一、多分量力传感器多分量也分二分量、三分量、四分量、六分量,通常也说轴力、维力,比如六维力、六轴力,多分量传感器广泛应用在力学中,可以测量三个方向或者多个方向的力和力矩,适用于控制抓握力、机器人技术和制造技术中的许多应用,也可根据客户的要求定制不同的需求。二、扭矩传感器扭矩传感器也是力学行业中使用范围很广的传感器。扭矩传感器分为动态扭矩和静态扭矩,动态扭矩顾名思义为动态可测量扭矩力,而静态反之,除此之外,扭矩也有不同的安装方式,法兰型和轴型,方便不同工件组装,扭矩传感器也可以直接连接电脑,USB输出,可通过其他采集软件输出数据,可用于测量扭矩,轴向力,转速,角度和转子温度值。三、加速度传感器加速度传感器也叫加速度计,可用于地震检波器设计、汽车测试、动平衡、航空测试等领域,常见有单轴加速度,三轴加速度,可根据实际需求选择。
在万方数据库里面搜啊很多的
毕业论文题目的选定不是一下子就能够确定的,那通信类的毕业论文的题目要怎么选择呢?下文是我为大家整理的关于通信工程毕业论文选题的内容,欢迎大家阅读参考!
通信工程毕业论文选题
1. 智能压力传感器系统设计
2. 智能定时器
3. 液位控制系统设计
4. 液晶控制模块的制作
5. 嵌入式激光打标机运动控制卡软件系统设计
6. 嵌入式激光打标机运动控制卡硬件系统设计
7. 基于单片机控制的数字气压计的设计与实现
8. 基于MSC1211的温度智能温度传感器
9. 机器视觉系统
10. 防盗与恒温系统的设计与制作
12. AT89S52单片机实验系统的开发与应用
13. 在单片机系统中实现SCR(可控硅)过零控制
14. 微电阻测量系统
15. 基于单片机的电子式转速里程表的设计
16. 基于GSM短信模块的家庭防盗报警系统
17. 公交车汉字显示系统
18. 基于单片机的智能火灾报警系统
19. WIN32环境下对PC机通用串行口通信的研究及实现
20. FIR数字滤波器的MATLAB设计与实现方法研究
21. 无刷直流电机数字控制系统的研究与设计
22. 直线电机方式的地铁模拟地铁系统制作
23. 稳压电源的设计与制作
24. 线性直流稳压电源的设计
25. 基于CPLD的步进电机控制器
26. 全自动汽车模型的设计制作
27. 单片机数字电压表的设计
28. 数字电压表的设计
29. 计算机比值控制系统研究与设计
30. 模拟量转换成为数字量的红外传输系统
31. 液位控制系统研究与设计
32. 基于89C2051 IC卡读/写器的设计
33. 基于单片机的居室安全报警系统设计
34. 模拟量转换成为数字量红外数据发射与接收系统
35. 有源功率因数校正及有源滤波技术的研究
36. 全自动立体停车场模拟系统的制作
37. 基于I2C总线气体检测系统的设计
38. 模拟量处理为数字量红外语音传输接收系统的设计
39. 精密VF转换器与MCS-51单片机的接口技术
40. 电话远程监控系统的研究与制作
41. 基于UCC3802的开关电源设计
42. 串级控制系统设计
43. 分立式生活环境表的研究与制作(多功能电子万年历)
44. 高效智能汽车调节器
45. 变速恒频风力发电控制系统的设计
46. 全自动汽车模型的制作
47. 信号源的设计与制作
48. 智能红外遥控暖风机设计
49. 基于单片控制的交流调速设计
50. 基于单片机的多点无线温度监控系统
51. 蔬菜公司恒温库微机监控系统
52. 数字触发提升机控制系统
53. 农业大棚温湿度自动检测
54. 无人监守点滴自动监控系统的设计
55. 积分式数字电压表设计
56. 智能豆浆机的设计
57. 采用单片机技术的脉冲频率测量设计
58. 基于DSP的FIR滤波器设计
59. 基于单片机实现汽车报警电路的设计
60. 多功能数字钟设计与制作
61. 超声波倒车雷达系统硬件设计
62. 基于AT89C51单片机的步进电机控制系统
63. 模拟电梯的制作
64. 基于单片机程控精密直流稳压电源的设计
65. 转速、电流双闭环直流调速系统设计
66. 噪音检测报警系统的设计与研究
67. 转速闭环(V-M)直流调速系统设计
68. 基于单片机的多功能函数信号发生器设计
69. 基于单片机的超声波液位测量系统的设计
70. 仓储用多点温湿度测量系统
71. 基于单片机的频率计设计
72. 基于DIMM嵌入式模块在智能设备开发中的应用
73. 基于DS18B20的多点温度巡回检测系统的设计
74. 计数及数码显示电路的设计制作
75. 矿井提升机装置的设计
76. 中频电源的设计
77. 数字PWM直流调速系统的设计
78. 开关电源的设计
79. 基于ARM的嵌入式温度控制系统的设计
80. 锅炉控制系统的研究与设计
81. 智能机器人的研究与设计 --\u001F自动循轨和语音控制的实现
82. 基于CPLD的出租车计价器设计--软件设计
83. 声纳式高度计系统设计和研究
84. 集约型无绳多元心脉传感器研究与设计
85. CJ20-63交流接触器的工艺与工装
86. 六路抢答器设计
87. V-M双闭环不可逆直流调速系统设计
88. 机床润滑系统的设计
89. 塑壳式低压断路器设计
90. 直流接触器设计
91. SMT工艺流程及各流程分析介绍
92. 大棚温湿度自动控制系统
93. 基于单片机的短信收发系统设计 ――硬件设计
94. 三层电梯的单片机控制电路
95. 交通灯89C51控制电路设计
96. 基于D类放大器的可调开关电源的设计
97. 直流电动机的脉冲调速
98. 红外快速检测人体温度装置的设计与研制
99. 基于8051单片机的数字钟
100. 48V25A直流高频开关电源设计
基于PLC的恒压供水系统设计摘要随着人民生活水平的日趋提高,新技术和先进设备的应用,使给供水设计得到了发展的机遇。于是选择一种符合各方面规范、卫生安全而又经济合理的供水方式,对我们给供水设计带来了新的挑战。本系统采用PLC进行逻辑控制,采用带PID功能的变频器进行压力调节,系统存在工作可靠,使用方便,压力稳定,无冲击等优越性。本设计恒压变频供水设备由PLC、变频器、传感器、低压电气控制柜和水泵等组成。通过PLC、变频器、继电器、接触器控制水泵机组运行状态,实现管网的恒压变流量供水要求。设备运行时,压力传感器不断将管网水压信号变换成电信号送入PLC,经PLC运算处理后,获得最佳控制参数,通过变频器和继电器控制元件自动调整水泵机组高效率地运行。供水系统的监控主要包括水泵的自动启停控制、供水压力的测量与调节、系统主管道水压的;系统水处理设备运转的监视、控制;故障及异常状况的报警等。现场监控站内的控制器按预先编制的软件程序来满足自动控制的要求,即根据供水管的高/低水压位信号来控制水泵的启/停及进水控制阀的开关,并且进行溢水和枯水的预警等。文中详细介绍了所选PLC机、变频器、传感器的特点、各高级单元的使用及设定情况,给出了系统工作流程图、程序设计流程图及设计程序。关键词:可编程控制器;变频器;传感器目录1前言11.1供水系统发展过程及现状11.2供水系统的概述21.2.1.变频恒压供水系统主要特点:21.2.3.恒压供水设备的主要应用场合:21.2.4.恒压供水技术实现:32系统总体设计方案42.1系统设计方案42.1.1系统控制要求42.1.2控制方案42.1.3运行特征52.1.4系统方案52.2可编程控制器(PLC)的特点及选型72.2.1PLC特点及应用72.2.2可编程控制器的选型82.2.3.PLCCPM2A模拟量输入/输出单元122.3变频器选型及特点152.3.1ABB产品信息:152.3.2变频节能理论:152.3.3.变频恒压供水系统及控制参数选择:162.3.4.变频恒压供水系统的优点及体现172.4远传压力表192.4.1主要技术指标192.4.2结构原理192.5系统控制流程设计202.5.1系统组成及作用202.5.2系统运行过程203软件设计243.1系统中检测及控制开关I/O分配243.2I/O地址及标志位分配表253.3流程图283.4程序设计:294.结论43致谢44参考文献45
摘要本设计的温度测量计加热控制系统以AT89S52单片机为核心部件,外加温度采集电路、键盘显示电路、加热控制电路和越限报警等电路。采用单总线型数字式的温度传感器DSI8B20,及行列式键盘和动态显示的方式,以容易控制的固态继电器作加热控制的开关器件。本作品既可以对当前温度进行实时显示又可以对温度进行控制,以使达到用户需要的温度,并使其恒定再这一温度。人性化的行列式键盘设计使设置温度简单快速,两位整数一位小数的显示方式具有更高的显示精度。建立在模糊控制理论控制上的控制算法,是控制精度完全能满足一般社会生产的要求。通过对系统软件和硬件设计的合理规划,发挥单片机自身集成众多系统及功能单元的优势,再不减少功能的前提下有效的降低了硬件的成本,系统操控更简便。实验证明该温控系统能达到0.2℃的静态误差,0.45℃的控制精度,以及只有0.83%的超调量,因本设计具有很高的可靠性和稳定性。关键词:单片机 恒温控制 模糊控制引言温度是工业控制中主要的被控参数之一,特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足重轻的作用。随着电子技术和微型计算机的迅速发展,微机测量和控制技术得到了迅速的发展和广泛的应用。 采用单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。MSP430系列单片机具有处理能强、运行速度快、功耗低等优点,应用在温度测量与控制方面,控制简单方便,测量范围广,精度较高。温度传感器将温度信息变换为模拟电压信号后,将电压信号放大到单片机可以处理的范围内,经过低通滤波,滤掉干扰信号送入单片机。在单片机中对信号进行采样,为进一步提高测量精度,采样后对信号再进行数字滤波。单片机将检测到的温度信息与设定值进行比较,如果不相符,数字调节程序根据给定值与测得值的差值按PID控制算法设计控制量,触发程序根据控制量控制执行单元。如果检测值高于设定值,则启动制冷系统,降低环境温度;如果检测值低于设定值,则启动加热系统,提高环境温度,达到控制温度的目的。图形点阵式液晶可显示用户自定义的任意符号和图形,并可卷动显示,它作为便携式单片机系统人机交互界面的重要组成部分被广泛应用于实时检测和显示的仪器仪表中。支持汉字显示的图形点阵液晶在现代单片机应用系统中是一种十分常用的显示设备,汉字BP机、手机上的显示屏就是图形点阵液晶。它与行列式小键盘组成了现代单片机应用系统中最常用的人机交互界面。本文设计了一种基于MSP430单片机的温度测量和控制装置,能对环境温度进行测量,并能根据温度给定值给出调节量,控制执行机构,实现调节环境温度的目的。━、硬件设计1:MSP430系列单片机简介及选型单片机即微控制器,自其开发以来,取得了飞速的发展。单片机控制系统在工业、交通、医疗等领域的应用越来越广泛,在单片机未开发之前,电子产品只能由复杂的模拟电路来实现,不仅体积大,成本高,长期使用后元件老化,控制精度大大降低,单片机开发以后,控制系统变为智能化了,只需要在单片机外围接一点简单的接口电路,核心部分只是由人为的写入程序来完成。这样产品体积变小了,成本也降低了,长期使用也不会担心精度达不到了。特别是嵌入式技术的发展,必将为单片机的发展提供更广阔的发展空间,近年来,由于超低功耗技术的开发,又出现了低功耗单片机,如MSP430系列、ZK系列等,其中的MSP430系列单片机是美国德州仪器(TI)的一种16位超低功耗单片机,该单片机
我也出现过这种情况,就是不停的在扫描,数码管在闪烁,但没有查出来原因,有可能是代码问题,有可能是代码和你的电路不符合一至,你可以用电表把作品查一遍,是否是某一个拐角接错了,电平不对,导致局部电流不通,芯片的拐角作用都清楚吗?如果硬件没问题,那就应该是上述的两种可能了。
单片机毕业论文答辩陈述
难忘的大学生活将要结束,毕业生都要通过最后的毕业论文,毕业论文是一种有计划的检验大学学习成果的形式,那么毕业论文应该怎么写才合适呢?以下是我为大家收集的单片机毕业论文答辩陈述,仅供参考,希望能够帮助到大家。
单片机毕业论文答辩陈述
各位老师好!我叫刘天一,来自**,我的论文题目是《基于AVR单片机的GSM—R基站天线倾角测量系统》。在这里,请允许我向宁提纲老师的悉心指导表示深深的谢意,向各位老师不辞劳苦参加我的论文答辩表示衷心的感谢。
下面我将从论文的背景意义、结构内容、不足之处三个方面向各位老师作一大概介绍,恳请各位老师批评指导。
首先,在背景和意义上,移动通信网络建设初期,基站站间距大、数量少、站型也不大,并且频率资源相对比较丰富。在这一阶段的网络规划时很少对天线的倾角做详细的规划,基站功率常常以满功率发射。对于越区覆盖则主要通过增加邻区的办法予以解决。
但随着网络的迅速发展,城市中的基站越来越密集,在一个中等城市通常分布着数十个基站,在省会城市更是达到了数百个基站之多,并且基站的密度越来越高,站型也越来越大,如果对越区覆盖的问题仍然釆用老办法解决,那么网络质量将难以保证。因此有必要在规划阶段就对基站天线的倾角、基站静态发射功率等进行更加细化合理的规划,从而减轻优化阶段的工作量。
合理设置天线下倾角不但可以降低同频干扰的影响,有效控制基站的覆盖范围,而且可以加强本基站覆盖区内的信号强度。通常天线下倾角的设定有两方面侧重,一方面侧重于干扰抑制,另一方面侧重于加强覆盖。这两方面侧重分别对应不同的下倾角算法。一般而言,对基站分布密集的地区应该侧重于考虑干扰抑制(大下倾角);而基站分布比较稀疏的地方则侧重于考虑加强覆盖(小下倾角)。
规划阶段进行的倾角设计,在实际施工过程中会出现一定的偏差,在使用的过程中,由于季节变化或风、雨、雪、温度、湿度等自然条件影响,基站天线倾角会发生变化,进而影响场强质量。而移动通信已经是人类日常生活中不可或缺的一部分,正常的通信离不开基站的建设与维护,因此,基站天线倾角的实时、精确测量就显得尤为重要了。但现阶段移动通信基站的天线方位角、下倾角等基本是依靠人工现场通过罗盘、坡度仪等仪器进行测量得到的,而且由于基站的数量巨大,因而测量耗费了大量的时间、人力、物力,并且存在较大的测量人员人身安全隐患。因此,实现一种省时、省力的自动化测量仪器是非常亟需的。
为此,拟研发GSM—R基站天线倾角测量系统,实现不登塔作业即可完成基站天线倾角的测量工作,并可对各基站测试点进行联网,实现对基站天线倾角的实时监测。本系统可以大大降低GSM—R系统现场维护作业的人身安全风险和作业难度、强度,具有很高的实用性和安全性。
其次,在结构内容上,论文主要对基站倾角测量系统进行设计,主要研宄内容为:
(1)根据控制要求,选用倾角测量模块;学会使用并通过使用手册深入学习其特性及原理。
(2)采用ATmegal62作为控制芯片,进行倾角测量系统的硬件电路设计。整个系统分为主板和从板,通过芯片内置的TWI串行总线传输接口进行通信,由主板将数据通过无线模块发送给手持终端。
(3)采用JZ863数传模块,将其与上位机控制芯片、下位机控制芯片的异步串行接收/发送器USART连接,进行上位机与下位机的无线数据通信。
(4)在硬件平台基础上根据模块化思想进行倾角测量系统的软件程序设计。
(5)在设计好的软硬件平台上进行相关实验,实现控制系统设计目标和要求。
本文各章节安排如下:
第1章“引言”,对倾角测量系统进行了简要概述,介绍了研宄背景,并对本文的内容作了简介。
第2章“倾角测量传感器”,主要分析了本系统比较重要的倾角测量模块的原理以及SCA100T—D01倾角测量芯片,对其各个引脚的功能以及通信协议等进行了阐述,为后面的具体实现打下了基础。
第3章“ATmegal62微处理器结构及原理”,分析了本毕设使用的核心单片机芯片ATmegal62,包括它的各个引脚以及I/O端口,并且分析了本论文主要使用的通信协议,即同步串行SPI接口和USART串行口。
第4章“倾角测量系统软硬件实现”,本章首先对系统的总体设计进行了实现,包括主要的技术指标、主要的功能模块等。接着进行了本系统的硬件实现和软件实现。硬件实现包括各个功能模块的具体电路设计以及最后的PCB电路板制作,软件实现包括各个功能模块的程序设计。
第5章“倾角测量系统调试及实验”,本章主要进行了硬件电路的调试,并介绍了通过AVR Studio进行软件仿真以及下载,最后在搭建的系统软硬件平台的基础上,进行调试和实验,以此来验证基站倾角测量系统的硬件与软件设计。
第6章“结论”,本章主要总结了本论文的研究结果,并阐述了系统的不足之处和对以后工作的展望。
最后,在不足之处上,这篇论文的写作以及修改的过程,也是我越来越认识到自己知识与经验缺乏的过程。虽然,我尽可能地收集材料,竭尽所能运用自己所学的知识进行论文写作,但论文还是存在许多不足之处,有待改进。请各位评委老师多批评指正,让我在今后的学习中学到更多。
[知识拓展]
论文答辩提问方式
在毕业论文答辩会上,主答辩老师的提问方式会影响到组织答辩会目的的实现以及学员答辩水平的发挥。主答辩老师有必要讲究自己的提问方式。
1、提问要贯彻先易后难原则。主答辩老师给每位答辩者一般要提三个或三个以上的问题,这些要提的问题以按先易后难的次序提问为好。所提的第一个问题一般应该考虑到是学员答得出并且答得好的问题。学员第一个问题答好,就会放松紧张心理,增强“我”能答好的信心,从而有利于在以后几个问题的答辩中发挥出正常水平。反之,如果提问的第一个问题就答不上来,学员就会背上心理包袱,加剧紧张,产生慌乱,这势必会影响到对后面几个问题的答辩,因而也难以正确检查出学员的答辩能力和学术水平。
2、提问要实行逐步深入的方法。为了正确地检测学员的专业基础知识掌握的情况,有时需要把一个大问题分成若干个小问题,并采取逐步深入的提问方法。如有一篇《浅论科学技术是第一生产力》的论文,主答辩老师出的探测水平题,是由以下四个小问题组成的。
(1)什么是科学技术?
(2)科学技术是不是生产力的一个独立要素?在学员作出正确回答以后,紧接着提出第三个小问题:
(3)科学技术不是生产力的一个独立要素,为什么说它也是生产力呢?
(4)你是怎样理解科学技术是第一生产力的?通过这样的提问,根据学员的答辩情况,就能比较正确地测量出学员掌握基础知识的扎实程度。如果这四个小问题,一个也答不上,说明该学员专业基础知识没有掌握好;如果四个问题都能正确地回答出来,说明该学员基础知识掌握得很扎实;如果能回答出其中的2—3个,或每个小问题都能答一点,但答得不全面,或不很正确,说明该学员基础知识掌握得一般。倘若不是采取这种逐步深入的提问法,就很难把一个学员掌握专业基础知识的情况准确测量出来。假如上述问题采用这样提问法:请你谈谈为什么科学技术是第一生产力?学员很可能把论文中的主要内容重述一遍。这样就很难确切知道该学员掌握基础知识的情况是好、是差、还是一般。
3、当答辩者的观点与自己的观点相左时,应以温和的态度,商讨的语气与之开展讨论,即要有“长者”风度,施行善术,切忌居高临下,出言不逊。不要以“真理”掌握者自居,轻易使用“不对”、“错了”、“谬论”等否定的断语。要记住“是者可能非,非者可能有是”的格言,要有从善如流的掂量。如果作者的观点言之有理,持之有据,即使与自己的观点截然对立,也应认可并乐意接受。倘若作者的观点并不成熟、完善,也要善意地、平和地进行探讨,并给学员有辩护或反驳的平等权利。当自己的观点不能为作者接受时,也不能以势欺人,以权压理,更不要出言不逊。虽然在答辩过程中,答辩老师与学员的地位是不平等的(一方是审查考核者,一方是被考核者),但在人格上是完全平等的。在答辩中要体现互相尊重,做到豁达大度,观点一时难以统一,也属正常。不必将自己的观点强加于人,只要把自己的观点亮出来,供对方参考就行。事实上,只要答辩老师讲得客气、平和,学员倒愈容易接受、考虑你的观点,愈容易重新审视自己的观点,达到共同探索真理的目的。
4、当学员的回答答不到点子上或者一时答不上来的问题,应采用启发式、引导式的提问方法。参加过论文答辩委员会的老师可能都遇到过这样的情况:学员对你所提的问题答不上来,有的就无可奈何地“呆”着;有的是东拉西扯,与你绕圈子,其实他也是不知道答案。碰到这种情况,答辩老师既不能让学员尴尬地“呆”在那里,也不能听凭其神聊,而应当及时加以启发或引导。学员答不上来有多种原因,其中有的是原本掌握这方面的知识只是由于问题完全出乎他的意料而显得心慌意乱,或者是出现一时的“知觉盲点”而答不上来。这时只要稍加引导和启发,就能使学员“召回”知识,把问题答好。只有通过启发和引导仍然答不出或答不到点子上的,才可判定他确实不具备这方面的知识。
【拓展】
单片机毕业论文开题报告参考
1. 课题名称:
数字钟的设计
近年来,随着单片机档次的不断提高,功能的不断完善,其应用日趋成熟、应用领域日趋广泛,特别是工业测控、尖端武器和日常家用电器等领域更是因为有了单片机而生辉增色,不少设备、仪器已经把单片机作为核心部分。单片机应用技术已经成为一项新的工程应用技术。尤其是Intel公司生产的MCS-51系列单片机,由于其具有集成度高、处理功能强、可靠性高、系统结构简单、价格低廉等优点,在我国得到了广泛的`应用,在智能仪器仪表机电一体化等方面取得了令人瞩目的成果。现在单片机可以说是百花齐放,百家争鸣,世界上各大芯片制造公司都推出了自己的单片机,从8位,16位,到32位,数不胜数,应有尽有由于主流C51兼容的,也有不兼容的,但他们各具特色,互成互补,为单片机的应用提供了广泛的天地。在高节奏发展的现代社会,以单片机技术为核心的数字钟越来越彰显出它的重要性。
3. 设计目的和意义:
单片机的出现具有划时代的意义。它的出现使得许多原本花费很高的复杂电路以及繁多的电气元器件都被取缔,取而代之的是一块小小的芯片。伴随着计算机技术的不断发展,单片机也得到了相应的发展,而且其应用的领域也得到更好的扩展。在民用,工用,医用以及军用等众多领域上都有所应用。为了,能够更好的适应这日新月异的社会,我们应当充实我们的知识面,方能不被时代的潮流踩在脚下。
介于单片机的重要性,我们应当对单片机的原理,发展以及应用有着一定的了解。所以,我们应当查阅相关资料,从而能够对单片机有个全方位的了解。进而将探讨的领域指向具体的国内,从而能够在科技与经济飞速发展的当今社会更好的应用这项技术。事实上,该项技术在国内有着极为广泛的发展前景,因此,通过对本课题的研究,我们因当能够充分认识到单片机技术的重要性,对单片机未来的发展趋势有所展望。
单片机的形成背景:
1.随着微电子技术的不断创新和发展,大规模集成电路的集成度和工艺水平不断提高。硅材料与人类智慧的结合,生产出大批量的低成本、高可靠性和高精度的微电子结构模块,推动了一个全新的技术领域和产业的发展。在此基础上发展起来的器件可编程思想和微处理(器)技术可以用软件来改变和实现硬件的功能。微处理器和各种可编程大规模集成专用电路、半定制器件的大量应用,开创了一个崭新的应用世界,以至广泛影响着并在逐步改变着人类的生产、生活和学习等社会活动。
2.计算机硬件平台性能的大幅度提高,使很多复杂算法和方便使用的界面得以实现,大大提高了工作效率,给复杂嵌入式系统辅助设计提供了物理基础。
3.高性能的EDA综合开发工具(平台)得到长足发展,而且其自动化和智能化程度不断提高,为复杂的嵌入式系统设计提供了不同用途和不同级别集编辑、布局、布线、编译、综合、模拟、测试、验证和器件编程等一体化的易于学习和方便使用的开发集成环境。
4.硬件描述语言HDL(Hardware Description Language)的发展为复杂电子系统设计提供了建立各种硬件模型的工作媒介。它的描述能力和抽象能力强,给硬件电路,特别是半定制大规模集成电路设计带来了重大的变革。
5.软件技术的进步,特别是嵌入式实时操作系统EOS(Embedded Operation System)的推出,为开发复杂嵌入式系统应用软件提供了底层支持和高效率开发平台。EOS是一种功能强大、应用广泛的实时多任务系统软件。它一般都具有操作系统所具有的各种系统资源管理功能,用户可以通过应用程序接口API调用函数形式来实现各种资源管理。用户程序可以在EOS的基础上开发并运行。
单片机的发展历史:20世纪70年代,微电子技术正处于发展阶段,集成电路属于中规模发展时期,各种新材料新工艺尚未成熟,单片机仍处在初级的发展阶段,元件集成规模还比较小,功能比较简单,一般均把CPU、RAM有的还包括了一些简单的I/O口集成到芯片上,它还需配上外围的其他处理电路方才构成完整的计算系统。类似的单片机还有Z80微处理器。
1976年INTEL公司推出了MCS-48单片机,这个时期的单片机才是真正的8位单片微型计算机,并推向市场。它以体积小,功能全,价格低赢得了广泛的应用,为单片机的发展奠定了基础,成为单片机发展史上重要的里程碑。
在MCS-48的带领下,其后,各大半导体公司相继研制和发展了自己的单片机。到了80年代初,单片机已发展到了高性能阶段,象INTEL公司的MCS-51系列,Motorola公司的6801和6802系列等等,此外,日本的著名电气公司NEC和HITACHI都相继开发了具有自己特色的专用单片机。
80年代,世界各大公司均竞相研制出品种多功能强的单片机,约有几十个系列,300多个品种,此时的单片机均属于真正的单片化,大多集成了CPU、RAM、ROM、数目繁多的I/O接口、多种中断系统,甚至还有一些带A/D转换器的单片机,功能越来越强大,RAM和ROM的容量也越来越大,寻址空间甚至可达64kB,可以说,单片机发展到了一个全新阶段,应用领域更广泛,许多家用电器均走向利用单片机控制的智能化发展道路。
1982年以后,16位单片机问世,代表产品是INTEL公司的MCS-96系列,16位单片机比起8位机,数据宽度增加了一倍,实时处理能力更强,主频更高,集成度达到了12万只晶体管,RAM增加到了232字节,ROM则达到了8kB,并且有8个中断源,同时配置了多路的A/D转换通道,高速的I/O处理单元,适用于更复杂的控制系统。
九十年代以后,单片机获得了飞速的发展,世界各大半导体公司相继开发了功能更为强大的单片机。美国Microchip公司发布了一种完全不兼容MCS-51的新一代PIC系列单片机,引起了业界的广泛关注,特别它的产品只有33条精简指令集吸引了不少用户,使人们从INTEL的111条复杂指令集中走出来。PIC单片机获得了快速的发展,在业界中占有一席之地。
随后的事情,熟悉单片机的人士都比较清楚了,更多的单片机种蜂拥而至,MOTOROLA公司相继发布了MC68HC系列单片机,日本的几个著名公司都研制出了性能更强的产品,但日本的单片机一般均用于专用系统控制,而不象INTEL等公司投放到市场形成通用单片机。例如NEC公司生产的uCOM87系列单片机,其代表作uPC7811是一种性能相当优异的单片机。MOTOROLA公司的MC68HC05系列其高速低价等特点赢得了不少用户。
1990年美国INTEL公司推出了80960超级32位单片机引起了计算机界的轰动,产品相继投放市场,成为单片机发展史上又一个重要的里程碑。
我国开始使用单片机是在1982年,短短五年时间里发展极为迅速。1986年在上海召开了全国首届单片机开发与应用交流会,有的地区还成立了单片微型计算机应用协会,那是全国形成的第一次高潮。截止今日,单片机应用技术飞速发展,我们上因特网输入一个“单片机”的搜 索,将会看到上万个介绍单片机的网站,这还不包括国外的。随着微电子技术的高速发展,单片机在国民经济的各个领域得到了广泛的应用。首先,单片机技术不断进步,出现了许多新的技术和新的产品。本文以Intel MCS-51系列单片机为模型,阐述单片机的一般原理、应用以及单片机的影响,较为详细地介绍当前主要单片机厂家的产品系列及发展动向。主要内容包括:单片机的基本原理、硬件结构、发展趋势以及具体的应用介绍。本文主要目的是想让大家对单片机有一个更为深入的了解。
科技的进步需要技术不断的提升。试想,曾经一块大而复杂的模拟电路花费了您巨大的精力,繁多的元器件增加了您的成本。而现在,只需要一块几厘米见方的单片机,写入简单的程序,就可以使您以前的电路简单很多。相信您在使用并掌握了单片机技术后,不管在您今后开发或是工作上,一定会带来意想不到的惊喜。
数字钟的发展:1350年6月6日,意大利人乔万尼·德·党笛制造了世界上第一台结构简单的机械打点多功能数字钟,由于数字钟报价便宜,功能齐全,因此很快受到众多用户的喜爱。1657年,荷兰人惠更斯率先把重力摆引入机械钟,进而才创立了摆钟。
到了20世纪以后,随着电子工业的快速发展,电池驱动钟、交流电钟、电机械表、指针式石英电子钟表以及数字显示式石英钟表相继问世,数字钟报价非常合理,再加上产品的不断改良,多功能数字钟的日差已经小于0.5秒,因此受到广大用户的青睐。尤其是原子钟的出现,它是使用原子的振动来控制计时的,是目前世界上最精准的时钟,即使经过将近100万年,其偏差也不可能超过1秒钟。
多功能数字钟最早是在欧洲中世纪的教堂,属于完全机械式结构,动力使用重锤,打点钟声完全使用人工进行撞击铸钟,所以当时一个多功能数字钟工程在建筑与机械结构方面是非常复杂的,进而影响了数字钟报价。进入电子时代以后,电子多功能数字钟也相继问世。我国电子多功能数字钟行业从80年代开始渐渐成长壮大,目前不仅数字钟报价合理,在技术和应用水平上也已经达到世界同类水平。
4. 国内外现状和发展趋势:
纵观单片机的发展过程,可以预示单片机的发展趋势,大致有:
1.低功耗CMOS化
MCS-51系列的8031推出时的功耗达630mW,而现在的单片机普遍都在100mW左右,随着对单片机功耗要求越来越低,现在的各个单片机制造商基本都采用了CMOS(互补金属氧化物半导体工艺)。象80C51就采用了HMOS(即高密度金属氧化物半导体工艺)和CHMOS(互补高密度金属氧化物半导体工艺)。CMOS虽然功耗较低,但由于其物理特征决定其工作速度不够高,而CHMOS则具备了高速和低功耗的特点,这些特征,更适合于在要求低功耗象电池供电的应用场合。所以这种工艺将是今后一段时期单片机发展的主要途径。
2.微型单片化
现在常规的单片机普遍都是将中央处理器(CPU)、随机存取数据存储(RAM)、只读程序存储器(ROM)、并行和串行通信接口,中断系统、定时电路、时钟电路集成在一块单一的芯片上,增强型的单片机集成了如A/D转换器、PMW(脉宽调制电路)、WDT(看门狗)、有些单片机将LCD(液晶)驱动电路都集成在单一的芯片上,这样单片机包含的单元电路就更多,功能就越强大。甚至单片机厂商还可以根据用户的要求量身定做,制造出具有自己特色的单片机芯片。
此外,现在的产品普遍要求体积小、重量轻,这就要求单片机除了功能强和功耗低外,还要求其体积要小。现在的许多单片机都具有多种封装形式,其中SMD(表面封装)越来越受欢迎,使得由单片机构成的系统正朝微型化方向发展。
3.主流与多品种共存
现在虽然单片机的品种繁多,各具特色,但仍以80C51为核心的单片机占主流。所以C8051为核心的单片机占据了半壁江山。而Microchip公司的PIC精简指令集(RISC)也有着强劲的发展势头,中国台湾的HOLTEK公司近年的单片机产量与日俱增,与其低价质优的优势,占据一定的市场分额。此外还有MOTOROLA公司的产品,日本几大公司的专用单片机。在一定的时期内,这种情形将得以延续,将不存在某个单片机一统天下的垄断局面,走的是依存互补,相辅相成、共同发展的道路。
电子信息工程]基于单片机超声波测距仪 摘 要随着科学技术的快速发展,超声波将在科学技术中的应用越来越广。本文对超声波传感器测距的可能性进行了理论分析,利用模拟电子、数字电子、微机接口、超声波换能器、以及超声波在介质的传播特性等知识,采用以AT89C51单片机为核心的低成本、高精度、微型化数字显示超声波测距仪的硬件电路和软件设计方法在此基础上设计了系统的总体方案,最后通过硬件和软件实现了各个功能模块。相关部分附有硬件电路图、程序流程图。为了保证超声波测距传感器的可靠性和稳定性,采取了相应的抗干扰措施。就超声波的传播特性,超声波换能器的工作特性、超声波发射、接收、超声微弱信号放大、波形整形、速度变换、语音提示电路及系统功能软件等做了详细说明。该测距仪最大测量距离是6米,精确度是0.1mm。这套系统软硬件设计合理、抗干扰能力强、实时性良好,经过系统扩展和升级,可以用于倒车雷达、建筑施工工地以及一些工业现场,例如:测量液位、井深、管道长度等场合。可以广泛应用于工业生产、医学检查、日常生活、无人驾驶汽车、自动作业现场的自动引导小车、机器人、液位计等。关键词: AT89C51,超声波,传感器,LED目 录第1章 前言 41.1概述 41.2超声波测距特性 51.2.1 超声波用于距离测量的优势 51.2.2 超声波测距仪 51.3设计要求 61.3.1 内容及任务 61.3.2 拟达到的要求或技术指标 6第2章 总体设计 62.1方案的选择 62.1.1传感器的选择 62.1.2单片机的选择 72.2 超声波测距的原理 82.3总体设计框图 9第3章 硬件电路设计 113.1 AT89C51系列单片机的应用 113.传感器的应用 123.2.1传感器的定义及作用 123.2.2压电式传感器 123.2.3利用传感器发送接收 133.2.4超声波传感器探测物体的方式 133.3超声波发射与接收模块 143.4超声波发射电路与驱动电路 143.5超声波接收电路与放大电路 153.6基于MAX7219的数码显示电路 163.7温度测量电路 173.8电源供应电路 173.9报警电路 18第4章 误差和数据分析 194.1测距计算中温度补偿 194.2测距计算中误差分析 204.3数据处理 21第5章 软体设计 225.1显示子程序 225.2外部中断子程序 235.3测量距离子程序 245.4定时中断子程序 255.5总程序及其流程图 276 总结 296.1设计系统的实用性与价值性 296.2设计系统的不足和改进方法 29参考文献 31致谢 32附录 33附录1 硬件电路的设计 33附录2 软件编程 34附录 文献综述 60
汽车发动机怠速抖动现象的愿因及排查方法探讨 摘要;本文主要阐述了汽车发动机怠速抖动机理,分析了导致发动机产生怠速抖动现象的故障原因,提出了发动机怠速抖动故障的排查方法。在文中结合了实际的维修实例加以论证分析。同时阐明整个故障的排除过程及方法,鉴于大家起到共同探讨作用。 关键词:汽车 发动机怠速抖动 原因 排查 方法 前言 汽车发动机怠速抖动是在维修中常碰到的故障现象,故障发生时往往在发动机怠速工况时产生低频率异常振动现象。出现抖动时,可以通过观察发现发动机的横向摆动明显加大,噪声加大;并往往伴随怠速不稳,使车内的驾乘人员感到不舒适,而随着加大油门使发动机转速升高后,发动机抖动现象便减弱或消失。由于发动机怠速抖动会影响发动机的性能,降低其可靠性与使用寿命,增加了功率损耗。如不及时维修,会使发动机性能进一步恶化,有可能导致更大的故障。 所以,如何解决怠速抖动是汽车实际运用中的一个难题,让维修企业头痛,普遍缺乏系统性的有效的解决方法。往往按照进气系统、点火系统、燃油系统、机械系统,循序渐进地排查故障,费工费时,还往往找不到故障原因。为解决维修工作效率,提高经济效益。本人查阅大量的相关资料并结合个人实践经历归纳出了发动机怠速抖动现象产生的原因及排查方法,希望能与大家共同探讨。 1、发动机怠速抖动机理 1.1 发动机怠速抖动现象产生的机理 发动机怠速抖动现象产生的机理是:气缸内气体作用力的变化(个别气缸内气体作用力发生变化或各气缸内气体作用力发生不同的变化)引起各气缸功率不平衡(每个气缸的输出功率不相同),以致发动机因反倒力矩(每个气缸产生的使发动机横向摇倒的力矩)不平衡而发生怠速抖动。所以可以这样说,凡是直接或间接引起发动机气缸内气体作用力变化(各气缸功率不平衡)的故障都有可能导致发动机怠速抖动,这是分析发动机怠速抖动现象产生原因的依据。这些原因可以分成两大类。第1类是直接导致气缸内气体作用力发生变化的故障(简称直接故障),它直接造成个别气缸功率的变化,从而造成各气缸功率不平衡,致使发动机产生剧烈的怠速抖动现象。第2类是间接导致气缸内气体作用力发生变化的故障(简称间接故障),此类故障导致发动机全部气缸内的燃烧状况不良,造成各气缸功率难以平衡,它使发动机产生的怠速抖动通常较轻。为了方便,下面将上述两类故障按发动机系统、机构分别进行论述。 。。。。。。。。。。。。。。。。。。。(
发动机抖有以下几种可能1.“空气滤清器脏,堵塞,并且未及时更换,或是高压线断路影响点火以引起发动机的抖动。2.火花塞未及时更换或是燃油压力低导致的发动机抖动。3.节气门脏、喷油嘴堵塞,或是缸压低都可能会导致发动机抖动。
发动机机械故障导致的气门关闭不严、各气缸缸压不同等;空气供给系统中的节气门脏污或节气门损坏;燃油供给系统压力过低或波动较大,喷油器积碳严重等。一般来说,发动机的缸数越多,发动机怠速抖动越轻微,而直列六缸发动机由于结构上能自动的平衡振动,所以它的平顺性最好;而现在使用日渐广泛的三缸发动机,自身的平顺性是极差的,需要设计平衡机构才能维持正常运转。如果坐在车里能明显的感觉到汽车在振动,手扶方向盘感觉振手,转速表指针上下跳动,或者打开发动机舱盖能明显的看到发动机在抖动,就说明发动机怠速抖动过大了。此时用发动机故障诊断仪查看发动机数据流,可以看到发动机转速值是忽高忽低的,正常情况下发动机转速上下跳动不会超过30转/分钟,如果这个数值超过了50转/分钟,就可以判断为发动机怠速抖动过大。
汽车发动机怠速成抖动现象的原因及排查方法探讨毕业论不是太好,用完车抖动,新车才3000公里,查不
参考下: 进入21世纪后,特别在我国加入WTO后,国内产品面临巨大挑战。各行业特别是传统产业都急切需要应用电子技术、自动控制技术进行改造和提升。例如纺织行业,温湿度是影响纺织品质量的重要因素,但纺织企业对温湿度的测控手段仍很粗糙,十分落后,绝大多数仍在使用干湿球湿度计,采用人工观测,人工调节阀门、风机的方法,其控制效果可想而知。制药行业里也基本如此。而在食品行业里,则基本上凭经验,很少有人使用湿度传感器。值得一提的是,随着农业向产业化发展,许多农民意识到必需摆脱落后的传统耕作、养殖方式,采用现代科学技术来应付进口农产品的挑战,并打进国外市场。各地建立了越来越多的新型温室大棚,种植反季节蔬菜,花卉;养殖业对环境的测控也日感迫切;调温冷库的大量兴建都给温湿度测控技术提供了广阔的市场。我国已引进荷兰、以色列等国家较先进的大型温室四十多座,自动化程度较高,成本也高。国内正在逐步消化吸收有关技术,一般先搞调温、调光照,控通风;第二步搞温湿度自动控制及CO2测控。此外,国家粮食储备工程的大量兴建,对温湿度测控技术提也提出了要求。 但目前,在湿度测试领域大部分湿敏元件性能还只能使用在通常温度环境下。在需要特殊环境下测湿的应用场合大部分国内包括许多国外湿度传感器都会“皱起眉头”!例如在上面提到纺织印染行业,食品行业,耐高温材料行业等,都需要在高温情况下测量湿度。一般情况下,印染行业在纱锭烘干中,温度能达到120摄氏度或更高温度;在食品行业中,食物的烘烤温度能达到80-200摄氏度左右;耐高温材料,如陶瓷过滤器的烘干等能达到200摄氏度以上。在这些情况下,普通的湿度传感器是很难测量的。 高分子电容式湿度传感器通常都是在绝缘的基片诸如玻璃、陶瓷、硅等材料上,用丝网漏印或真空镀膜工艺做出电极,再用浸渍或其它办法将感湿胶涂覆在电极上做成电容元件。湿敏元件在不同相对湿度的大气环境中,因感湿膜吸附水分子而使电容值呈现规律性变化,此即为湿度传感器的基本机理。影响高分子电容型元件的温度特性,除作为介质的高分子聚合物的介质常数ε及所吸附水分子的介电常数ε受温度影响产生变化外,还有元件的几何尺寸受热膨胀系数影响而产生变化等因素。根据德拜理论的观点,液体的介电常数ε是一个与温度和频率有关的无量纲常数。水分子的ε在T=5℃时为78.36,在T=20℃时为79.63。有机物ε与温度的关系因材料而异,且不完全遵从正比关系。在某些温区ε随T呈上升趋势,某些温区ε随T增加而下降。多数文献在对高分子湿敏电容元件感湿机理的分析中认为:高分子聚合物具有较小的介电常数,如聚酰亚胺在低湿时介电常数为3.0一3.8。而水分子介电常数是高分子ε的几十倍。因此高分子介质在吸湿后,由于水分子偶极距的存在,大大提高了吸水异质层的介电常数,这是多相介质的复合介电常数具有加和性决定的。由于ε的变 化,使湿敏电容元件的电容量C与相对湿度成正比。在设计和制作工艺中很难组到感湿特性全湿程线性。作为电容器,高分子介质膜的厚度d和平板电容的效面积S也和温度有关。温度变化所引起的介质几何尺寸的变化将影响C值。高分子聚合物的平均热线胀系数可达到 的量级。例如硝酸纤维素的平均热线胀系数为108x10-5/℃。随着温度上升,介质膜厚d增加,对C呈负贡献值;但感湿膜的膨胀又使介质对水的吸附量增加,即对C呈正值贡献。可见湿敏电容的温度特性受多种因素支配,在不同的湿度范围温漂不同;在不同的温区呈不同的温度系数;不同的感湿材料温度特性不同。总之,高分子湿度传感器的温度系数并非常数,而是个变量。所以通常传感器生产厂家能在-10-60摄氏度范围内是传感器线性化减小温度对湿敏元件的影响。 国外厂家比较优质的产品主要使用聚酰胺树脂,产品结构概要为在硼硅玻璃或蓝宝石衬底上真空蒸发制作金电极,再喷镀感湿介质材料(如前所述)形式平整的感湿膜,再在薄膜上蒸发上金电极.湿敏元件的电容值与相对湿度成正比关系,线性度约±2%。虽然,测湿性能还算可以但其耐温性、耐腐蚀性都不太理想,在工业领域使用,寿命、耐温性和稳定性、抗腐蚀能力都有待于进一步提高。 陶瓷湿敏传感器是近年来大力发展的一种新型传感器。优点在于能耐高温,湿度滞后,响应速度快,体积小,便于批量生产,但由于多孔型材质,对尘埃影响很大,日常维护频繁,时常需要电加热加以清洗易影响产品质量,易受湿度影响,在低湿高温环境下线性度差,特别是使用寿命短,长期可靠性差,是此类湿敏传感器迫切解决的问题。 当前在湿敏元件的开发和研究中,电阻式湿度传感器应当最适用于湿度控制领域,其代表产品氯化锂湿度传感器具有稳定性、耐温性和使用寿命长多项重要的优点,氯化锂湿敏传感器已有了五十年以上的生产和研究的历史,有着多种多样的产品型式和制作方法,都应用了氯化锂感湿液具备的各种优点尤其是稳定性最强。 氯化锂湿敏器件属于电解质感湿性材料,在众多的感湿材料之中,首先被人们所注意并应用于制造湿敏器件,氯化锂电解质感湿液依据当量电导随着溶液浓度的增加而下降。电解质溶解于水中降低水面上的水蒸气压的原理而实现感湿。 氯化锂湿敏器件的衬底结构分柱状和梳妆,以氯化锂聚乙烯醇涂覆为主要成份的感湿液和制作金质电极是氯化锂湿敏器件的三个组成部分。多年来产品制作不断改进提高,产品性能不断得到改善,氯化锂感湿传感器其特有的长期稳定性是其它感湿材料不可替代的,也是湿度传感器最重要的性能。在产品制作过程中,经过感湿混合液的配制和工艺上的严格控制是保持和发挥这一特性的关键。 在国内九纯健科技依托于国家计量科学研究院、中科院自动化研究所、化工研究院等大型科研单位从事温湿度传感器产品的研制、生产。选用氯化锂感湿材料作为主攻方向,生产氯化锂湿敏传感器及相关变送器,自动化仪表等产品,在吸取了国内外此项技术的成功经验的同时,努力克服传统产品存在的各项弱点,取得实质性进展。产品选用了Al2O3及SiO2陶瓷基片为衬底,基片面积大大缩小,采用特殊的工艺处理,耐湿性和粘覆性均大大提高。使用烧结工艺,在衬底集片上烧结5个9的工业纯金制成的梳妆电极,氯化锂感湿混合液使用新产品添加剂和固有成份混合经过特殊的老化和涂覆工艺后,湿敏基片的使用寿命和长期稳定性大大提高,特别是耐温性达到了-40℃-120℃,以多片湿敏元件组合的独特工艺,是传感器感湿范围为1%RH-98%RH,具备了15%RH范围以下的测量性能,漂移曲线和感湿曲线均实现了较好的线性化水平,使湿度补偿得以方便实施并较容易地保证了宽温区的测湿精度。采用循环降温装置封闭系统,先对对被测气体采样,然后降温检测并确保绝对湿度的恒定,使探头耐温范围提高到600℃左右,大大增强了高温下测湿的功能。成功解决了“高温湿度测量”这一湿度测量领域难题。现在,不采用任何装置直接测量150度以内环境中的湿度的分体式高温型温湿度传感器JCJ200W已成功应用在木材烘干,高低温试验箱等系统中。同时,JCJ200Y产品能耐温高达600度,也已成功应用在印染行业纱锭自动烘干系统、食品自动烘烤系统、特殊陶瓷材料的自动烘干系统、出口大型烘干机械等方面,并表现出良好的效果,为国内自动化控制域填补了高温湿度测量的空白,为我国工业化进程奠定了一定基础。传感器论文: 低温下压阻式压力传感器性能的实验研究 Experimental Study On Performance Of Pressure Transducer At Low Temperature .... 灌区水位测量记录设备及安装技术 摘要:水位测量施测简单直观,易于为广大用水户所接受而且便于自动观测,因而在灌区水量计量乃至在整个灌区信息化建设中都占有十分重要的地位。目前我国灌区中水位监测采用的传感器依据输出量的不同主要分为模拟传感.... 主成分分析在空调系统传感器故障检测与诊断中的应用研究 摘要 本文阐述了用主成分分析法进行系统测量数据建模和传感器故障检测、故障诊断、故障重构及确定最优主成分数的原理。用主成分分析法对空调监测系统中的四类传感器故障进行检测方法。结果表明:主成.... 透光脉动传感器的影响因素研究 摘要:通过试验研究和总结生产应用经验,对透光脉动传感器的影响因素进行了分析,并提出了其最优工作参数。光源宜选择波长为860nm的激光二极管;传感器的管径根据使用目的确定,试验研究一般选用1~3mm,生.... 生物传感器的研究现状及应用 摘要:简述了生物传感器尤其是微生物传感器近年来在发酵工业及环境监测领域中的研究与应用,对其发展前景及市场化作了预测及展望。生物电极是以固定化生物体组成作为分子识别元件的敏感材料,与氧电极、膜电极和燃料.... 方向盘转角传感器接口 汽车环境对电子产品而言是非常苛刻的:任何连接到12V电源上的电路都必须工作在9V至16V的标称电压范围内,其它需要迫切应对的问题包括负载突降、冷车发动、电池反向、双电池助推、尖峰信号、噪声和极宽的温度.... 用于电容传感器接口的模拟前端元件 因为采用了传统机械开关,用户使用电容传感器接口的方式直接与各种工作条件下(可靠性)接触传感器的响应度(员敏度)梧关。本文将介绍一些通用电容传感器模拟前端测量方法 灵敏度 电容传感器的灵敏度是由其物理结.... 智能传感器与现代汽车电子 现代汽车电子从所应用的电子元器件到车内电子系统的架构均已进入了一个有本质性提高的新阶段。其中最有代表性的核心器件之一就是智能传感器。 一、汽车电子操控和安全系统谈起 近几年来我国汽车工业增长迅速,发展.... 霍尔元件是一种基于霍尔效应的磁传感器,已发展成一个品种多样的磁传感器产品族,并已得到广泛的应用。本文简要介绍其工作原理, 产品特性及其典型应用。 霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。 霍尔线性器件的精度高、线性度好;霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达μm级)。取用了各种补偿和保护措施的霍尔器件的工作温度范围宽,可达-55℃~150℃。 按照霍尔器件的功能可将它们分为: 霍尔线性器件 和 霍尔开关器件 。前者输出模拟量,后者输出数字量。 按被检测的对象的性质可将它们的应用分为:直接应用和间接应用。前者是直接检测出受检测对象本身的磁场或磁特性,后者是检测受检对象上人为设置的磁场,用这个磁场来作被检测的信息的载体,通过它,将许多非电、非磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制。 一 霍尔器件的工作原理 在磁场作用下,通有电流的金属片上产生一横向电位差如图1所示: 这个电压和磁场及控制电流成正比: VH=K╳|H╳IC| 式中VH为霍尔电压,H为磁场,IC为控制电流,K为霍尔系数。 在半导体中霍尔效应比金属中显著,故一般霍尔器件是采用半导体材料制作的。 用霍尔器件,可以进行非接触式电流测量,众所周知,当电流通过一根长的直导线时,在导线周围产生磁场,磁场的大小与流过导线的电流成正比,这一磁场可以通过软磁材料来聚集,然后用霍尔器件进行检测,由于磁场与霍尔器件的输出有良好的线性关系,因此可利用霍尔器件测得的讯号大小,直接反应出电流的大小,即: I∞B∞VH 其中I为通过导线的电流,B为导线通电流后产生的磁场,VH为霍尔器件在磁场B中产生的霍尔电压、当选用适当比例系数时,可以表示为等式。霍尔传感器就是根据这种工作原理制成的。 二 霍尔传感器的应用 1 霍尔接近传感器和接近开关 在霍尔器件背后偏置一块永久磁体,并将它们和相应的处理电路装在一个壳体内,做成一个探头,将霍尔器件的输入引线和处理电路的输出引线用电缆连接起来,构成如图1所示的接近传感器。它们的功能框见图19。(a)为霍尔线性接近传感器,(b)为霍尔接近开关。 图1 霍尔接近传感器的外形图 a)霍尔线性接近传感器 (b)霍尔接近开关 图2 霍尔接近传感器的功能框图 霍尔线性接近传感器主要用于黑色金属的自控计数,黑色金属的厚度检测、距离检测、齿轮数齿、转速检测、测速调速、缺口传感、张力检测、棉条均匀检测、电磁量检测、角度检测等。 霍尔接近开关主要用于各种自动控制装置,完成所需的位置控制,加工尺寸控制、自动计数、各种计数、各种流程的自动衔接、液位控制、转速检测等等。3.2.7霍尔翼片开关 霍尔翼片开关就是利用遮断工作方式的一种产品,它的外形如图20所示,其内部结构及工作原理示于图21。 图3 霍尔翼片开关的外形图 2 霍尔齿轮传感器 如图4所示,新一代的霍尔齿轮转速传感器,广泛用于新一代的汽车智能发动机,作为点火定时用的速度传感器,用于ABS(汽车防抱死制动系统)作为车速传感器等。 在ABS中,速度传感器是十分重要的部件。ABS的工作原理示意图如图23所示。图中,1是车速齿轮传感器;2是压力调节器;3是控制器。在制动过程中,控制器3不断接收来自车速齿轮传感器1和车轮转速相对应的脉冲信号并进行处理,得到车辆的滑移率和减速信号,按其控制逻辑及时准确地向制动压力调节器2发出指令,调节器及时准确地作出响应,使制动气室执行充气、保持或放气指令,调节制动器的制动压力,以防止车轮抱死,达到抗侧滑、甩尾,提高制动安全及制动过程中的可驾驭性。在这个系统中,霍尔传感器作为车轮转速传感器,是制动过程中的实时速度采集器,是ABS中的关键部件之一。 在汽车的新一代智能发动机中,用霍尔齿轮传感器来检测曲轴位置和活塞在汽缸中的运动速度,以提供更准确的点火时间,其作用是别的速度传感器难以代替的,它具有如下许多新的优点。 (1)相位精度高,可满足0.4°曲轴角的要求,不需采用相位补偿。 (2)可满足0.05度曲轴角的熄火检测要求。 (3)输出为矩形波,幅度与车辆转速无关。在电子控制单元中作进一步的传感器信号调整时,会降低成本。 用齿轮传感器,除可检测转速外,还可测出角度、角速度、流量、流速、旋转方向等等。 图4 霍尔速度传感器的内部结构 1. 车轮速度传感器2.压力调节器3.电子控制器 2. 图4 ABS气制动系统的工作原理示意图 3 旋转传感器 按图5所示的各种方法设置磁体,将它们和霍尔开关电路组合起来可以构成各种旋转传感器。霍尔电路通电后,磁体每经过霍尔电路一次,便输出一个电压脉冲。 (a)径向磁极(b)轴向磁极(c)遮断式 图5 旋转传感器磁体设置 由此,可对转动物体实施转数、转速、角度、角速度等物理量的检测。在转轴上固定一个叶轮和磁体,用流体(气体、液体)去推动叶轮转动,便可构成流速、流量传感器。在车轮转轴上装上磁体,在靠近磁体的位置上装上霍尔开关电路,可制成车速表,里程表等等,这些应用的实例如图25所示。 图6的壳体内装有一个带磁体的叶轮,磁体旁装有霍尔开关电路,被测流体从管道一端通入,推动叶轮带动与之相连的磁体转动,经过霍尔器件时,电路输出脉冲电压,由脉冲的数目,可以得到流体的流速。若知管道的内径,可由流速和管径求得流量。霍尔电路由电缆35来供电和输出。 图6 霍尔流量计 由图7可见,经过简单的信号转换,便可得到数字显示的车速。 利用锁定型霍尔电路,不仅可检测转速,还可辨别旋转方向,如图27所示。 曲线1对应结构图(a),曲线2对应结构图(b),曲线3对应结构图(c)。 图7 霍尔车速表的框图 图8 利用霍尔开关锁定器进行方向和转速测定 4 在大电流检测中的应用 在冶金、化工、超导体的应用以及高能物理(例如可控核聚变)试验装置中都有许多超大型电流用电设备。用多霍尔探头制成的电流传感器来进行大电流的测量和控制,既可满足测量准确的要求,又不引入插入损耗,还免除了像使用罗果勘斯基线圈法中需用的昂贵的测试装置。图9示出一种用于DⅢ-D托卡马克中的霍尔电流传感器装置。采用这种霍尔电流传感器,可检测高达到300kA的电流。 图9(a)为G-10安装结构,中心为电流汇流排,(b)为电缆型多霍尔探头,(c)为霍尔电压放大电路。 (a)G�10安装结构(b)电缆型多霍尔探头(c)霍尔电压放大电路 图9 多霍尔探头大电流传感器 图10霍尔钳形数字电流表线路示意图 图11霍尔功率计原理图 (a)霍尔控制电路 (b)霍尔磁场电路 图12霍尔三相功率变送器中的霍尔乘法器 图13霍尔电度表功能框图 图14霍尔隔离放大器的功能框图 5 霍尔位移传感器 若令霍尔元件的工作电流保持不变,而使其在一个均匀梯度磁场中移动,它输出的霍尔电压VH值只由它在该磁场中的位移量Z来决定。图15示出3种产生梯度磁场的磁系统及其与霍尔器件组成的位移传感器的输出特性曲线,将它们固定在被测系统上,可构成霍尔微位移传感器。从曲线可见,结构(b)在Z<2mm时,VH与Z有良好的线性关系,且分辨力可达1μm,结构(C)的灵敏度高,但工作距离较小。 图15 几种产生梯度磁场的磁系统和几种霍尔位移传感器的静态特性 用霍尔元件测量位移的优点很多:惯性小、频响快、工作可靠、寿命长。 以微位移检测为基础,可以构成压力、应力、应变、机械振动、加速度、重量、称重等霍尔传感器。 6 霍尔压力传感器 霍尔压力传感器由弹性元件,磁系统和霍尔元件等部分组成,如图16所示。在图16中,(a)的弹性元件为膜盒,(b)为弹簧片,(c)为波纹管。磁系统最好用能构成均匀梯度磁场的复合系统,如图29中的(a)、(b),也可采用单一磁体,如(c)。加上压力后,使磁系统和霍尔元件间产生相对位移,改变作用到霍尔元件上的磁场,从而改变它的输出电压VH。由事先校准的p~f(VH)曲线即可得到被测压力p的值。 图16 几种霍尔压力传感器的构成原理 7 霍尔加速度传感器 图17示出霍尔加速度传感器的结构原理和静态特性曲线。在盒体的O点上固定均质弹簧片S,片S的中部U处装一惯性块M,片S的末端b处固定测量位移的霍尔元件H,H的上下方装上一对永磁体,它们同极性相对安装。盒体固定在被测对象上,当它们与被测对象一起作垂直向上的加速运动时,惯性块在惯性力的作用下使霍尔元件H产生一个相对盒体的位移,产生霍尔电压VH的变化。可从VH与加速度的关系曲线上求得加速度。 图17 霍尔加速度传感器的结构及其静态特性 三 小结 目前霍尔传感器已从分立元件发展到了集成电路的阶段,正越来越受到人们的重视,应用日益广泛。
纳米材料技术作为一门高新科学技术,纳米技术具有极大的价值和作用。下面我给大家分享一些纳米材料与技术3000字论文, 希望能对大家有所帮助!纳米材料与技术3000字论文篇一:《试谈纳米复合材料技术发展及前景》 [摘要]纳米材料是指材料显微结构中至少有一相的一维尺度在100nm以内的材料。纳米材料由于平均粒径微小、表面原子多、比表面积大、表面能高,因而其性质显示出独特的小尺寸效应、表面效应等特性,具有许多常规材料不可能具有的性能。纳米材料由于其超凡的特性,引起了人们越来越广泛的关注,不少学者认为纳米材料将是21世纪最有前途的材料之一,纳米技术将成为21世纪的主导技术。 [关键词]高聚物纳米复合材料 一、 纳米材料的特性 当材料的尺寸进入纳米级,材料便会出现以下奇异的物理性能: 1、尺寸效应 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或投射深度等物理特征尺寸相当或更小时,晶体的边界条件将被破坏,非晶态纳米微粒的颗粒表面附近原子密度减小,导致声、光电、磁、热、力学等特性呈现出新的小尺寸效应。如当颗粒的粒径降到纳米级时,材料的磁性就会发生很大变化,如一般铁的矫顽力约为80A/m,而直径小于20nm的铁,其矫顽力却增加了1000倍。若将纳米粒子添加到聚合物中,不但可以改善聚合物的力学性能,甚至还可以赋予其新性能。 2、表面效应 一般随着微粒尺寸的减小,微粒中表面原子与原子总数之比将会增加,表面积也将会增大,从而引起材料性能的变化,这就是纳米粒子的表面效应。 纳米微粒尺寸d(nm) 包含总原子表面原子所占比例(%)103×1042044×1034022.5×1028013099从表1中可以看出,随着纳米粒子粒径的减小,表面原子所占比例急剧增加。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,很容易与 其它 原子结合。若将纳米粒子添加到高聚物中,这些具有不饱和性质的表面原子就很容易同高聚物分子链段发生物理化学作用。 3、量子隧道效应 微观粒子贯穿势垒的能力称为隧道效应。纳米粒子的磁化强度等也具有隧道效应,它们可以穿越宏观系统的势垒而产生变化,这称为纳米粒子的宏观量子隧道效应。它的研究对基础研究及实际 应用,如导电、导磁高聚物、微波吸收高聚物等,都具有重要意义。 二、高聚物/纳米复合材料的技术进展 对于高聚物/纳米复合材料的研究十分广泛,按纳米粒子种类的不同可把高聚物/纳米复合材料分为以下几类: 1、高聚物/粘土纳米复合材料 由于层状无机物在一定驱动力作用下能碎裂成纳米尺寸的结构微区,其片层间距一般为纳米级,它不仅可让聚合物嵌入夹层,形成“嵌入纳米复合材料”,还可使片层均匀分散于聚合物中形成“层离纳米复合材料”。其中粘土易与有机阳离子发生交换反应,具有的亲油性甚至可引入与聚合物发生反应的官能团来提高其粘结。其制备的技术有插层法和剥离法,插层法是预先对粘土片层间进行插层处理后,制成“嵌入纳米复合材料”,而剥离法则是采用一些手段对粘土片层直接进行剥离,形成“层离纳米复合材料”。 2、高聚物/刚性纳米粒子复合材料 用刚性纳米粒子对力学性能有一定脆性的聚合物增韧是改善其力学性能的另一种可行性 方法 。随着无机粒子微细化技术和粒子表面处理技术的 发展 ,特别是近年来纳米级无机粒子的出现,塑料的增韧彻底冲破了以往在塑料中加入橡胶类弹性体的做法。采用纳米刚性粒子填充不仅会使韧性、强度得到提高,而且其性价比也将是不能比拟的。 3、高聚物/碳纳米管复合材料 碳纳米管于1991年由S.Iijima 发现,其直径比碳纤维小数千倍,其主要用途之一是作为聚合物复合材料的增强材料。 碳纳米管的力学性能相当突出。现已测出碳纳米管的强度实验值为30-50GPa。尽管碳纳米管的强度高,脆性却不象碳纤维那样高。碳纤维在约1%变形时就会断裂,而碳纳米管要到约18%变形时才断裂。碳纳米管的层间剪切强度高达500MPa,比传统碳纤维增强环氧树脂复合材料高一个数量级。 在电性能方面,碳纳米管作聚合物的填料具有独特的优势。加入少量碳纳米管即可大幅度提高材料的导电性。与以往为提高导电性而向树脂中加入的碳黑相比,碳纳米管有高的长径比,因此其体积含量可比球状碳黑减少很多。同时,由于纳米管的本身长度极短而且柔曲性好,填入聚合物基体时不会断裂,因而能保持其高长径比。爱尔兰都柏林Trinity学院进行的研究表明,在塑料中含2%-3%的多壁碳纳米管使电导率提高了14个数量级,从10-12s/m提高到了102s/m。 三、前景与展望 在高聚物/纳米复合材料的研究中存在的主要问题是:高聚物与纳米材料的分散缺乏专业设备,用传统的设备往往不能使纳米粒子很好的分散,同时高聚物表面处理还不够理想。我国纳米材料研究起步虽晚但 发展 很快,对于有些方面的研究 工作与国外相比还处于较先进水平。如:漆宗能等对聚合物基粘土纳米复合材料的研究;黄锐等利用刚性粒子对聚合物改性的研究都在学术界很有影响;另外,四川大学高分子 科学 与工程国家重点实验室发明的磨盘法、超声波法制备聚合物基纳米复合材料也是一种很有前景的手段。尽管如此,在总体水平上我国与先进国家相比尚有一定差距。但无可否认,纳米材料由于独特的性能,使其在增强聚合物 应用中有着广泛的前景,纳米材料的应用对开发研究高性能聚合物复合材料有重大意义。特别是随着廉价纳米材料不断开发应用,粒子表面处理技术的不断进步,纳米材料增强、增韧聚合物机理的研究不断完善,纳米材料改性的聚合物将逐步向 工业 化方向发展,其应用前景会更加诱人。 参考 文献 : [1] 李见主编.新型材料导论.北京:冶金工业出版社,1987. [2]都有为.第三期工程科技 论坛 ——‘纳米材料与技术’ 报告 会. [3]rohlich J,Kautz H,Thomann R[J].Polymer,2004,45(7):2155-2164. 纳米材料与技术3000字论文篇二:《试论纳米技术在新型包装材料中的应用》 【摘 要】作为一门高新科学技术,纳米技术具有极大的价值和作用。进入20世纪90年代,纳米科学得到迅速的发展,产生了纳米材料学、纳米化工学、纳米机械学及纳米生物学等,由此产生的纳米技术产品也层出不穷,并开始涉及汽车行业。 【关键词】纳米技术 包装材料 1 纳米技术促进了汽车材料技术的发展 纳米技术可应用在汽车的任何部位,包括发动机、底盘、车身、内饰、车胎、传动系统、排气系统等。例如,在汽车车身部分,利用纳米技术可强化钢板结构,提高车体的碰撞安全性。另外,利用纳米涂料烤漆,可使车身外观色泽更为鲜亮、更耐蚀、耐磨。内装部分,利用纳米材料良好的吸附能力、杀菌能力、除臭能力使室内空气更加清洁、安全。在排气系统方面,利用纳米金属做为触媒,具有较高的转换效果。 由于纳米技术具有奇特功效,它在汽车上得到了广泛的应用,提升汽车性能的同时延长使用寿命。 2 现代汽车上的纳米材料 (1)纳米面漆。汽车面漆是对汽车质量的直观评价,它不但决定着汽车的美观与否,而且直接影响着汽车的市场竞争力。所以汽车面漆除要求具有高装饰性外,还要求有优良的耐久性,包括抵抗紫外线、水分、化学物质及酸雨的侵蚀和抗划痕的性能。纳米涂料可以满足上述要求。纳米颗粒分散在有机聚合物骨架中,作承受负载的填料,与骨架材料相互作用,有助于提高材料的韧性和其它机械性能。研究表明,将10%的纳米级TiO2粒子完全分散于树脂中,可提高其机械性能,尤其可使抗划痕性能大大提高,而且外观好,利于制造汽车面漆涂料;将改性纳米CaCO3以质量分数15%加入聚氨酯清漆涂料中,可提高清漆涂料的光泽、流平性、柔韧性及涂层硬度等。 纳米TiO2是一种抗紫外线辐射材料,加之其极微小颗粒的比表面积大,能在涂料干燥时很快形成网络结构,可同时增强涂料的强度、光洁度和抗老化性;以纳米高岭土作填料,制得的聚甲基丙烯酸甲酯纳米复合材料不仅透明,而且吸收紫外线,同时也可提高热稳定性,适合于制造汽车面漆涂料。 (2)纳米塑料。纳米塑料可以改变传统塑料的特性,呈现出优异的物理性能:强度高,耐热性强,比重更小。随着汽车应用塑料数量越来越多,纳米塑料会普遍应用在汽车上。主要有阻燃塑料、增强塑料、抗紫外线老化塑料、抗菌塑料等。阻燃塑料是燃烧时,超细的纳米材料颗粒能覆盖在被燃材料表面并生成一层均匀的碳化层,起到隔热、隔氧、抑烟和防熔滴的作用,从而起到阻燃作用。 目前汽车设计要求规定,凡通过乘客座舱的线路、管路和设备材料必须要符合阻燃标准,例如内饰和电气部分的面板、包裹导线的胶套,包裹线束的波纹管、胶管等,使用阻燃塑料比较容易达到要求。增强塑料是在塑料中填充经表面处理的纳米级无机材料蒙脱土、CaCO3、SiO2等,这些材料对聚丙烯的分子结晶有明显的聚敛作用,可以使聚丙烯等塑料的抗拉强度、抗冲击韧性和弹性模量上升,使塑料的物理性能得到明显改善。 抗紫外线老化塑料是将纳米级的TiO2、ZnO等无机抗紫外线粉体混炼填充到塑料基材中。这些填充粉体对紫外线具有极好的吸收能力和反射能力,因此这种塑料能够吸收和反射紫外线,比普通塑料的抗紫外线能力提高20倍以上。据报道这类材料经过连续700小时热光照射后,其扩张强度损失仅为10%,如果作为暴露在外的车身塑料构件材料,能有效延长其使用寿命。抗菌塑料是将无机的纳米级抗菌剂利用纳米技术充分地分散于塑料制品中,可将附着在塑料上的细菌杀死或抑制生长。这些纳米级抗菌剂是以银、锌、铜等金属离子包裹纳米TiO2、CaCO3等制成,可以破坏细菌生长环境。据介绍无机纳米抗菌塑料加工简单,广谱抗菌,24小时接触杀菌率达90%,无副作用。 (3)纳米润滑剂。纳米润滑剂是采用纳米技术改善润滑油分子结构的纯石油产品,它不会对润滑油添加剂、稳定剂、处理剂、发动机增润剂和减磨剂等产品产生不良作用,只是在零件金属表面自动形成纯烃类单个原子厚度的一层薄膜。由于这些微小烃类分子间的相互吸附作用,能够完全填充金属表面的微孔,最大可能地减小金属与金属间微孔的摩擦。与高级润滑油或固定添加剂相比,其极压可增加3倍-4倍,磨损面减小16倍。由于金属表面得到了保护,减小了磨损,使用寿命成倍增加。 另外,由于纳米粒子尺寸小,经过纳米技术处理的部分材料耐磨性是黄铜的27倍、钢铁的7倍。目前纳米陶瓷轴承已经应用在奔驰等高级轿车上,使机械转速加快、质量减小、稳定性增强,使用寿命延长。 (4)纳米汽油。纳米汽油最大优点是节约能源和减少污染,目前已经开始研制。该技术是一种利用现代最新纳米技术开发的汽油微乳化剂。它能对汽油品质进行改造,最大限度地促进汽油燃烧,使用时只要将微乳化剂以适当比例加入汽油便可。交通部汽车运输节能技术检测中心的专家经试验后认为,汽车在使用加入该微乳化剂的汽油后,可降低其油耗10%~20%,增加动力性能25%,并使尾气中的污染物(浮碳、碳氢化合物和氮氧化合物等)排放降低50%~80%。它还可以清除积碳,提高汽油的综合性能。更令人注意的是,纳米技术应用在燃料电池上,可以节省大量成本。因为纳米材料在室温条件下具有优异的储氢能力。根据实验结果,在室温常压下,约2/3的氢能可以从这些纳米材料中得以释放,故其能替代昂贵的超低温液氢储存装置。 (5)纳米橡胶。汽车中橡胶材料的应用以轮胎的用量最大。在轮胎橡胶的生产中,橡胶助剂大部分成粉体状,如炭黑、白炭黑等补强填充剂、促进剂、防老剂等。以粉体状物质而言,纳米化是现阶段橡胶的主要发展趋势。新一代纳米技术已成功运用其它纳米粒子作为助剂,而不再局限于使用炭黑或白炭黑,汽车中最大的改变即是,轮胎的颜色已不再仅限于黑色,而能有多样化的鲜艳色彩。另外无论在强度、耐磨性或抗老化等性能上,新的纳米轮胎均较传统轮胎都优异,例如轮胎侧面胶的抗裂痕性能将由10万次提高到50万次。 (6)纳米传感器。传感器是纳米技术应用的一个重要领域,随着纳米技术的进步,造价更低、功能更强的微型传感器将广泛应用在社会生活的各个方面。半导体纳米材料做成的各种传感器,可灵敏地检测温度、湿度和大气成分的变化,这在汽车尾气和大气环境保护上已得到应用。纳米材料来制作汽车尾气传感器,可以对汽车尾气中的污染气体进行吸附与过滤,并对超标的尾气排放情况进行监控与报警,从而更好地提高汽车尾气的净化程度,降低汽车尾气的排放。我国纳米压力传感器的研制已获得成功,产品整体性能超过国外的超微传感器,缩小了我国在这一技术领域与世界先进国家存在的差距。有专家认为,到2020年,纳米传感器将成为主流。 (7)纳米电池。早在1991年被人类发现的碳纳米管韧性很高,导电性极强,兼具金属性和半导体性,强度比钢高100倍, 密度只有钢的1/6。我国科学家最近已经合成高质量的碳纳米材料,使我国新型储氢材料研究一举跃入世界先进行列。此种新材料能储存和凝聚大量的氢气,并可做成燃料电池驱动汽车,储氢材料的发展还会给未来的交通工具带来新型的清洁能源。 结语 随着材料技术的发展,纳米技术已成为当今研究领域中最富有活力,对未来经济和社会发展有着十分重要影响的研究对象。纳米科技正在推动人类社会产生巨大的变革,未来汽车技术的发展,有极大部分与纳米技术密切相关,纳米材料和纳米技术将会给汽车新能源、新材料、新零部件带来深远的影响。对于汽车制造商而言,纳米技术的有效运用,有效地促进技术升级、提升附加价值。相信在不久的将来,纳米技术必将在汽车的制造领域得到更广泛的应用。 参考文献 [1]肖永清.纳米技术在汽车上的应用[J].轻型汽车技术,2004.12. [2]潘钰娴,樊琳.纳米材料的研究和应用[J].苏州大学学报(工科版),2002. [3]周李承,蒋易,周宜开,任恕,聂棱.光纤纳米生物传感器的现状及发展[J].传感器技术,2002,(1):18~21 纳米材料与技术3000字论文篇三:《试谈纳米技术及纳米材料的应用》 摘要:本文主要论述了纳米材料的兴起、纳米材料及其性质表现、纳米材料的应用示例、纳米材料的前景展望,以供与大家交流。 关键词:纳米材料;应用;前景展望 1.纳米技术引起纳米材料的兴起 1959年,著名物理学家、诺贝尔奖获得者理查德·费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。80年代初,德国科学家H.V.Gleiter成功地采用惰性气体凝聚原位加压法制得纯物质的块状纳米材料后,纳米材料的研究及其制备技术在近年来引起了世界各国的普遍重视。由于纳料材料具有独特的纳米晶粒及高浓度晶界特征以及由此而产生的小尺寸量子效应和晶界效应,使其表现出一系列与普通多晶体和非晶态固体有本质差别的力学、磁、光、电、声等性能,使得对纳米材料的制备、结构、性能及其应用研究成为90年代材料科学研究的 热点 。1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。 2.纳米材料及其性质表现 2.1纳米材料 纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。 2.2纳米材料的特殊性质 纳米材料高度的弥散性和大量的界面为原子提供了短程扩散途径,导致了高扩散率,它对蠕变,超塑性有显著影响,并使有限固溶体的固溶性增强、烧结温度降低、化学活性增大、耐腐蚀性增强。因此纳米材料所表现的力、热、声、光、电磁等性质,往往不同于该物质在粗晶状态时表现出的性质。与传统晶体材料相比,纳米材料具有高强度——硬度、高扩散性、高塑性——韧性、低密度、低弹性模量、高电阻、高比热、高热膨胀系数、低热导率、强软磁性能。这些特殊性能使纳米材料可广泛地用于高力学性能环境、光热吸收、非线性光学、磁记录、特殊导体、分子筛、超微复合材料、催化剂、热交换材料、敏感元件、烧结助剂、润滑剂等领域。 3.纳米材料的应用示例 目前纳米材料主要用于下列方面: 3.1高硬度、耐磨WC-Co纳米复合材料 纳米结构的WC-Co已经用作保护涂层和切削工具。这是因为纳米结构的WC-Co在硬度、耐磨性和韧性等方面明显优于普通的粗晶材料。其中,力学性能提高约一个量级,还可能进一步提高。高能球磨或者化学合成WC-Co纳米合金已经工业化。化学合成包括三个主要步骤:起始溶液的制备与混和;喷雾干燥形成化学性均匀的原粉末;再经流床热化学转化成为纳米晶WC-Co粉末。喷雾干燥和流床转化已经用来批量生产金属碳化物粉末。WC-Co粉末可在真空或氢气氛下液相烧结成块体材料。VC或Cr3C2等碳化物相的掺杂,可以抑制烧结过程中的晶粒长大。 3.2纳米结构软磁材料 Finemet族合金已经由日本的Hitachi Special Metals,德国的Vacuumschmelze GmbH和法国的 Imply等公司推向市场,已制造销售许多用途特殊的小型铁芯产品。日本的 Alps Electric Co.一直在开发Nanoperm族合金,该公司与用户合作,不断扩展纳米晶Fe-Zr-B合金的应用领域。 3.3电沉积纳米晶Ni 电沉积薄膜具有典型的柱状晶结构,但可以用脉冲电流将其破碎。精心地控制温度、pH值和镀池的成份,电沉积的Ni晶粒尺寸可达10nm。但它在350K时就发生反常的晶粒长大,添加溶质并使其偏析在晶界上,以使之产生溶质拖拽和Zener粒子打轧效应,可实现结构的稳定。例如,添加千分之几的磷、流或金属元素足以使纳米结构稳定至600K。电沉积涂层脉良好的控制晶粒尺寸分布,表现为Hall-Petch强化行为、纯Ni的耐蚀性好。这些性能以及可直接涂履的工艺特点,使管材的内涂覆,尤其是修复核蒸汽发电机非常方便。这种技术已经作为 EectrosleeveTM工艺商业化。在这项应用中,微合金化的涂层晶粒尺寸约为100nm,材料的拉伸强度约为锻造Ni的两倍,延伸率为15%。晶间开裂抗力大为改善。 3.4Al基纳米复合材料 Al基纳米复合材料以其超高强度(可达到1.6GPa)为人们所关注。其结构特点是在非晶基体上弥散分布着纳米尺度的a-Al粒子,合金元素包括稀土(如Y、Ce)和过渡族金属(如 Fe、Ni)。通常必须用快速凝固技术(直接淬火或由初始非晶态通火)获得纳米复合结构。但这只能得到条带或雾化粉末。纳米复合材料的力学行为与晶化后的非晶合金相类似,即室温下超常的高屈服应力和加工软化(导致拉神状态下的塑性不稳定性)。这类纳米材料(或非晶)可以固结成块材。例如,在略低于非晶合金的晶化温度下温挤。加工过程中也可以完全转变为晶体,晶粒尺寸明显大干部份非晶的纳米复合材料。典型的Al基体的晶粒尺寸为100~200nm,镶嵌在基体上的金属间化合物粒子直径约50nm。强度为0.8~1GPa,拉伸韧性得到改善。另外,这种材料具有很好的强度与模量的结合以及疲劳强度。温挤Al基纳米复合材料已经商业化,注册为Gigas TM。雾化的粉末可以固结成棒材,并加工成小尺寸高强度部件。类似的固结材料在高温下表现出很好的超塑性行为:在1s-1的高应变速率下,延伸率大于500%。 4.纳米材料的前景趋向 经过我国材料技术人员多年对纳米技术的研究探索,现在科学家已经能够在实验室操纵单个原子,纳米技术有了飞跃式的发展。纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪4大领域高速发展。可以预测:不久的将来纳米金属氧化物半导体场效应管、平面显示用发光纳米粒子与纳米复合物、纳米光子晶体将应运而生;用于集成电路的单电子晶体管、记忆及逻辑元件、分子化学组装计算机将投入应用;分子、原子簇的控制和自组装、量子逻辑器件、分子电子器件、纳米机器人、集成生物化学传感器等将被研究制造出来。 近年来还有一些引人注目的发展趋势新动向,如:(1)纳米组装体系蓝绿光的研究出现新的苗头;(2)巨电导的发现;(3)颗粒膜巨磁电阻尚有潜力;(4)纳米组装体系设计和制造有新进展。