首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

函数极限求法毕业论文

发布时间:

函数极限求法毕业论文

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

一次函数的极限论 比较对待好,肯定知道

根据heine定理,函数极限数列极限是可以转化的:f(x)一>a(x一>xo)的充要条件为对任何以xo为极限的数列xn!xn不等于xo,都有f(xn)一>a(n一>无穷)

求函数极限的方法毕业论文

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

(一)确定论文提要,再加进材料,形成全文的概要论文提要是内容提纲的雏型。一般书、教学参考书都有反映全书内容的提要,以便读者一翻提要就知道书的大概内容。我们写论文也需要先写出论文提要。在执笔前把论文的题目和大标题、小标题列出来,再把选用的材料插进去,就形成了论文内容的提要。(二)原稿纸页数的分配写好毕业论文的提要之后,要根据论文的内容考虑篇幅的长短,文章的各个部分,大体上要写多少字。如计划写20页原稿纸(每页300字)的论文,考虑序论用1页,本论用17页,结论用1—2页。本论部分再进行分配,如本论共有四项,可以第一项3—4页,第二项用4—5页,第三项3—4页,第四项6—7页。有这样的分配,便于资料的配备和安排,写作能更有计划。毕业论文的长短一般规定为5000—6000字,因为过短,问题很难讲透,而作为毕业论文也不宜过长,这是一般大专、本科学生的理论基础、实践经验所决定的。(三)编写提纲论文提纲可分为简单提纲和详细提纲两种。简单提纲是高度概括的,只提示论文的要点,如何展开则不涉及。这种提纲虽然简单,但由于它是经过深思熟虑构成的,写作时能顺利进行。没有这种准备,边想边写很难顺利地写下去。编写要点编写毕业论文提纲有两种方法:一、标题式写法。即用简要的文字写成标题,把这部分的内容概括出来。这种写法简明扼要,一目了然,但只有作者自己明白。毕业论文提纲一般不能采用这种方法编写。二、句子式写法。即以一个能表达完整意思的句子形式把该部分内容概括出来。这种写法具体而明确,别人看了也能明了,但费时费力。毕业论文的提纲编写要交与指导教师阅读,所以,要求采用这种编写方法。详细提纲举例详细提纲,是把论文的主要论点和展开部分较为详细地列出来。如果在写作之前准备了详细提纲,那么,执笔时就能更顺利。下面仍以《关于培育和完善建筑劳动力市场的思考》为例,介绍详细提纲的写法:上面所说的简单提纲和详细提纲都是论文的骨架和要点,选择哪一种,要根据作者的需要。如果考虑周到,调查详细,用简单提纲问题不是很大;但如果考虑粗疏,调查不周,则必须用详细提纲,否则,很难写出合格的毕业论文。总之,在动手撰写毕业论文之前拟好提纲,写起来就会方便得多。

求连续区间的步骤:求连续区间,按照函数连续性的定义去做即可。设函数y=f(x)在x0点附近有定义,如果有lim(x->x0) f(x)=f(x0),则称函数f在x0点连续。如果定义在区间I上的函数在每一点x∈I都连续,则说f在I上连续。

定义

连续函数是指函数y=f(x)当自变量x的变化很小时,所引起的因变量y的变化也很小。例如,气温随时间变化,只要时间变化很小,气温的变化也是很小的;又如,自由落体的位移随时间变化,只要时间变化足够短,位移的变化也是很小的。对于这种现象,因变量关于自变量是连续变化的,连续函数在直角坐标系中的图像是一条没有断裂的连续曲线。由极限的性质可知,一个函数在某点连续的充要条件是它在该点左右都连续。

法则

定理一、在某点连续的有限个函数经有限次和,差,积,商(分母不为0)运算,结果仍是一个在该点连续的函数。

定理二、连续单调递增(递减)函数的反函数,也连续单调递增(递减)。

定理三、连续函数的复合函数是连续的。

定义

函数极限可以分成x→∞,x→+∞,x→-∞,x→Xo,,而运用ε-δ定义更多的见诸于已知极限值的

证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以x→Xo的极限为例,f(x)在点Xo以A为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数δ,使得当x满足不等式0<|x-x。|<δ时,对应的函数值f(x)都满足不等式:|f(x)-A|<ε,那么常数A就叫做函数f(x)当x→x。时的极限。

存在准则

1.夹逼定理

(1)当x∈U(Xo,r)(这是Xo的去心邻域,有个符号打不出)时,有g(x)≤f(x)≤h(x)成立

(2)g(x)—>Xo=A,h(x)—>Xo=A,那么,f(x)极限存在,且等于A

不但能证明极限存在,还可以求极限,主要用放缩法。

2.单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。

在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数,并且要满足极限是趋于同一方向,从而证明或求得函数的极限值。

3.柯西准则

数列收敛的充分必要条件是任给ε>0,存在N(ε),使得当n>N,m>N时,都有|am-an|<ε成立。

幂指函数求极限毕业论文

幂指函数求极限方法归纳如下:

方法一:都是幂指数的形式,可以提出最高次项,极限值就是最高次项的系数之比,如下图所示。

方法二:可以用洛必达法则求极限。具体做法是同时对分子分母求导,然后借助方法一或者直接代入,可以得到答案。

同底数幂的除法是整式除法的基础,要熟练掌握。同底数幂的除法法则是根据除法是乘法的逆运算归纳总结出来的,和前面讲的幂的运算的三个法则相比,在这里底数a是不能为零的,否则除数为零,除法就没有意义了。又因为在这里没有引入负指数和零指数,所以又规定m>n。能从特殊到一般地归纳出同底数幂的除法法则。

拓展资料:

洛必达法则:对于0/0型或者无穷/无穷型求极限的问题,可以对分子分母同时求导,极限值不变。这个法则就是洛必达法则。

同底数幂的两个幂相除,如果被除式的指数与除式的指数相等,那么商等于1,即am÷an=1,m是任意自然数。a≠0, 即转化成a0=1(a≠0)。

运用条件:保证求导一个分子、分母以及分式极限存在,否则洛必达法则失效。其实不一定非要总结这些,关键还是多做题,每个类型多做些题,自然拿到题后就很快能找到方法。

求幂指函数极限本来方法就很简单啊。不知道你是怎么求的,搞复杂了?

幂指函数如何求极限,主要是主要左右极限不相同的情况是要分类讨论求幂指函数的极限,最重要的就是利用幂指函数的图形来解题,因为要学会画图,这样你就可以方便的看出当自变量变化时函数的变化,可以方便你求极限如果有什么不懂的,可继续追问,愿意为你解答!

有指数函数的极限多数可用洛必达法则求得,应付0/0,∞/∞,∞^0,0^∞,∞^∞,0^0等极限先把指数函数转换为x=e^(lnx)形式,再对指数部分的分式上下分别求导而这题可用:lim(x→∞) x*e^(-x??),∞/∞形式,可用洛必达法则=lim(x→∞) x/(e^x??)=lim(x→∞) 1/(2x*e^x??)=1/∞=0 求极限好多难题都可以用洛必达法则,所以要灵活掌握其应用,建议你看下这个课件

毕业论文函数极限

根据heine定理,函数极限数列极限是可以转化的:f(x)一>a(x一>xo)的充要条件为对任何以xo为极限的数列xn!xn不等于xo,都有f(xn)一>a(n一>无穷)

(一)确定论文提要,再加进材料,形成全文的概要论文提要是内容提纲的雏型。一般书、教学参考书都有反映全书内容的提要,以便读者一翻提要就知道书的大概内容。我们写论文也需要先写出论文提要。在执笔前把论文的题目和大标题、小标题列出来,再把选用的材料插进去,就形成了论文内容的提要。(二)原稿纸页数的分配写好毕业论文的提要之后,要根据论文的内容考虑篇幅的长短,文章的各个部分,大体上要写多少字。如计划写20页原稿纸(每页300字)的论文,考虑序论用1页,本论用17页,结论用1—2页。本论部分再进行分配,如本论共有四项,可以第一项3—4页,第二项用4—5页,第三项3—4页,第四项6—7页。有这样的分配,便于资料的配备和安排,写作能更有计划。毕业论文的长短一般规定为5000—6000字,因为过短,问题很难讲透,而作为毕业论文也不宜过长,这是一般大专、本科学生的理论基础、实践经验所决定的。(三)编写提纲论文提纲可分为简单提纲和详细提纲两种。简单提纲是高度概括的,只提示论文的要点,如何展开则不涉及。这种提纲虽然简单,但由于它是经过深思熟虑构成的,写作时能顺利进行。没有这种准备,边想边写很难顺利地写下去。编写要点编写毕业论文提纲有两种方法:一、标题式写法。即用简要的文字写成标题,把这部分的内容概括出来。这种写法简明扼要,一目了然,但只有作者自己明白。毕业论文提纲一般不能采用这种方法编写。二、句子式写法。即以一个能表达完整意思的句子形式把该部分内容概括出来。这种写法具体而明确,别人看了也能明了,但费时费力。毕业论文的提纲编写要交与指导教师阅读,所以,要求采用这种编写方法。详细提纲举例详细提纲,是把论文的主要论点和展开部分较为详细地列出来。如果在写作之前准备了详细提纲,那么,执笔时就能更顺利。下面仍以《关于培育和完善建筑劳动力市场的思考》为例,介绍详细提纲的写法:上面所说的简单提纲和详细提纲都是论文的骨架和要点,选择哪一种,要根据作者的需要。如果考虑周到,调查详细,用简单提纲问题不是很大;但如果考虑粗疏,调查不周,则必须用详细提纲,否则,很难写出合格的毕业论文。总之,在动手撰写毕业论文之前拟好提纲,写起来就会方便得多。

函数极限的求法的论文答辩稿

极限的计算方法总结如下:

1、抽象数列求极限这类题一般以选择题的形式出现,因此可以通过举反例来排除。此外,也可以按照定义、基本性质及运算法则直接验证。

2、具体的求极限,可以用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程,从而得到数列的极限值。

3、如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解。

4、若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值。

5、若数列每一项都可以提出一个因子,剩余的项可用一个通项表示,则可以考虑用定积分定义求解数列极限。

6、若数列每一项都可以提出一个因子,剩余的项不能用一个通项表示,但是其余项是按递增或递减排列的,则可以考虑用夹逼定理求解。

7、求n项数列的积的极限,一般先取对数化为项和的形式,然后利用求解项和数列极限的方法进行计算。

极限:

极限是微积分和数学分析的其他分支最基本的概念之一,连续和导数的概念均由其定义。它可以用来描述一个序列的指标愈来愈大时,序列中元素的性质变化的趋势,也可以描述函数的自变量接近某一个值的时候,相对应的函数值变化的趋势。

对于被考察的未知量,先设法正确地构思一个与它的变化有关的另外一个变量,确认此变量通过无限变化过程的影响趋势性结果就是非常精密的约等于所求的未知量;用极限原理就可以计算得到被考察的未知量的结果。

极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。如果要问:“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科,并且计算结果误差小到难于想像,因此可以忽略不计。

根据heine定理,函数极限数列极限是可以转化的:f(x)一>a(x一>xo)的充要条件为对任何以xo为极限的数列xn!xn不等于xo,都有f(xn)一>a(n一>无穷)

极限理论是数学分析课程的理论依据,就因为引入极限思想,微积分才有了理论根基,从而可以解决很多初等数学不能解决的实际问题.极限理论贯穿于数学分析课程的始终.因此,教学中让学生深刻理解极限理论对学好整门课程起到至关重要的作用.作者就自己多年教授数学分析课程的经验,谈谈数列极限与函数极限的联系与本质区别.1.关于数列极限1.1数列初等数学中对数列这样定义:按照一定顺序排列的一列数称为数列.数学分教材[1]关于数列的定义:若函数f的定义域是全体正整数集N,则称f:N→R或f(n),n∈N为数列.正因为正整数集的元素可按从小到大的顺序排列,所以数列f(n)也可写作a,a,…a…,或简单地记作{a},其中a是该数列的通项.看得出来,数列就是一正整数集为定义域的函数,即所有数列的定义域都是正整数集.1.2数列的极限的定义定义1设{a}为数列,a为定数.若对任给的正数?藓,总存在正整数N,使得当n>N时,有|a-a|<?藓,则称数列{a}收敛于a,定数a为数列{a}的极限,并记作a=a.2.关于函数极限2.1x→∞时函数极限定义2设f为定义[a,+∞)在上的函数,A为定数,若对任给的正数?藓,存在正数M(≥a),使得当x>M时有|f(x)-A|<?藓,则称函数当x→+∞时以A为极限,记作f(x)=A.现设f为定义在U(-∞)或U(∞)上的函数,当x→-∞或x→∞时,若函数值无限地接近某定数A,则称f当x→-∞或x→∞时以A为极限,f(x)=A或f(x)=A.2.2x→x时函数极限定义3(函数极限的?藓-δ定义)设函数f在点x的某个空心邻域U(x;δ′)内有定义,A为定数,若对任给的正数ε,存在正数δ(<δ′),使得当0<|x-x|<δ时有|f(x)-A|<0ε,则称函数f当x→x时以A为极限,记作f(x)=A.类似可定义f(x)=A及f(x)=A.3.数列极限与函数极限的异同及根本原因从以上定义可以看出,数列极限与函数极限有相同点也有不同点,研究二者的方法大同小异,相同点是数列极限与函数极限中当x→+∞时的类型完全相似,因此可以用相同的方法研究.二者的不同点在于,数列极限只有一种类型,就是n→∞时的极限;而函数极限细分有六种类型x→+∞;x→-∞;x→∞;x→x;x→x;x→x的极限,分类的标准是根据的趋向的不同来分类.二者的相同点源自二者都是函数,数列可以认为是特殊情况的函数,任何一个不同的数列都以正整数集为定义域;而通常意义下的函数在数学分析课程中是定义在实数范围的,其定义域可以是实数集也可以是实数集的某个子集.正因为将二者同看成函数的情况下,由于二者的定义域范围不同,导致二者极限类型的不同.数列的定义域是正整数集,那自变量的取值为1、2、3……,自变量的最小取1,因此不可能趋向于-∞,又因为数列各项必须取整数,所以它不可能趋近于某个定数,自变量n只可能有一种趋向于+∞;而通常意义下的函数是在实数范围内的讨论,因此,自变量x既可以趋近于+∞,又可以趋近于-∞;如果自变量x同时趋近于+∞和-∞时函数极限存在,则称x→∞时函数极限存在.同理,因为实数集的稠密性,自变量x会趋近于某个定数x,根据自变量x趋近于x的方向不同又可以分为x点处的左极限和右极限,于是某定点处有三种类型x→x;x→x;x→x函数极限.综上,数列是特殊的函数,正因为数列作为函数的特殊性,使数列极限相对简单并且具有相对理想的性质,收敛数列的所有性质都具有整体性;而收敛函数的所有性质都只能满足局部性质.导致二者性质差别的真正原因也在于二者作为函数定义域的范围不同.笔者认为,还要真正学透极限,一定要从本质上研究导致他们不同的原因,相同的理论完全可以通过类比的方式学习,而学习的重点应该放在二者的不同上,弄懂有什么不同,为什么不同,只有懂得了“为什么”,才能真正学懂相应知识.

相关百科

热门百科

首页
发表服务