为什么夏天吃冰糕时冰糕会冒汽。答:因为空气中的气体状态的水分在冰糕周围遇冷液化成液体状态的水,这就使我们看到了冒的汽。 2.为什么把水倒进滚烫的油里会发生飞溅。答:因为水的密度比油的大,所以水在到进油中时会在油的上面,而滚油的温度远大于水的沸点,水遇热沸腾飞溅。 3.把糖放到热水里为什么溶化的快比在凉水里快。答:因为由分子动理论可知温度越高分子做无规则的运动的速率越快,这样热水中的水分子和糖分子的运动速率要快,互相的融合越快,也就融化的越快。 4.为什么冬天下完大雪后要在路上撒盐。答:撒盐使雪熔点降低,这样可以在较低的温度下使雪融化,尽快恢复交通。 5.为什么把手机放到铁箱中会没有信号。答:因为铁箱是由铁这种导体材料构成的,所以铁箱在磁场下会产生屏蔽作用,致使手机收不到网络信号。 6.俗语"坐地日行八万里"是什么意思? 答:是由于地球自转的原因,每天地球自转一周,即时人不动也由地球自转使人一天会相对与太空运动。 7.为什么天是蓝色的。答:因为空气中各种物质整体吸收的红橙光和绿光等光线较多,使蓝光很大部分被折射或反射到我们眼中,从而我们看到的天是蓝色的。 8.为什么铁路拐弯处的两跟铁轨不是一般高,有一定倾角而此倾角还有国家标准规定。答:因为这样可以提高火车的速度,倾角使重力的分力和铁轨对火车的压力一起提供的向心力比单纯的靠铁轨压力提供的向心力更大,这样能够满足火车更大的速度所需的向心力;轨道最大的压力是固定的,而倾角会影响提供一部分向心力的重力的分力,这就影响了向心力的大小,从而决定了速度的大小,因此国家规定倾角的大小就规定了火车的最大速度。 9.为什么宇航员在近入太空和返回地球时会出现短暂的昏迷。答:直白的说是由于超重和失重的影响,使过多或过少的血液流入大脑,使人晕迷。 10.喷气式飞机的最基本动力原理是什么? 答:运用的是动量守恒原理:飞机喷出的高温气体相对于飞机运动方向相反,即公式:0=(M-m)v-mv',M为原始飞机重量,m为喷出气体重量,v为喷出气体后飞机速度,v'为喷出气体的速度。 摘要:物理是一门历史悠久的自然学科。随着科技的发展,社会的进步,物理已渗入到人类生活的各个领域; 物理学存在于物理学家的身边;物理学也存在于同学们身边;在学习中,同学们要树立科学意识,大处着眼,小处着手,经历观察、思考、实践、创新等活动,逐步掌握科学的学习方法,训练科学的思维方式,不久你就会拥有科学家的头脑,为自己今后惊叹不已的发展,为今后美好的生活打下扎实的基础。 关键词:物理 渗入 人类生活 各个领域 存在 物理学家 同学们 身边 科学意识 科学学习方法 科学思维方式 物理是一门历史悠久的自然学科,物理科学作为自然科学的重要分支,不仅对物质文明的进步和人类对自然界认识的深化起了重要的推动作用,而且对人类的思维发展也产生了不可或缺的影响。从亚里士多德时代的自然哲学,到牛顿时代的经典力学,直至现代物理中的相对论和量子力学等,都是物理学家科学素质、科学精神以及科学思维的有形体现。随着科技的发展,社会的进步,物理已渗入到人类生活的各个领域。例如,光是找找汽车中的光学知识就有以下几点: 1. 汽车驾驶室外面的观后镜是一个凸镜 利用凸镜对光线的发散作用和成正立、缩小、虚像的特点,使看到的实物小,观察范围更大,而保证行车安全。 2. 汽车头灯里的反射镜是一个凹镜 它是利用凹镜能把放在其焦点上的光源发出的光反射成为平行光射出的性质做成的。 3. 汽车头灯总要装有横竖条纹的玻璃灯罩 汽车头灯由灯泡、反射镜和灯前玻璃罩组成。根据透镜和棱镜的知识,汽车头灯玻璃罩相当于一个透镜和棱镜的组合体。在夜晚行车时,司机不仅要看清前方路面的情况,还要还要看清路边持人、路标、岔路口等。透镜和棱镜对光线有折射作用,所以灯罩通过折射,根据实际需要将光分散到需要的方向上,使光均匀柔和地照亮汽车前进的道路和路边的景物,同时这种散光灯罩还能使一部分光微向上折射,以便照明路标和里程碑,从而确保行车安全。 4. 轿车上装有茶色玻璃后,行人很难看清车中人的面孔 茶色玻璃能反射一部分光,还会吸收一部分光,这样透进车内的光线较弱。要看清乘客的面孔,必须要从面孔反射足够强的光透射到玻璃外面。由于车内光线较弱,没有足够的光透射出来,所以很难看清乘客的面孔。 5. 除大型客车外,绝大多数汽车的前窗都是倾斜的 当汽车的前窗玻璃倾斜时,车内乘客经玻璃反射成的像在国的前上方,而路上的行人是不可能出现在上方的空中的,这样就将车内乘客的像与路上行人分离开来,司机就不会出现错觉。大型客车较大,前窗离地面要比小汽车高得多,即使前窗竖直装,像是与窗同高的,而路上的行人不可能出现在这个高度,所以司机也不会将乘客在窗外的像与路上的行人相混淆。 再如下面一个例子: 五香茶鸡蛋是人们爱吃的,尤其是趁热吃味道更美。细心的人会发现,鸡蛋刚从滚开的卤汁里取出来的时候,如果你急于剥壳吃蛋,就难免连壳带“肉”一起剥下来。要解决这个问题,有一个诀窍,就是把刚出锅的鸡蛋先放在凉水中浸一会,然后再剥,蛋壳就容易剥下来。 一般的物质(少数几种例外),都具有热胀冷缩的特性。可是,不同的物质受热或冷却的时候,伸缩的速度和幅度各不相同。一般说来,密度小的物质,要比密度大的物质容易发生伸缩,伸缩的幅度也大,传热快的物质,要比传热慢的物质容易伸缩。鸡蛋是硬的蛋壳和软的蛋白、蛋黄组成的,它们的伸缩情况是不一样的。在温度变化不大,或变化比较缓慢均匀的情况下,还显不出什么;一旦温度剧烈变化,蛋壳和蛋白的伸缩步调就不一致了。把煮得滚烫的鸡蛋立即浸入冷水里,蛋壳温度降低,很快收缩,而蛋白仍然是原来的温度,还没有收缩,这时就有一小部分蛋白被蛋壳压挤到蛋的空头处。随后蛋白又因为温度降低而逐渐收缩,而这时蛋壳的收缩已经很缓慢了,这样就使蛋白与蛋壳脱离开来,因此,剥起来就不会连壳带“肉”一起下来了。 明白了这个道理,对我们很有用处。凡需要经受较大温度变化的东西,如果它们是用两种不同材料合在一起做的,那么在选择材料的时候,就必须考虑它们的热膨胀性质,两者越接近越好。工程师在设计房屋和桥梁时,都广泛采用钢筋混凝土,就是因为钢材和混凝土的膨胀程度几乎完全一样,尽管春夏秋冬的温度不同,也不会产生有害的作用力,所以钢筋混凝土的建筑十分坚固。 另外,有些电器元件却是用两种热膨胀性质差别很大的金属制成的。例如,铜片的热膨胀比铁片大,把铜片和铁片钉在一起的双金属片,在同样情况下受热,就会因膨胀程度不同而发生弯曲。利用这一性质制成了许多自动控制装置和仪表。日光灯的“启动器”里就有小巧的双金属片,它随着温度的变化,能够自动屈伸,起到自动开启日光灯的作用。 这样的例子举不胜举,物理是一门实用性很强的科学,与工农业生产、日常生活有着极为密切的联系。物理规律本身就是对自然现象的总结和抽象。 谈到物理学,有些同学觉得很难;谈到物理探究,有同学觉得深不可测;谈到物理学家,有同学更是感到他们都不是凡人。诚然,成为物理学家的人的确屈指可数,但只要勤于观察,善于思考,勇于实践,敢于创新,从生活走向物理,你就会发现:其实,物理就在身边。正如马克思说的:“科学就是实验的科学,科学就在于用理性的方法去整理感性材料”。物理不但是我们的一门学科,更重要的,它还是一门科学。 物理学存在于物理学家的身边。勤于观察的意大利物理学家伽利略,在比萨大教堂做礼拜时,悬挂在教堂半空中的铜吊灯的摆动引起了他极大的兴趣,后来反复观察,反复研究,发明了摆的等时性;勇于实践的美国物理学家富兰克林,为认清“天神发怒”的本质,在一个电闪雷鸣、风雨交加的日子,冒着生命危险,利用司空见惯的风筝将“上帝之火”请下凡,由此发明了避雷针;敢于创新的英国科学家亨利•阿察尔去邮局办事。当时身旁有位外地人拿出一大版新邮票,准备裁下一枚贴在信封上,苦于没有小刀。找阿察尔借,阿察尔也没有。这位外地人灵机一动,取下西服领带上的别针,在邮票的四周整整齐齐地刺了一圈小孔,然后,很利落地撕下邮票。外地人走了,却给阿察尔留下了一串深深的思考,并由此发明了邮票打孔机,有齿纹的邮票也随之诞生了;古希腊阿基米德发现阿基米德原理;德国物理学家伦琴发现X射线;……研究身边的琐事并有大成就的物理学家的事例不胜枚举。 物理学也存在于同学们身边。学了测量的初步知识,同学们纷纷做起了软尺。有位同学别出心裁,用透明胶把制好的牛皮纸软尺包扎好,这样更牢固。然后,用大大卷泡泡糖的包装盒作为软尺的外壳,在盒的中心利用铁丝做一摇柄中心轴,软尺的末端固定在轴上,这样一个可以收拾并反复使用的卷尺诞生了。同时,这位同学受软尺自作的启示,用实验解决了一道习题:用软尺测量物体长度时,若把软尺拉长些,测量值是偏大还是偏小?他做了这样一个模拟实验:在白纸上画一条直线,标上刻度,然后用透明胶粘贴,再扯下来,便做成了“软尺”,用“软尺”不仅找到了上题的答案,而且还清楚地看到分度值变大了,知其然,并知其所以然;学了电学的有关知识后,同学们对蚯蚓能承受的最大电压进行了探究:当给它加上1.5V的电压时,蚯蚓迅速分泌粘液,且奋力挣扎,从瓶内跳出瓶外。当给它加上3V的电压时,蚯蚓被电为两截;有同学在测量“2.4V、0.5A”的小灯泡的功率,并研究其发光情况时,不满足于给灯泡加上2.4V的电压,而是用自己早已准备好的小灯泡做破坏性实验,不断加大灯泡两端的电压,直至电压高达9V、灯泡灯丝烧断,才停止探究;有同学在学习蒸发的知识时,不厌其烦地座在桌旁观察相同的两滴水(其中一滴水滩开),进行聚精会神地观察,然后进行分析、对比,得出影响蒸发的因素;……同学们捕捉身边的琐事进行探究的事例屡见不鲜。 身边的事物是取之不尽的,对与现实生活联系很紧密的物理学科来说,更是时时会用到的,用身边的事例去解释和总结物理规律,学生听起来熟悉,接受起来也就容易了。只要时时留意,经常总结,就会不断发现有利于物理教学的事物,丰富我们的课堂,活跃教学气氛,简化概念和规律。新课标告诉我们“义务教育阶段的物理课程应贴近学生生活,符合学生认知特点,激发并保持学生的学习兴趣,通过探索物理现象,揭示隐藏其中的物理规律,并将其应用于生产生活实际,培养学生终身的探索乐趣、良好的思维习惯和初步的科学实践能力。” 今天,人类所有的令人惊叹不已的科学技术成就,如克隆羊、因特网、核电站、航空技术等,无不是建立在早年的科学家们对身边琐事进行观察并研究的基础上的。在学习中,同学们要树立科学意识,大处着眼,小处着手,经历观察、思考、实践、创新等活动,逐步掌握科学的学习方法,训练科学的思维方式,不久你就会拥有科学家的头脑,为自己今后惊叹不已的发展,为今后美好的生活打下扎实的基础。
物理是一门历史悠久的自然学科,物理科学作为自然科学的重要分支,不仅对物质文明的进步和人类对自然科学认识的深化起了重要的推动作用,而且对人类的思维发展也产生了不可或缺的影响。随着科学技术的发展,社会的进步,物理已渗透到人类生活的各个领域。 在汽车上驾驶室外面的观后镜是一个凸镜利用凸镜对光线的发散作用和成正立、缩小的虚像的特点,使看到的实物小,观察范围更大,而保证行车安全。 汽车头灯里的反射镜是一个凹镜。 它是利用凹透镜能把放在其焦点上的光源发出的光反射成平行光射出的性质做的。 轿车上装有太阳膜,行人很难看清车中人的面孔,太阳膜能反射一部分光,还会吸收一部分光,这样透进车内的光线较弱。要看清乘客的面孔,必须要从面孔放射足够的光头到玻璃外面。由于车内光线较弱,没有足够的光透出来,所以很难看清乘客的面孔。 当汽车的前窗玻璃倾斜时,反射成的像在过的前上方的空中的,这样就将车内乘客的像与路上行人分离开来,司机就不会出现错觉。大型客车较大,前窗离地面要比小汽车高得多,及时前窗竖直装,像是与窗同高的,而路上的行人不可能出现在这个高度上,所以司机也不会将乘客在窗外的相遇路上的行人相混。 现在,人类所有令人惊叹的科学技术成就,如克隆羊、因特网、核电站、航天技术等,无不是建立在早期的科学家们对身边琐事进行观察并研究的基础上的,在学习中,同学们要树立科学意识,大处着眼、小处着手,经历观察、思考、实践、创新等活动,逐步掌握科学的学习方法,训练科学的思维方式,不久你就会拥有科学家的头脑,为自己今后惊叹不已的发展,为今后美好的甚或打下坚实的基础。
我谈环保袋——科技小论文现在,环境保护已经成了社会上的人人注重的话题。我们是资源有限的国家,人人都应该保护环境和资源。比如塑料制品,现在我国的塑料制品严重地污染了我们的环境,带来了“白色污染”。塑料购物袋就是“白色污染”的一种,它不仅是日常生活中的易耗品,而且中国每年都要消耗大量的塑料购物袋。塑料购物袋在为消费者提供便利的同时,由于过量使用及回收处理不到位等原因,也造成了严重的能源资源浪费和环境污染。特别是超薄塑料购物袋容易破损,大多被随意丢弃,成为“白色污染”的主要来源。所以,我国对此也已经进行了一系列的环保措施,如“限塑令”——使用环保袋就是控制“白色污染——塑料袋”的一个办法。使用环保袋有很多好处,比如:使用寿命比塑料袋长;.可以循环利用;价格低廉,易于推广等等。现在人们去超市、商场购物大多都使用环保袋,从而减少塑料袋的使用,更好的保护环境。但是现在很多的环保袋都是用纸制品做成的。比如牛皮纸袋、塑料纸袋都是用纸做的。我认为这样也不是很环保,因为纸也是用树木制成的,而现在人类砍伐树木用来做环保袋,所以这样的环保袋也是破坏绿化,不够环保。我认为使用环保袋,应该选用更加环保的材料,比如无纺布袋,帆布袋,棉布袋等等。这些材料都是非常环保的。无纺布袋(也叫不织布袋),是很合适的环保袋,因为这种袋子不仅造型美观,很耐用,而且透气性好,可以重复使用。从限塑令发布开始,塑料袋将开始逐渐退出物品的包装市场,也有一部分市场取而代之的是能够反复使用的无纺布购物袋。无纺布袋较之塑料袋而言更容易印刷图案,颜色表达更鲜明。加上能够反复使用的这一特点,陆续被许多市场、超市、商店选用。虽然无纺布袋很环保,也被各个商家选用。但是这种袋子也存在着一种问题——价格比塑料贵,这对业主来讲,却增加了经营成本。比如,业户售出一公斤青菜,利润可能只有1角钱,用普通的塑料袋几乎不用计算成本,但如果使用环保的无纺布塑料袋,差不多就不挣钱了。因此,降低使用成本是关键。所以现在的环保袋上,很多商家都在“环保袋”上印刷广告,以广告费来抵消使用成本。最重要的还是人类应该节约能源,保护环境,减少塑料的污染,促进资源综合利用,保护生态环境。
我们的生活离不开阳光,通常我们认为阳光是一种单色光(单一波长的光)。其实,笼罩在我们周围的光线本身是复色光(由两种或两种以上的单色光组成的光线),他是由不同波长波线的单色光组成的。
广义的说,具有周期性的空间结构或光学性能(如透射率、折射率)的衍射屏,统称光栅。光栅的种类很多,有透射光栅和反射光栅,有平面光栅和凹面光栅,有黑白光栅和正弦光栅,有一维光栅,二维光栅和三维光栅等等。
此次实验所使用的光栅是利用全息照相技术拍摄的全息透射光栅光栅的表面若被污染后不易清洗,使用时应特别注意。分光计是一种能精确测量角度的光学仪器,常用来测量材料的折射率、色散率、光波波长和进行光谱观测等。
由于该装置比较精密,控制部件较多而且复杂,所以使用时必须严格按照一定的规则和程序进行调整,以便测量出准确的结果。摘要:分光计是一种能精确测量折射角的典型光学仪器,经常用来测量材料的折射率、色散率、光波波长和进行光谱观测等。
由于该装置比较精密,控制部件较多而且操作复杂,所以使用时必须严格按照一定的规则和程序进行调整,方能获得较高精度的测量结果。
写作思路:不要平铺直叙地进行,要注意及时地、不断地变化描写的角度,使描写更加具体,给读者主体化之感。做到条理清楚、自然、明白,不杂乱,要倾注自己的思想感情。
正文内容:
物理,物理,事物的道理。它诠释了声、光、电的神奇,带领我探究这个世界的奥秘。
起初学物理,我都能接受。弹力,重力,拉力就像是几个幼儿园的小朋友在我面前乖乖的坐着,不吵不闹,又安分又守纪律,听话的讨人喜欢。上课内容也不难,可做起作业来我就是一头雾水。但后来逐渐适应了,多做了,也就都会了。
学到后面越吃力了。浮力,是我无论怎样都得纠结半天的难题。当它其中包含了压强和机械效率也夹杂着质量、密度的话,他们就成了一群社会青年,不是打就是闹,在我脑海里左跳右窜,根本就停不下来,烦的我头疼。那样,估计我至少得要磨上一个小时。那时觉得呀,物理真是太难了,难得我都不敢看题目。
好不容易把之前的知识塞进来,电学的出现,又让我的脑子不够用了。电流,电压,电阻,在我还没完全记住他们之间的关系时,一波波题海突然被狂风卷起,咆哮着直接向我劈过来,把我劈得粉身碎骨,痛的我动弹不得。
我一边“战斗”,一边“疗伤”。一次次的“战役”,给我带来了经验和教训,慢慢的,我也开始有了些小小的成就——独自解决电学电路难题。看起来可能简单,但真要是做的话,还是得仔细琢磨,做多了,也就熟练了。
学习物理的过程中,有烦到脑子快要炸掉的时候和晕的想睡觉的时候,也有在解决问题后那种成就感和满足感。不论怎么样,都还是要坚持学下去。
然而在学习物理这艘小船上,只有细心谨慎,心中永驻着自信和坚强,才不会让小船被风浪打翻。
物态变化简答题一:为什么液体温度计中选用的液体为何不同?答:1因为不同液体沸点凝固点不同,做温度计导致量程不同,两成不同要保证温度计的量程才可以。2温度计测量时,温度计的玻璃泡与被测液体发生热传递,使最终温度相同,即温度计示数=测试被测液体温度。3里面的比热容越小,则从被测液体中吸收的热量越少则被测液体放热少,则被测液体的温度变化较小,使测量值更接近准确值。二:有人说:“融雪天气会比下雪还冷”为什么?答:1空气中的水蒸气在温度骤降到零度以下时,凝华成小冰晶,开始下雪而凝华本身要对外放热,是空气的温度升高,所以人不太冷。2而融雪的过程中升华成水蒸气时要从空气中吸热,会是空气温度降低。3当温度接近零度时,小冰晶要融化,融化要从周围空气中吸热,使周围温度(还是)降低,人会感到寒冷。所以人会感觉融雪天气会比下雪还冷。三:水沸腾后,气泡上升会变大后到水面破裂的解释和原因答:大量的水汽化后为水蒸气,此时F浮>G,气泡上升时,由于外界的水压变小,并且会有不断的水汽化为水蒸气进入气泡补充气体,此时内部气压>外界压强,而当到水面时,外压为0,气体迅速膨胀至于破裂。四:把烧瓶从火焰拿下,静置待一会,在烧瓶外部浇冷水,为什么水会重新沸腾?答:把烧瓶从火焰上拿开之后,水的温度从100度降到90多度,沸腾停止。但是,把冷水浇到烧瓶上一部分瓶内水蒸气液化成水,是瓶内气压降低;还有一部分当冷水浇到烧瓶上时,由于热传递,瓶内气体温度也降低,气压降低。由于气压低,沸点低,所以此时的水在90多度就能沸腾。五:夏天用扇子扇风原理。答:首先夏天天气热,人会出汗,而此时汗液很蒸发吸收人身体的热量,这样人就会感到凉快,而此时用扇子扇风即可以加快汗水蒸发,吸热即可以让人凉快。并且用扇子扇风也可以将你身边的热的空气扇走,较冷的空气补入,人也会感到比较凉快。六:利用干冰人工降雨。答:1干冰进入云层很快升华,升华吸热。2空气层中温度降低,当温度骤降到零摄氏度以下时,空气中水蒸气会凝华成小冰晶。3而当温度下降可仍在零度以上时,空气中的水蒸气要液化成小水滴,当小水滴越聚越多时,会开始下雨。而小冰晶下落遭到暖气流,会融化成小水滴形成人工降雨。希望有所帮助O(∩_∩)O~
我谈环保袋——科技小论文现在,环境保护已经成了社会上的人人注重的话题。我们是资源有限的国家,人人都应该保护环境和资源。比如塑料制品,现在我国的塑料制品严重地污染了我们的环境,带来了“白色污染”。塑料购物袋就是“白色污染”的一种,它不仅是日常生活中的易耗品,而且中国每年都要消耗大量的塑料购物袋。塑料购物袋在为消费者提供便利的同时,由于过量使用及回收处理不到位等原因,也造成了严重的能源资源浪费和环境污染。特别是超薄塑料购物袋容易破损,大多被随意丢弃,成为“白色污染”的主要来源。所以,我国对此也已经进行了一系列的环保措施,如“限塑令”——使用环保袋就是控制“白色污染——塑料袋”的一个办法。使用环保袋有很多好处,比如:使用寿命比塑料袋长;.可以循环利用;价格低廉,易于推广等等。现在人们去超市、商场购物大多都使用环保袋,从而减少塑料袋的使用,更好的保护环境。但是现在很多的环保袋都是用纸制品做成的。比如牛皮纸袋、塑料纸袋都是用纸做的。我认为这样也不是很环保,因为纸也是用树木制成的,而现在人类砍伐树木用来做环保袋,所以这样的环保袋也是破坏绿化,不够环保。我认为使用环保袋,应该选用更加环保的材料,比如无纺布袋,帆布袋,棉布袋等等。这些材料都是非常环保的。无纺布袋(也叫不织布袋),是很合适的环保袋,因为这种袋子不仅造型美观,很耐用,而且透气性好,可以重复使用。从限塑令发布开始,塑料袋将开始逐渐退出物品的包装市场,也有一部分市场取而代之的是能够反复使用的无纺布购物袋。无纺布袋较之塑料袋而言更容易印刷图案,颜色表达更鲜明。加上能够反复使用的这一特点,陆续被许多市场、超市、商店选用。虽然无纺布袋很环保,也被各个商家选用。但是这种袋子也存在着一种问题——价格比塑料贵,这对业主来讲,却增加了经营成本。比如,业户售出一公斤青菜,利润可能只有1角钱,用普通的塑料袋几乎不用计算成本,但如果使用环保的无纺布塑料袋,差不多就不挣钱了。因此,降低使用成本是关键。所以现在的环保袋上,很多商家都在“环保袋”上印刷广告,以广告费来抵消使用成本。最重要的还是人类应该节约能源,保护环境,减少塑料的污染,促进资源综合利用,保护生态环境。
1,压水井的压水手柄: 利用杠杆原理制成,支点距水井较近,而手柄较长,这样力臂较长,可以省力。但是由杠杆原理可知,杠杆都是省但不省功的。 2,自行车: 自行车上有很多小的机械装置,是生活中最典型的机械装置 比如车闸,是利用杠杆原理制成的。 车蹬实际是一个曲柄机构。 前链轮和后链轮之间由铰链连接,从机械原理学上讲,是一个简单的链传动机构 3,钳子,剪刀 也都是利用杠杆原理制成。实际上就是两个小杠杆结合到一起,就是一个钳子或剪刀了 4,扳手 仍然是杠杆原理 5,液压小千斤顶 (不知道楼主见过没有,就是街边上很多司机车坏了,从后备厢里拿出来,把车顶起来修车的小东西,是司机常备的物品) 内部结构是一个简单的液压装置。从原理上说也有应用杠杆原理。别看一个液压千斤顶个头很小,但支起一台小轿车很容易的 6,电动筛 这东西在农村用的比较多,粮食放在上面,打开电源,电动筛就自动摇摆,把不用的东西筛下来 其原理就是一个双摇杆机构,在大的分类上属于四连杆。 大地相当于一个杆,两个摇摆支架是第二、第三个杆,筛子是第四个杆 你要学过机械原理就会知道,四连杆机构根据四个杆之间的长短关系,可以形成曲柄摇杆机构,双摇杆机构,双曲柄机构 电动筛就是人为制作形成的一个双摇杆机构 7,小轿车的车门 具体结构那当然是很复杂了,但从原理上讲,轿车车门其实就是一个简单的四连杆机构 8,柱塞泵 不知道你见过没有,就是和自行车的打气筒差不多的,靠里面的柱塞一进一出来抽水或抽油的, 其原理实际上是一个曲柄滑块机构,柱塞相当于滑块。 曲柄滑块机构实际上是属于曲柄摇杆机构的变种,而前面也说了,曲柄摇杆机构在大的分类上又属于四连杆机构 9,电梯 电梯的内部具体结构其实很复杂的,不是像一般人想象的那样,就是一根钢索吊着一个电梯厢。现在的电梯内部集合了各种自动控制装置,各种传感器,当然最重要的还有安全保护装置。 但是从机械原理上说,电梯其实就是一个蜗轮蜗杆机构。在大的分类上讲,蜗轮蜗杆机构属于齿轮机构的一种 10,齿轮泵 一种简单的泵,抽水或者抽油用的,生活中很常见的 是典型的齿轮机构 把齿轮泵拆开,里面其实就是两个齿轮而已 齿轮泵的优点是造价便宜,体积小,缺点是工作噪音大,排量较小 先总结这么10个吧!! 其实生活中简单的机械装置很多很多的,可以说无处不在, 如果再举几个复杂的例子那就更多了! 比如汽车的变速箱,你要拆开看看,里面全都是齿轮,这属于轮系,而轮系在大的分类上也属于齿轮机构 建筑工地上的吊车,上面有杠杆,四连杆,齿轮,液压,滑轮组。。。。太多了 车床,见过么??上面几乎包括所有的机械装置 一台小轿车,上面也几乎包括所有你可以想的到的机械装置 所以只要留心观察,生活中的机械无处不在 下面文章:题目:生活机械化 我曾经从事农机科技工作20年,参与研制和推广新农具,以实现机械化作业,指导思想是毛泽东主席提出的“农业的根本出路在于机械化”。但是他也说过,“吃饭不能机械化”。按我理解,这个“吃饭”是形象地泛指各种生活事项。 你会走路吗?我当过10年兵,行军打仗,走路是基本功,复员后,十里八里抬腿就走,不在话下。如今我的青年朋友,两三里路都不肯走,出门就坐车、开车,培养将军肚,高血压,回家之后再上跑步机,跑个大汗淋漓,曰之减肥机械化。 我是球迷,也关注多种体育竞赛。最近美国运动员创造了9.76秒的百米记录又被取消,原来是(可分辩千分之一秒的)电子仪器断定他的成绩为9.766秒,按规则,只是平了9.77秒的原记录。这说明了科技进步,否则,凭肉眼、掐秒表,怎能区分伯仲?我也常为绿茵场上的“黑哨”、错判、漏判而愤怒和惋惜,但我不能接受“机器裁判”。因为足球是包括裁判水平乃至球迷素质在内的综合艺术,大家都是有血有肉的人,教练、球员、球迷都会有错误,为什么就不准裁判出差错?从这个意义上讲,成功、失败、急躁、沉着、犯规、假摔、错判、漏判、踢飞点球、自摆乌龙……错综复杂地交织在一起,才有悬念和魅力,“足球是圆的”,你知道它往哪儿蹦?设若出现机器裁判,洞察秋毫,球员也是机器人,永远正确,岂不悲哀! 商场出售智能娃娃,贵而畅销,它有视觉、听觉、触觉,会说一千句话,能跟你交谈(远销国外,它就说外语),深受儿童和家长欢迎,尤其是缺少玩伴的独生子女。欧美更有高一级的电子保姆,会干多种家务,照料儿童。加之自动化办公室,智能住宅,门窗电器自动启闭,洗漱、饮食、书写、计算、娱乐、休眠……皆由电脑程序控制,大活人也将沦为整套机器的齿轮和螺丝钉了。 美国智能机器人“深蓝”下国际象棋,可战胜世界冠军。电脑绘制三维图像,已经顶替了特技演员,真假难辨。更可怕的是智能机器人也会写小说,只差夺取诺贝尔文学奖了。我们曾经反对公式化、概念化的创作方法,而机器人写小说,必然出自既定的模式,让“千人一面,千部一腔”的玩意儿卷土重来。此事我有体会。我用电脑写作16年了,不但丧失手稿,而且提笔忘字,更难堪的是跟软件较劲,譬如我要写李白,刚打个李字,它马上“联想”出李鹏、李瑞环、李铁映等一串领导人的名字,就是“想”不到中国还有个大诗人李白;我要写金戈铁马,一打戈字,跟着就出来戈尔巴乔夫,唉,我与此公何干?为了不让它牵着鼻子走,只能打单字,自己组词造句,如果偷懒,我的小说也就失掉个性,落入干巴巴的公文巢臼了。 一次我在纽约乘出租车,计价器显示28美元,我给他58元,让他找回30元,司机皱着眉头想不通,说“总共才28元,我为什么反而要给你30元呢?”这不是笑话,现代美国英国各有300万新文盲,大学毕业了,却不会写信,不会读书,不会算术,连“九九表”也不会背,原因就是他们从小看电视,不必看报,连“小人书”也不看;有手机电话,谁还写信?生活在计算机时代,何必费脑筋计算“鸡兔同笼”里有几个脑袋几只脚!这些功能得不到开发,所以新文盲又称功能性文盲。 我们的孩子看电视和上网的时间是否过长?我们的大学生都会写信吗?我国的彩电、手机多于英美的总和,也会出现新文盲吗?生活太方便了,是否正在导致人体机能的衰退,“富贵病”丛生,离健全的人生渐远,渐行渐远……
我们的生活离不开阳光,通常我们认为阳光是一种单色光(单一波长的光)。其实,笼罩在我们周围的光线本身是复色光(由两种或两种以上的单色光组成的光线),他是由不同波长波线的单色光组成的。
广义的说,具有周期性的空间结构或光学性能(如透射率、折射率)的衍射屏,统称光栅。光栅的种类很多,有透射光栅和反射光栅,有平面光栅和凹面光栅,有黑白光栅和正弦光栅,有一维光栅,二维光栅和三维光栅等等。
此次实验所使用的光栅是利用全息照相技术拍摄的全息透射光栅光栅的表面若被污染后不易清洗,使用时应特别注意。分光计是一种能精确测量角度的光学仪器,常用来测量材料的折射率、色散率、光波波长和进行光谱观测等。
由于该装置比较精密,控制部件较多而且复杂,所以使用时必须严格按照一定的规则和程序进行调整,以便测量出准确的结果。摘要:分光计是一种能精确测量折射角的典型光学仪器,经常用来测量材料的折射率、色散率、光波波长和进行光谱观测等。
由于该装置比较精密,控制部件较多而且操作复杂,所以使用时必须严格按照一定的规则和程序进行调整,方能获得较高精度的测量结果。
在我们这个充满着绚丽色彩的世界中,声音起到着重要的作用。没有声音的世界将会怎样。让我们来幻想一下那将会是一个怎样的世界呢?是有趣的?阴冷的?安静的?还是……人类是世界的主宰者,首先声音会对人类怎样呢?那就让我们先来谈谈声音对人类的影响吧!如果没有声音,人类会怎样呢?如果没有声音人们说话发不出声音,就像是那些失声的人打着哑语来交谈。人又为什么要耳朵呢?又没有声音能听,难道是用来装饰的吗?现在的那些优美的音乐又怎么会有呢?如果没有声音整个世界都死寂在死一般宁静的宇宙中有何意义呢?如果没有声音,学生们上学如何读书、识字呢?又怎么会有音乐、英语、信息……课程呢?又将如何表达想要表达的意思,难道靠手语吗?我实在无法想象那时的教学会是怎样的。中国的祖先盘古制造出人类就是他觉得世界太安静了,太缺少生气了,但现在如果没有声音,没有那欢声笑语。那为什么又要有人类呢,有了人类又有何意义呢。我们不是贝多芬,也没有贝多芬的本领,即使听不见,也能够用牙咬住木棍,根据振动颅骨感到声音,但如果没有声音,连声波也没有,即使是贝多芬也不能感受到声音,更别说弹钢琴了。假如没有声音又怎么会有现在的电话呢,如果亲人在远方,他们又将如何交谈呢?难道相隔那么远也能够打手语吗?如果……如果……太多的如果了,我认为这些如果是不可以的,总而言之人类需要声音。很难想象如果没有声音,人类将怎样生存呢!当然这不只有人类;动物也同样需要声音,如果没有声音连动物也无法生存;举个例子来说吧!蝙蝠可以说是特殊的动物了,它虽然长有一双眼睛,按说听不见总可以看见吧,但是你们可知道被喻为动物界中的“盲人”。它的眼睛是名不副实的,因为它靠得是耳朵。用耳朵听超声波来辨别位置和躲避障碍物的。如果没有声音,蝙蝠听不见声音,捕不到食物,也不能够飞翔,那它还有生存的机会吗,当然不止蝙蝠一种动物,其他动物同样离不开声音。这里举出这个例子强调“地球离不开声音”。没有声音,人们仿佛生活在真空中,安安静静的,一丝声也没有。没有风声雨声读书声,更加鸟声歌声欢笑声。所以现在有人类生存的这个宇宙中不能没有色彩更加不能没有声音。
我谈环保袋——科技小论文现在,环境保护已经成了社会上的人人注重的话题。我们是资源有限的国家,人人都应该保护环境和资源。比如塑料制品,现在我国的塑料制品严重地污染了我们的环境,带来了“白色污染”。塑料购物袋就是“白色污染”的一种,它不仅是日常生活中的易耗品,而且中国每年都要消耗大量的塑料购物袋。塑料购物袋在为消费者提供便利的同时,由于过量使用及回收处理不到位等原因,也造成了严重的能源资源浪费和环境污染。特别是超薄塑料购物袋容易破损,大多被随意丢弃,成为“白色污染”的主要来源。所以,我国对此也已经进行了一系列的环保措施,如“限塑令”——使用环保袋就是控制“白色污染——塑料袋”的一个办法。使用环保袋有很多好处,比如:使用寿命比塑料袋长;.可以循环利用;价格低廉,易于推广等等。现在人们去超市、商场购物大多都使用环保袋,从而减少塑料袋的使用,更好的保护环境。但是现在很多的环保袋都是用纸制品做成的。比如牛皮纸袋、塑料纸袋都是用纸做的。我认为这样也不是很环保,因为纸也是用树木制成的,而现在人类砍伐树木用来做环保袋,所以这样的环保袋也是破坏绿化,不够环保。我认为使用环保袋,应该选用更加环保的材料,比如无纺布袋,帆布袋,棉布袋等等。这些材料都是非常环保的。无纺布袋(也叫不织布袋),是很合适的环保袋,因为这种袋子不仅造型美观,很耐用,而且透气性好,可以重复使用。从限塑令发布开始,塑料袋将开始逐渐退出物品的包装市场,也有一部分市场取而代之的是能够反复使用的无纺布购物袋。无纺布袋较之塑料袋而言更容易印刷图案,颜色表达更鲜明。加上能够反复使用的这一特点,陆续被许多市场、超市、商店选用。虽然无纺布袋很环保,也被各个商家选用。但是这种袋子也存在着一种问题——价格比塑料贵,这对业主来讲,却增加了经营成本。比如,业户售出一公斤青菜,利润可能只有1角钱,用普通的塑料袋几乎不用计算成本,但如果使用环保的无纺布塑料袋,差不多就不挣钱了。因此,降低使用成本是关键。所以现在的环保袋上,很多商家都在“环保袋”上印刷广告,以广告费来抵消使用成本。最重要的还是人类应该节约能源,保护环境,减少塑料的污染,促进资源综合利用,保护生态环境。
介绍照相机照相机的工作原理,概略地说是应用光学成像原理,通过照相镜头将被摄物体成像在感光材料上。下面将粗略地介绍摄影光学成像原理:人类对于光的本性的认识,光线的传播及透镜成像原理。人类对于光的本性的认识经历了漫长而又曲折的过程。在整个18世纪中,光的微粒流理论在光学中仍占优势,人们普遍认为光是微小的粒子组成的,从点光源发出并以直线向四面八方辐射。19世纪初,以杨氏(Young)和菲涅耳(Fresnel)的著作为代表逐步发展成今天的波动光学体系。如今对光的本性认识是:光和实物一样,是物质的一种,它同时具有波的性质和微粒(量子)的性质,但从整体来说,它既不是波,也不是微粒,也不是它们的混合物。从本质上,讲光和一般无线电波并无区别,光和电磁波一样是横波,即波的振动方向与传播方向垂直。一个发光体就是电磁波的发射源,发光体发射的电磁波向周围空间传播,和水波波动产生的波浪向四周传播相似。强度最大或最小的两点距离称为波长,用λ表示。传播一个波长所需的时间称为周期,用T表示,一个周期就是一个质点完成一次振动所需要的时间。1秒内振动的次数称为频率,用ν表示。经过1s振动传播的距离称为速度,用“v”表示。波长、频率、周期和速度之间有如下关系:v=λ/T ,ν=1/T,v=λν由此可见,光的波长与频率成反比。实际上光波只占整个电磁波波段的很小一部分。波长在400~700nm的电磁波能够为人眼所感觉,称为可见光,超过这个范围人眼就感觉不到了。不同波长的可见光在我们的眼睛中产生不同的颜色感觉,按照波长由长到短,光的颜色依次是红、橙、黄、绿、青、蓝、紫等色。不同波长的电磁波在真空中具有完全相同的传播速度,数值是c=300,000km/s。
我们的生活离不开阳光,通常我们认为阳光是一种单色光(单一波长的光)。其实,笼罩在我们周围的光线本身是复色光(由两种或两种以上的单色光组成的光线),他是由不同波长波线的单色光组成的。
广义的说,具有周期性的空间结构或光学性能(如透射率、折射率)的衍射屏,统称光栅。光栅的种类很多,有透射光栅和反射光栅,有平面光栅和凹面光栅,有黑白光栅和正弦光栅,有一维光栅,二维光栅和三维光栅等等。
此次实验所使用的光栅是利用全息照相技术拍摄的全息透射光栅光栅的表面若被污染后不易清洗,使用时应特别注意。分光计是一种能精确测量角度的光学仪器,常用来测量材料的折射率、色散率、光波波长和进行光谱观测等。
由于该装置比较精密,控制部件较多而且复杂,所以使用时必须严格按照一定的规则和程序进行调整,以便测量出准确的结果。摘要:分光计是一种能精确测量折射角的典型山丛光学仪器,经常用来测量材料的折射率、色散率、光耐芦波波长和进行光谱观测等。
由于该装置比较精密,控制部件较多而且操作复杂,所以使用时必须严格按照一定的规则和程序进逗亩樱行调整,方能获得较高精度的测量结果。
黄金分割 把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现: 1/0.618=1.618 (1-0.618)/0.618=0.618 这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。 让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做"菲波那契数列",这些数被称为"菲波那契数"。特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。 菲波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。即f(n)/f(n-1)-→0.618…。由于菲波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。但是当我们继续计算出后面更大的菲波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。 一个很能说明问题的例子是五角星/正五边形。五角星是非常美丽的,我国的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。 由于五角星的顶角是36度,这样也可以得出黄金分割的数值为2Sin18 。 黄金分割点约等于0.618:1 是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。线段上有两个这样的点。 利用线段上的两黄金分割点,可作出正五角星,正五边形。 2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波契数列1,1,2,3,5,8,13,21,...后二数之比2/3,3/5,4/8,8/13,13/21,...近似值的。 黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。这种算法在印度称之为"三率法"或"三数法则",也就是我们现在常说的比例方法。 其实有关"黄金分割",我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。 因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为"黄金分割"。 黄金分割〔Golden Section〕是一种数学上的比例关系。黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。应用时一般取0.618 ,就像圆周率在应用时取3.14一样。 黄金矩形(Golden Rectangle)的长宽之比为黄金分割率,换言之,矩形的长边为短边 1.618倍.黄金分割率和黄金矩形能够给画面带来美感,令人愉悦.在很多艺术品以及大自然中都能找到它.希腊雅典的帕撒神农庙就是一个很好的例子,他的<维特鲁威人>符合黄金矩形.<蒙娜丽莎>的脸也符合黄金矩形,<最后的晚餐>同样也应用了该比例布局.发现历史 由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。 公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。 |..........a...........| +-------------+--------+ - | | | . | | | . | B | A | b | | | . | | | . | | | . +-------------+--------+ - |......b......|..a-b...| 通常用希腊字母 表示这个值。 黄金分割奇妙之处,在于其比例与其倒数是一样的。例如:1.618的倒数是0.618,而1.618:1与1:0.618是一样的。 确切值为(√5-1)/2 黄金分割数是无理数,前面的1024位为: 0.6180339887 4989484820 4586834365 6381177203 0917980576 2862135448 6227052604 6281890244 9707207204 1893911374 8475408807 5386891752 1266338622 2353693179 3180060766 7263544333 8908659593 9582905638 3226613199 2829026788 0675208766 8925017116 9620703222 1043216269 5486262963 1361443814 9758701220 3408058879 5445474924 6185695364 8644492410 4432077134 4947049565 8467885098 7433944221 2544877066 4780915884 6074998871 2400765217 0575179788 3416625624 9407589069 7040002812 1042762177 1117778053 1531714101 1704666599 1466979873 1761356006 7087480710 1317952368 9427521948 4353056783 0022878569 9782977834 7845878228 9110976250 0302696156 1700250464 3382437764 8610283831 2683303724 2926752631 1653392473 1671112115 8818638513 3162038400 5222165791 2866752946 5490681131 7159934323 5973494985 0904094762 1322298101 7261070596 1164562990 9816290555 2085247903 5240602017 2799747175 3427775927 7862561943 2082750513 1218156285 5122248093 9471234145 1702237358 0577278616 0086883829 5230459264 7878017889 9219902707 7690389532 1968198615 1437803149 9741106926 0886742962 2675756052 3172777520 3536139362 1076738937 6455606060 5922...生活应用有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是0.618…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618……的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。 建筑师们对数学0.168…特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,都有与0.168…有关的数据。人们还发现,一些名画、雕塑、摄影作品的主题,大多在画面的0.168…处。艺术家们认为弦乐器的琴马放在琴弦的0.168…处,能使琴声更加柔和甜美。 数字0.168…更为数学家所关注,它的出现,不仅解决了许多数学难题(如:十等分、五等分圆周;求18度、36度角的正弦、余弦值等),而且还使优选法成为可能。优选法是一种求最优化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间,为了求得最恰当的加入量,需要在1000克与2000克这个区间中进行试验。通常是取区间的中点(即1500克)作试验。然后将试验结果分别与1000克和2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做试验,再比较端点,依次下去,直到取得最理想的结果。这种实验法称为对分法。但这种方法并不是最快的实验方法,如果将实验点取在区间的0.618处,那么实验的次数将大大减少。这种取区间的0.618处作为试验点的方法就是一维的优选法,也称0.618法。实践证明,对于一个因素的问题,用“0.618法”做16次试验就可以完成“对分法”做2500次试验所达到的效果。因此大画家达·芬奇把0.618…称为黄金数。0.618与战争:拿破仑大帝败于黄金分割线? 0.618,一个极为迷人而神秘的数字,而且它还有着一个很动听的名字——黄金分割律,它是古希腊著名哲学家、数学家毕达哥拉斯于2500多年前发现的。古往今来,这个数字一直被后人奉为科学和美学的金科玉律。在艺术史上,几乎所有的杰出作品都不谋而合地验证了这一著名的黄金分割律,无论是古希腊帕特农神庙,还是中国古代的兵马俑,它们的垂直线与水平线之间竟然完全符合1比0.618的比例。 也许,0.618在科学艺术上的表现我们已了解了很多,但是,你有没有听说过,0.618还与炮火连天、硝烟弥漫、血肉横飞的惨烈、残酷的战场也有着不解之缘,在军事上也显示出它巨大而神秘的力量? 0.618与武器装备 在冷兵器时代,虽然人们还根本不知道黄金分割率这个概念,但人们在制造宝剑、大刀、长矛等武器时,黄金分割率的法则也早已处处体现了出来,因为按这样的比例制造出来的兵器,用起来会更加得心应手。 当发射子弹的步枪刚刚制造出来的时候,它的枪把和枪身的长度比例很不科学合理,很不方便于抓握和瞄准。到了1918年,一个名叫阿尔文·约克的美远征军下士,对这种步枪进行了改造,改进后的枪型枪身和枪把的比例恰恰符合0.618的比例。 实际上,从锋利的马刀刃口的弧度,到子弹、炮弹、弹道导弹沿弹道飞行的顶点;从飞机进入俯冲轰炸状态的最佳投弹高度和角度,到坦克外壳设计时的最佳避弹坡度,我们也都能很容易地发现黄金分割率无处不在。 在大炮射击中,如果某种间瞄火炮的最大射程为12公里,最小射程为4公里,则其最佳射击距离在9公里左右,为最大射程的2/3,与0.618十分接近。在进行战斗部署时,如果是进攻战斗,大炮阵地的配置位置一般距离己方前沿为1/3倍最大射程处,如果是防御战斗,则大炮阵地应配置距己方前沿2/3倍最大射程处。 0.618与战术布阵 在我国历史上很早发生的一些战争中,就无不遵循着0.618的规律。春秋战国时期,晋厉公率军伐郑,与援郑之楚军决战于鄢陵。厉公听从楚叛臣苗贲皇的建议,把楚之右军作为主攻点,因此以中军之一部进攻楚军之左军;以另一部进攻楚军之中军,集上军、下军、新军及公族之卒,攻击楚之右军。其主要攻击点的选择,恰在黄金分割点上。 把黄金分割律在战争中体现得最为出色的军事行动,还应首推成吉思汗所指挥的一系列战事。数百年来,人们对成吉思汗的蒙古骑兵,为什么能像飓风扫落叶般地席卷欧亚大陆颇感费解,因为仅用游牧民族的彪悍勇猛、残忍诡谲、善于骑射以及骑兵的机动性这些理由,都还不足以对此做出令人完全信服的解释。或许还有别的更为重要的原因?仔细研究之下,果然又从中发现了黄金分割律的伟大作用。蒙古骑兵的战斗队形与西方传统的方阵大不相同,在它的5排制阵形中,人盔马甲的重骑兵和快捷灵动轻骑兵的比例为2:3,这又是一个黄金分割!你不能不佩服那位马背军事家的天才妙悟,被这样的天才统帅统领的大军,不纵横四海、所向披靡,那才怪呢。 马其顿与波斯的阿贝拉之战,是欧洲人将0.618用于战争中的一个比较成功的范例。在这次战役中,马其顿的亚历山大大帝把他的军队的攻击点,选在了波斯大流士国王的军队的左翼和中央结合部。巧的是,这个部位正好也是整个战线的“黄金点”,所以尽管波斯大军多于亚历山大的兵马数十倍,但凭借自己的战略智慧,亚历山大把波斯大军打得溃不成军。这一战争的深刻影响直到今天仍清晰可见, 在海湾战争中,多国部队就是采用了类似的布阵法打败了伊拉克军队。 两支部队交战,如果其中之一的兵力、兵器损失了1/3以上,就难以再同对方交战下去。正因为如此,在现代高技术战争中,有高技术武器装备的军事大国都采取长时间空中打击的办法,先彻底摧毁对方1/3以上的兵力、武器,尔后再展开地面进攻。让我们以海湾战争为例。战前,据军事专家估计,如果共和国卫队的装备和人员,经空中轰炸损失达到或超过30%,就将基本丧失战斗力。为了使伊军的损耗达到这个临界点,美英联军一再延长轰炸时间,持续38天,直到摧毁了伊拉克在战区内428辆坦克中的38%、2280辆装甲车中的32%、3100门火炮中的47%,这时伊军实力下降至60%左右,这正是军队丧失战斗力的临界点。也就是将伊拉克军事力量削弱到黄金分割点上后,美英联军才抽出“沙漠军刀”砍向萨达姆,在地面作战只用了100个小时就达到了战争目的。在这场被誉为“沙漠风暴”的战争中,创造了一场大战仅阵亡百余人奇迹的施瓦茨科普夫将军,算不上是大师级人物,但他的运气却几乎和所有的军事艺术大师一样好。其实真正重要的并不是运气,而是这位率领一支现代大军的统帅,在进行战争的运筹帷幄中,有意无意地涉及了0.618,也就是说,他多多少少托了黄金分割律的福。 此外,在现代战争中,许多国家的军队在实施具体的进攻任务时,往往是分梯队进行的,第一梯队的兵力约占总兵力的2/3,第二梯队约占1/3。在第一梯队中,主攻方向所投入的兵力通常为第一梯队总兵力的2/3,助攻方向则为1/3。防御战斗中,第一道防线的兵力通常为总数的2/3,第二道防线的兵力兵器通常为总数的1/3。 0.618与战略战役 0.618不仅在武器和一时一地的战场布阵上体现出来,而且在区域广阔、时间跨度长的宏观的战争中,也无不得到充分地展现。 一代枭雄的的拿破仑大帝可能怎么也不会想到,他的命运会与0.618紧紧地联系在一起。1812年6月,正是莫斯科一年中气候最为凉爽宜人的夏季,在未能消灭俄军有生力量的博罗金诺战役后,拿破仑于此时率领着他的大军进入了莫斯科。这时的他可是踌躇满志、不可一世。他并未意识到,天才和运气此时也正从他身上一点点地消失,他一生事业的顶峰和转折点正在同时到来。后来,法军便在大雪纷扬、寒风呼啸中灰溜溜地撤离了莫斯科。三个月的胜利进军加上两个月的盛极而衰,从时间轴上看,法兰西皇帝透过熊熊烈焰俯瞰莫斯科城时,脚下正好就踩着黄金分割线。 1941年6月22日,纳粹德国启动了针对苏联的“巴巴罗萨”计划,实行闪电战,在极短的时间里,就迅速占领了的苏联广袤的领土,并继续向该国的纵深推进。在长达两年多的时间里,德军一直保持着进攻的势头,直到1943年8月,“巴巴罗萨”行动结束,德军从此转入守势,再也没能力对苏军发起一次可以称之为战役行动的进攻。被所有战争史学家公认为苏联卫国战争转折点的斯大林格勒战役,就发生在战争爆发后的第17个月,正是德军由盛而衰的26个月时间轴线的黄金分割点。我们常常听说有“黄金分割”这个词,“黄金分割”当然不是指的怎样分割黄金,这是一个比喻的说法,就是说分割的比例像黄金一样珍贵。那么这个比例是多少呢?是0.618。人们把这个比例的分割点,叫做黄金分割点,把0.618叫做黄金数。并且人们认为如果符合这一比例的话,就会显得更美、更好看、更协调。在生活中,对“黄金分割”有着很多的应用。最完美的人体:肚脐到脚底的距离/头顶到脚底的距离=0.618最漂亮的脸庞:眉毛到脖子的距离/头顶到脖子的距离=0.618证明方法:设一条线段AB的长度为a,C点在靠近B点的黄金分割点上且AC为bAC/AB=BC/ACb^2=a*(a-b)b^2=a^2-aba^-ab+(1/4)b^2=(5/4)*b^2(a-b/2)^2=(5/4)b^2a-b/2=(根号5/2)*ba-b/2=(根号5)b/2a=b/2+(根号5)b/2a=b(根号5+1)/2a/b=(根号5+1)/2
有关什么是黄金分割及黄金分割的应用问题详解:把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现: 1/0.618=1.618 (1-0.618)/0.618=0.618 这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。 让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做"菲波那契数列",这些数被称为"菲波那契数"。特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。 菲波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。即f(n)/f(n-1)-→0.618…。由于菲波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。但是当我们继续计算出后面更大的菲波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。 一个很能说明问题的例子是五角星/正五边形。五角星是非常美丽的,我们的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。 由于五角星的顶角是36度,这样也可以得出黄金分割的数值为2Sin18 。 黄金分割点约等于0.618:1 是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。线段上有两个这样的点。 利用线段上的两黄金分割点,可作出正五角星,正五边形。 2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波契数列1,1,2,3,5,8,13,21,...后二数之比2/3,3/5,4/8,8/13,13/21,...近似值的。 黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。这种算法在印度称之为"三率法"或"三数法则",也就是我们现在常说的比例方法。 其实有关"黄金分割",我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。 因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为"黄金分割"。 黄金分割〔Golden Section〕是一种数学上的比例关系。黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。应用时一般取1.618 ,就像圆周率在应用时取3.14一样。 发现历史 由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。 公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。 |..........a...........| +-------------+--------+ - | | | . | | | . | B | A | b | | | . | | | . | | | . +-------------+--------+ - |......b......|..a-b...| 通常用希腊字母 表示这个值。 黄金分割奇妙之处,在于其比例与其倒数是一样的。例如:1.618的倒数是0.618,而1.618:1与1:0.618是一样的。 确切值为根号5+1/2 黄金分割数是无理数,前面的1024位为: 1.6180339887 4989484820 4586834365 6381177203 0917980576 2862135448 6227052604 6281890244 9707207204 1893911374 8475408807 5386891752 1266338622 2353693179 3180060766 7263544333 8908659593 9582905638 3226613199 2829026788 0675208766 8925017116 9620703222 1043216269 5486262963 1361443814 9758701220 3408058879 5445474924 6185695364 8644492410 4432077134 4947049565 8467885098 7433944221 2544877066 4780915884 6074998871 2400765217 0575179788 3416625624 9407589069 7040002812 1042762177 1117778053 1531714101 1704666599 1466979873 1761356006 7087480710 1317952368 9427521948 4353056783 0022878569 9782977834 7845878228 9110976250 0302696156 1700250464 3382437764 8610283831 2683303724 2926752631 1653392473 1671112115 8818638513 3162038400 5222165791 2866752946 5490681131 7159934323 5973494985 0904094762 1322298101 7261070596 1164562990 9816290555 2085247903 5240602017 2799747175 3427775927 7862561943 2082750513 1218156285 5122248093 9471234145 1702237358 0577278616 0086883829 5230459264 7878017889 9219902707 7690389532 1968198615 1437803149 9741106926 0886742962 2675756052 3172777520 3536139362 1076738937 6455606060 5922...
黄金分割点在现实生活中的应用论文 希腊的自然科学研究影响西方文化和文明的发展,他们重视分析、分解、假设、推理、推导、实验、验证等思维方式。这与东方重视整体、模糊处理、直觉综合、和谐大同、“仁者爱人”等思维方式和思想有明显的差别。胡适在“中国的文艺复兴”一文中说“当孟子在对人性的内在美德进行理论探讨时,欧几里德正在完善几何学,正在奠定欧洲的自然科学的基础。”这种说法不全面,东方的中华文明有过比西方更辉煌的历史,但在五百多年来,西方经历了继承希腊的文艺复兴和工业革命,使科学和技术快速发展,而中国因封建统治和闭关锁国等原因而衰落。现在应该撷取东西方文明的长处,把它们整合起来,创建中华夏兴。 “科学中的美和美的科学”,早期属于自然哲学,自古希腊人开始研究,至今约有2500年。古希腊人喜欢抽象研究。抽象研究又分为逻辑推理研究和形象推理研究,后者所用的工具有直尺和圆规。代数和平面几何为两者的典型代表。 曾提出这样一个问题:“一根棍从哪里分割最为美妙?”答案是:“前半段与后半段之比应等于后半段与全长之比”。设全长为1,后半段为x,此式即成为(1-x):x=x:1,也就是X2+X-1=0。其解为:。棍内分割只能取正值,此值就是著名的黄金分割比值G, G=0.618033988≈0.618。而且G(1+G)=1,即G和(1+G)互为倒数。 偏有一些古希腊人想用形象方法解决黄金分割问题,并获得漂亮的结果。欧几里德(约公元前330-257年)总结了前人的经验和研究成果,编著了《几何原理》十三卷。这是世界上最早用公理方法叙述的数学著作。其中所载的黄金分割几何问题已引起广泛的兴趣,在科学、艺术、建筑、技术各领域有着广泛的应用,哲学家和美学家也曾反复讨论,不断有文章发表。 自然界的形成、运行、演化、生长、繁衍、消亡等都是有规律的,有些物体可以直接感到自然美,但更多的物体令人迷惑不解。我们深信“天道崇美”,但需要人去探究,揭露其规律,使人感受到深层次的自然美和科学美。这就是“因人而彰”。黄金分割律,就是想梳理和探讨这种自然美和科学美。人有爱美的天性,而且人本身也是很精美的。“天道崇美,人性好美”有普遍性,无论是天然物品还是人工制品,形态的丑陋必然表明其功能的缺陷,而某些功能的完美,往往伴随着美的外形. 现代科学研究表明,0.618在养生中也起重要作用。注意了这些黄金分割点,对养生健体大有好处。“0.618",这个比值因具有美学价值而被古希腊美学家运用到造型艺术中,因为凡符合黄金分割律的形体总是最美的形体。现在发现此比值和医学保健、健康长寿有着千丝万缕的联系,亦可称为健康的黄金分割律。在人体结构上,0.618更是无处不在。脐至脚底与头顶至脐之比;躯干长度与臀宽之比;下肢长度与上肢长度之比,均近似于0.618。而且,越是接近于这个值,整个形体就越匀称,越令人觉得完美。人在环境气温22℃-24℃下生活感到最适宜.因为人体的正常体温是36℃-37℃,这个体温与0.618的乘积恰好是22.4℃-22.8℃,而且在这一环境温度中,人体的生理功能、生活节奏等新陈代谢水平均处于最佳状态。再如,营养学中强调,一餐主食中要有六成粗粮和四成细粮的搭配进食,有益于肠胃的消化与吸收,避免肠胃病。这也可纳入饮食的0.618规律之列。抗衰老有生理与心理抗衰之分,哪个为重?研究证明,生理上的抗衰为四,而心理上的抗衰为六,也符合黄金分割律。充分调动与合理协调心理和生理两方面的力量来延缓衰老,可以达到最好的延年益寿的效果。一天合理的生活作息也符合0.618的分割,24小时中,2/3时间是工作与生活,1/3时间是休息与睡眠;在动与静的关系上,究竟是"生命在于运动",还是"生命在于静养"?从辩证观和大量的生活实践证明,动与静的关系同一天休息与工作的比例一样,动四分,静六分,才是最佳的保健之道. 动静:从辩证观点看,动和静是一个0.618比例关系,大致四分动六分静才是较佳养生之法。饮食:医学专家分析后还发现,饭吃六七成饱的人几乎不生胃病;摄入的饮食以六分粗粮、四分精食为适宜。从黄金分割律看,结婚的最佳季节是一年12个月的0.618处,约在7月底至8月底。医学研究已表明,秋季是人的免疫力最佳的黄金季节。因为7月至8月时人体血液中淋巴细胞最多,能生成大量的抵抗各种微生物的淋巴因子,此时人的免疫力强.较少小户型以其"低总价、低首付、低月供",把众多刚刚踏入社会的年轻人吸引为有房一族。虽然市场上对小户型的需求很热烈,但也同样具有投资风险。如何进行小户型投资?市场时兴一套有趣的"黄金分割论".时间分割因为工作时间与居家时间之比正好构成一个黄金分割,即0.618比0.382,所以专家认为,最有价值的地段可能是工作与社区之间的黄金分割点.尺度分割小户型因其小,面积更要精打细算.在小户型越来越热的过程中,市场有一个趋势,即户型越小越好。但绝对的小既不符合居住者的正常生活需求,也绝对不会是潮流。新消费或投资趋势表明,小户型在面积大小上也存在黄金分割率.在30至80平方米之间,有一个黄金分割数,正好是50余平方米。所以,市场上50余平方米的小户型热卖度超过了其他规格.空间主要是卧室与起居,30平方米根本无法细分任何功能区,难以满足高品质居家生活。而50多平方米是功能上黄金分割区的最小面积,即可分出30平方米的主体空间和20平方米的配套空间,解决独立厨卫、阳台、储藏等各个功能.因此,根据"黄金分割论"选择的小户型应该是既节省户型面积,减少投资总额,同时又能满足空间上的审美和功能需求,保证居住者的生活品质与居家情趣。 黄金分割比在未发现之前,在客观世界中就存在的,只是当人们揭示了这一奥秘之后,才对它有了明确的认识。当人们根据这个法则再来观察自然界时,就惊奇的发现原来在自然界的许多优美的事物中的能看到它,如植物的叶片、花朵,雪花,五角星……许多动物、昆虫的身体结构中,特别是人体中更是有着丰富的黄金比的关系。当人们认识了这一自然法则之后,就被广泛地应用于人类的生活之中。此后,在我们的生活环境中,就随处可见了,如建处门窗、橱柜、书桌;我们常接触的书本、报纸、杂志;现代的电影银幕。电视屏幕,以及许多家用器物都是近似这个数比关系构成的。它特别表现艺术中,在美术史上曾经把它作为经典法则来应用。有许多美术家运用它创造了不少不朽的著名。 黄金分割对摄影画面构图可以说有着自然联系。例如照相机的片窗比例:135相机就是24X36即2:3的比例,这是很典型的。120相机4.5X6近似3:5,6X6虽然是方框,但在后期制作用,仍多数裁剪为长方形近似黄金分割的比例。只要我们翻开影集看一看,就会发现,大多数的画幅形式,都是近似这个比例。这可能是受传统的影响,也养成了人们的审美习惯。另外,也确实因为它具有悦目的性质,所以有时人们在时间中并非注意到这个比例,而特意去运用它,但往往就不自觉中,进入了这个法则之中。这也说明了,黄金分割的本身就存在有美的性质。在摄影实践中,运用黄金分割法则,主要表象在黄金分割点、线、面的运用中。黄金分割点,在全景构图中,多是主要表现对象,或是视觉中心所处的位置,在中、近景构图中,多是景物主要部位所处的位。在人像构图中常常是将人的眼睛处理在近于黄金分割点的位置。黄金分割线,多用作地平线、水平线、天际线所处的位置。 《梦幻曲》是一首带再现三段曲式,由A、B和A′三段构成。每段又由等长的两个4小节乐句构成。全曲共分6句,24小节。理论计算黄金分割点应在第14小节(240.618=14.83),与全曲高潮正好吻合。有些乐曲从整体至每一个局部都合乎黄金比例,本曲的六个乐句在各自的第2小节进行负相分割(前短后长);本曲的三个部分A、B、Aˊ在各自的第二乐句第2小节正相分割(前长后短),这样形成了乐曲从整体到每一个局部多层复合分割的生动局面,使乐曲的内容与形式更加完美。大、中型曲式中的奏鸣曲式、复三段曲式是一种三部性结构,其他如变奏曲、回旋曲及某些自由曲式都存在不同程度的三部性因素。黄金比例的原则在这些大、中型乐曲中也得到不同程度的体现。一般来说,曲式规模越大,黄金分割点的位置在中部或发展部越*后,甚至推迟到再现部的开端,这样可获得更强烈的艺术效果。莫扎特《D大调奏鸣曲》第一乐章全长160小节,再现部位于第99小节,不偏不依恰恰落在黄金分割点上(1600.618=98.88)。据美国数学家乔巴兹统计,莫扎特的所有钢琴奏鸣曲中有94%符合黄金分割比例,这个结果令人惊叹。我们未必就能弄清,莫扎特是有意识地使自己的乐曲符合黄金分割呢,抑或只是一种纯直觉的巧合现象。然而美国的另一位音乐家认为。"我们应当知道,创作这些不朽作品的莫扎特,也是一位喜欢数字游戏的天才。莫扎特是懂得黄金分割,并有意识地运用它的。"贝多芬《悲怆奏鸣曲》Op.13第二乐章是如歌的慢板,回旋曲式,全曲共73小节。理论计算黄金分割点应在45小节,在43小节处形成全曲激越的高潮,并伴随着调式、调性的转换,高潮与黄金分割区基本吻合。肖邦的《降D大调夜曲》是三部性曲式。全曲不计前奏共76小节,理论计算黄金分割点应在46小节,再现部恰恰位于46小节,是全曲力度最强的高潮所在,真是巧夺天工。我们再举一首大型交响音乐的范例,俄国伟大作曲家里姆斯-柯萨科夫在他的《天方夜谭》交响组曲的第四乐章中,写至辛巴达的航船在汹涌滔天的狂涛恶浪里,无可挽回地猛撞在有青铜骑士像的峭壁上的一刹那,在整个乐队震耳欲聋的音浪中,乐队敲出一记强有力的锣声,锣声延长了六小节,随着它的音响逐渐消失,整个乐队力度迅速下降,象征着那艘支离破碎的航船沉入到海底深渊。在全曲最高潮也就是"黄金点"上,大锣致命的一击所造成的悲剧性效果慑人心魂。 黄金律历来被染上瑰丽诡秘的色彩,被人们称为"天然合理"的最美妙的形式比例。世界上到处都存在数的美,对于我们的眼睛,尤其是对我们学习音乐的人的耳朵来说,"美是到处都有的,不是缺乏美,而是缺少发现"。 "0.618"还始终与军事发展有不解之缘,而且常常与战争不期而遇。无论是古希腊帕特农神庙的美轮,还是中国古代的兵马俑,它们的垂直线与水平线之间的关系竟然完全符合1∶0.618的比例。成吉思汗的蒙古骑兵横扫欧亚大陆令人惊叹。经过研究发现,蒙古骑兵的战 斗队形与西方传统的方阵大不相同,在他的五排制阵型中,重骑兵和轻骑兵为2∶3,人盔马甲的重骑兵为2,快捷灵活的轻骑兵为3,两者在编配上恰巧符合黄金分割律。欧洲人是最早有意识地把黄金分割律运用于宗教和艺术方面的,而在军事上的应用是从黑火药时期开始的。那时滑膛枪呈现出取代长矛之势,率先将滑膛枪 兵和长矛兵对半混编的荷兰将军摩利士未能突破传统阵型的羁绊,瑞典国王古斯 塔夫对这种正面强翼侧弱的阵型进行调整后,使瑞典军队变成了当时欧洲战斗力最强的军队。他的做法是,在摩利士将军原来的216名长矛兵与198名滑膛枪兵混 合编组的基础上,再增加96名滑膛枪兵,这一改变,顺应了科技发展和武器装备 进步对战术发展的影响规律,突出了火器在战斗中的作用,使之跨越了冷热兵器时代的分水岭。198+96名滑膛枪兵与216名长矛兵之比,让我们又一次看到了黄金 分割律的神奇作用。1812年6月,拿破仑进攻俄国;9月,他在博罗金诺战役后进入莫斯科,这时的拿破仑并未意识到天才和运气正从他身上一点一点地消失,他一生事业的顶峰 和转折点正同时到来。一个月后,法军便在大雪纷飞中撤离莫斯科,三个月的胜 利进军加上两个月的盛极而衰,从时间轴线上看,拿破仑脚下正好踩在了黄金分割线上。 130年后的另一个6月,纳粹德国启动了针对苏联的"巴巴罗萨"计划,在长 达两年多的时间里,德军一直保持进攻势头,直到1943年8月,"城堡"行动结束,德军从此转攻为守,再也没有能对苏军发起一次战役规模的进攻行动。被所有 战史学家公认为苏联卫国战争转折点的斯大林格勒战役,就发生在战争爆发后的 第17个月,正是德军由盛而衰的26个月时间轴线的黄金分割点.海湾战争中,美军一再延长空袭时间,持续38天,直到摧毁了伊拉克在战区内4280辆坦克中的38%、2280辆装甲车中的32%、3100门火炮中的47%,也就是将伊 拉克军事力量削弱到黄金分割点上后,才抽出"沙漠军刀"砍向萨达姆,地面作战只用100个小时就达成了战争目的。 透过战争中的一些零散战例,依稀可见"0.618"的影子在晃动、在徘徊。如 果孤立地看待它们,好似偶然巧合,但是如果太多的偶然遵循着同一个轨迹,那 就成为规律,就特别值得人们深入研究了。 一次无意中和同学在操场上打球,顺手测量了雕相牛顿的鼻子,其鼻孔间的距离和到鼻梁的比刚好接近于0.618。之后又测量了几个人的鼻子,结果符合黄金分割点。接下来的生活中对0.618变得很敏感,经过同学的推想与实践,我们发现了多弥乐古牌的长宽之比,蝴蝶的身体部位之比,漂亮花瓣的长宽之比也都符合这一规律。查询了很多的相关资料例如埃及金字塔便是这一规律的最好应用。 想象一下如何让一根很普通的细橡皮筋发出“哆来咪”的声音?把它拉紧,固定住,拨动一下,就是“1”,然后量出其长,作一道初三几何题——把这条“线段”进行黄金分割, 可以测出“分割”得到的两条线段中较长的一段,约是原线段长度的0.618倍。捏住这个点,拨动较长的那段“弦”,就发出“2”;再把这段较长线进行黄金分割,就找到了“3”, 以此类推“4、5、6、7”同样可以找到。 你从电视中见过碧水轻流的安大略湖畔的加拿大名城多伦多吗?这个高楼大厦鳞次栉比的现 代化城市中,最醒目的建筑就是高耸的多伦多电视塔,它器宇轩昂,直冲云霄。有趣的是嵌 在塔中上部的扁圆的空中楼阁,恰好位于塔身全长的0.618倍处,即在塔高的黄金分割点上。它使瘦削的电视塔显得和谐、典雅、别具一格。多伦多电视塔被称为“高塔之王”,这个 奇妙的“0.618”起了决定性作用。与此类似,举世闻名的法兰西国土上的“高塔之祖”——埃菲尔铁塔,它的第二层平台正好坐落在塔高的黄金分割点上,给铁塔增添了无穷的魅力。 气势雄伟的建筑物少不了“0.618”,艺术上更是如此。舞台上,演员既不是站在正中间, 也 不会站在台边上,而是站在舞台全长的0.618倍处,站在这一点上,观众看上去才惬意。我们所熟悉的米洛斯的“维纳斯”、“雅典娜”女神像及“海姑娘”阿曼达等一些名垂千古的 雕像中,都可以找到“黄金比值”——0.618,因而作品达到了美的奇境。 达·芬奇的《蒙娜丽莎》、拉斐尔笔下温和俊秀的圣母像,都有意无意地用上了这个比值。因为人体的很多部位,都遵循着黄金分割比例。人们公认的最完美的脸型——“鹅蛋”形,脸宽与脸长的比值约为0.618,如果计算一下翩翩欲仙的芭蕾演员的优美身段,可以得知,他们的腿长与身 长的比值也大约是0.618,组成了人体的美。 我国一位二胡演奏家在漫长的演奏生涯中发现 ,如果把二胡的“千斤”放在琴弦某处,音色会无与伦比的美妙。经过数学家验证,这一点恰恰是琴弦的黄金分割点0.618!黄金比值,在创造着奇迹!� 偶然吗?不,在人们身边,到处都有0.618的“杰作”:人们总是把桌面、门窗等做成长方形、宽与长比值为0.618。在数学上,0.618更是大显神通。0.618,美的比值、美的色彩、美的旋律,广泛地体现在人们的日常生活中,与人们关系甚密。0.618,奇妙的数字!它创造了无数的美,统一着人们的审美观。 爱开玩笑的0.618,又制造了大量的“巧合”。在整个世界中,无处不闪耀着0.618那黄金一样熠熠的光辉!人们时时刻刻在有意无意创造着一个个的黄金分割。只要稍微留心一下便可发现它离我们的生活有多近!数学离我们很近,无时不刻地在应用着它! 我们要首先感受并体会到数学学习中的美。数学美不同于其它的美,这种美是独特的、内在的。这种美,正如英国著名哲学家、数理逻辑学家罗素所说:“数学,如果正确地看它,不但拥有真理,而且也具有至高无上的美,正象雕刻的美,是一种冷而严肃的美。这种美不是投合我们天性的微弱的方面,这种美没有绘画或音乐那样华丽的服饰,它可以纯净到崇高的地步,能够达到严格的只有伟大的艺术能显示的那种完满的境界。”课堂上老师经常给我们讲数学美,通过高等数学的学习,我渐渐地领略到数学美的真正含义,这种感觉是奇异的、微妙的,是可以神会而难以言传的,数学,对我来说,是那样的富有魅力……在生活中只要我们善于观察,善于思考,将所学的知识与生活结合起来将会感到数学的乐趣。生活中处处都应用着数学的知识。
某网友写的:本学期,我们学习了许许多多的数学知识。从“几何”到“代数”再到“数形结合”。太多太多了。8个单元,分门别类,让我们看到了数学的精彩!其中我个人认为最有趣的就是第六单元“一次函数”。 一开始接触“函数”这个概念时还是非常陌生的。因为转眼望去,前面的单元基本是“小学”和“初一”接触过得。而对于“函数”来说确是几乎“一无所知”。只知道初一老师说过“可能性”和“函数”有着密切的关系。翻开这个单元时,真的有点“丈二和尚摸不着头脑”。 上面说了种种对“函数”概念的无知。所以自然在一开始学习的过程中会遇到“困难”。这单元的第一章从生活实际出发讲了“函数”的定义等等。这是一个比较“浮浅”的类容(从我现在的角度来说)。从这里我真正接触到了“函数”,但也许是学习没有完全进入。当时给我的印象就是:“函数好像是一个可有可无的好不重要的知识,甚至不明白为什么要学他。”第二章类容可以说就是对第一章的一个“浓缩”。好比第一章是个“橙子”,第二章就是把它榨成汁,然后就可以提高价值贩卖出去。学完后我对函数的印象还是那样,就像“橙子”和“橙汁”虽然“物态”不同,但味道还是差不多。真正的困难出现在第三章,谈到了“一次函数的图象”。可以老实说这章听得差不多是我本学期听的最累的一节课。老师发下来讲义,我那节课觉得您讲的奇快。我还没反应过来你就讲完了。我想班上大多数同学的感受也是如此吧!我终于意识到“函数”不是那么好学的。于是我就开始多做练习,慢慢的我对“函数”渐渐熟悉,随着课程的继续尤其是“函数的实际运用”这节课也使我对函数的印象大大改变。觉得“函数”好像是我们所学课程中与实际生活最紧密的一个单元了。 以上就是我学习“一次函数”的经历。下面我们在来分析一下“一次函数”。从类别上讲,“一次函数”是一个“数形结合”的“典范”。它体现了“代数”和“几何”的“互利”关系,说明二者“缺一不可”。使我们对“代数”“几何”有了全新认识,觉得他们的界线渐渐模糊了。其次“一次函数”我认为是一个有趣,神奇的类容。它有趣在千变万化的图象,它神奇在只用几笔简捷的线条就可以表达出需要“长篇大论”的文字所表达的变化规律。不能不觉得“一次函数”充满了“魔力”。此外这章的编排也是十分“成功”的,与前一章“位置的确定”联系紧密,可以使学过的知识由此得到“巩固”,更可以“由此及彼,举一反三,一通百通”。我想2章的联合编排更是教会我们“复习整理”的学习方法。所以由“一次函数”可以看出,北师大教材的编派不仅注重“知识”还注重“方法”。“一次函数”也使我对这本教材有了全新的认识和看法。 “一次函数”不仅有趣而且更是“历届”中考的“重中之重”。所以无论从“素质教育”和“应试教育”的角度来说“一次函数”都是一节非常好的类容。供参考。