首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

青霉素的过敏毕业论文

发布时间:

青霉素的过敏毕业论文

青霉素 (Benzylpenicillin / Penicillin)【简介】 青霉素是指分子中含有青霉烷,能破坏细菌的细胞壁并在细菌细胞的繁殖期起杀菌作用的一类抗生素。 青霉素又被称为青霉素G、peillin G、 盘尼西林、配尼西林、青霉素钠、苄青霉素钠、青霉素钾、苄青霉素钾。 青霉素是抗菌素的一种,是指从青霉菌培养液中提制的分子中含有青霉烷、能破坏细菌的细胞壁并在细菌细胞的繁殖期起杀菌作用的一类抗生素,是第一种能够治疗人类疾病的抗生素。青霉素类抗生素是β-内酰胺类中一大类抗生素的总称。但它不能耐受耐药菌株(如耐药金葡)所产生的酶,易被其破坏,且其抗菌谱较窄,主要对革兰氏阳性菌有效。青霉素G有钾盐、钠盐之分,钾盐不仅不能直接静注,静脉滴注时,也要仔细计算钾离子量,以免注入人体形成高血钾而抑制心脏功能,造成死亡。 青霉素类抗生素的毒性很小,由于β-内酰胺类作用于细菌的细胞壁,而人类只有细胞膜无细胞壁,故对人类的毒性较小,除能引起严重的过敏反应外,在一般用量下,其毒性不甚明显.是化疗指数最大的抗生素。但其青霉素类抗生素常见的过敏反应在各种药物中居首位,发生率最高可达5%~10% ,为皮肤反应 ,表现皮疹、血管性水肿,最严重者为过敏性休克,多在注射后数分钟内发生,症状为呼吸困难、发绀、血压下降、昏迷、肢体强直,最后惊厥,抢救不及时可造成死亡。各种给药途径或应用各种制剂都能引起过敏性休克,但以注射用药的发生率最高。过敏反应的发生与药物剂量大小无关。对本品高度过敏者,虽极微量亦能引起休克。注入体内可致癫痫样发作。大剂量长时间注射对中枢神经系统有毒性(如引起抽搐、昏迷等),停药或降低剂量可以恢复。 使用本品必须先做皮内试验。青霉素过敏试验包括皮肤试验方法(简称青霉素皮试)及体外试验方法,其中以皮内注射较准确。皮试本身也有一定的危险性,约有25%的过敏性休克死亡的病人死于皮试。所以皮试或注射给药时都应作好充分的抢救准备。在换用不同批号青霉素时,也需重作皮试。注射液、皮试液均不稳定,以新鲜配制为佳。而且对于自肾排泄,肾功能不良者,剂量应适当调整。此外,局部应用致敏机会多,且细菌易产生抗药性,故不提倡。【英文简述】 Penicillin (sometimes abbreviated PCN) refers to a group of beta-lactam antibiotics used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms. The name “penicillin” can also be used in reference to a specific member of the penicillin group Penam Skeleton, which has the molecular formula R-C9H11N2O4S, where R is a variable side chain. 【分类】 按其特点可分为 : 青霉素G类:如青霉素G钾、青霉素G钠、长效西林等。 耐酶青霉素:如苯唑青霉素(新青Ⅱ号)、氯唑青霉素等。 广谱青霉素:如氨苄青霉素、羟氨苄青霉素等。 抗绿脓杆菌的广谱青霉素:如羧苄青霉素、氧哌嗪青霉素、呋苄青霉素等。 氮咪青霉素:如美西林及其酯匹美西林等,其特点为较耐酶,对某些阴性杆菌(如大肠、克雷伯氏和沙门氏菌)有效,但对绿脓杆菌效差。 【特点】 青霉素类抗生素是β-内酰胺类中一大类抗生素的总称,由于β-内酰胺类作用于细菌的细胞壁,而人类只有细胞膜无细胞壁,故对人类的毒性较小,除能引起严重的过敏反应外,在一般用量下,其毒性不甚明显,但它不能耐受耐药菌株(如耐药金葡)所产生的酶,易被其破坏,且其抗菌谱较窄,主要对革兰氏阳性菌有效。青霉素G有钾盐、钠盐之分,钾盐不仅不能直接静注,静脉滴注时,也要仔细计算钾离子量,以免注入人体形成高血钾而抑制心脏功能,造成死亡。 青霉素类抗生素的毒性很小,是化疗指数最大的抗生素。但其青霉素类抗生素常见的过敏反应在各种药物中居首位,发生率最高可达5%~10% ,为皮肤反应 ,表现皮疹、血管性水肿,最严重者为过敏性休克,多在注射后数分钟内发生,症状为呼吸困难、发绀、血压下降、昏迷、肢体强直,最后惊厥,抢救不及时可造成死亡。各种给药途径或应用各种制剂都能引起过敏性休克,但以注射用药的发生率最高。过敏反应的发生与药物剂量大小无关。对本品高度过敏者,虽极微量亦能引起休克。注入体内可致癫痫样发作。大剂量长时间注射对中枢神经系统有毒性(如引起抽搐、昏迷等),停药或降低剂量可以恢复。 【历史发展】 亚历山大·弗莱明由于一次幸运的过失而发现了青霉素。有一次他外出度假时,把实验室里在培养皿中正生长着细菌这件事给忘了。3周后当他回实验室时,注意到在一个培养皿中长了一个霉菌斑。并且霉菌斑周围的细菌都死了。 霉菌渗出了什么强有力的物质?弗莱明称为青霉素,并发现了它可以杀死许多致命性细菌。然而,因为青霉素在试管内和血清混合后很快失活,弗莱明认为它不会在人和动物身上发生作用。 10多年后,弗洛里和钱恩在1940年用青霉素重新做了实验。他们给8只小鼠注射了致死剂量的链球菌,然后给其中的4只用青霉素治疗。几个小时内,只有那4只用青霉素治疗过的小鼠还健康活着。“这真像一个奇迹!”弗洛里说道。 到了1943年,制药公司已经发现了批量生产青霉素的方法。英国和美国当时正在和纳粹德国交战。这种新的药物对控制伤口感染非常有效。到了1944年,药物的供应已经足够治疗第二次世界大战期间所有参战的盟军士兵。 青霉素是一种高效、低毒、临床应用广泛的重要抗生素。它的研制成功大大增强了人类抵抗细菌性感染的能力,带动了抗生素家族的诞生。 20世纪40年代以前,人类一直未能掌握一种能高效治疗细菌性感染且副作用小的药物。当时若某人患了肺结核,那么就意味着此人不久就会离开人世。为了改变这种局面,科研人员进行了长期探索,然而在这方面所取得的突破性进展却源自一个意外发现。 在1928年夏季的一天,英国微生物学家弗莱明发现,一个与空气意外接触过的金黄色葡萄球菌培养皿中长出了一团青绿色霉菌。在用显微镜观察这只培养皿时弗莱明发现,霉菌周围的葡萄球菌菌落已被溶解。这意味着霉菌的某种分泌物能抑制葡萄球菌。此后的鉴定表明,上述霉菌为点青霉菌,因此弗莱明将其分泌的抑菌物质称为青霉素。然而遗憾的是弗莱明一直未能找到提取高纯度青霉素的方法,于是他将点青霉菌菌株一代代地培养,并于1939年将菌种提供给准备系统研究青霉素的英国病理学家弗洛里和生物化学家钱恩。 通过一段时间的紧张实验,弗洛里、钱恩终于用冷冻干燥法提取了青霉素晶体。之后,弗洛里在一种甜瓜上发现了可供大量提取青霉素的霉菌,并用玉米粉调制出了相应的培养液。1941年开始的临床实验证实了青霉素对链球菌、白喉杆菌等多种细菌感染的疗效。青霉素之所以能既杀死病菌,又不损害人体细胞,原因在于青霉素所含的青霉烷能使病菌细胞壁的合成发生障碍,导致病菌溶解死亡,而人和动物的细胞则没有细胞壁。但是青霉素会使个别人发生过敏反应,所以在应用前必须做皮试。在这些研究成果的推动下,美国制药企业于1942年开始对青霉素进行大批量生产。这些青霉素在世界反法西斯战争中挽救了大量美英盟军的伤病员。1945年,弗莱明、弗洛里和钱恩因“发现青霉素及其临床效用”而共同荣获了诺贝尔生理学或医学奖。 青霉素的出现开创了用抗生素治疗疾病的新纪元。通过数十年的完善,青霉素针剂和口服青霉素已能分别治疗肺炎、肺结核、脑膜炎、心内膜炎、白喉、炭疽等病。继青霉素之后,链霉素、氯霉素、土霉素、四环素等抗生素不断产生,增强了人类治疗传染性疾病的能力。但与此同时,部分病菌的抗药性也在逐渐增强。为了解决这一问题,科研人员目前正在开发药效更强的抗生素,探索如何阻止病菌获得抵抗基因,并以植物为原料开发抗菌类药物。【药理学】 内服易被胃酸和消化酶破坏。肌注或皮下注射后吸收较快,15~30min达血药峰浓度。青霉素在体内半衰期较短,主要以原形从尿中排出。 氯霉素是具广谱抗菌作用,对革兰阴性菌的作用较革兰阳性菌强,对伤寒杆菌、流感杆菌和百日咳杆菌的作用比其他抗生素强,对立克次体感染(如斑疹伤寒)以及病毒感染(如沙眼)均有较好作用。对布氏杆菌、大肠杆菌、产气杆菌、肺炎杆菌、痢疾杆菌、霍乱弧菌、脑膜炎双球菌、淋球菌等也有较强抗菌作用。本品属抑菌剂,其作用机理主要抑制细菌蛋白质的合成,系作用于核糖核蛋白体的50S亚基上,抑制肽基转移酶的作用,阻止了肽链的增长。临床上主要用于伤寒、副伤寒和其他沙门氏菌感染,疗效好,目前仍是治疗这些疾病的首选药物。【作用】 青霉素对溶血性链球菌等链球菌属,肺炎链球菌和不产青霉素酶的葡萄球菌具有良好抗菌作用。对肠球菌有中等度抗菌作用,淋病奈瑟菌、脑膜炎奈瑟菌、白喉棒状杆菌、炭疽芽孢杆菌、牛型放线菌、念珠状链杆菌、李斯特菌、钩端螺旋体和梅毒螺旋体对本品敏感。本品对流感嗜血杆菌和百日咳鲍特氏菌亦具一定抗菌活性,其他革兰阴性需氧或兼性厌氧菌对本品敏感性差.本品对梭状芽孢杆菌属、消化链球菌厌氧菌以及产黑色素拟杆菌等具良好抗菌作用,对脆弱拟杆菌的抗菌作用差。青霉素通过抑制细菌细胞壁四肽则链和五肽交连桥的结合而阻碍细胞壁合成而发挥杀菌作用。对革兰阳性菌有效,由于革兰阴性菌缺乏五肽交连桥而青霉素对其作用不大。 其中青霉素为以下感染的首选药物: 1.溶血性链球菌感染,如咽炎、扁桃体炎、猩红热、丹毒、蜂窝织炎和产褥热等 2.肺炎链球菌感染如肺炎、中耳炎、脑膜炎和菌血症等 3.不产青霉素酶葡萄球菌感染 4.炭疽 5.破伤风、气性坏疽等梭状芽孢杆菌感染 6.梅毒(包括先天性梅毒) 7.钩端螺旋体病 8.回归热 9.白喉 10.青霉素与氨基糖苷类药物联合用于治疗草绿色链球菌心内膜炎 青霉素亦可用于治疗: 1.流行性脑脊髓膜炎 2.放线菌病 3.淋病 4.奋森咽峡炎 5.莱姆病 6.多杀巴斯德菌感染 7.鼠咬热 8.李斯特菌感染 9.除脆弱拟杆菌以外的许多厌氧菌感染 风湿性心脏病或先天性心脏病患者进行口腔、牙科、胃肠道或泌尿生殖道手术和操作前,可用青霉素预防感染性心内膜炎发生【生产方法】 天然青霉素与半合成青霉素生产方法完全不同。 天然青霉素 青霉素G生产可分为菌种发酵和提取精制两个步骤。①菌种发酵:将产黄青霉菌接种到固体培养基上,在25℃下培养7~10天,即可得青霉菌孢子培养物。用无菌水将孢子制成悬浮液接种到种子罐内已灭菌的培养基中,通入无菌空;气、搅拌,在27℃下培养24~28h,然后将种子培养液接种到发酵罐已灭菌的含有苯乙酸前体的培养基中,通入无菌空气,搅拌,在27℃下培养7天。在发酵过程中需补入苯乙酸前体及适量的培养基。②提取精制:将青霉素发酵液冷却,过滤。滤液在pH2~2.5的条件下,于萃取机内用醋酸丁酯进行多级逆流萃取,得到丁酯萃取液,转入pH7.0~7.2的缓冲液中,然后再转入丁酯中,将此丁酯萃取液经活性炭脱色,加入成盐剂,经共沸蒸馏即可得青霉素G钾盐。青霉素G钠盐是将青霉素G钾盐通过离子交换树脂(钠型)而制得。 半合成青霉素 以6APA为中间体与多种化学合成有机酸进行酰化反应,可制得各种类型的半合成青霉素。 6APA是利用微生物产生的青霉素酰化酶裂解青霉素G或V而得到。酶反应一般在40~50℃、pH8~10的条件下进行;近年来,酶固相化技术已应用于6APA生产,简化了裂解工艺过程。6APA也可从青霉素G用化学法来裂解制得,但成本较高。侧链的引入系将相应的有机酸先用氯化剂制成酰氯,然后根据酰氯的稳定性在水或有机溶剂中,以无机或有机碱为缩合剂,与6APA进行酰化反应。缩合反应也可以在裂解液中直接进行而不需分离出6APA。【剂型用法和用量】 片剂:每片0.25克。胶囊剂:每粒0.25克。注射剂:每支2毫升,含药0.25克。滴眼剂:8毫克:0.02克。口服,每天成人1~2克;儿童每日按千克体重服用50~100毫克,分2~4次。肌注,成人每次0.5~1克,每天2次;儿童每日按千克体重服用25~50毫克,分2次。静脉滴注,剂量同肌注,因注射剂系以丙二醇为溶剂,用时以等渗葡萄糖注射液或生理盐水稀释至2.5毫克:毫升供用,即2毫克(0.25克)以100毫升输液稀释,并应以干燥空针抽取,以免析出结晶,稀释完后应仔细检查无结晶析出,方可使用。【不良反应】 1.主要毒性反应是抑制骨髓造血机能,引起粒细胞及血小板减少症,用药期间如发现轻度白细胞或血小板减少,应立即停药,一般可恢复。氯霉素所致的再生障碍性贫血虽少见,但难逆转,常可致死,多发生于儿童长期反复用氯霉素者,偶有用量很少而发病者。 2.过敏反应较少见,但也可引起皮疹,药物热。少数可引起黄疸,原有肝脏疾病者甚至可引起急性肝坏死。 3.可引起精神症状如幻觉、谵妄,大多发生于用药后3~5日,停药后两日内可消失。 4.口服后可发生胃肠道反应,如恶心、呕吐、腹泻、食欲不振等。【副作用】1 青霉素类的毒性很低,但较易发生变态反应,发生率约为5%�10%。多见的为皮疹、哮喘、药物热、严重的可致过敏性休克而引起死亡。 2 大剂量应用青霉素抗感染时,可出现神经精神症状,如反射亢进、知觉障碍、抽搐、昏睡等,停药或减少剂量可恢复。 3 使用青霉素前必须作皮肤过敏试验。如果发生过敏性休克,应立即皮下或肌内注射0.1%肾上腺素0.5ml~1ml,同时给氧并使用抗组胺药物及肾上腺皮质激素等。 4 肌注钾盐时局部疼痛较明显,用苯甲醇溶液作为稀释剂溶解,则可消除疼痛。 【细菌对青霉素类产生耐药性】细菌对青霉素类产生耐药性主要有三种机制:1.细菌产生β内酰胺酶,使青霉素类水解灭活;2.细菌体内青霉素作用靶位——青霉素结合蛋白发生改变;3.细胞壁对青霉素类的渗透性减低。其中以第一种机制最为常见,也最重要。青霉素类抗生素水溶性好,血消除半衰期大多不超过2小时,主要经肾排出,多数品种可经血液透析清除。按我国卫生部规定,使用青霉素类抗生素前均需做青霉素皮肤试验,阳性反应者禁用。【注意事项】 1.口服或注射给药时忌与碱性药物配伍,以免分解失效。 2.本品不宜与盐酸四环素、卡那霉素、多粘菌素E、磺胺嘧啶钠、三磷酸腺苷、辅酶A等混合静滴,以免发生沉淀或降效。 3.氯霉素与青霉素一般不要联用,因氯霉素为抑菌剂,而青霉素为繁殖期杀菌剂,联用可影响青霉素的抗菌活性而降效。但这一问题尚有争论,意见不一,因两者联用对革兰阳性菌、阴性菌混合感染及颅内感染临床效果好。解决的办法,如需联用,宜先用青霉素2~3小时后再用氯霉素。 4.由于本品可抑制某些肝脏酶的活性,因此可干扰甲苯磺丁脲、苯妥英钠和双香豆素在人体内的生物转化,可增强甲苯磺西脲、苯妥英钠的作用,对双香豆素和华法林的抗凝作用均可增强。 5.婴儿、肝、肾功能减退者慎用,妊娠末期产妇慎用,哺乳期妇女忌用。应用青霉素前除做皮试外,还要注意以下几点: 1、要到有抢救设备的正规医疗单位注射青霉素,万一发生过敏反应,可以得到及时有效的抢救治疗。在注射过程中任何时候出现头晕心慌、出汗、呼吸困难等不适,都要立即告诉医生护士。 2、注射完青霉素,至少在医院观察20分钟,无不适感才可离开。 3、不要在极度饥饿时应用青霉素,以防空腹时机体对药物耐受性降低,诱发晕针等不良反应。 4、两次注射时间不要相隔太近,以4—6小时为好。静脉点滴青霉素时,开始速度不要太快,每分钟以不超过40滴为宜,观察10—20分钟无不良反应再调整输液速度。 5、如果当天有注射青霉素史,在家中出现头晕心慌、出汗、呼吸困难等不适,应及时送医院诊治。青霉素配伍应用中的相互作用: 近年来,临床中出现滥用药物的问题,造成一些不良反应,尤其是青霉素与其他药物的配伍应用,所产生的相互作用和不良反应是不可忽视的。 1 青霉素不可与同类抗生素联用 由于它们的抗菌谱和抗菌机制大部分相似,联用效果并不相加。相反,合并用药加重肾损害,还可以引起呼吸困难或呼吸停止。它们之间有交叉抗药性,不主张两种β-内酰胺类抗生素联合应用。 2 青霉素不可与磺胺和四环素联合用药 青霉素属繁殖期“杀菌剂”,阻碍细菌细胞壁的合成,四环素属“抑菌剂”,影响菌体蛋白质的合成,二者联合作用属拮抗作用,一般情况下不应联合用药。临床资料表明单用青霉素抗菌效力为90%,单用磺胺类药效力为81%,两者联合用药抗菌效力为75%,若非特殊情况不可联合使用。 3 青霉素不可与氨基苷类联合用药 两者混合同于输液器给病人输液,因青霉素的β-内酰胺可使庆大霉素产生灭活作用,其机制为两者之间发生化学相互作用,故严禁混合应用,应采用青霉素静脉滴注,庆大霉素肌肉注射。 综上所述,青霉素联用不当,由于药物的相互作用,而导致药物不良反应是不可低估的。青霉素是治疗各种感染性疾病的最常用抗生素,严格掌握用药的适应证,合理联用,措施得力,减少不必要的不良反应。【青霉素家族】 青霉素用于临床是40年代初,人们对青霉素进行大量研究后又发现一些青霉素,当人们又对青霉素进行化学改造,得到了一些有效的半合成青霉素,70年代又从微生物代谢物中发现了一些母核与青霉素相似也含有β-内酰胺环,而不具有四氢噻唑环结构的青霉素类,可分为三代:第一代青霉素指天然青霉素,如青霉素G(苄青霉素);第二代青霉素是指以青霉素母核-6-氨基青霉烷酸(6-APA),改变侧链而得到半合成青霉素,如甲氧苯青霉素、羧苄青霉素、氨苄青霉素;第三代青霉素是母核结构带有与青霉素相同的β-内酰胺环,但不具有四氢噻唑环,如硫霉素、奴卡霉素。【青霉素浓缩法】 利用青霉素特异性地杀死野生型细胞、保留营养缺陷型细胞的方法。青霉素能抑制细菌细胞壁的合成,所以只能杀死生长繁殖中的细菌,而不能杀死停止分裂的细菌。在只能使野生型生长而不能使突变型生长的选择性液体培养基中,野生型被青霉素杀死,而突变型则不被杀死,从而淘汰野生型,使突变型得以浓缩。可适用于细菌和放线菌,是营养缺陷型突变体筛选的常用方法之一。 【岛青霉素】 稻谷在收获后如未及时脱粒干燥就堆放很容易引起发霉。发霉谷物脱粒后即形成"黄变米"或"沤黄米",这主要是由于岛青霉(Penicillium.islandicum)污染所致。黄变米在我国南方、日本和其他热带和亚热带地区比较普遍。小鼠每天口服200g受岛青霉污染的黄变米,大约一周可死于肝肥大;如果每天饲喂0.05g黄变米,持续两年可诱发肝癌。流行病学调查发现,肝癌发病率和居民过多食用霉变的大米有关。吃黄变米的人会引起中毒(肝坏死和肝昏迷)和肝硬化。岛青霉除产生岛青霉素(Silanditoxin)外,还可产生环氯素(Cyclochlorotin),黄天精(Luteoskyrin)和红天精(Erythroskyrin)等多种霉菌毒素。 岛青霉素和黄天精均有较强的致癌活性,其中黄天精的结构和黄曲霉素相似,毒性和致癌活性也与黄曲霉素相当。小鼠日服7mg/kg体重的黄天精数周可导致其肝坏死,长期低剂量摄入可导致肝癌。环氯素为含氯环结构的肽类,对小鼠经口LD50为6.55mg/kg体重,有很强的急性毒性。环氯素摄入后短时间内可引起小鼠肝的坏死性病变,小剂量长时间摄入可引起癌变。

浅析抗生素的不良反应 摘要:帮助临床医生了解抗生素的药物不良反应,促进临床合理使用抗生素药物,保证患者用药安全、有效、合理。方法 复习文献资料,从过敏反应、毒性反应、特异性反应、二重感染、联合用药引起或加重不良反应等几个方面,综述抗生素的药物不良反应及临床危害。结果 抗生素的药物不良反应可以预防和控制,应重视患者用药过程中的临床监护。结论 抗生素的药物不良反应应引起临床医生的高度重视。 关键词:抗生素;不良反应 药物的不良反应是临床用药中的常见现象。它不仅指药物的副作用,还包括药物的毒性、特异性反应、过敏反应、继发性反应等〔1〕。抗菌药物是临床上最常用的一类用药,包括抗生素类、抗真菌类、抗结核类及具有抗菌作用的中药制剂类。其中以抗生素类在临床使用的品种和数量最多。目前临床常用抗生素品种有100多种。抗生素挽救了无数生命,但其在临床应用也引发了一些不良反应〔2〕。抗生素药物不良反应的临床危害后果是严重的。在用药后数秒钟至数小时乃至停药后相当长的一段时间内均可发生不良反应。常见的有过敏性休克、固定型药疹、荨麻疹、血管神经性水肿等过敏性反应、胃肠道反应、再生障碍性贫血等,严重的甚至会引起患者死亡〔3〕。因此,加强临床用药过程中的监督和合理使用抗生素对减少临床不良反应的发生具有特别重要的意义〔4〕。 1 过敏反应 抗生素引起的过敏反应最为常见〔5〕,主要原因是药品中可能存在的杂质以及氧化、分解、聚合、降解产物在体内的作用,或患者自身的个体差异。发生过敏反应的患者多有变态反应性疾病,少数为特异高敏体质。 1.1 过敏性休克 此类反应属Ⅰ型变态反应,所有的给药途径均可引起。如:青霉素类、氨基糖苷类、头孢菌素类等可引起此类反应,头孢菌素类与青霉素类之间还可发生交叉过敏反应。因此,在使用此类药物前一定要先做皮试。 1.2 溶血性贫血 属于Ⅱ型变态反应,其表现为各种血细胞减少。如:头孢噻吩和氯霉素可引起血小板减少,青霉素类和头孢菌素类可引起溶血性贫血。 1.3 血清病、药物热 属于Ⅲ型变态反应,症状为给药第7~14天出现荨麻疹、血管神经性水肿、关节痛伴关节周围水肿及发热、胃肠道黏膜溃疡和肠局部坏死。如:青霉素类、头孢菌素类、林可霉素和链霉素均可引起以上反应。头孢菌素类、氯霉素等抗菌药物还可引起药物热。 1.4 过敏反应 这是一类属于Ⅳ型变态反应的过敏反应。如:经常接触链霉素或青霉素,常在3~12个月内发生。 1.5 未分型的过敏反应 有皮疹(常见为荨麻疹)〔6〕、血管神经性水肿、日光性皮炎、红皮病、固定性红斑、多形性渗出性红斑、重症大疱型红斑、中毒性表皮坏死松解症,多见于青霉素类、四环素类、链霉素、林可霉素等;内脏病变,包括急慢性间质性肺炎、支气管哮喘、过敏性肝炎、弥漫性过敏性肾炎,常见于青霉素类、链霉素等。复方新诺明还可引起严重的剥脱性皮炎。 2 毒性反应 抗生素药物的毒性反应是药物对人体各器官或组织的直接损害,造成机体生理及生化机能的病理变化,通常与给药剂量及持续时间相关。 2.1 对神经系统的毒性 如:青霉素G、氨苄西林等可引起中枢神经系统毒性反应,严重者可出现癫痫样发作。青霉素和四环素可引起精神障碍。氨基糖苷类、万古霉素、多粘菌素类和四环素可引起耳和前庭神经的毒性。链霉素、多粘霉素类、氯霉素、利福平、红霉素可造成眼部的调节适应功能障碍,发生视神经炎甚至视神经萎缩。 新的大环内酯类药物克拉霉素可引起精神系统不良反应。另有报道,大环内酯类药物克拉霉素和阿奇霉素可能减少突触前乙酰胆碱释放或加强了突触后受体抑制作用,可诱导肌无力危象。 2.2 肾脏毒性 许多抗生素均可引起肾脏的损害,如:氨基糖苷类、多粘菌素类、万古霉素。氨基糖苷类的最主要不良反应是耳肾毒性。在肾功能不全患者中,第3代头孢菌素的半衰期均有不同程度延长,应引起临床医生用药时的高度重视。 2.3 肝脏毒性〔7〕 如:两性霉素B和林可霉素可引起中毒性肝炎,大剂量四环素可引起浸润性重症肝炎,大环内酯类和苯唑青霉素引起胆汁淤滞性肝炎,头孢菌素中的头孢噻吩和头孢噻啶及青霉素中的苯唑西林、羧苄西林、氨苄西林等偶可引起转氨酶升高,链霉素、四环素和两性霉素B可引起肝细胞型黄疸。 2.4 对血液系统毒性 如:氯霉素可引起再生障碍性贫血和中毒性粒细胞缺乏症,大剂量使用青霉素时偶可致凝血机制异常,第3代头孢菌素类如头孢哌酮、羟羧氧酰胺菌素等由于影响肠道菌群正常合成维生素K可引起出血反应。 2.5 免疫系统的毒性 如:两性霉素B、头孢噻吩、氯霉素、克林霉素和四环素〔6〕。对机体免疫系统和机制具有毒性作用。 2.6 胃肠道毒性 胃肠道的不良反应较常见。可引起胃肠道反应的药物如:口服四环素类、青霉素类等,其中大环内酯类、氯霉素类等药物即使注射给药,也可引起胃肠道反应。 2.7 心脏毒性 大剂量青霉素、氯霉素和链霉素可引起心脏毒性作用,两性霉素B对心肌有损害作用,林可霉素偶见致心律失常。 3 特异性反应 特异性反应是少数患者使用药物后发生与药物作用完全不同的反应。其反应与患者的遗传性酶系统的缺乏有关。氯霉素和两性霉素B进入体内后,可经红细胞膜进入红细胞,使血红蛋白转变为变性血红蛋白,对于该酶系统正常者,使用上述药物时无影响;但对于具有遗传性变性血红蛋白血症者,机体对上述药物的敏感性增强,即使使用小剂量药物,也可导致变性血红蛋白症。 4 二重感染 在正常情况下,人体表面和腔道黏膜表面有许多细菌及真菌寄生。由于它们的存在,使机体微生态系统在相互制约下保持平衡状态。当大剂量或长期使用抗菌药物后,正常寄生敏感菌被杀死,不敏感菌和耐药菌增殖成为优势菌,外来菌也可乘机侵入,当这类菌为致病菌时,即可引起二重感染。常见二重感染的临床症状有消化道感染、肠炎、肺炎、尿路感染和败血症。

抗生素发展简介抗生素分为天然品和人工合成品,前者由微生物产生,后者是对天然抗生素进行结构改造获得的部分合成产品。 1981年我国第四次全国抗生素学术会议指出,近些年来在抗生素的作用对象方面,除了抗菌以外,在抗肿瘤,抗病毒,抗原虫、寄生虫和昆虫等领域也有较快发展。有些抗生素具有抑制某些特异酶的功能,另外一些抗生素则具有其他的生物活性或生理活性的作用。鉴于“抗菌素”早已越出了抗菌范围,继续使用抗菌素这一名词已不能适应专业的进一步发展,也不符合实际情况了。因此,会议决定将抗菌素正式更名为抗生素。 抗生素分类根据抗生素的化学结构和临床用途,可将抗生素分为β—内酰胺类、氨基糖苷类、大环内酯类、林可霉素类、四环素类、氯霉素类以及其他主要抗细菌的抗生素、抗真菌抗生素、抗肿瘤抗生素、具有免疫抑制作用的抗生素十大类。 编辑本段药品发现抗生很早以前,人们就发现某些微生物对另外一些微生物的生长繁 抗生素分子式殖有抑制作用,把这种现象称为抗生。随着科学的发展,人们终于揭示出抗生现象的本质,从某些微生物体内找到了具有抗生作用的物质,并把这种物质称为抗生素,如青霉菌产生的青霉素,灰色链丝菌产生的链霉素都有明显的抗菌作用。所以人们把由某些微生物在生活过程中产生的,对某些其他病原微生物具有抑制或杀灭作用的一类化学物质称为抗生素。 抗菌由于最初发现的一些抗生素主要对细菌有杀灭作用,所以一度将抗生素称为抗菌素。但是随着抗生素的不断发展,陆续出现了抗病毒、抗衣原体、抗支原体,甚至抗肿瘤的抗生素也纷纷发现并用于临床,显然称为抗菌素就不妥,还是称为抗生素更符合实际了。抗肿瘤(antineoplastic) 抗生素的出现,说明微生物产生的化学物质除了原先所说的抑制或杀灭某些病原微生物的作用之外,还具有抑制癌细胞的增殖或代谢的作用,因此现代抗生素的定义应当为:由某些微生物产生的化学物质,能抑制微生物和其他细胞增殖的物质叫做抗生素。 细菌“导弹”有望代替抗生素细菌之间相互拼杀所用的微小蛋白质“导弹”有望在不久的将来代替治疗疾病所用的抗生素。研究该项技术的一个美国研究所希望能够首先在治疗动物(如猪和鸡)的常见病方面取得突破。同时这个研究所也发现用这种蛋白质“导弹”能够在食品无菌包装和保存方面做出突破。由于人体血原对抗生素的反应存在一定的危险,这种物质的使用能够降低医学的危险性,且使用后没有后遗物。 编辑本段抗生素杀菌作用主要有4种机制抑制细菌细胞壁的合成抑制细胞壁的合成会导致细菌细胞破裂死亡,以这种方式作用的抗菌药物包括青霉素类和头孢菌素类,哺乳动物的细胞没有细胞壁,不受这些药物的影响。 与细胞膜相互作用一些抗菌素与细胞的细胞膜相互作用而影响膜的渗透性,这对细胞具有致命的作用。以这种方式作用的抗生素有多粘菌素和短杆菌素。 干扰蛋白质的合成干扰蛋白质的合成意味着细胞存活所必需的酶不能被合成。干扰蛋白质合成的抗生素包括福霉素(放线菌素)类、氨基糖苷类、四环素类和氯霉素。 抑制核酸的转录和复制抑制核酸的功能阻止了细胞分裂和/或所需酶的合成。以这种方式作用的抗生素包括萘啶酸和二氯基吖啶。 编辑本段药品使用、误区及不良反应使用临床应用抗生素时必须考虑以下几个基本原则: (一)严格掌握适应证凡属可用可不用的尽量不用,而且除考虑抗生素的抗菌作用的针对性外,还必须掌握药物的不良反应和体内过程与疗效的关系。 (二)发热原因不明者不宜采用抗生素除病情危重且高度怀疑为细菌感染者外,发热原因不明者不宜用抗生素,因抗生素用后常使致病微生物不易检出,且使临床表现不典型,影响临床确诊,延误治疗。 (三)病毒性或估计为病毒性感染的疾病不用抗生素抗生素对各种病毒性感染并无疗效,对麻疹、腮腺炎、伤风、流感等患者给予抗生素治疗是无害无益的。咽峡炎、上呼吸道感染者90%以上由病毒所引起,因此除能肯定为细菌感染者外,一般不采用抗生素。 (四)皮肤、粘膜局部尽量避免反应应用抗生素因用后易发生过敏反应且易导致耐药菌的产生。因此,除主要供局部用的抗生素如新霉素、杆菌肽外,其它抗生素特别是青霉素G的局部应用尽量避免。在眼粘膜及皮肤烧伤时应用抗生素要选择告辞适合的时期和合适的剂量。 (五)严格控制预防用抗生素的范围在下列情况下可采用预防治疗: 1.风湿热病人,定期采用青霉素G,以消灭咽部溶血链球菌,防止风湿热复发。 2.风湿性或先天性心脏病进行手术前后用青霉素G或其它适当的抗生素,以防止亚急性细菌性心内膜炎的发生。 3.感染灶切除时,依治病菌的敏感性而选用适当的抗生素。 4.战伤或复合外伤后,采用青霉素G或四环素族以防止气性坏疽。 5.结肠手术前采用卡那霉素,新霉素等作肠道准备。 6.严重烧伤后,在植皮前应用青霉素G消灭创面的溶血性链球菌感染。或按创面细菌和药敏结果采用适当的抗生素防止败血症的发生。 7.慢性支气管炎及支气扩张症患者,可在冬季预防性应用抗生素(限于门诊)。 8.颅脑术前1天应用抗生素,可预防感染。 (六)强调综合治疗的重要性在应用抗生素治疗感染性疾病的过程中,应充分认识到人体防御机制的重要性,不能过分依赖抗生素的功效而忽视了人体内在的因素,当人体免疫球蛋白的质量和数量不足、细胞免疫功能低下,或吞噬细胞性能与质量不足时,抗生素治疗则难以秦效。因此,在应用抗生素的同进应尽最大努力使病人全身状况得到改善;采取各种综合措施,以提高机体低抗能力,如降低病人过高的体温;注意饮食和休息;纠正水、电解质和碱平衡失调;改善微循环;补充血容量;以及处理原发性疾病和局部病灶等。 连续使用抗生素不宜超过一周 如果超量使用抗生素药物,很容易导致女性患上霉菌性阴道炎。武警总医院妇产科王黎娜主任解释说,阴道炎的产生并不完全由于个人卫生没做好,过量服用抗生素也一样可能导致阴部炎症产生。事实上,抗生素的副作用之一就是破坏体内细菌群落的平衡。 美国曾经有一项调查显示:使用一种强力抗生素超过一周,女性中会有近一半的人发生霉菌感染。其实,健康女性的阴道本来就有“自洁”的能力,阴道中存在一种乳酸杆菌,可以始终保持阴道内环境呈适度酸性,这样,习惯生长在碱性环境中的霉菌,正常情况下,在这里就不能生存。但长期使用抗生素,会使阴道中的乳酸菌受抑制,失去对霉菌的拮抗作用,扰乱阴道的自然生态平衡,改变阴道的微环境,从而使细菌病原体迅速繁殖,导致霉菌性阴道炎的发生。 目前,一些女性在药物的使用上盲目追求高档次,往往迷信进口抗生素,造成小感冒引发严重的真菌、霉菌感染。对此,王主任提示广大女性朋友,一定要避免长期、大量使用抗生素药物,尤其是广谱抗生素更应少用,如果根据病情必须使用抗生素,建议连续使用不宜超过一周。另外,一旦感染阴道炎,一定要到正规的大医院就诊,一般情况下,根据医生指导,坚持合理用药,病情很快就会好转。[1] 药品误区目前,市面上大多数妇科药品仍含有甲硝唑、克霉唑类抗生素,过多使用这类药品的直接后果就是使病菌产生耐药性,破坏阴道菌群间的制约关系,导致真菌生长旺盛,有炎症的女性会使治疗周期不断延长,不断增加药品剂量,疾病得不到有效治疗。 不良反应与用药目的无关的由药物引起的机体反应称为不良反应。其包括:副作用、毒性反应、后遗反应、过敏反应、致畸、致癌,致突变作用等。副作用属药物固有反应,正常量出现较轻微。毒性反应指药物引起的生理生化机能异常和结构的病理变化,严重程度随剂量增加或疗程延长而增加。抗生素的毒性反应临床较多见,如及时停药可缓解和恢复,但亦可造成严重后果。主要有以下几方面: ①神经系统毒性反应;氨基糖甙类损害第八对脑神经,引起耳鸣、眩晕、耳聋;大剂量青霉素G或半合成青霉素或引起神经肌肉阻滞,表现为呼吸抑制甚至呼吸骤停。氯霉素、环丝氨酸引起精神病反应等。 ②造血系统毒性反应;氯霉素可引起再障性贫血;氯霉素、氨苄青霉素、链霉素、新生霉素等有时可引起粒细胞缺乏症。庆大霉素、卡那霉素、先锋霉素Ⅳ、Ⅴ、Ⅵ可引起白细胞减少,头孢菌素类偶致红细胞或白细胞,血小板减少、嗜酸性细胞增加。 ③肝、肾毒性反应:妥布霉素偶可致转氨酶升高,多数头孢菌素类大剂量可致转氨酶、碱性磷酸脂酶Ⅰ和Ⅱ、多粘菌素类、氨基甙类及磺胺药可引起肾小管损害。 ④胃肠道反应:口服抗生素后可引起胃部不适,如恶心、呕吐、上腹饱胀及食欲减退等。四环素类中尤以金霉素、强力霉素、二甲四环素显著。大环内脂类中以红霉素类最重,麦迪霉素、螺旋霉素较轻。四环素类和利福平偶可致胃溃疡。 ⑤抗生素可致菌群失调,引起维生素B族和K缺乏;也可引起二重感染,如伪膜性肠炎、急性出血肠炎、念珠菌感染等。林可霉素和氯林可霉素引起的伪膜性肠炎最多见,其次是先锋霉素Ⅳ和Ⅴ。急性出血性肠炎主要由半合成青霉素引起,以氨苄青霉素引起的机会最多。另外,长期口服大剂量新霉素和应用卡那霉素引起肠粘膜退行性变,导致吸收不良综合症,使婴儿腹泻和长期体重不增,应预重视。少数人用抗生素后引起肛门瘙痒及肛周糜烂,停药后症状可消失。 ⑥抗生素的过敏反应一般分为过敏性休克、血清病型反应、药热、皮疹、血管神经性水肿和变态反应性心肌损害等。 ⑦抗生素后遗效应是指停药后的后遗生物效应,如链毒素引起的永久性耳聋。许多化疗药可引起"三致"作用。利福平的致畸率为4.3%,氯霉素、灰黄霉素和某些抗肿瘤抗生素有致突变和致癌作用等。

青霉素是人类历史上发现的第一种抗生素,且应用非常广泛。早在唐朝时,长安城的裁缝会把长有绿毛的糨糊涂在被剪刀划破的手指上来帮助伤口愈合,就是因为绿毛产生的物质(青霉素素菌)有杀菌的作用,也就是人们最早使用青霉素。20世纪40年代以前,人类一直未能掌握一种能高效治疗细菌性感染且副作用小的药物。当时若某人患了肺结核,那么就意味着此人不久就会离开人世。为了改变这种局面,科研人员进行了长期探索,然而在这方面所取得的突破性进展却源自一个意外发现。近代,1928年英国细菌学家弗莱明首先发现了世界上第一种抗生素—青霉素,亚历山大·弗莱明由于一次幸运的过失而发现了青霉素。1928年,英国科学家Fleming在实验研究中最早发现了青霉素,但由于当时技术不够先进,认识不够深刻,Fleming并没有把青霉素单独分离出来。1929年,弗莱明发表了他的研究成果,遗憾的是,这篇论文发表后一直没有受到科学界的重视。在用显微镜观察这只培养皿时弗莱明发现,霉菌周围的葡萄球菌菌落已被溶解。这意味着霉菌的某种分泌物能抑制葡萄球菌。此后的鉴定表明,上述霉菌为点青霉菌,因此弗莱明将其分泌的抑菌物质称为青霉素。然而遗憾的是弗莱明一直未能找到提取高纯度青霉素的方法,于是他将点青霉菌菌株一代代地培养,并于1939年将菌种提供给准备系统研究青霉素的英国病理学家弗洛里(Howard Walter Florey)和生物化学家钱恩。1938年,德国化学家恩斯特钱恩在旧书堆里看到了弗莱明的那篇论文,于是开始做提纯实验。弗洛里和钱恩在1940年用青霉素重新做了实验。他们给8只小鼠注射了致死剂量的链球菌,然后给其中的4只用青霉素治疗。几个小时内,只有那4只用青霉素治疗过的小鼠还健康活着。此后一系列临床实验证实了青霉素对链球菌、白喉杆菌等多种细菌感染的疗效。青霉素之所以能既杀死病菌,又不损害人体细胞,原因在于青霉素所含的青霉烷能使病菌细胞壁的合成发生障碍,导致病菌溶解死亡,而人和动物的细胞则没有细胞壁。1940年冬,钱恩提炼出了一点点青霉素,这虽然是一个重大突破,但离临床应用还差得很远。1941年,青霉素提纯的接力棒传到了澳大利亚病理学家瓦尔特弗洛里的手中。在美国军方的协助下,弗洛里在飞行员外出执行任务时从各国机场带回来的泥土中分离出菌种,使青霉素的产量从每立方厘米2单位提高到了40单位。1941年前后英国牛津大学病理学家霍华德·弗洛里与生物化学家钱恩实现对青霉素的分离与纯化,并发现其对传染病的疗效,但是青霉素会使个别人发生过敏反应,所以在应用前必须做皮试。所用的抗生素大多数是从微生物培养液中提取的,有些抗生素已能人工合成。由于不同种类的抗生素的化学成分不一,因此它们对微生物的作用机理也很不相同,有些抑制蛋白质的合成,有些抑制核酸的合成,有些则抑制细胞壁的合成。通过一段时间的紧张实验,弗洛里、钱恩终于用冷冻干燥法提取了青霉素晶体。之后,弗洛里在一种甜瓜上发现了可供大量提取青霉素的霉菌,并用玉米粉调制出了相应的培养液。在这些研究成果的推动下,美国制药企业于1942年开始对青霉素进行大批量生产。到了1943年,制药公司已经发现了批量生产青霉素的方法。当时英国和美国正在和纳粹德国交战。这种新的药物对控制伤口感染非常有效。1943年10月,弗洛里和美国军方签订了首批青霉素生产合同。青霉素在二战末期横空出世,迅速扭转了盟国的战局。战后,青霉素更得到了广泛应用,拯救了数以千万人的生命。到1944年,药物的供应已经足够治疗第二次世界大战期间所有参战的盟军士兵。因这项伟大发明,1945年,弗莱明、弗洛里和钱恩因“发现青霉素及其临床效用”而共同荣获了诺贝尔生理学或医学奖。1944年9月5日,中国第一批国产青霉素诞生,揭开了中国生产抗生素的历史。截至2001年年底,中国的青霉素年产量已占世界青霉素年总产量的60%,居世界首位。2002年,Birol等人提出了基于过程机理的模型,该过程综合考虑了发酵中微生物的各种生理变化,发现这是个十分复杂的过程。为了更加方便地对青霉素过程进行研究,Birol对Bajpai和Reuss提出的非结构式模型进行了扩展,对模型进一步简化,方便研究。

青霉素的毕业论文

抗生素的不良反应【摘要】 目的 帮助临床医生了解抗生素的药物不良反应,促进临床合理使用抗生素药物,保证患者用药安全、有效、合理。方法 复习文献资料,从过敏反应、毒性反应、特异性反应、二重感染、联合用药引起或加重不良反应等几个方面,综述抗生素的药物不良反应及临床危害。结果 抗生素的药物不良反应可以预防和控制,应重视患者用药过程中的临床监护。结论 抗生素的药物不良反应应引起临床医生的高度重视。【关键词】 抗生素;不良反应药物的不良反应是临床用药中的常见现象。它不仅指药物的副作用,还包括药物的毒性、特异性反应、过敏反应、继发性反应等〔1〕。抗菌药物是临床上最常用的一类用药,包括抗生素类、抗真菌类、抗结核类及具有抗菌作用的中药制剂类。其中以抗生素类在临床使用的品种和数量最多。目前临床常用抗生素品种有100多种。抗生素挽救了无数生命,但其在临床应用也引发了一些不良反应〔2〕。抗生素药物不良反应的临床危害后果是严重的。在用药后数秒钟至数小时乃至停药后相当长的一段时间内均可发生不良反应。常见的有过敏性休克、固定型药疹、荨麻疹、血管神经性水肿等过敏性反应、胃肠道反应、再生障碍性贫血等,严重的甚至会引起患者死亡〔3〕。因此,加强临床用药过程中的监督和合理使用抗生素对减少临床不良反应的发生具有特别重要的意义〔4〕。1 过敏反应抗生素引起的过敏反应最为常见〔5〕,主要原因是药品中可能存在的杂质以及氧化、分解、聚合、降解产物在体内的作用,或患者自身的个体差异。发生过敏反应的患者多有变态反应性疾病,少数为特异高敏体质。1.1 过敏性休克 此类反应属Ⅰ型变态反应,所有的给药途径均可引起。如:青霉素类、氨基糖苷类、头孢菌素类等可引起此类反应,头孢菌素类与青霉素类之间还可发生交叉过敏反应。因此,在使用此类药物前一定要先做皮试。1.2 溶血性贫血 属于Ⅱ型变态反应,其表现为各种血细胞减少。如:头孢噻吩和氯霉素可引起血小板减少,青霉素类和头孢菌素类可引起溶血性贫血。1.3 血清病、药物热 属于Ⅲ型变态反应,症状为给药第7~14天出现荨麻疹、血管神经性水肿、关节痛伴关节周围水肿及发热、胃肠道黏膜溃疡和肠局部坏死。如:青霉素类、头孢菌素类、林可霉素和链霉素均可引起以上反应。头孢菌素类、氯霉素等抗菌药物还可引起药物热。1.4 过敏反应 这是一类属于Ⅳ型变态反应的过敏反应。如:经常接触链霉素或青霉素,常在3~12个月内发生。1.5 未分型的过敏反应 有皮疹(常见为荨麻疹)〔6〕、血管神经性水肿、日光性皮炎、红皮病、固定性红斑、多形性渗出性红斑、重症大疱型红斑、中毒性表皮坏死松解症,多见于青霉素类、四环素类、链霉素、林可霉素等;内脏病变,包括急慢性间质性肺炎、支气管哮喘、过敏性肝炎、弥漫性过敏性肾炎,常见于青霉素类、链霉素等。复方新诺明还可引起严重的剥脱性皮炎。2 毒性反应抗生素药物的毒性反应是药物对人体各器官或组织的直接损害,造成机体生理及生化机能的病理变化,通常与给药剂量及持续时间相关。2.1 对神经系统的毒性 如:青霉素G、氨苄西林等可引起中枢神经系统毒性反应,严重者可出现癫痫样发作。青霉素和四环素可引起精神障碍。氨基糖苷类、万古霉素、多粘菌素类和四环素可引起耳和前庭神经的毒性。链霉素、多粘霉素类、氯霉素、利福平、红霉素可造成眼部的调节适应功能障碍,发生视神经炎甚至视神经萎缩。新的大环内酯类药物克拉霉素可引起精神系统不良反应。另有报道,大环内酯类药物克拉霉素和阿奇霉素可能减少突触前乙酰胆碱释放或加强了突触后受体抑制作用,可诱导肌无力危象。2.2 肾脏毒性 许多抗生素均可引起肾脏的损害,如:氨基糖苷类、多粘菌素类、万古霉素。氨基糖苷类的最主要不良反应是耳肾毒性。在肾功能不全患者中,第3代头孢菌素的半衰期均有不同程度延长,应引起临床医生用药时的高度重视。2.3 肝脏毒性〔7〕 如:两性霉素B和林可霉素可引起中毒性肝炎,大剂量四环素可引起浸润性重症肝炎,大环内酯类和苯唑青霉素引起胆汁淤滞性肝炎,头孢菌素中的头孢噻吩和头孢噻啶及青霉素中的苯唑西林、羧苄西林、氨苄西林等偶可引起转氨酶升高,链霉素、四环素和两性霉素B可引起肝细胞型黄疸。2.4 对血液系统毒性 如:氯霉素可引起再生障碍性贫血和中毒性粒细胞缺乏症,大剂量使用青霉素时偶可致凝血机制异常,第3代头孢菌素类如头孢哌酮、羟羧氧酰胺菌素等由于影响肠道菌群正常合成维生素K可引起出血反应。2.5 免疫系统的毒性 如:两性霉素B、头孢噻吩、氯霉素、克林霉素和四环素〔6〕。对机体免疫系统和机制具有毒性作用。2.6 胃肠道毒性 胃肠道的不良反应较常见。可引起胃肠道反应的药物如:口服四环素类、青霉素类等,其中大环内酯类、氯霉素类等药物即使注射给药,也可引起胃肠道反应。2.7 心脏毒性 大剂量青霉素、氯霉素和链霉素可引起心脏毒性作用,两性霉素B对心肌有损害作用,林可霉素偶见致心律失常。3 特异性反应特异性反应是少数患者使用药物后发生与药物作用完全不同的反应。其反应与患者的遗传性酶系统的缺乏有关。氯霉素和两性霉素B进入体内后,可经红细胞膜进入红细胞,使血红蛋白转变为变性血红蛋白,对于该酶系统正常者,使用上述药物时无影响;但对于具有遗传性变性血红蛋白血症者,机体对上述药物的敏感性增强,即使使用小剂量药物,也可导致变性血红蛋白症。4 二重感染在正常情况下,人体表面和腔道黏膜表面有许多细菌及真菌寄生。由于它们的存在,使机体微生态系统在相互制约下保持平衡状态。当大剂量或长期使用抗菌药物后,正常寄生敏感菌被杀死,不敏感菌和耐药菌增殖成为优势菌,外来菌也可乘机侵入,当这类菌为致病菌时,即可引起二重感染。常见二重感染的临床症状有消化道感染、肠炎、肺炎、尿路感染和败血症。5 抗菌药物与其他药物合用时可引发或加重不良反应〔8〕在临床治疗过程中,多数情况下是需要联合用药的,如一些慢性病(糖尿病、肿瘤等)合并感染,手术预防用药,严重感染时,伴器官反应症状,需要对症治疗等。由于药物的相互作用,可能引发或加重抗菌药物的不良反应。5.1 与心血管药物合用 红霉素和四环素能抑制地高辛的代谢,合用时可引起后者血药浓度明显升高,发生地高辛中毒。5.2 与抗凝药合用 头孢菌素类、氯霉素可抑制香豆素抗凝药在肝脏的代谢,使后者半衰期延长,作用增强,凝血时间延长。红霉素可使华法林作用增强,凝血时间延长。四环素类可影响肠道菌群合成维生素K,从而增强抗凝药的作用。5.3 与茶碱类药物合用 大环内酯类药物也可以抑制肝细胞色素P450酶系统,使茶碱血药浓度增加。红霉素与茶碱合用时,茶碱血药浓度可增加约40%,而茶碱可影响红霉素的吸收,使红霉素的峰浓度降低。5.4 与降糖药合用 氯霉素与甲苯磺丁脲及氯磺丙脲合用时,可抑制后者的代谢,使其半衰期延长,血药浓度增加,作用增强,可导致急性低血糖。5.5 与利尿剂合用 氨基糖苷类药物庆大霉素与呋喃苯胺酸类合用时,有引起耳毒性增加的报道。头孢噻啶与呋噻米合用时可增加肾毒性,原因可能是合用时前者的清除率降低。环孢菌素与甘露醇合用时,可引起严重的肾坏死性改变,停用甘露醇后,移植肾的功能可得到恢复。5.6 与其他药物合用 红霉素、四环素与制酸剂合用时,可使抗生素的吸收降低。大环内酯类红霉素与卡马西平合用时,可引起卡马西平中毒症状。综上所述,合理使用抗生素,重视患者用药过程中的临床监护对于临床医生安全用药,保证患者生命健康,减少不良反应的发生有重要的意义。正确诊断分清是否为细菌感染,如利用标本的培养判断认为是细菌感染,才是应用抗菌药物的适应证。熟悉抗生素的药理作用及不良反应特点,掌握药物的临床药理作用、抗菌谱、适应证、禁忌证、不良反应以及制剂、剂量、给药途径与方法等,做到了解病人用药过敏史,使用药有的放矢,避免不良反应发生。在医、护、药三方加强ADR监测〔9~11〕。同时对药物监测、临床血液及生化指标检验监测、护理监护等〔12〕。特别是对氨基糖苷类抗生素药物进行血药浓度监测的同时也应监测肾功能和听力;合并用药时对受影响药物的血药浓度进行监测,如红霉素或四环素与地高辛合用时,对地高辛药物浓度进行监测或避免合用;口服抗凝剂与氯霉素、四环素、红霉素合用时,应监测患者的凝血时间,或避免合用;必须合用时,须调整口服抗凝剂的剂量。护理人员与患者接触较多,认真细致的护理工作,特别是对儿童及老年患者的周到护理,是对药物不良反应及时发现和处理的重要环节。对护理人员进行临床药理知识的培训,增加他们这方面的知识,以便及时发现问题及时报告和处理。一旦发现不良反应应采取果断措施,如停药或换药。若出现过敏反应,应立即采取抢救措施。这些做法对抗生素不良反应的预防和补救都是行之有效的。【参考文献】1 张克义,赵乃才.临床药物不良反应大典.沈阳:辽宁科学技术出版社, 2001,96.2 杨利平.再谈抗菌药物的合理应用.医学理论与实践,2004,17(2):229.3 王正春,李秋,王珊.药物不良反应803例分析.医药导报,2004,23(9):695-696.4 张立新,王秀美.抗生素应用中的问题与探讨.实用医技杂志,2004,11(8):1498-1499.5 张紫洞,熊方武.药物导致的变态反应、过敏反应.抗感染药学,2004,1(2):49-52.6 吴文臻,刘建慧.药疹220例临床分析.现代中西医结合杂志,2004,13(13):1739.7 刘斌,彭红军.药物性肝炎136例分析.药物流行病学杂志,2004,13(5):251-253.8 程悦.联合用药致变态反应探析.现代中西医结合杂志,2004,13(13):1793-1794.9 马冬梅,李净,舒丽伟.如何合理使用抗生素.黑龙江医学,2004,28(12):925.10 吴安华.临床医师处方抗菌药物前需思考的几个问题.中国医院,2004,8(8):19-22.11 高素华.抗生素滥用的危害.内蒙古医学杂志,2005,37(11):1056-1057.12 魏健,郦柏平,赵永根,等.抗生素合理应用自动监控系统的构建.中华医院管理杂志,2004,20(8):479-481.

中药复方化学成分的研究进展摘要:综述了中药复方化学成分的研究成果与进展,包括有效化学成分的定性与定量、全方化学成分的提取分离与鉴定、复方活性部位与有效成分的药理追踪等。 中药复方是中医治病的主要临床应用形式,复方中的化学成分是中药发挥药效作用的物质基础。进行复方化学成分的研究,在阐明中医的方药理论,揭示中药的配伍规律和作用机制,优化制剂工艺,制定质控标准,实现中医药现代化并走向国际市场等方面均具重要意义。笔者就中药复方化学成分的研究进行综述,以供参考。 1研究方法与途径 迄今,中药复方化学成分的研究,无论在思路还是在技术与方法等诸方面仍处探索阶段,不少作者提出了一些有意义的观点和构思,如余亚纲的中药复方化学成分系统分离与鉴定的三元设计方案〔1〕,薛燕等提出的中药复方多成分经多途径协同作用的霰弹理论〔2〕以及周俊的中药复方天然组合化学库与多靶作用机制〔3〕等,这些对于如何开展中药复方化学成分的研究工作具有一定的启发和参考价值。关于中药复方化学成分的研究方法与途径,目前可归纳成如下3个方面:1)以单味药有效成分为指标,对全方制剂进行定性与定量。2)采用植化方法对全方化学成分进行系统提取、分离和鉴定。 3)以药效为标准追踪复方活性部位与有效成分。 2以单味药有效成分为指标定性与定量 确定单味药主要有效化学成分作为指标性物质(marker substances),采用各种分离与分析技术,对复方全方、各药配伍及各单味药制剂中指标性物质(成分)进行定性与定量,并探讨制备条件(药材粒度、煎煮器具、加水量、浸泡时间、煎煮时间、煎煮次数、加热温度、包煎与另煎以及先煎与后下等)、制备方式(单煎、分煎和合煎)、配伍和剂型等对指标性物质(成分)质和量的影响。此类研究工作开展较多,也取得了一些有意义的结果。 四物汤由当归、地黄、芍药和川芎组成,袁久荣等〔4〕采用多种分析方法测定了四物汤各药单煎、分煎和合煎液中的阿魏酸、8种微量元素、17种氨基酸及水溶性煎出物的含量,结果表明在加热条件下合煎时,各成分间具有增溶效应。钟立贤等〔5〕测定并比较了小青龙汤(由麻黄、桂枝、芍药和甘草等组成)各药单煎、分煎及合煎液中麻黄碱的含量,结果显示合煎液中麻黄碱含量最低,此系甘草酸与麻黄碱作用产生沉淀所致,但合煎液与分煎液的药效并无显著差异,说明虽然甘草酸与麻黄碱形成沉淀,但口服后在体内仍具药效,因此对中药复方煎煮过程中产生的沉淀应慎重考虑其取舍。四逆汤由附子、甘草和干姜组成,张宇等〔6〕对附子与甘草、附子与干姜及三味药配伍前后主要有效成分进行了定性与定量,结果表明附子与干姜配伍时,具毒性的乌头碱类含量升高;而附子与甘草配伍时,乌头碱类含量降低,说明中医“附子无干姜不热、得甘草则缓”理论具有一定科学依据。 六味地黄汤为补阴名方,严永清等〔7~9〕对其化学成分进行了初步分析,结果表明同一方剂因制备工艺不同,其化学成分的质与量也不尽一致;复方化学成分不等于各单味药化学成分的简单加和;合煎液中化学成分种类多于分煎液。朱永新等〔10〕发现生脉散水煎剂中人参皂苷Rg3和Rh1等含量明显高于单味人参水煎 剂,由此推测在加热煎煮过程中发生了人参皂苷的水解转化,结果使原来在单味药中属微量成分的Rg3和Rh1在复方中成为主要成分。严永清等〔7〕则在比较生脉散中人参、麦冬和五味子合煎与分煎液化学成分差异时发现,合煎液中人参总皂苷的含量低于分煎液,而在血流动力学以及对心肌作用和临床疗效观察上,合煎液效果优于 分煎液,据此推测人参皂苷Rg3和Rh1等可能是该方某些药理作用和临床疗效的活性成分。魏慧芬等〔11〕对小半夏加茯苓汤及方中各单味药的化学成分进行了比较,结果发现复方中生物碱含量低于半夏单味药,而氨基酸含量均高于各单味药,认为高含量的氨基酸对发挥该方的和胃止呕作用有益。 五仁液系山楂核等多种中药提取制成的一种杀菌剂,涂家生等〔12〕用GC/MS法对其化学成分进行了分析,发现其富含酚类、苯甲酸类和脂肪酸等具抗微生物作用的有效成分,并以面积归一化法计算了各类有效成分的相对含量。枳术丸由枳实和白术组成,罗尚凤等〔13〕采用GC/MS法测定了其制备过程中苍术酮、苍术内酯、羟基苍术内酯和脱水羟基苍术内酯等4种有效成分的含量动态变化,结果发现在炮制时白术中的苍术酮可氧化生成苍术内酯和羟基苍 术内酯,而在与枳实组方时苍术内酯和羟基苍术内酯又可还原成苍术酮,并讨论了这一化学变化的原因。 3用植化法对化学成分提取、分离与鉴定 将中药复方视为一个整体,采用植化方法对全方化学成分进行系统提取、分离、纯化和结构鉴定,可全面分析复方化学成分是什么,与单味药成分比较有何区别以及有无新化合物生成等。目前,有关这方面的研究工作报道不多。 全文地址: 共三页

要写毕业论文的话就要去查文献啦,目前国内最常用的就是CNKI和维普咯。像楼上说的是挺多的,但是不好作为毕业论文里引用,因为只要是引用就一定要带上参考文献,否则不好通过哦。既然要写论文,肯定是在学校啦,现在的高校一般都买有那两个数据库的,多看看就好

5 抗菌药物与其他药物合用时可引发或加重不良反应〔8〕 在临床治疗过程中,多数情况下是需要联合用药的,如一些慢性病(糖尿病、肿瘤等)合并感染,手术预防用药,严重感染时,伴器官反应症状,需要对症治疗等。由于药物的相互作用,可能引发或加重抗菌药物的不良反应。 5.1 与心血管药物合用 红霉素和四环素能抑制地高辛的代谢,合用时可引起后者血药浓度明显升高,发生地高辛中毒。 5.2 与抗凝药合用 头孢菌素类、氯霉素可抑制香豆素抗凝药在肝脏的代谢,使后者半衰期延长,作用增强,凝血时间延长。红霉素可使华法林作用增强,凝血时间延长。四环素类可影响肠道菌群合成维生素K,从而增强抗凝药的作用。 5.3 与茶碱类药物合用 大环内酯类药物也可以抑制肝细胞色素P450酶系统,使茶碱血药浓度增加。红霉素与茶碱合用时,茶碱血药浓度可增加约40%,而茶碱可影响红霉素的吸收,使红霉素的峰浓度降低。 5.4 与降糖药合用 氯霉素与甲苯磺丁脲及氯磺丙脲合用时,可抑制后者的代谢,使其半衰期延长,血药浓度增加,作用增强,可导致急性低血糖。 5.5 与利尿剂合用 氨基糖苷类药物庆大霉素与呋喃苯胺酸类合用时,有引起耳毒性增加的报道。头孢噻啶与呋噻米合用时可增加肾毒性,原因可能是合用时前者的清除率降低。环孢菌素与甘露醇合用时,可引起严重的肾坏死性改变,停用甘露醇后,移植肾的功能可得到恢复。 5.6 与其他药物合用 红霉素、四环素与制酸剂合用时,可使抗生素的吸收降低。大环内酯类红霉素与卡马西平合用时,可引起卡马西平中毒症状。 综上所述,合理使用抗生素,重视患者用药过程中的临床监护对于临床医生安全用药,保证患者生命健康,减少不良反应的发生有重要的意义。 正确诊断分清是否为细菌感染,如利用标本的培养判断认为是细菌感染,才是应用抗菌药物的适应证。熟悉抗生素的药理作用及不良反应特点,掌握药物的临床药理作用、抗菌谱、适应证、禁忌证、不良反应以及制剂、剂量、给药途径与方法等,做到了解病人用药过敏史,使用药有的放矢,避免不良反应发生。在医、护、药三方加强ADR监测〔9~11〕。 同时对药物监测、临床血液及生化指标检验监测、护理监护等〔12〕。特别是对氨基糖苷类抗生素药物进行血药浓度监测的同时也应监测肾功能和听力;合并用药时对受影响药物的血药浓度进行监测,如红霉素或四环素与地高辛合用时,对地高辛药物浓度进行监测或避免合用;口服抗凝剂与氯霉素、四环素、红霉素合用时,应监测患者的凝血时间,或避免合用;必须合用时,须调整口服抗凝剂的剂量。 护理人员与患者接触较多,认真细致的护理工作,特别是对儿童及老年患者的周到护理,是对药物不良反应及时发现和处理的重要环节。对护理人员进行临床药理知识的培训,增加他们这方面的知识,以便及时发现问题及时报告和处理。 一旦发现不良反应应采取果断措施,如停药或换药。若出现过敏反应,应立即采取抢救措施。这些做法对抗生素不良反应的预防和补救都是行之有效的。 参考文献 1 张克义,赵乃才.临床药物不良反应大典.沈阳:辽宁科学技术出版社, 2001,96. 2 杨利平.再谈抗菌药物的合理应用.医学理论与实践,2004,17(2):229. 3 王正春,李秋,王珊.药物不良反应803例分析.医药导报,2004,23(9):695-696. 4 张立新,王秀美.抗生素应用中的问题与探讨.实用医技杂志,2004,11(8):1498-1499. 5 张紫洞,熊方武.药物导致的变态反应、过敏反应.抗感染药学,2004,1(2):49-52. 6 吴文臻,刘建慧.药疹220例临床分析.现代中西医结合杂志,2004,13(13):1739. 7 刘斌,彭红军.药物性肝炎136例分析.药物流行病学杂志,2004,13(5):251-253. 8 程悦.联合用药致变态反应探析.现代中西医结合杂志,2004,13(13):1793-1794. 9 马冬梅,李净,舒丽伟.如何合理使用抗生素.黑龙江医学,2004,28(12):925. 10 吴安华.临床医师处方抗菌药物前需思考的几个问题.中国医院,2004,8(8):19-22. 11 高素华.抗生素滥用的危害.内蒙古医学杂志,2005,37(11):1056-1057. 12 魏健,郦柏平,赵永根,等.抗生素合理应用自动监控系统的构建.中华医院管理杂志,2004,20(8):479-481.

青霉素有关的毕业论文

抗生素的不良反应【摘要】 目的 帮助临床医生了解抗生素的药物不良反应,促进临床合理使用抗生素药物,保证患者用药安全、有效、合理。方法 复习文献资料,从过敏反应、毒性反应、特异性反应、二重感染、联合用药引起或加重不良反应等几个方面,综述抗生素的药物不良反应及临床危害。结果 抗生素的药物不良反应可以预防和控制,应重视患者用药过程中的临床监护。结论 抗生素的药物不良反应应引起临床医生的高度重视。【关键词】 抗生素;不良反应药物的不良反应是临床用药中的常见现象。它不仅指药物的副作用,还包括药物的毒性、特异性反应、过敏反应、继发性反应等〔1〕。抗菌药物是临床上最常用的一类用药,包括抗生素类、抗真菌类、抗结核类及具有抗菌作用的中药制剂类。其中以抗生素类在临床使用的品种和数量最多。目前临床常用抗生素品种有100多种。抗生素挽救了无数生命,但其在临床应用也引发了一些不良反应〔2〕。抗生素药物不良反应的临床危害后果是严重的。在用药后数秒钟至数小时乃至停药后相当长的一段时间内均可发生不良反应。常见的有过敏性休克、固定型药疹、荨麻疹、血管神经性水肿等过敏性反应、胃肠道反应、再生障碍性贫血等,严重的甚至会引起患者死亡〔3〕。因此,加强临床用药过程中的监督和合理使用抗生素对减少临床不良反应的发生具有特别重要的意义〔4〕。1 过敏反应抗生素引起的过敏反应最为常见〔5〕,主要原因是药品中可能存在的杂质以及氧化、分解、聚合、降解产物在体内的作用,或患者自身的个体差异。发生过敏反应的患者多有变态反应性疾病,少数为特异高敏体质。1.1 过敏性休克 此类反应属Ⅰ型变态反应,所有的给药途径均可引起。如:青霉素类、氨基糖苷类、头孢菌素类等可引起此类反应,头孢菌素类与青霉素类之间还可发生交叉过敏反应。因此,在使用此类药物前一定要先做皮试。1.2 溶血性贫血 属于Ⅱ型变态反应,其表现为各种血细胞减少。如:头孢噻吩和氯霉素可引起血小板减少,青霉素类和头孢菌素类可引起溶血性贫血。1.3 血清病、药物热 属于Ⅲ型变态反应,症状为给药第7~14天出现荨麻疹、血管神经性水肿、关节痛伴关节周围水肿及发热、胃肠道黏膜溃疡和肠局部坏死。如:青霉素类、头孢菌素类、林可霉素和链霉素均可引起以上反应。头孢菌素类、氯霉素等抗菌药物还可引起药物热。1.4 过敏反应 这是一类属于Ⅳ型变态反应的过敏反应。如:经常接触链霉素或青霉素,常在3~12个月内发生。1.5 未分型的过敏反应 有皮疹(常见为荨麻疹)〔6〕、血管神经性水肿、日光性皮炎、红皮病、固定性红斑、多形性渗出性红斑、重症大疱型红斑、中毒性表皮坏死松解症,多见于青霉素类、四环素类、链霉素、林可霉素等;内脏病变,包括急慢性间质性肺炎、支气管哮喘、过敏性肝炎、弥漫性过敏性肾炎,常见于青霉素类、链霉素等。复方新诺明还可引起严重的剥脱性皮炎。2 毒性反应抗生素药物的毒性反应是药物对人体各器官或组织的直接损害,造成机体生理及生化机能的病理变化,通常与给药剂量及持续时间相关。2.1 对神经系统的毒性 如:青霉素G、氨苄西林等可引起中枢神经系统毒性反应,严重者可出现癫痫样发作。青霉素和四环素可引起精神障碍。氨基糖苷类、万古霉素、多粘菌素类和四环素可引起耳和前庭神经的毒性。链霉素、多粘霉素类、氯霉素、利福平、红霉素可造成眼部的调节适应功能障碍,发生视神经炎甚至视神经萎缩。新的大环内酯类药物克拉霉素可引起精神系统不良反应。另有报道,大环内酯类药物克拉霉素和阿奇霉素可能减少突触前乙酰胆碱释放或加强了突触后受体抑制作用,可诱导肌无力危象。2.2 肾脏毒性 许多抗生素均可引起肾脏的损害,如:氨基糖苷类、多粘菌素类、万古霉素。氨基糖苷类的最主要不良反应是耳肾毒性。在肾功能不全患者中,第3代头孢菌素的半衰期均有不同程度延长,应引起临床医生用药时的高度重视。2.3 肝脏毒性〔7〕 如:两性霉素B和林可霉素可引起中毒性肝炎,大剂量四环素可引起浸润性重症肝炎,大环内酯类和苯唑青霉素引起胆汁淤滞性肝炎,头孢菌素中的头孢噻吩和头孢噻啶及青霉素中的苯唑西林、羧苄西林、氨苄西林等偶可引起转氨酶升高,链霉素、四环素和两性霉素B可引起肝细胞型黄疸。2.4 对血液系统毒性 如:氯霉素可引起再生障碍性贫血和中毒性粒细胞缺乏症,大剂量使用青霉素时偶可致凝血机制异常,第3代头孢菌素类如头孢哌酮、羟羧氧酰胺菌素等由于影响肠道菌群正常合成维生素K可引起出血反应。2.5 免疫系统的毒性 如:两性霉素B、头孢噻吩、氯霉素、克林霉素和四环素〔6〕。对机体免疫系统和机制具有毒性作用。2.6 胃肠道毒性 胃肠道的不良反应较常见。可引起胃肠道反应的药物如:口服四环素类、青霉素类等,其中大环内酯类、氯霉素类等药物即使注射给药,也可引起胃肠道反应。2.7 心脏毒性 大剂量青霉素、氯霉素和链霉素可引起心脏毒性作用,两性霉素B对心肌有损害作用,林可霉素偶见致心律失常。3 特异性反应特异性反应是少数患者使用药物后发生与药物作用完全不同的反应。其反应与患者的遗传性酶系统的缺乏有关。氯霉素和两性霉素B进入体内后,可经红细胞膜进入红细胞,使血红蛋白转变为变性血红蛋白,对于该酶系统正常者,使用上述药物时无影响;但对于具有遗传性变性血红蛋白血症者,机体对上述药物的敏感性增强,即使使用小剂量药物,也可导致变性血红蛋白症。4 二重感染在正常情况下,人体表面和腔道黏膜表面有许多细菌及真菌寄生。由于它们的存在,使机体微生态系统在相互制约下保持平衡状态。当大剂量或长期使用抗菌药物后,正常寄生敏感菌被杀死,不敏感菌和耐药菌增殖成为优势菌,外来菌也可乘机侵入,当这类菌为致病菌时,即可引起二重感染。常见二重感染的临床症状有消化道感染、肠炎、肺炎、尿路感染和败血症。5 抗菌药物与其他药物合用时可引发或加重不良反应〔8〕在临床治疗过程中,多数情况下是需要联合用药的,如一些慢性病(糖尿病、肿瘤等)合并感染,手术预防用药,严重感染时,伴器官反应症状,需要对症治疗等。由于药物的相互作用,可能引发或加重抗菌药物的不良反应。5.1 与心血管药物合用 红霉素和四环素能抑制地高辛的代谢,合用时可引起后者血药浓度明显升高,发生地高辛中毒。5.2 与抗凝药合用 头孢菌素类、氯霉素可抑制香豆素抗凝药在肝脏的代谢,使后者半衰期延长,作用增强,凝血时间延长。红霉素可使华法林作用增强,凝血时间延长。四环素类可影响肠道菌群合成维生素K,从而增强抗凝药的作用。5.3 与茶碱类药物合用 大环内酯类药物也可以抑制肝细胞色素P450酶系统,使茶碱血药浓度增加。红霉素与茶碱合用时,茶碱血药浓度可增加约40%,而茶碱可影响红霉素的吸收,使红霉素的峰浓度降低。5.4 与降糖药合用 氯霉素与甲苯磺丁脲及氯磺丙脲合用时,可抑制后者的代谢,使其半衰期延长,血药浓度增加,作用增强,可导致急性低血糖。5.5 与利尿剂合用 氨基糖苷类药物庆大霉素与呋喃苯胺酸类合用时,有引起耳毒性增加的报道。头孢噻啶与呋噻米合用时可增加肾毒性,原因可能是合用时前者的清除率降低。环孢菌素与甘露醇合用时,可引起严重的肾坏死性改变,停用甘露醇后,移植肾的功能可得到恢复。5.6 与其他药物合用 红霉素、四环素与制酸剂合用时,可使抗生素的吸收降低。大环内酯类红霉素与卡马西平合用时,可引起卡马西平中毒症状。综上所述,合理使用抗生素,重视患者用药过程中的临床监护对于临床医生安全用药,保证患者生命健康,减少不良反应的发生有重要的意义。正确诊断分清是否为细菌感染,如利用标本的培养判断认为是细菌感染,才是应用抗菌药物的适应证。熟悉抗生素的药理作用及不良反应特点,掌握药物的临床药理作用、抗菌谱、适应证、禁忌证、不良反应以及制剂、剂量、给药途径与方法等,做到了解病人用药过敏史,使用药有的放矢,避免不良反应发生。在医、护、药三方加强ADR监测〔9~11〕。同时对药物监测、临床血液及生化指标检验监测、护理监护等〔12〕。特别是对氨基糖苷类抗生素药物进行血药浓度监测的同时也应监测肾功能和听力;合并用药时对受影响药物的血药浓度进行监测,如红霉素或四环素与地高辛合用时,对地高辛药物浓度进行监测或避免合用;口服抗凝剂与氯霉素、四环素、红霉素合用时,应监测患者的凝血时间,或避免合用;必须合用时,须调整口服抗凝剂的剂量。护理人员与患者接触较多,认真细致的护理工作,特别是对儿童及老年患者的周到护理,是对药物不良反应及时发现和处理的重要环节。对护理人员进行临床药理知识的培训,增加他们这方面的知识,以便及时发现问题及时报告和处理。一旦发现不良反应应采取果断措施,如停药或换药。若出现过敏反应,应立即采取抢救措施。这些做法对抗生素不良反应的预防和补救都是行之有效的。【参考文献】1 张克义,赵乃才.临床药物不良反应大典.沈阳:辽宁科学技术出版社, 2001,96.2 杨利平.再谈抗菌药物的合理应用.医学理论与实践,2004,17(2):229.3 王正春,李秋,王珊.药物不良反应803例分析.医药导报,2004,23(9):695-696.4 张立新,王秀美.抗生素应用中的问题与探讨.实用医技杂志,2004,11(8):1498-1499.5 张紫洞,熊方武.药物导致的变态反应、过敏反应.抗感染药学,2004,1(2):49-52.6 吴文臻,刘建慧.药疹220例临床分析.现代中西医结合杂志,2004,13(13):1739.7 刘斌,彭红军.药物性肝炎136例分析.药物流行病学杂志,2004,13(5):251-253.8 程悦.联合用药致变态反应探析.现代中西医结合杂志,2004,13(13):1793-1794.9 马冬梅,李净,舒丽伟.如何合理使用抗生素.黑龙江医学,2004,28(12):925.10 吴安华.临床医师处方抗菌药物前需思考的几个问题.中国医院,2004,8(8):19-22.11 高素华.抗生素滥用的危害.内蒙古医学杂志,2005,37(11):1056-1057.12 魏健,郦柏平,赵永根,等.抗生素合理应用自动监控系统的构建.中华医院管理杂志,2004,20(8):479-481.

要写毕业论文的话就要去查文献啦,目前国内最常用的就是CNKI和维普咯。像楼上说的是挺多的,但是不好作为毕业论文里引用,因为只要是引用就一定要带上参考文献,否则不好通过哦。既然要写论文,肯定是在学校啦,现在的高校一般都买有那两个数据库的,多看看就好

关于青霉素的论文题目

论文题目是啥啊?压根不知道

现在这样的论文网上不是有很多吗?你看下(材料化学前沿,比较化学)等等,论文还是要自己多写写的

论化学与人类的密切相关性这一论文需要从化学的定位、人类的日常活动、化学与人类日常生活的关联三大部分去展开。用词要求相对客观、准确、精炼。

正文:

化学是最重要的基础学科之一,化学与众多领域都有很强的相关性,在生命体中有化学、在衣食住行中有化学、在日常生活及环境中有化学,我们身边无时无刻都存在着化学反应,化学与人类及人类活动都密切相关。

化学和物理一样是自然科学的基础学科。化学是建立在实验的基础上的一门自然学科,化学所涉及到的领域非常多,不只是我们的衣食住行离不开化学,化学还与很多学科互相渗透,如物理学、生物学、地理学等,也推动了其他学科和技术的发展。

化学主要是研究物质的性质、组成、结构、变化,以及物质间相互作用,认识物质的结构与性能,开发新的反应和合成技术,提供具有各种功能的材料。如:人类衣食住行的改善,“两弹一星”的研制,医药新技术的开发,DNA序列的分析等都紧密依赖化学学科的进步。

化学专业的基础课程有:无机化学、分析化学、仪器分析、有机化学、物理化学、高分子科学、结构化学、纳米功能材料等,以及无机化学实验、分析化学实验、仪器分析实验、有机化学实验、物理化学实验等实验性课程。

化学的研究方向较多,不同的学校课程开设会略有不同。

以武汉大学为例,化学专业必修的课有:

无机化学、分析化学、物理化学、有机化学、结构化学、化学实验安全技术、无机化学实验、分析化学实验、物理化学实验、有机化学实验、分子模拟实验、化工基础、化工基础实验、综合化学实验等。

化学专业选修课有:生物化学、高分子科学导论、有机波谱分析、中级有机化学、中级无机化学、中级物理化学、现代分析化学、材料化学、表面化学、生物无机化学、生物有机化学、化学生物学导论、有机合成化学、化学分离技术、能源化学、功能高分子、量子化学、工业电化学、现代电化学、高分子合成与表征等。

化学专业旨在培养具有良好人文和科学素质,具有社会责任感,创新意识和实践能力强,掌握化学基本知识、基本理论和基本技能,身心健康,能胜任化学及相关领域科研、教学及其他工作的人才。

化学专业学制一般为四年制,毕业后授予理学士学位。

主要就业方向包括如下几个方面:

1、从事化工产品生产的工艺试验、工业设计和生产技术组织的技术人员。化学工业是现今众多产业发展的基础,在国民经济中占有重要地位,是国家的基础产业和支柱产业,虽然近几年化工行业发展有些低迷,但就现有的整个行业的体量来说能够提供的就业岗位还是非常多的,收入方面相对也不错。

2、国内中小学校或教育培训机构,从事化学学科教师教学工作,从事教学工作是大部分师范院校化学专业毕业生的首选。近几年培训行业现今正处于高速发展的阶段,不论线上还是线下都发展迅速,进入培训机构也是一个选择。

3、从事药品研发、药品化学工艺合成及药品生产等工作,进入医药企业的学生不仅仅在化学方面学习出色,在生物方面也要有一定的实力,一般本科生大部分可以从事的工作多为辅助类的工作。此类工作在专业技术方面有较高的要求。

4、也可以继续深造,未来进入相关领域实验室或高校,继续从事相关领域研究或教学工作。

青霉素是人类历史上发现的第一种抗生素,且应用非常广泛。早在唐朝时,长安城的裁缝会把长有绿毛的糨糊涂在被剪刀划破的手指上来帮助伤口愈合,就是因为绿毛产生的物质(青霉素素菌)有杀菌的作用,也就是人们最早使用青霉素。20世纪40年代以前,人类一直未能掌握一种能高效治疗细菌性感染且副作用小的药物。当时若某人患了肺结核,那么就意味着此人不久就会离开人世。为了改变这种局面,科研人员进行了长期探索,然而在这方面所取得的突破性进展却源自一个意外发现。近代,1928年英国细菌学家弗莱明首先发现了世界上第一种抗生素—青霉素,亚历山大·弗莱明由于一次幸运的过失而发现了青霉素。1928年,英国科学家Fleming在实验研究中最早发现了青霉素,但由于当时技术不够先进,认识不够深刻,Fleming并没有把青霉素单独分离出来。1929年,弗莱明发表了他的研究成果,遗憾的是,这篇论文发表后一直没有受到科学界的重视。在用显微镜观察这只培养皿时弗莱明发现,霉菌周围的葡萄球菌菌落已被溶解。这意味着霉菌的某种分泌物能抑制葡萄球菌。此后的鉴定表明,上述霉菌为点青霉菌,因此弗莱明将其分泌的抑菌物质称为青霉素。然而遗憾的是弗莱明一直未能找到提取高纯度青霉素的方法,于是他将点青霉菌菌株一代代地培养,并于1939年将菌种提供给准备系统研究青霉素的英国病理学家弗洛里(Howard Walter Florey)和生物化学家钱恩。1938年,德国化学家恩斯特钱恩在旧书堆里看到了弗莱明的那篇论文,于是开始做提纯实验。弗洛里和钱恩在1940年用青霉素重新做了实验。他们给8只小鼠注射了致死剂量的链球菌,然后给其中的4只用青霉素治疗。几个小时内,只有那4只用青霉素治疗过的小鼠还健康活着。此后一系列临床实验证实了青霉素对链球菌、白喉杆菌等多种细菌感染的疗效。青霉素之所以能既杀死病菌,又不损害人体细胞,原因在于青霉素所含的青霉烷能使病菌细胞壁的合成发生障碍,导致病菌溶解死亡,而人和动物的细胞则没有细胞壁。1940年冬,钱恩提炼出了一点点青霉素,这虽然是一个重大突破,但离临床应用还差得很远。1941年,青霉素提纯的接力棒传到了澳大利亚病理学家瓦尔特弗洛里的手中。在美国军方的协助下,弗洛里在飞行员外出执行任务时从各国机场带回来的泥土中分离出菌种,使青霉素的产量从每立方厘米2单位提高到了40单位。1941年前后英国牛津大学病理学家霍华德·弗洛里与生物化学家钱恩实现对青霉素的分离与纯化,并发现其对传染病的疗效,但是青霉素会使个别人发生过敏反应,所以在应用前必须做皮试。所用的抗生素大多数是从微生物培养液中提取的,有些抗生素已能人工合成。由于不同种类的抗生素的化学成分不一,因此它们对微生物的作用机理也很不相同,有些抑制蛋白质的合成,有些抑制核酸的合成,有些则抑制细胞壁的合成。通过一段时间的紧张实验,弗洛里、钱恩终于用冷冻干燥法提取了青霉素晶体。之后,弗洛里在一种甜瓜上发现了可供大量提取青霉素的霉菌,并用玉米粉调制出了相应的培养液。在这些研究成果的推动下,美国制药企业于1942年开始对青霉素进行大批量生产。到了1943年,制药公司已经发现了批量生产青霉素的方法。当时英国和美国正在和纳粹德国交战。这种新的药物对控制伤口感染非常有效。1943年10月,弗洛里和美国军方签订了首批青霉素生产合同。青霉素在二战末期横空出世,迅速扭转了盟国的战局。战后,青霉素更得到了广泛应用,拯救了数以千万人的生命。到1944年,药物的供应已经足够治疗第二次世界大战期间所有参战的盟军士兵。因这项伟大发明,1945年,弗莱明、弗洛里和钱恩因“发现青霉素及其临床效用”而共同荣获了诺贝尔生理学或医学奖。1944年9月5日,中国第一批国产青霉素诞生,揭开了中国生产抗生素的历史。截至2001年年底,中国的青霉素年产量已占世界青霉素年总产量的60%,居世界首位。2002年,Birol等人提出了基于过程机理的模型,该过程综合考虑了发酵中微生物的各种生理变化,发现这是个十分复杂的过程。为了更加方便地对青霉素过程进行研究,Birol对Bajpai和Reuss提出的非结构式模型进行了扩展,对模型进一步简化,方便研究。

青霉素的生产论文参考文献

青霉素 (Benzylpenicillin / Penicillin)【简介】 青霉素是指分子中含有青霉烷,能破坏细菌的细胞壁并在细菌细胞的繁殖期起杀菌作用的一类抗生素。 青霉素又被称为青霉素G、peillin G、 盘尼西林、配尼西林、青霉素钠、苄青霉素钠、青霉素钾、苄青霉素钾。 青霉素是抗菌素的一种,是指从青霉菌培养液中提制的分子中含有青霉烷、能破坏细菌的细胞壁并在细菌细胞的繁殖期起杀菌作用的一类抗生素,是第一种能够治疗人类疾病的抗生素。青霉素类抗生素是β-内酰胺类中一大类抗生素的总称。但它不能耐受耐药菌株(如耐药金葡)所产生的酶,易被其破坏,且其抗菌谱较窄,主要对革兰氏阳性菌有效。青霉素G有钾盐、钠盐之分,钾盐不仅不能直接静注,静脉滴注时,也要仔细计算钾离子量,以免注入人体形成高血钾而抑制心脏功能,造成死亡。 青霉素类抗生素的毒性很小,由于β-内酰胺类作用于细菌的细胞壁,而人类只有细胞膜无细胞壁,故对人类的毒性较小,除能引起严重的过敏反应外,在一般用量下,其毒性不甚明显.是化疗指数最大的抗生素。但其青霉素类抗生素常见的过敏反应在各种药物中居首位,发生率最高可达5%~10% ,为皮肤反应 ,表现皮疹、血管性水肿,最严重者为过敏性休克,多在注射后数分钟内发生,症状为呼吸困难、发绀、血压下降、昏迷、肢体强直,最后惊厥,抢救不及时可造成死亡。各种给药途径或应用各种制剂都能引起过敏性休克,但以注射用药的发生率最高。过敏反应的发生与药物剂量大小无关。对本品高度过敏者,虽极微量亦能引起休克。注入体内可致癫痫样发作。大剂量长时间注射对中枢神经系统有毒性(如引起抽搐、昏迷等),停药或降低剂量可以恢复。 使用本品必须先做皮内试验。青霉素过敏试验包括皮肤试验方法(简称青霉素皮试)及体外试验方法,其中以皮内注射较准确。皮试本身也有一定的危险性,约有25%的过敏性休克死亡的病人死于皮试。所以皮试或注射给药时都应作好充分的抢救准备。在换用不同批号青霉素时,也需重作皮试。注射液、皮试液均不稳定,以新鲜配制为佳。而且对于自肾排泄,肾功能不良者,剂量应适当调整。此外,局部应用致敏机会多,且细菌易产生抗药性,故不提倡。【英文简述】 Penicillin (sometimes abbreviated PCN) refers to a group of beta-lactam antibiotics used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms. The name “penicillin” can also be used in reference to a specific member of the penicillin group Penam Skeleton, which has the molecular formula R-C9H11N2O4S, where R is a variable side chain. 【分类】 按其特点可分为 : 青霉素G类:如青霉素G钾、青霉素G钠、长效西林等。 耐酶青霉素:如苯唑青霉素(新青Ⅱ号)、氯唑青霉素等。 广谱青霉素:如氨苄青霉素、羟氨苄青霉素等。 抗绿脓杆菌的广谱青霉素:如羧苄青霉素、氧哌嗪青霉素、呋苄青霉素等。 氮咪青霉素:如美西林及其酯匹美西林等,其特点为较耐酶,对某些阴性杆菌(如大肠、克雷伯氏和沙门氏菌)有效,但对绿脓杆菌效差。 【特点】 青霉素类抗生素是β-内酰胺类中一大类抗生素的总称,由于β-内酰胺类作用于细菌的细胞壁,而人类只有细胞膜无细胞壁,故对人类的毒性较小,除能引起严重的过敏反应外,在一般用量下,其毒性不甚明显,但它不能耐受耐药菌株(如耐药金葡)所产生的酶,易被其破坏,且其抗菌谱较窄,主要对革兰氏阳性菌有效。青霉素G有钾盐、钠盐之分,钾盐不仅不能直接静注,静脉滴注时,也要仔细计算钾离子量,以免注入人体形成高血钾而抑制心脏功能,造成死亡。 青霉素类抗生素的毒性很小,是化疗指数最大的抗生素。但其青霉素类抗生素常见的过敏反应在各种药物中居首位,发生率最高可达5%~10% ,为皮肤反应 ,表现皮疹、血管性水肿,最严重者为过敏性休克,多在注射后数分钟内发生,症状为呼吸困难、发绀、血压下降、昏迷、肢体强直,最后惊厥,抢救不及时可造成死亡。各种给药途径或应用各种制剂都能引起过敏性休克,但以注射用药的发生率最高。过敏反应的发生与药物剂量大小无关。对本品高度过敏者,虽极微量亦能引起休克。注入体内可致癫痫样发作。大剂量长时间注射对中枢神经系统有毒性(如引起抽搐、昏迷等),停药或降低剂量可以恢复。 【历史发展】 亚历山大·弗莱明由于一次幸运的过失而发现了青霉素。有一次他外出度假时,把实验室里在培养皿中正生长着细菌这件事给忘了。3周后当他回实验室时,注意到在一个培养皿中长了一个霉菌斑。并且霉菌斑周围的细菌都死了。 霉菌渗出了什么强有力的物质?弗莱明称为青霉素,并发现了它可以杀死许多致命性细菌。然而,因为青霉素在试管内和血清混合后很快失活,弗莱明认为它不会在人和动物身上发生作用。 10多年后,弗洛里和钱恩在1940年用青霉素重新做了实验。他们给8只小鼠注射了致死剂量的链球菌,然后给其中的4只用青霉素治疗。几个小时内,只有那4只用青霉素治疗过的小鼠还健康活着。“这真像一个奇迹!”弗洛里说道。 到了1943年,制药公司已经发现了批量生产青霉素的方法。英国和美国当时正在和纳粹德国交战。这种新的药物对控制伤口感染非常有效。到了1944年,药物的供应已经足够治疗第二次世界大战期间所有参战的盟军士兵。 青霉素是一种高效、低毒、临床应用广泛的重要抗生素。它的研制成功大大增强了人类抵抗细菌性感染的能力,带动了抗生素家族的诞生。 20世纪40年代以前,人类一直未能掌握一种能高效治疗细菌性感染且副作用小的药物。当时若某人患了肺结核,那么就意味着此人不久就会离开人世。为了改变这种局面,科研人员进行了长期探索,然而在这方面所取得的突破性进展却源自一个意外发现。 在1928年夏季的一天,英国微生物学家弗莱明发现,一个与空气意外接触过的金黄色葡萄球菌培养皿中长出了一团青绿色霉菌。在用显微镜观察这只培养皿时弗莱明发现,霉菌周围的葡萄球菌菌落已被溶解。这意味着霉菌的某种分泌物能抑制葡萄球菌。此后的鉴定表明,上述霉菌为点青霉菌,因此弗莱明将其分泌的抑菌物质称为青霉素。然而遗憾的是弗莱明一直未能找到提取高纯度青霉素的方法,于是他将点青霉菌菌株一代代地培养,并于1939年将菌种提供给准备系统研究青霉素的英国病理学家弗洛里和生物化学家钱恩。 通过一段时间的紧张实验,弗洛里、钱恩终于用冷冻干燥法提取了青霉素晶体。之后,弗洛里在一种甜瓜上发现了可供大量提取青霉素的霉菌,并用玉米粉调制出了相应的培养液。1941年开始的临床实验证实了青霉素对链球菌、白喉杆菌等多种细菌感染的疗效。青霉素之所以能既杀死病菌,又不损害人体细胞,原因在于青霉素所含的青霉烷能使病菌细胞壁的合成发生障碍,导致病菌溶解死亡,而人和动物的细胞则没有细胞壁。但是青霉素会使个别人发生过敏反应,所以在应用前必须做皮试。在这些研究成果的推动下,美国制药企业于1942年开始对青霉素进行大批量生产。这些青霉素在世界反法西斯战争中挽救了大量美英盟军的伤病员。1945年,弗莱明、弗洛里和钱恩因“发现青霉素及其临床效用”而共同荣获了诺贝尔生理学或医学奖。 青霉素的出现开创了用抗生素治疗疾病的新纪元。通过数十年的完善,青霉素针剂和口服青霉素已能分别治疗肺炎、肺结核、脑膜炎、心内膜炎、白喉、炭疽等病。继青霉素之后,链霉素、氯霉素、土霉素、四环素等抗生素不断产生,增强了人类治疗传染性疾病的能力。但与此同时,部分病菌的抗药性也在逐渐增强。为了解决这一问题,科研人员目前正在开发药效更强的抗生素,探索如何阻止病菌获得抵抗基因,并以植物为原料开发抗菌类药物。【药理学】 内服易被胃酸和消化酶破坏。肌注或皮下注射后吸收较快,15~30min达血药峰浓度。青霉素在体内半衰期较短,主要以原形从尿中排出。 氯霉素是具广谱抗菌作用,对革兰阴性菌的作用较革兰阳性菌强,对伤寒杆菌、流感杆菌和百日咳杆菌的作用比其他抗生素强,对立克次体感染(如斑疹伤寒)以及病毒感染(如沙眼)均有较好作用。对布氏杆菌、大肠杆菌、产气杆菌、肺炎杆菌、痢疾杆菌、霍乱弧菌、脑膜炎双球菌、淋球菌等也有较强抗菌作用。本品属抑菌剂,其作用机理主要抑制细菌蛋白质的合成,系作用于核糖核蛋白体的50S亚基上,抑制肽基转移酶的作用,阻止了肽链的增长。临床上主要用于伤寒、副伤寒和其他沙门氏菌感染,疗效好,目前仍是治疗这些疾病的首选药物。【作用】 青霉素对溶血性链球菌等链球菌属,肺炎链球菌和不产青霉素酶的葡萄球菌具有良好抗菌作用。对肠球菌有中等度抗菌作用,淋病奈瑟菌、脑膜炎奈瑟菌、白喉棒状杆菌、炭疽芽孢杆菌、牛型放线菌、念珠状链杆菌、李斯特菌、钩端螺旋体和梅毒螺旋体对本品敏感。本品对流感嗜血杆菌和百日咳鲍特氏菌亦具一定抗菌活性,其他革兰阴性需氧或兼性厌氧菌对本品敏感性差.本品对梭状芽孢杆菌属、消化链球菌厌氧菌以及产黑色素拟杆菌等具良好抗菌作用,对脆弱拟杆菌的抗菌作用差。青霉素通过抑制细菌细胞壁四肽则链和五肽交连桥的结合而阻碍细胞壁合成而发挥杀菌作用。对革兰阳性菌有效,由于革兰阴性菌缺乏五肽交连桥而青霉素对其作用不大。 其中青霉素为以下感染的首选药物: 1.溶血性链球菌感染,如咽炎、扁桃体炎、猩红热、丹毒、蜂窝织炎和产褥热等 2.肺炎链球菌感染如肺炎、中耳炎、脑膜炎和菌血症等 3.不产青霉素酶葡萄球菌感染 4.炭疽 5.破伤风、气性坏疽等梭状芽孢杆菌感染 6.梅毒(包括先天性梅毒) 7.钩端螺旋体病 8.回归热 9.白喉 10.青霉素与氨基糖苷类药物联合用于治疗草绿色链球菌心内膜炎 青霉素亦可用于治疗: 1.流行性脑脊髓膜炎 2.放线菌病 3.淋病 4.奋森咽峡炎 5.莱姆病 6.多杀巴斯德菌感染 7.鼠咬热 8.李斯特菌感染 9.除脆弱拟杆菌以外的许多厌氧菌感染 风湿性心脏病或先天性心脏病患者进行口腔、牙科、胃肠道或泌尿生殖道手术和操作前,可用青霉素预防感染性心内膜炎发生【生产方法】 天然青霉素与半合成青霉素生产方法完全不同。 天然青霉素 青霉素G生产可分为菌种发酵和提取精制两个步骤。①菌种发酵:将产黄青霉菌接种到固体培养基上,在25℃下培养7~10天,即可得青霉菌孢子培养物。用无菌水将孢子制成悬浮液接种到种子罐内已灭菌的培养基中,通入无菌空;气、搅拌,在27℃下培养24~28h,然后将种子培养液接种到发酵罐已灭菌的含有苯乙酸前体的培养基中,通入无菌空气,搅拌,在27℃下培养7天。在发酵过程中需补入苯乙酸前体及适量的培养基。②提取精制:将青霉素发酵液冷却,过滤。滤液在pH2~2.5的条件下,于萃取机内用醋酸丁酯进行多级逆流萃取,得到丁酯萃取液,转入pH7.0~7.2的缓冲液中,然后再转入丁酯中,将此丁酯萃取液经活性炭脱色,加入成盐剂,经共沸蒸馏即可得青霉素G钾盐。青霉素G钠盐是将青霉素G钾盐通过离子交换树脂(钠型)而制得。 半合成青霉素 以6APA为中间体与多种化学合成有机酸进行酰化反应,可制得各种类型的半合成青霉素。 6APA是利用微生物产生的青霉素酰化酶裂解青霉素G或V而得到。酶反应一般在40~50℃、pH8~10的条件下进行;近年来,酶固相化技术已应用于6APA生产,简化了裂解工艺过程。6APA也可从青霉素G用化学法来裂解制得,但成本较高。侧链的引入系将相应的有机酸先用氯化剂制成酰氯,然后根据酰氯的稳定性在水或有机溶剂中,以无机或有机碱为缩合剂,与6APA进行酰化反应。缩合反应也可以在裂解液中直接进行而不需分离出6APA。【剂型用法和用量】 片剂:每片0.25克。胶囊剂:每粒0.25克。注射剂:每支2毫升,含药0.25克。滴眼剂:8毫克:0.02克。口服,每天成人1~2克;儿童每日按千克体重服用50~100毫克,分2~4次。肌注,成人每次0.5~1克,每天2次;儿童每日按千克体重服用25~50毫克,分2次。静脉滴注,剂量同肌注,因注射剂系以丙二醇为溶剂,用时以等渗葡萄糖注射液或生理盐水稀释至2.5毫克:毫升供用,即2毫克(0.25克)以100毫升输液稀释,并应以干燥空针抽取,以免析出结晶,稀释完后应仔细检查无结晶析出,方可使用。【不良反应】 1.主要毒性反应是抑制骨髓造血机能,引起粒细胞及血小板减少症,用药期间如发现轻度白细胞或血小板减少,应立即停药,一般可恢复。氯霉素所致的再生障碍性贫血虽少见,但难逆转,常可致死,多发生于儿童长期反复用氯霉素者,偶有用量很少而发病者。 2.过敏反应较少见,但也可引起皮疹,药物热。少数可引起黄疸,原有肝脏疾病者甚至可引起急性肝坏死。 3.可引起精神症状如幻觉、谵妄,大多发生于用药后3~5日,停药后两日内可消失。 4.口服后可发生胃肠道反应,如恶心、呕吐、腹泻、食欲不振等。【副作用】1 青霉素类的毒性很低,但较易发生变态反应,发生率约为5%�10%。多见的为皮疹、哮喘、药物热、严重的可致过敏性休克而引起死亡。 2 大剂量应用青霉素抗感染时,可出现神经精神症状,如反射亢进、知觉障碍、抽搐、昏睡等,停药或减少剂量可恢复。 3 使用青霉素前必须作皮肤过敏试验。如果发生过敏性休克,应立即皮下或肌内注射0.1%肾上腺素0.5ml~1ml,同时给氧并使用抗组胺药物及肾上腺皮质激素等。 4 肌注钾盐时局部疼痛较明显,用苯甲醇溶液作为稀释剂溶解,则可消除疼痛。 【细菌对青霉素类产生耐药性】细菌对青霉素类产生耐药性主要有三种机制:1.细菌产生β内酰胺酶,使青霉素类水解灭活;2.细菌体内青霉素作用靶位——青霉素结合蛋白发生改变;3.细胞壁对青霉素类的渗透性减低。其中以第一种机制最为常见,也最重要。青霉素类抗生素水溶性好,血消除半衰期大多不超过2小时,主要经肾排出,多数品种可经血液透析清除。按我国卫生部规定,使用青霉素类抗生素前均需做青霉素皮肤试验,阳性反应者禁用。【注意事项】 1.口服或注射给药时忌与碱性药物配伍,以免分解失效。 2.本品不宜与盐酸四环素、卡那霉素、多粘菌素E、磺胺嘧啶钠、三磷酸腺苷、辅酶A等混合静滴,以免发生沉淀或降效。 3.氯霉素与青霉素一般不要联用,因氯霉素为抑菌剂,而青霉素为繁殖期杀菌剂,联用可影响青霉素的抗菌活性而降效。但这一问题尚有争论,意见不一,因两者联用对革兰阳性菌、阴性菌混合感染及颅内感染临床效果好。解决的办法,如需联用,宜先用青霉素2~3小时后再用氯霉素。 4.由于本品可抑制某些肝脏酶的活性,因此可干扰甲苯磺丁脲、苯妥英钠和双香豆素在人体内的生物转化,可增强甲苯磺西脲、苯妥英钠的作用,对双香豆素和华法林的抗凝作用均可增强。 5.婴儿、肝、肾功能减退者慎用,妊娠末期产妇慎用,哺乳期妇女忌用。应用青霉素前除做皮试外,还要注意以下几点: 1、要到有抢救设备的正规医疗单位注射青霉素,万一发生过敏反应,可以得到及时有效的抢救治疗。在注射过程中任何时候出现头晕心慌、出汗、呼吸困难等不适,都要立即告诉医生护士。 2、注射完青霉素,至少在医院观察20分钟,无不适感才可离开。 3、不要在极度饥饿时应用青霉素,以防空腹时机体对药物耐受性降低,诱发晕针等不良反应。 4、两次注射时间不要相隔太近,以4—6小时为好。静脉点滴青霉素时,开始速度不要太快,每分钟以不超过40滴为宜,观察10—20分钟无不良反应再调整输液速度。 5、如果当天有注射青霉素史,在家中出现头晕心慌、出汗、呼吸困难等不适,应及时送医院诊治。青霉素配伍应用中的相互作用: 近年来,临床中出现滥用药物的问题,造成一些不良反应,尤其是青霉素与其他药物的配伍应用,所产生的相互作用和不良反应是不可忽视的。 1 青霉素不可与同类抗生素联用 由于它们的抗菌谱和抗菌机制大部分相似,联用效果并不相加。相反,合并用药加重肾损害,还可以引起呼吸困难或呼吸停止。它们之间有交叉抗药性,不主张两种β-内酰胺类抗生素联合应用。 2 青霉素不可与磺胺和四环素联合用药 青霉素属繁殖期“杀菌剂”,阻碍细菌细胞壁的合成,四环素属“抑菌剂”,影响菌体蛋白质的合成,二者联合作用属拮抗作用,一般情况下不应联合用药。临床资料表明单用青霉素抗菌效力为90%,单用磺胺类药效力为81%,两者联合用药抗菌效力为75%,若非特殊情况不可联合使用。 3 青霉素不可与氨基苷类联合用药 两者混合同于输液器给病人输液,因青霉素的β-内酰胺可使庆大霉素产生灭活作用,其机制为两者之间发生化学相互作用,故严禁混合应用,应采用青霉素静脉滴注,庆大霉素肌肉注射。 综上所述,青霉素联用不当,由于药物的相互作用,而导致药物不良反应是不可低估的。青霉素是治疗各种感染性疾病的最常用抗生素,严格掌握用药的适应证,合理联用,措施得力,减少不必要的不良反应。【青霉素家族】 青霉素用于临床是40年代初,人们对青霉素进行大量研究后又发现一些青霉素,当人们又对青霉素进行化学改造,得到了一些有效的半合成青霉素,70年代又从微生物代谢物中发现了一些母核与青霉素相似也含有β-内酰胺环,而不具有四氢噻唑环结构的青霉素类,可分为三代:第一代青霉素指天然青霉素,如青霉素G(苄青霉素);第二代青霉素是指以青霉素母核-6-氨基青霉烷酸(6-APA),改变侧链而得到半合成青霉素,如甲氧苯青霉素、羧苄青霉素、氨苄青霉素;第三代青霉素是母核结构带有与青霉素相同的β-内酰胺环,但不具有四氢噻唑环,如硫霉素、奴卡霉素。【青霉素浓缩法】 利用青霉素特异性地杀死野生型细胞、保留营养缺陷型细胞的方法。青霉素能抑制细菌细胞壁的合成,所以只能杀死生长繁殖中的细菌,而不能杀死停止分裂的细菌。在只能使野生型生长而不能使突变型生长的选择性液体培养基中,野生型被青霉素杀死,而突变型则不被杀死,从而淘汰野生型,使突变型得以浓缩。可适用于细菌和放线菌,是营养缺陷型突变体筛选的常用方法之一。 【岛青霉素】 稻谷在收获后如未及时脱粒干燥就堆放很容易引起发霉。发霉谷物脱粒后即形成"黄变米"或"沤黄米",这主要是由于岛青霉(Penicillium.islandicum)污染所致。黄变米在我国南方、日本和其他热带和亚热带地区比较普遍。小鼠每天口服200g受岛青霉污染的黄变米,大约一周可死于肝肥大;如果每天饲喂0.05g黄变米,持续两年可诱发肝癌。流行病学调查发现,肝癌发病率和居民过多食用霉变的大米有关。吃黄变米的人会引起中毒(肝坏死和肝昏迷)和肝硬化。岛青霉除产生岛青霉素(Silanditoxin)外,还可产生环氯素(Cyclochlorotin),黄天精(Luteoskyrin)和红天精(Erythroskyrin)等多种霉菌毒素。 岛青霉素和黄天精均有较强的致癌活性,其中黄天精的结构和黄曲霉素相似,毒性和致癌活性也与黄曲霉素相当。小鼠日服7mg/kg体重的黄天精数周可导致其肝坏死,长期低剂量摄入可导致肝癌。环氯素为含氯环结构的肽类,对小鼠经口LD50为6.55mg/kg体重,有很强的急性毒性。环氯素摄入后短时间内可引起小鼠肝的坏死性病变,小剂量长时间摄入可引起癌变。

方法名称: 青霉素钠原料药-青霉素钠-高效液相色谱法应用范围: 本方法采用高效液相色谱法测定青霉素钠原料药中青霉素钠的含量。本方法适用于青霉素钠原料药。方法原理: 供试品经水溶解并定量稀释,进入高效液相色谱仪进行色谱分离,用紫外吸收检测器,于波长225nm处检测青霉素钠的峰面积,计算出其含量。试剂: 1. 乙腈2. 磷酸3. 0.1mol/L磷酸二氢钾溶液仪器设备: 1. 仪器1.1 高效液相色谱仪1.2 色谱柱十八烷基硅烷键合硅胶为填充剂,理论塔板数按青霉素钠峰计算应不低于1600。1.3 紫外吸收检测器2. 色谱条件2.1 流动相:0.1mol/L磷酸二氢钾溶液(用磷酸调节pH值至2.5) 乙腈=70 302.2 检测波长:225nm2.3 柱温:室温2.4 流速:1mL/min试样制备: 1. 对照品溶液的制备精密称取青霉素对照品适量,加水溶解并定量稀释制成每1mL中约含0.5mg的溶液,摇匀,即为对照品溶液。2. 供试品溶液的制备精密称取供试品适量,加水溶解并定量稀释制成每1mL中约含0.5mg的溶液,摇匀,即为供试品溶液。注:“精密称取”系指称取重量应准确至所称取重量的千分之一。“精密量取”系指量取体积的准确度应符合国家标准中对该体积移液管的精度要求。操作步骤: 分别精密吸取对照品溶液和供试品溶液各10mL,注入高效液相色谱仪,用紫外吸收检测器于波长225nm处测定,其结果乘以1.0658,即为供试品中C16H17N2NaO4S的含量。每1mg的C16H17N2NaO4S相当于1670青霉素单位。参考文献: 中华人民共和国药典,国家药典委员会编,化学工业出版社,2005版,二部,p.312。

论化学与人类的密切相关性这一论文需要从化学的定位、人类的日常活动、化学与人类日常生活的关联三大部分去展开。用词要求相对客观、准确、精炼。

正文:

化学是最重要的基础学科之一,化学与众多领域都有很强的相关性,在生命体中有化学、在衣食住行中有化学、在日常生活及环境中有化学,我们身边无时无刻都存在着化学反应,化学与人类及人类活动都密切相关。

化学和物理一样是自然科学的基础学科。化学是建立在实验的基础上的一门自然学科,化学所涉及到的领域非常多,不只是我们的衣食住行离不开化学,化学还与很多学科互相渗透,如物理学、生物学、地理学等,也推动了其他学科和技术的发展。

化学主要是研究物质的性质、组成、结构、变化,以及物质间相互作用,认识物质的结构与性能,开发新的反应和合成技术,提供具有各种功能的材料。如:人类衣食住行的改善,“两弹一星”的研制,医药新技术的开发,DNA序列的分析等都紧密依赖化学学科的进步。

化学专业的基础课程有:无机化学、分析化学、仪器分析、有机化学、物理化学、高分子科学、结构化学、纳米功能材料等,以及无机化学实验、分析化学实验、仪器分析实验、有机化学实验、物理化学实验等实验性课程。

化学的研究方向较多,不同的学校课程开设会略有不同。

以武汉大学为例,化学专业必修的课有:

无机化学、分析化学、物理化学、有机化学、结构化学、化学实验安全技术、无机化学实验、分析化学实验、物理化学实验、有机化学实验、分子模拟实验、化工基础、化工基础实验、综合化学实验等。

化学专业选修课有:生物化学、高分子科学导论、有机波谱分析、中级有机化学、中级无机化学、中级物理化学、现代分析化学、材料化学、表面化学、生物无机化学、生物有机化学、化学生物学导论、有机合成化学、化学分离技术、能源化学、功能高分子、量子化学、工业电化学、现代电化学、高分子合成与表征等。

化学专业旨在培养具有良好人文和科学素质,具有社会责任感,创新意识和实践能力强,掌握化学基本知识、基本理论和基本技能,身心健康,能胜任化学及相关领域科研、教学及其他工作的人才。

化学专业学制一般为四年制,毕业后授予理学士学位。

主要就业方向包括如下几个方面:

1、从事化工产品生产的工艺试验、工业设计和生产技术组织的技术人员。化学工业是现今众多产业发展的基础,在国民经济中占有重要地位,是国家的基础产业和支柱产业,虽然近几年化工行业发展有些低迷,但就现有的整个行业的体量来说能够提供的就业岗位还是非常多的,收入方面相对也不错。

2、国内中小学校或教育培训机构,从事化学学科教师教学工作,从事教学工作是大部分师范院校化学专业毕业生的首选。近几年培训行业现今正处于高速发展的阶段,不论线上还是线下都发展迅速,进入培训机构也是一个选择。

3、从事药品研发、药品化学工艺合成及药品生产等工作,进入医药企业的学生不仅仅在化学方面学习出色,在生物方面也要有一定的实力,一般本科生大部分可以从事的工作多为辅助类的工作。此类工作在专业技术方面有较高的要求。

4、也可以继续深造,未来进入相关领域实验室或高校,继续从事相关领域研究或教学工作。

相关百科

热门百科

首页
发表服务