称B是A的逆矩阵,而A则被称为可逆矩阵。其中,E为单位矩阵。
典型的矩阵求逆方法有:利用定义求逆矩阵、初等变换法、伴随阵法、恒等变形法等。