首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

超级电容器论文参考文献

发布时间:

超级电容器论文参考文献

成果简介

具有高比表面积的多孔碳纳米片已经成为超级电容器最有希望的电极材料,但是它们的高孔体积导致相对较低的密度和较差的体积电容。 本文,苏州大学Chong Chen等研究人员 在《Carbon》期刊发表名为“Scalable synthesis of strutted nitrogen doped hierarchical porous carbon nanosheets for supercapacitors with both high gravimetric and volumetric performances”的论文, 研究通过新型的D-葡萄糖酸钙爆炸技术成功地按比例合成了支撑氮掺杂的分层多孔碳纳米片(SNPCNS),该碳纳米管具有通过支撑支撑的三维非聚集结构。

调节热解温度和时间,以及D-葡萄糖酸钙和脲甲醛树脂的质量比,以优化SNPCNS的比表面积,孔体积和电容性能。经过优化的SNPCNS具有高比表面积(539 m2g -1),表面杂原子丰富(N为8.1 at。%)和高密度(1.11 g cm -3)。因此,由SNPCNS电极组装的超级电容器具有非常高的重量/体积电容,分别为286Fg-1/317Fcm-3(在6MKOH中)和355Fg-1 / 394Fcm-3(在1 MH 2中)所以4)。重要的是,实现了重离子/体积能量密度(在离子液体中)为40.5 W h kg -1 /44.9 W h L -1(在离子液体中),优于先前报道的基于碳纳米片的对称超级电容器。这项工作为大规模和低成本生产用于能量存储的高性能多孔碳纳米片提供了新的策略。

图文导读

图1。氮掺杂分层多孔碳纳米片的合成示意图。

图2。SNPCNS-1:1-800-2h的(ab)SEM图像,(ce)TEM图像,(f)AFM图像和(gi)EDX元素映射图像。

图3。(a)XPS调查,(b)SNPCNS-1:1-800-2h的C1s,(c)N1s和(d)O1s光谱。

图4。SNPCNS材料通过热膨胀和热解转化制备过程的示意图。

图5。(a)20 mV s -1时的CV曲线,(b)1 A g -1时的GCD曲线,以及(c)SNPCNS样品在6 M KOH溶液中的体积电容。(d)在6 M KOH溶液中SNPCNS-1:1-800-2h的GCD曲线。(e)SNPCNS-1:1-800-2h在1 MH 2 SO 4和6 M KOH溶液中的奈奎斯特图。(f)SNPCNS-1:1-800-2h电极的重量/体积电容与其他报道的碳电极的比较。

图6。SNPCNS-1:1-800-2h在6 M KOH和[EMIm] NTf 2电解质中的电化学性能。

小结

总之,开发了一种D-葡萄糖酸钙爆炸技术,可以轻松而可规模地合成一种支链的氮掺杂分层多孔碳材料。 SNPCNS的高产量生产和出色的电容性能使其能够在超级电容器中进行大规模应用。

文献:

成果简介

本文,浙江大学王树荣教授团队在《ChemElectroChem》期刊 发表名为“Preparation of Nitrogen and Sulfur Co-doped and Interconnected Hierarchical Porous Biochar by Pyrolysis of Mantis Shrimp in CO2 Atmosphere for Symmetric Supercapacitors”的论文, 研究以螳螂虾壳为原料,CO2为活化剂,通过一步热解活化制备多种N、O、S自掺杂生物质碳材料(MSCs)。

通过控制热解温度来调节碳材料的物理和化学性质。在这项研究中,MSCs 材料的最大比表面积 (SSA) 和孔体积分别为484.5 m 2  g -1和0.291cm 3  g -1在 700 C 时达到。此外,在表征试验中发现,氮和硫等杂原子已成功引入碳微观结构中。 MSC-750含有高达9.46%的N和0.52%的S ,虽然SSA只有431.6m2g-1 时,6MKOH对称超级电容器在1Ag-1下的比电容在所有样品中达到最大值 144.2Fg -1,这是由于其高含量的杂原子官能团产生的赝电容。

图文导读

图1、(a)–(d) 分别为样品 MSC-600、650、700 和 750 的 SEM 图像;(e) 和 (f) MSC-700 和 MSC-750 在高倍率下的形态学图像。

图2、(a)–(b) MSC-750的TEM图像;(c)–(i) MSC-750选定区域的TEM-EDS图像。

图3、(a) MSCs的拉曼光谱和 (b)XRD图。

图4、MSC的电化学性能

图5、(a) 奈奎斯特曲线;(b) 比电容的虚部(C“,vs 频率);(c)-(f) 两个串联的硬币型超级电容器分别用于点亮白色和红色 LED。

小结

通过二氧化碳一步热解活化螳螂虾壳制备多元素共掺杂多孔生物质活性炭材料,并将其应用于对称超级电容器。这些结果表明MSC-750是一种很有前景的超级电容器电极材料,为水产品的高附加值加工利用开辟了新途径。

文献:

给你个led手电筒的怎么样,比较简单易于理解

我当时的课程论文。如果采纳需要的话可以给你电子稿。电力电子技术在分布式发电中的应用 (浙江大学电气工程学院 电子信息工程3080104394) 摘要:分布式发电以其高效、清洁、灵活的特点被世界各国所重视,成为21世纪电力系统最重要的研究方向之一。本文主要通过电力电子技术对电能的转换,电力电子技术对电能质量的改善等方面介绍了电力电子技术在分布式发电中的应用。关键词:电力电子分布式发电分布式电源电能转换电能质量Applications of Power Electronics in DistributedGeneration Yin Xiang (Collegeof Electrical Engineering,Zhejiang Unversity,Hangzhou)Abstract: Because of itshigh eficiency,cleanness and flexibility,DistributedGeneration (DG)has been paid more attention by many countries in the world andhas become one of the most important research in power system in 21st.This paper briefly introduces the applications Power Electronics inDG through the power transforming by power electronics and the improvement of powerquality by power electronics.Keywords:PowerElectronics;Distibuted Generation;Distibuted Sources;Power Quality 0 引言分布式发电(DistributedGeneration,DG)技术是未来能源技术即电力领域的重要方向。其具有能源利用率高、提高能源供应可靠性和经济效益好的特点。尤其是对于人口众多、资源有限的国家来说,分布式发电技术更是进行可持续发展的最佳选择。[1] 尽管分布式发电技术具有极大的应用潜力,但目前仍未被电力部门所广泛接受。这主要是因为在分布式发电技术中存在着数量众多的分布式电源(Distributed Resource,DR)。一方面,这些分布式电源如何通过电能变换接入电网技术上依然不是十分成熟;另一方面,当数量众多的分布式电源接入电网后,配电网根本性的变化使得电网各种 保护定值与机理发生了深刻变化,同时分布式电源的并网运行可能会引起电网电压和频率偏移、电压波动和闪变等电能质量问题。[2]而这些问题中很大一部分恰恰是电力电子技术可以解决的。 1 分布式发电1.1 分布式发电的定义DG是相对于传统集中式供电方式而言的,是指位于或接近负荷的、模块似的与环境兼容的发电设施,他们或接在配电网上或独立运行,经济、高效、可靠地发电。其主要结构如图1所示。 [1]黄胜利 , 张国伟 孔 力. 电力电子技术在微电网中的应用[J].电气应用,2008,27(9):55-58.[2]莫颖涛 吴为麟.电力电子技术在分布式发电中的应用[J]. 华北电力术,2004,9:48-54. 图11.2分布式发电的特点DG系统规模和功率较小;高效、经济、可靠、污染小;独立运行或接在配电网上,并位于负荷附近;对于可再生能源分布式发电,输出功率是间断的。DG在被提出和运用之后,一度被视为解决现有大电网结构臃肿、供用电分离的弊病的良药,这一技术由于其固有特点,要想得到进一步推广,还有不小的问题,其相对于传统发电方式自身容量小,能量输出不稳定,这些问题是分布发电自身先天弱点所致,难以独立克服。[3]2 电力电子技术在分布式电源电能变换中的应用2.1 分布式发电中电能变化的基本分类分布式电源根据使用的一次能源不同大致可以分为两种类型:一种是直流源型,如太阳能、燃料电池和蓄电池等;另一种是需要整流的高频交流源型,如风力发电机、微型燃气轮机等。这两种类型的电源最后都需要转换成标准的工频交流电供给负荷或并网。因此,在整个能量的变换过程中使用到了电力电子技术中的AC—DC,DC—DC和DC—AC三种变流技术。2.1.1 AC-DC变换风力发电机、微型燃气轮机等为不稳定的交流电源,需要首先把它们变成直流电,然后再通过逆变技术变成稳定的交流电。通常使用二极管整流技术。 2.1.2 DC-DC变换太阳能、燃料电池和蓄电池等为直流电源,由于它们的电压等级低,所以必须采用DC—DC中的Boost电路升压至合适的电压等级,然后再进行逆变。另外分布式电源具有在功率输出变化时响应时间长的特点,如微型燃气轮机的响应时间在秒级,而燃料电池则需要数分钟,所以在负荷突变或给定功率变化时会出现有功功率的供给不足;太阳能和风力发电具有波动性大的特点,所以系统中需要加入储能单元。储能单元可以选用超级电容器或蓄电池,同样需要采用Boost电路升压至母线电压。反之,当母线电压过高时,需要采用Buck电路降压对储能单元进行充电,所以储能单元往往采用双向DC—DC进行充放电。[4]2.1.3 DC-AC变换通过AC—DC或DC—DC技术把分布式电源变换到合适电压等级的直流电后,需要采用DC—AC把直流电变换为标准的交流电,供给负荷或并网。 2.2 几种具体应用在分布式发电中的电力电子技术分布式发电目前公认的几种常用而且成本较低的系统是以下几种:[5](1)风能发电系统;(2)光电池;(3)微型气轮机;(4)燃料电池。在这些新型分布式发电系统中,电力电子设备在能量的转换中起到极其关键的技术。任何一种形式的分布式发电都要解决分布式电源与电网、用户、储能系统之间的接口能量转换问题。 [3]安明瑞 吴冰冰 乔琨. 分布式发电及其应用综述[J].电源应用技术,2010,13(2):40-43.[4] 梁有伟,胡志坚,陈允平. 分布式发电及其在电力系统中的应用研究综述[J]. 电网技术,2003,27(12):71-75.[5]王志群,朱守真,周双喜,等.分布式发电接入位置和注入容量限制的研究[J].电力系统及其自动化学报,2005,17 (1):53-58. 2.2.1 风能并网系统中的电力电子技术19世纪末丹麦开始研究风力发电技术。它属于交流性质的DGRs。风力发电技术是将风能转化成电能的发电技术,其输出功率由风能决定。风速作用在风力机的叶片上产生转矩,该转矩驱动轮盘转动,通过齿轮箱高速轴、刹车盘和联轴器再与异步发电机转子相连,从而发电运行。由于自然风速的大小和方向是随机变化的,风能具有不稳定性。如何使风力发电机的输出功率稳定是风力发电技术的一个重要的问题。 对于一个一个异步发电机系统,首先经过二极管整流器的整流,然后经过逆变器逆变,再与交流电网相连;机械频率与转子转差频率之和等于电网的频率,转换器的额定功率决定于所选择的速度范围。当异步发电机运行在额定同步转速之上时,转换系统可以实现功率逆向流动。[6] 2.2.2光伏发电系统中的电力电子技术光伏发电系统是属于直流性质的DGRs,是将太阳能电池发出的直流电转化为与电网电压同频、同相的交流电,并且实现既向负载供电,又向电网发电的一个系统。并网系统的核心是并网逆变器,它同时也应该具有独立光伏发电系统的一些功能和特点。它主要由太阳能电池方阵和逆变器两部分组成。光电系统进行能量转换的通用方法是:使用直流一交流(DC-AC)逆变器,将存储在光电池中的直流能量转换为大电网同步的交流电压。[7] 2.2.3燃料电池发电系统中的电力电子技术燃料电池是属于直流性质的DGRs,通过电化学过程将化学能转化成电能,具有效率高、清洁无污染、噪音低、安装便捷经济等特点。燃料电池产生的直流电压经过一个直流一交流(DC-AC)逆变器进行转换,转变为交流电压,其转换过程和光电系统相似直流输电与交流输电相比有许多优势。[8]所以在以上几种发电类型中,电能的传送都是采用直流输电的形式,但是大电网以及人们生活、生产需要的是频率稳定的交流电,所以由电力电子设备组成的整流、逆变电路及其它电力电子接口设备在分布式发电系统的能量转换和传递中起到极其关键的作用。 3 电力电子技术在分布式发电电能质量改善中的应用 3.1 分布式发电(DG)对电能质量不利影响(1)对电压闪变造成影响 电压闪变是灯光照度不稳定而造成的视感,传统电网引起电压闪变的主要原因是负荷的瞬时变化,随着分布式发电的引入,将带来引起电压闪变的其他因素,这些因素主要是以下几个方面:某个大型分布式单元的启动,分布式单元输出的短时剧变,以及分布式单元与系统中电压反馈控制设备相互作用而带来的不利影响。[9](2)给系统带来大量谐波众所周知,电力系统中存在大量的非线性成分从而引入了大量的谐波,谐波的引入对电力系统造成的危害有:增加了电站和用户设备的功率损耗;使敏感负荷或者控制设备发生故障;电网波形中谐波成分比例过大,会使一些电力设备寿命减少。[10]由于电力电子器件大量应用于分布式发电,供电系统中增加了大量的非线性负载,所以不可避免的给系统带来大量谐波,至于带来谐波的幅度和阶次受到发电方式以及转换器的工作模式的影响。 [6]胡学浩.分布式发电(电源)技术及其并网问题[J]. 电工技术杂志,2004 (10):1-5.[7] 张超,王章权,蒋燕君.无差拍控制在光伏并网发电系统中的应用[J].电力电子技术,2007,41 (7) :5-5.[8] 唐西胜. 超级电容器储能应用于分布式发电系统:[博士学位论文][D]. 齐智平:中国科学院电力系统及其自动化,2006.[9] 胡学浩.分布式发电(电源)技术及其并网问题[J]. 电工技术杂志,2004 (10):1-5.[10]程华,徐政.分布式发电中的储能技术[J1.高压电器,2003,39(3):53-56.3.2 电力电子技术对电能质量的改善电能研究协会(EPRI)为了寻找改善分布式系统性能的先进技术,现已做了大量深入的研究。这种用户电力(CUSTOM POWER)的技术将现代电力电子控制器、分布自动化以及完整的通信结合在一起,为用户终端提供高质量的电能。尽管非常有用,但是CUSTOM POWER 设备应用在分布式系统中的范围很有限。近年来,一些用于快速控制的设备陆续被研制出来,固态断路器(SSB)、静态无功补偿器(STATCOM )和动态电压恢复(DVR)都属于现代电力电子控制器。STATCOM、LTC与机械转换电容三者相互协调可以减少系统电压波动。以STATCOM 为代表的这些用于分布式系统控制的电力电子设备已经得到充分的论证,这些设备不仅可以实现连续控制而且还可以对系统变化作出实时反应。分布式系统中用电力电子设备来控制电能质量,现在应用得还很保守,主要是因为成本太高,只有在非常重要的负荷(如医院)才采用这种方法。最为普遍的电力电子设备是UPS,它在计算机系统中得到非常广泛的应用。[11]由于以后计算机技术将会更加深入到生活和生产中,所以对经济性的电力电子设备的需求将急剧增加,其中一些经济性电力电子设备将用于处理瞬时扰动、电压陷落或其它电能质量问题。 4 结语由于当前发电模式的种种弊端,非可再生能源的枯竭,世界各国对环境保护的重视,分布式发电将成为未来世界最主要的发电模式。从本文对分布式发电的多方面分析可以看出,电力电子技术在分布式发电中有着极其广泛的应用,因此大力研究推广电力电子技术可以为分布式发电技术打开新的突破口,从而进一步促进可再生能源的普及与推广。 参考文献 [1]黄胜利 , 张国伟 孔 力. 电力电子技术在微电网中的应用[J].电气应用,2008,27(9):55-58.[2]莫颖涛 吴为麟.电力电子技术在分布式发电中的应用[J]. 华北电力术,2004,9:48-54.[3]安明瑞 吴冰冰 乔琨. 分布式发电及其应用综述[J].电源应用技术,2010,13(2):40-43.[4] 梁有伟,胡志坚,陈允平. 分布式发电及其在电力系统中的应用研究综述[J].电网技术,2003,27(12):71-75.[5]王志群,朱守真,周双喜,等.分布式发电接入位置和注入容量限制的研究[J].电力系统及其自动化学报,2005,17 (1):53-58.[6]胡学浩.分布式发电(电源)技术及其并网问题[J]. 电工技术杂志,2004 (10):1-5.[7] 唐西胜. 超级电容器储能应用于分布式发电系统:[博士学位论文][D]. 齐智平:中国科学院电力系统及其自动化,2006.[8] 张超,王章权,蒋燕君.无差拍控制在光伏并网发电系统中的应用[J]. 电力电子技术,2007,41(7) :5-5.[9] 胡学浩.分布式发电(电源)技术及其并网问题[J]. 电工技术杂志,2004 (10):1-5.[10]程华,徐政.分布式发电中的储能技术[J1.高压电器,2003,39(3):53-56.[11]吴靖,江吴.分布式发电的应用及前景.农村电气,2003,(7):1 9-20.[11]吴靖,江吴.分布式发电的应用及前景.农村电气,2003,(7):1 9-20.

超级电容器的论文

【嵌牛导读】 :现在已经步入智能机的时代,相比以前的手机,现在的智能机屏幕大、功能多,但是电量始终是个大问题,电池续航能力不行、寿命短,怎么办呢?黑科技新型超级电容器,让手机瞬间满电。 【嵌牛鼻子】 :超级电容器、手机、快速充电 【嵌牛提问】 :超级电容器性能如何?能如何运用? 【嵌牛正文】 :         美国范德比尔特的研究人员表示,他们已经首次成功打造出具有超级电容器这项技术的功能健全的原型机。其中一名研究人员卡里-宾特说:“据我们所知,这些装置首次证明了我们可以制造一种能在储存和释放大量电流的同时,又能经受住振动或冲击等现实存在的静载荷和动力考验的材料。”宾特和安德鲁-威斯多弗研制的这种新装置是一种超级电容器,它储存电流的方式是通过让带电离子聚集到多孔材料表面,而非像现在的电池一样通过化学反应储存这些离子。因此这些超级电容器能在几分钟内储满电,并不需要几小时,而且它能循环使用数百万次,并不像现在的电池一样只能使用数千次。         宾特说:“当你能把能量与建设系统的成分结合在一起时,它就打开了科技可能性的全新世界的大门。突然间,以健康、娱乐、 旅行 和社交为基础设计的科技产品的能力,将不再受到插座和外部电源的限制。”超级电容器只储存比当前电池少10倍的电量,但是它们的续航时间却比后者长一千倍,这意味着可以把它们建在墙体和汽车底盘里。他说:“当你把电能储存在需要结构整体性的重型材料里时,电池的性能指标会发生变化。超级电容器储存的电能比当前使用的锂离子电池少10倍,但是它们的续航时间却比后者长一千倍,也就是说它们更适合于结构应用。如果它们很快就会失去作用,每隔几年就需要更换一次,把它们当做建设住宅、汽车底盘或者飞行器的材料就没有什么意义了。”         宾特和威斯多弗发表在在线杂志《纳米快报(NanoLetters)》上的一篇论文中称,他们的新结构的超级电容器在压强高达44磅/平方英尺(约合6千帕)和振动加速度超过80g(比喷气发动机涡轮叶片承受的压力和振动明显更大)的环境下,在储藏电荷和释放电荷方面的操作堪称完美。此外,该装置的机械强度并不会影响它的电能储存能力。宾特说:“我们的超级电容器在未被拆封、结构完整的情况下,能储存更多电能,而且与已拆封的、现货供应的商用超级电容器相比,它能在更高的电压下正常运行,并且在强烈的动态和静态压力下也不例外。”         目前OPPO的VOOC闪充是大家所熟知的手机快速充电的技术,VOOC闪充创新性改变电路拓扑结构,降低温度,同时首次打造从适配器到接口再到手机的全端式五重防护技术,将最快充电速度提升四倍以上。其本质上并没有在传统充电方式上做出改变,而超级电容器是利用活性炭多孔电极和电解质组成的双电层结构获得超大的电容量的。         超级电容器利用双电层原理的电容器。当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。由于随着超级电容器放电 ,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷相应减少。与利用化学反应的蓄电池不同,超级电容器的充放电过程始终是物理过程。        由于其充电技术不同,超级电容器具备了以下特点: 1、充电速度快,充电 10 秒 ~10 分钟可达到其额定容量的 95 %以上; 2、循环使用寿命长,深度充放电循环使用次数可达 1~50 万次; 3、能量转换效率高,过程损失小,大电流能量循环效率 ≥ 90% ; 4、功率密度高,可达 300W/KG~5000W/KG ,相当于电池的 5~10 倍; 5、产品原材料构成、生产、使用、储存以及拆解过程均没有污染,是理想的绿色环保电源; 6、安全系数高,长期使用免维护; 7、超低温特性好,可工作于零下 30 ℃ 的环境中; 这些特点可以说特别适合目前的智能手机,充电速度、使用时间、体积、安全性和低温时的工作状态,几乎能够弥补现在智能机电池的所有缺陷。期待其大规模生产并运用的那一天的到来,那时智能手机会迈出的一大步。

作者 | 张晴丹

你能想象0.2克的“绳子”可以提起5公斤重的物体吗?

没开玩笑,这是科研人员创造出的一种力学性能惊人的新材料。它不但具有很好的拉伸性能,拉伸长度能达600%,而且还非常坚韧。

近日,美国北卡罗来纳州立大学Dickey实验室博士后王美香以第一作者的身份,在Nature Materials上发表论文,介绍了这款新材料。它属于离子液体凝胶的一种,在抗拉伸性能和韧性上创造了这类材料的最高纪录,也展现出比水凝胶更广阔的应用前景。

评审专家之一、麻省理工学院教授赵选贺认为,“这些透明的离子液体凝胶具有非常坚韧的机械性能,而且最大的亮点是制作简单,易于使用。”

1+1 10,凝胶界的“佼佼者”

“通常凝胶的机械性能很弱,比如豆腐。但在自然界中也有例外,比如人体内的软骨。一些研究人员一直在努力制造坚韧的凝胶,这启发了我们。”论文共同通讯作者、北卡罗来纳州立大学Dickey实验室负责人Michael D. Dickey告诉《中国科学报》。

此次创造出的离子液体凝胶含有超过60%的离子液体,主要包含丙烯酸和丙烯酰胺两种物质,前者是用于婴儿尿不湿吸水的主要材料,后者是用于隐形眼镜的主要材料。最后,混合材料兼具了聚丙烯酰胺和聚丙烯酸离子液体凝胶的优点,实现了1+1 10的效果。

王美香介绍,新材料透明度达90%以上,其内部的聚合物网络微结构使凝胶拥有极高的力学性能,可拉伸而且非常坚韧。拉伸的长度能达600%,模量有约50个兆帕,断裂强度约有13个兆帕。这是目前离子液体凝胶界的最高纪录。

论文中展示的是用0.2克的离子液体凝胶材料,轻松提起1公斤重量的物体。事实上提起5公斤的重量也不在话下,但因实验室没有5公斤的标准件,他们后来用5公斤的水桶做了实验,材料本身不会有任何破损。

离子液体这个溶剂本身不挥发,且具有很高的热稳定性和导电性。因此,创造出的这款离子液体凝胶具有广阔的应用前景。“可用于电池、传感器、3D打印、致动器和柔性电子设备等。”Michael D. Dickey说。

可穿戴柔性电子器件是当下科学研究的热门之一,要同时满足可弯折、扭曲、拉伸等需求,所以对材料的要求极高。以往做展示用的较多的是传统柔性材料——水凝胶,但水凝胶稳定性是个大问题,长期暴露在空气中会导致水分蒸发、性能受损。

“离子液体凝胶完全可以替代水凝胶在可穿戴柔性电子器件上的应用。首先它很稳定不挥发,不需要任何包覆;其次具有高导电性,不需要额外添加导电介质;可穿戴设备往往需要大变形,离子液体凝胶还可以用来开发应变传感器。”王美香说,“还有一点,它具有自愈合和形状记忆的特性。”

一步法轻松做成

长期以来,在凝胶材料领域最火的,非水凝胶莫属。

实际上,水凝胶在生活中已相当常见。比如,隐形眼镜、果冻、龟苓膏等都是水凝胶的“产物”。自62年前水凝胶横空出世,科研人员便绞尽脑汁地挖掘其力学性能,涌现了无数重大成果。

但同为凝胶材料,离子液体凝胶领域的研究则发展较慢。例如力学性能研究还是一块空白,很难把它的力学性能做到与高强度水凝胶相媲美的程度。

在这篇论文发表之前,合成高强度离子液体凝胶的方法并不易。为了提高材料的力学性能,一些研究人员采用多步法或者溶剂交换,整个过程耗时长、成本高,而且浪费资源。

挑战不可能,这是科研工作者骨子里的基因,恰好离子液体这个溶剂的“72般变化”也让王美香着迷。

“顾名思义,水凝胶用的溶剂只有一种,就是水,而离子液体凝胶用的溶剂是离子液体,有成千上万种,这正是它的魅力所在。”王美香对《中国科学报》说。离子液体在室温下是一种液态的熔融盐,里面含有正离子和负离子,只要熔融盐里的正负离子不一样,就可以实现离子液体的千变万化。

研究选材是从聚丙烯酸和聚丙烯酰胺的单体开始。

最初,王美香把两种材料分开来做。当把丙烯酰胺融到离子液体后,产生的凝胶跟她预想的完全不一样,不透明、发白,就像晒干的面条一样特别脆,一碰就断。随后她又试了丙烯酸,做出来的凝胶则超级软,透明度达到百分百。

完全就是两种极端!这让她无比兴奋,如果把三者混在一起,会擦出什么样的火花呢?

“把丙烯酰胺和丙烯酸融到离子液体里,再加入引发剂和交联剂,然后混匀,用高功率紫外灯照射,3分钟就能制作出论文中这种新型混合材料。”王美香说,“就是这么简单。”

一步法就这样诞生了!它为离子液体凝胶研究开启了新世界的大门。

为实验蓄能,把理论变为现实

王美香在西安交通大学读博期间,就一直从事水凝胶研究。但她看到了离子液体凝胶材料的巨大潜力,因此萌生了调整研究方向的想法。

2018年12月,王美香从西安交通大学获得材料科学与工程博士学位后,进入北卡罗来纳州立大学Dickey实验室做博士后,主要致力于高机械性能凝胶材料的设计和制备,以及研究其在可穿戴柔性电子器件、全固态电池以及超级电容器、传感器和驱动器等领域的应用。

在新的平台,王美香也顺利转换到新赛道,开始离子液体凝胶材料研究。

但是,王美香刚进入北卡罗来纳州立大学,新冠疫情就来了,一下打乱了研究计划,学校封闭,无法进入实验室。

她便利用这段时间查阅文献,为实验蓄能。在家“闭关”三个月后,终于等来复工的消息。王美香便一头扎进实验里,每天在实验室待八个小时,把实验过程中看到的现象记录下来,晚上回家查资料来分析这些现象的成因。

幸运的是,这项工作从始至终都比较顺利,这篇论文投给期刊也很快被接收。并且,评审专家都对该成果给了很高的评价。

“接下来,我们将会做应用方面的拓展,想把离子液体凝胶与3D打印技术相结合,用于开发新型柔性机器人。”王美香说。

参与这项研究的一共有9位作者,其中华人学者就有4位。除了王美香,另外3位分别是论文共同通讯作者、西安交通大学教授胡建,西安交通大学硕士生张鹏尧,以及美国内布拉斯加州大学林肯分校研究助理教授钱文。

超级电容器研究进展论文

【嵌牛导读】 :现在已经步入智能机的时代,相比以前的手机,现在的智能机屏幕大、功能多,但是电量始终是个大问题,电池续航能力不行、寿命短,怎么办呢?黑科技新型超级电容器,让手机瞬间满电。 【嵌牛鼻子】 :超级电容器、手机、快速充电 【嵌牛提问】 :超级电容器性能如何?能如何运用? 【嵌牛正文】 :         美国范德比尔特的研究人员表示,他们已经首次成功打造出具有超级电容器这项技术的功能健全的原型机。其中一名研究人员卡里-宾特说:“据我们所知,这些装置首次证明了我们可以制造一种能在储存和释放大量电流的同时,又能经受住振动或冲击等现实存在的静载荷和动力考验的材料。”宾特和安德鲁-威斯多弗研制的这种新装置是一种超级电容器,它储存电流的方式是通过让带电离子聚集到多孔材料表面,而非像现在的电池一样通过化学反应储存这些离子。因此这些超级电容器能在几分钟内储满电,并不需要几小时,而且它能循环使用数百万次,并不像现在的电池一样只能使用数千次。         宾特说:“当你能把能量与建设系统的成分结合在一起时,它就打开了科技可能性的全新世界的大门。突然间,以健康、娱乐、 旅行 和社交为基础设计的科技产品的能力,将不再受到插座和外部电源的限制。”超级电容器只储存比当前电池少10倍的电量,但是它们的续航时间却比后者长一千倍,这意味着可以把它们建在墙体和汽车底盘里。他说:“当你把电能储存在需要结构整体性的重型材料里时,电池的性能指标会发生变化。超级电容器储存的电能比当前使用的锂离子电池少10倍,但是它们的续航时间却比后者长一千倍,也就是说它们更适合于结构应用。如果它们很快就会失去作用,每隔几年就需要更换一次,把它们当做建设住宅、汽车底盘或者飞行器的材料就没有什么意义了。”         宾特和威斯多弗发表在在线杂志《纳米快报(NanoLetters)》上的一篇论文中称,他们的新结构的超级电容器在压强高达44磅/平方英尺(约合6千帕)和振动加速度超过80g(比喷气发动机涡轮叶片承受的压力和振动明显更大)的环境下,在储藏电荷和释放电荷方面的操作堪称完美。此外,该装置的机械强度并不会影响它的电能储存能力。宾特说:“我们的超级电容器在未被拆封、结构完整的情况下,能储存更多电能,而且与已拆封的、现货供应的商用超级电容器相比,它能在更高的电压下正常运行,并且在强烈的动态和静态压力下也不例外。”         目前OPPO的VOOC闪充是大家所熟知的手机快速充电的技术,VOOC闪充创新性改变电路拓扑结构,降低温度,同时首次打造从适配器到接口再到手机的全端式五重防护技术,将最快充电速度提升四倍以上。其本质上并没有在传统充电方式上做出改变,而超级电容器是利用活性炭多孔电极和电解质组成的双电层结构获得超大的电容量的。         超级电容器利用双电层原理的电容器。当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。由于随着超级电容器放电 ,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷相应减少。与利用化学反应的蓄电池不同,超级电容器的充放电过程始终是物理过程。        由于其充电技术不同,超级电容器具备了以下特点: 1、充电速度快,充电 10 秒 ~10 分钟可达到其额定容量的 95 %以上; 2、循环使用寿命长,深度充放电循环使用次数可达 1~50 万次; 3、能量转换效率高,过程损失小,大电流能量循环效率 ≥ 90% ; 4、功率密度高,可达 300W/KG~5000W/KG ,相当于电池的 5~10 倍; 5、产品原材料构成、生产、使用、储存以及拆解过程均没有污染,是理想的绿色环保电源; 6、安全系数高,长期使用免维护; 7、超低温特性好,可工作于零下 30 ℃ 的环境中; 这些特点可以说特别适合目前的智能手机,充电速度、使用时间、体积、安全性和低温时的工作状态,几乎能够弥补现在智能机电池的所有缺陷。期待其大规模生产并运用的那一天的到来,那时智能手机会迈出的一大步。

成果简介

由二维MXene材料制成的独立和可弯曲薄膜由于其高度的灵活性、结构稳定性和高导电性,已显示出作为储能器件电极的巨大潜力。然而,MXene板不可避免重新堆叠很大程度上限制了其电化学性能。 本文,西北工业大学材料学院党阿磊、李铁虎教授等研究人员在《ACS Appl. Energy Mater.》期刊 发表名为“Flexible Ti3C2Tx/Carbon Nanotubes/CuS Film Electrodes Based on a Dual-Structural Design for High-Performance All-Solid-State Supercapacitors”的论文, 研究通过交替过滤Ti3C2Tx/碳纳米管(CNT)杂化和CuS分散的逐层(LbL)方法,通过双重结构设计制备了具有三明治状结构的膜电极。

引入的碳纳米管和赝电容CU提供了丰富的活性位点,以增加电极的存储容量。增大的层间距有利于电解质离子的传输。因此,厚度为17μm的优化Ti3C2Tx/CNTs/CuS-LbL-15薄膜电极(1.7 mg/cm3)在聚乙烯醇(PVA)/H2SO4凝胶电解质中仍表现出1 a/g的高重量电容(336.7 F/g)和体积电容(572.4 F/cm3),这两者在过去的报告中在相同厚度下都是最高的。同时,该样品在电流密度为9A/g时表现出令人印象深刻的速率能力,57%的电容保持率,在高速率为5a/g的5000次循环后保持99.6%的初始容量的超稳定循环,以及在不同弯曲状态下的良好柔韧性。此外,全固态对称超级电容器在340 W/L的功率密度下显示出12.72 Wh/L的能量密度。这项工作为组装高性能储能器件的Ti3C2Tx/CNT和CuS混合电极提供了有效途径。

图文导读

图1. (a) LbL法制备夹层状Ti3C2Tx /CNTs/CuS薄膜的工艺示意图。(b)在直径为5mm的玻璃棒上包裹独立的柔性 Ti3C2Tx /CNTs/CuS薄膜的数字图像,以及 (c) 用手折叠的相应平面状薄膜。

图2. Ti3C2Tx /CuS-LbL-5 (a) 和Ti3C2Tx /CuS-LbL-15 (b) 薄膜横截面的SEM图像及其对应的 Ti 和铜元素。(c) 样品XRD光谱的比较。(d)和(e)分别是(c)在2θ的5-10和26-35 范围内的放大图。(f) 样品的相应拉曼光谱。

图3. (a) Ti3C2 Tx基薄膜电极全固态超级电容器示意图。(b) 纯Ti3C2 Tx、Ti3C2 Tx /CuS-LbL-5 和Ti3C2 Tx/CuS-LbL-15薄膜在5 mV扫描速率下的CV曲线比较/秒。(c) Ti3C2 Tx/CuS-LbL-15在1至9 A/g 的不同电流密度下的恒电流充电/放电 (GCD) 曲线。(d) Ti3C2 Tx/CuS-LbL-15 的CV曲线比较和Ti3C2 Tx/CuS-hybrid-15在5mV/s 的扫描速率下和 (e) 在1A/g电流密度下的相应GCD曲线。

图4、电化学性能

图5. (a) 组装后的超级电容器在不同弯曲状态下的光学图像。(b) Ti3C2 Tx/CNTs/CuS-LbL-5薄膜在5 mV/s的扫描速率下不同弯曲角度的CV曲线。(c) 与之前报道的作品相比,超级电容器的体积功率和能量密度图。

小结

综上所述,采用 LbL 方法制备了具有夹层结构的可弯曲和独立的 Ti3C2 Tx /CNTs/CuS 复合膜电极,其中 Ti3C2 Tx/CNTs 杂化片材和CuS活性材料分别为通过过滤交替堆积。这项工作为全固态SCs设计高性能电极提供了一种有效的方法,在柔性和可穿戴电子产品中具有巨大的应用潜力。

文献:

电热电容器论文参考文献

论文开题报告基本要素

各部分撰写内容

论文标题应该简洁,且能让读者对论文所研究的主题一目了然。

摘要是对论文提纲的总结,通常不超过1或2页,摘要包含以下内容:

目录应该列出所有带有页码的标题和副标题, 副标题应缩进。

这部分应该从宏观的角度来解释研究背景,缩小研究问题的范围,适当列出相关的参考文献。

这一部分不只是你已经阅读过的相关文献的总结摘要,而是必须对其进行批判性评论,并能够将这些文献与你提出的研究联系起来。

这部分应该告诉读者你想在研究中发现什么。在这部分明确地陈述你的研究问题和假设。在大多数情况下,主要研究问题应该足够广泛,而次要研究问题和假设则更具体,每个问题都应该侧重于研究的某个方面。

1. 基于FX2N-48MRPLC的交通灯控制2. 西门子PLC控制的四层电梯毕业设计论文3. PLC电梯控制毕业论文4. 基于plc的五层电梯控制5. 松下PLC控制的五层电梯设计6. 基于PLC控制的立体车库系统设计7. PLC控制的花样喷泉8. 三菱PLC控制的花样喷泉系统9. PLC控制的抢答器设计10. 世纪星组态 PLC控制的交通灯系统11. X62W型卧式万能铣床设计12. 四路抢答器PLC控制13. PLC控制类毕业设计论文14. 铁路与公路交叉口护栏自动控制系统15. 基于PLC的机械手自动操作系统16. 三相异步电动机正反转控制17. 基于机械手分选大小球的自动控制18. 基于PLC控制的作息时间控制系统19. 变频恒压供水控制系统20. PLC在电网备用自动投入中的应用21. PLC在变电站变压器自动化中的应用22. FX2系列PCL五层电梯控制系统23. PLC控制的自动售货机毕业设计论文24. 双恒压供水西门子PLC毕业设计25. 交流变频调速PLC控制电梯系统设计毕业论文26. 基于PLC的三层电梯控制系统设计27. PLC控制自动门的课程设计28. PLC控制锅炉输煤系统29. PLC控制变频调速五层电梯系统设计30. 机械手PLC控制设计31. 基于PLC的组合机床控制系统设计32. PLC在改造z-3040型摇臂钻床中的应用33. 超高压水射流机器人切割系统电气控制设计34. PLC在数控技术中进给系统的开发中的应用35. PLC在船用牵引控制系统开发中的应用36. 智能组合秤控制系统设计37. S7-200PLC在数控车床控制系统中的应用38. 自动送料装车系统PLC控制设计39. 三菱PLC在五层电梯控制中的应用40. PLC在交流双速电梯控制系统中的应用41. PLC电梯控制毕业论文42. 基于PLC的电机故障诊断系统设计43. 欧姆龙PLC控制交通灯系统毕业论文44. PLC在配料生产线上的应用毕业论文45. 三菱PLC控制的四层电梯毕业设计论文46. 全自动洗衣机PLC控制毕业设计论文47. 工业洗衣机的PLC控制毕业论文48. 《双恒压无塔供水的PLC电气控制》49. 基于三菱PLC设计的四层电梯控制系统50. 西门子PLC交通灯毕业设计51. 自动铣床PLC控制系统毕业设计52. PLC变频调速恒压供水系统53. PLC控制的行车自动化控制系统54. 基于PLC的自动售货机的设计55. 基于PLC的气动机械手控制系统56. PLC在电梯自动化控制中的应用57. 组态控制交通灯58. PLC控制的升降横移式自动化立体车库59. PLC在电动单梁天车中的应用60. PLC在液体混合控制系统中的应用61. 基于西门子PLC控制的全自动洗衣机仿真设计62. 基于三菱PLC控制的全自动洗衣机63. 基于plc的污水处理系统64. 恒压供水系统的PLC控制设计65. 基于欧姆龙PLC的变频恒压供水系统设计66. 西门子PLC编写的花样喷泉控制程序67. 欧姆龙PLC编写的全自动洗衣机控制程序68 景观温室控制系统的设计69. 贮丝生产线PLC控制的系统70. 基于PLC的霓虹灯控制系统71. PLC在砂光机控制系统上的应用72. 磨石粉生产线控制系统的设计73. 自动药片装瓶机PLC控制设计74. 装卸料小车多方式运行的PLC控制系统设计75. PLC控制的自动罐装机系统76. 基于CPLD的可控硅中频电源77. 西门子PLC编写的花样喷泉控制程序78. 欧姆龙PLC编写的全自动洗衣机控制程序79. PLC在板式过滤器中的应用80. PLC在粮食存储物流控制系统设计中的应用81. 变频调速式疲劳试验装置控制系统设计82. 基于PLC的贮料罐控制系统83. 基于PLC的智能交通灯监控系统设计1.基于labVIEW虚拟滤波器的设计与实现2.双闭环直流调速系统设计3.单片机脉搏测量仪4.单片机控制的全自动洗衣机毕业设计论文5.FPGA电梯控制的设计与实现6.恒温箱单片机控制7.基于单片机的数字电压表8.单片机控制步进电机毕业设计论文9.函数信号发生器设计论文10.110KV变电所一次系统设计11.报警门铃设计论文12.51单片机交通灯控制13.单片机温度控制系统14.CDMA通信系统中的接入信道部分进行仿真与分析15.仓库温湿度的监测系统16.基于单片机的电子密码锁17.单片机控制交通灯系统设计18.基于DSP的IIR数字低通滤波器的设计与实现19.智能抢答器设计20.基于LabVIEW的PC机与单片机串口通信21.DSP设计的IIR数字高通滤波器22.单片机数字钟设计23.自动起闭光控窗帘毕业设计论文24.三容液位远程测控系统毕业论文25.基于Matlab的PWM波形仿真与分析26.集成功率放大电路的设计27.波形发生器、频率计和数字电压表设计28.水位遥测自控系统 毕业论文29.宽带视频放大电路的设计 毕业设计30.简易数字存储示波器设计毕业论文31.球赛计时计分器 毕业设计论文32.IIR数字滤波器的设计毕业论文33.PC机与单片机串行通信毕业论文34.基于CPLD的低频信号发生器设计毕业论文35.110kV变电站电气主接线设计36.m序列在扩频通信中的应用37.正弦信号发生器38.红外报警器设计与实现39.开关稳压电源设计40.基于MCS51单片机温度控制毕业设计论文41.步进电动机竹竿舞健身娱乐器材42.单片机控制步进电机 毕业设计论文43.单片机汽车倒车测距仪44.基于单片机的自行车测速系统设计45.水电站电气一次及发电机保护46.基于单片机的数字显示温度系统毕业设计论文47.语音电子门锁设计与实现48.工厂总降压变电所设计-毕业论文49.单片机无线抢答器设计50.基于单片机控制直流电机调速系统毕业设计论文51.单片机串行通信发射部分毕业设计论文52.基于VHDL语言PLD设计的出租车计费系统毕业设计论文53.超声波测距仪毕业设计论文54.单片机控制的数控电流源毕业设计论文55.声控报警器毕业设计论文56.基于单片机的锁相频率合成器毕业设计论文57.基于Multism/protel的数字抢答器58.单片机智能火灾报警器毕业设计论59.无线多路遥控发射接收系统设计毕业论文60.单片机对玩具小车的智能控制毕业设计论文61.数字频率计毕业设计论文62.基于单片机控制的电机交流调速毕业设计论文63.楼宇自动化--毕业设计论文64.车辆牌照图像识别算法的实现--毕业设计65.超声波测距仪--毕业设计66.工厂变电所一次侧电气设计67.电子测频仪--毕业设计68.点阵电子显示屏--毕业设计69.电子电路的电子仿真实验研究70.基于51单片机的多路温度采集控制系统71.基于单片机的数字钟设计72.小功率不间断电源(UPS)中变换器的原理与设计73.自动存包柜的设计74.空调器微电脑控制系统75.全自动洗衣机控制器76.电力线载波调制解调器毕业设计论文77.图书馆照明控制系统设计78.基于AC3的虚拟环绕声实现79.电视伴音红外转发器的设计80.多传感器障碍物检测系统的软件设计81.基于单片机的电器遥控器设计82.基于单片机的数码录音与播放系统83.单片机控制的霓虹灯控制器84.电阻炉温度控制系统85.智能温度巡检仪的研制86.保险箱遥控密码锁 毕业设计87.10KV变电所的电气部分及继电保护88.年产26000吨乙醇精馏装置设计89.卷扬机自动控制限位控制系统90.铁矿综合自动化调度系统91.磁敏传感器水位控制系统92.继电器控制两段传输带机电系统93.广告灯自动控制系统94.基于CFA的二阶滤波器设计95.霍尔传感器水位控制系统96.全自动车载饮水机97.浮球液位传感器水位控制系统98.干簧继电器水位控制系统99.电接点压力表水位控制系统100.低成本智能住宅监控系统的设计101.大型发电厂的继电保护配置102.直流操作电源监控系统的研究103.悬挂运动控制系统104.气体泄漏超声检测系统的设计105.电压无功补偿综合控制装置106.FC-TCR型无功补偿装置控制器的设计107.DSP电机调速108.150MHz频段窄带调频无线接收机109.电子体温计110.基于单片机的病床呼叫控制系统111.红外测温仪112.基于单片微型计算机的测距仪113.智能数字频率计114.基于单片微型计算机的多路室内火灾报警器115.信号发生器116.基于单片微型计算机的语音播出的作息时间控制器117.交通信号灯控制电路的设计118.基于单片机步进电机控制系统设计119.多路数据采集系统的设计120.电子万年历121.遥控式数控电源设计122.110kV降压变电所一次系统设计123.220kv变电站一次系统设计124.智能数字频率计125.信号发生器126.基于虚拟仪器的电网主要电气参数测试设计127.基于FPGA的电网基本电量数字测量系统的设计128.风力发电电能变换装置的研究与设计129.电流继电器设计130.大功率电器智能识别与用电安全控制器的设计131.交流电机型式试验及计算机软件的研究132.单片机交通灯控制系统的设计133.智能立体仓库系统的设计134.智能火灾报警监测系统135.基于单片机的多点温度检测系统136.单片机定时闹钟设计137.湿度传感器单片机检测电路制作138.智能小车自动寻址设计--小车悬挂运动控制系统139.探讨未来通信技术的发展趋势140.音频多重混响设计141.单片机呼叫系统的设计142.基于FPGA和锁相环4046实现波形发生器143.基于FPGA的数字通信系统144.基于单片机的带智能自动化的红外遥控小车145.基于单片机AT89C51的语音温度计的设计146.智能楼宇设计147.移动电话接收机功能电路148.单片机演奏音乐歌曲装置的设计149.单片机电铃系统设计150.智能电子密码锁设计151.八路智能抢答器设计152.组态控制抢答器系统设计153.组态控制皮带运输机系统设计154..基于单片机控制音乐门铃155.基于单片机控制文字的显示156.基于单片机控制发生的数字音乐盒157.基于单片机控制动态扫描文字显示系统的设计158.基于LMS自适应滤波器的MATLAB实现159.D功率放大器毕业论文160.无线射频识别系统发射接收硬件电路的设计161.基于单片机PIC16F877的环境监测系统的设计162.基于ADE7758的电能监测系统的设计163.智能电话报警器164.数字频率计 课程设计165.多功能数字钟电路设计 课程设计166.基于VHDL数字频率计的设计与仿真167.基于单片机控制的电子秤168.基于单片机的智能电子负载系统设计169.电压比较器的模拟与仿真170.脉冲变压器设计171.MATLAB仿真技术及应用172.基于单片机的水温控制系统173.基于FPGA和单片机的多功能等精度频率计174.发电机-变压器组中微型机保护系统175.基于单片机的鸡雏恒温孵化器的设计176.数字温度计的设计177.生产流水线产品产量统计显示系统178.水位报警显时控制系统的设计179.红外遥控电子密码锁的设计180.基于MCU温控智能风扇控制系统的设计181.数字电容测量仪的设计182.基于单片机的遥控器的设计183.200电话卡代拨器的设计184.数字式心电信号发生器硬件设计及波形输出实现185.电压稳定毕业设计论文186.基于DSP的短波通信系统设计(IIR设计)187.一氧化碳报警器188.网络视频监控系统的设计189.全氢罩式退火炉温度控制系统190.通用串行总线数据采集卡的设计191.单片机控制单闭环直流电动机的调速控制系统192.单片机电加热炉温度控制系统193.单片机大型建筑火灾监控系统194.USB接口设备驱动程序的框架设计195.基于Matlab的多频率FMICW的信号分离及时延信息提取196.正弦信号发生器197.小功率UPS系统设计198.全数字控制SPWM单相变频器199.点阵式汉字电子显示屏的设计与制作200.基于AT89C51的路灯控制系统设计200.基于AT89C51的路灯控制系统设计201.基于AT89C51的宽范围高精度的电机转速测量系统202.开关电源设计203.基于PDIUSBD12和K9F2808简易USB闪存设计204.微型机控制一体化监控系统205.直流电机试验自动采集与控制系统的设计206.新型自动装弹机控制系统的研究与开发207.交流异步电机试验自动采集与控制系统的设计208.转速闭环控制的直流调速系统的仿真与设计209.基于单片机的数字直流调速系统设计210.多功能频率计的设计211.18信息移频信号的频谱分析和识别212.集散管理系统—终端设计213.基于MATLAB的数字滤波器优化设计214.基于AT89C51SND1C的MP3播放器215.基于光纤的汽车CAN总线研究216.汽车倒车雷达217.基于DSP的电机控制218.超媒体技术219.数字电子钟的设计与制作220.温度报警器的电路设计与制作221.数字电子钟的电路设计222.鸡舍电子智能补光器的设计223.高精度超声波传感器信号调理电路的设计224.电子密码锁的电路设计与制作225.单片机控制电梯系统的设计226.常用电器维修方法综述227.控制式智能计热表的设计228.电子指南针设计229.汽车防撞主控系统设计230.单片机的智能电源管理系统231.电力电子技术在绿色照明电路中的应用232.电气火灾自动保护型断路器的设计233.基于单片机的多功能智能小车设计234.对漏电保护器安全性能的剖析235.解析民用建筑的应急照明236.电力拖动控制系统设计237.低频功率放大器设计238.银行自动报警系统

超级电容器材料最新研究进展论文

成果简介

玉米芯作为一种可持续的生物质废弃料,主要由半纤维素组成。 本文,浙江大学盛奎川教授团队在《Energy Fuels》期刊 发表名为“Synthesis of Fe/N Co-doped Porous Carbon Spheres Derived from Corncob for Supercapacitors with High Performances”的论文, 研究以天然玉米芯为基材,通过连续的FeCl3介导的水热反应和温和的KHCO3活化路线Fe/N共掺杂多孔碳球体,用于超级电容器电极材料。

由于半纤维素的低水解温度和Fe 3+ 的水解促进作用,玉米芯衍生的氢化炭呈现出特殊的碳球形态。有趣的是,该碳在三聚氰胺介导的 KHCO 3活化后,球体形态得以完好保存。由于离子扩散距离短、独特的堆积结构和发达的微介孔结构碳球体,优化的 CCAC-Fe-M-50% 表现出优异的离子转移动力学和倍率性能(87% 高达 20 A g –1)。同时,在三电极装置中对CCAC-Fe-M-50%的电化学研究表明高电容(1 a g-1时为338 F g-1)。在双电极设置中,CCAC-Fe-M-50%||CCAC-Fe-M-50% 装置显示出最高的循环性(5000 次循环后保持率为 102.7%)和极低的R ct (0.59 Ω) 和Rs (4.54 Ω)。

这些优异的性能归因于大S BET (2305.7 m 2 g –1 )、多种氧化还原可能性 (Fe 3+、Fe2+和 N官能团),以及碳具有微介孔结构的球体形态,分别增强了离子物理吸附、赝电容和电解质/离子扩散。此外,所制造的CCAC-Fe系M-50%在中性电解质|| CCAC-Fe系M-50%设备表现出了极好的能量密度(Ëd 18.60 Wh kg-1)在功率密度(Pd) 455 W kg –1。目前提出的具有优异结果的策略可用于超级电容器和其他高 科技 应用的生物质基超性能电极材料的新开发。

图文导读

方案 1. 玉米芯Fe/N Co掺杂 PCSs的合成方案,用于超级电容器应用

图 1. (a) CCHC-Fe、(b) CCPC-Fe、(c) CCAC-Fe、(d) CCAC-Fe-M-25% 和 (e) CCAC-Fe-M-50 的 SEM 图像CCAC-Fe-M-50% 在 (f) 5900 、(g) 25 000 和 (h) 390 000 不同放大倍数下的 % 和 TEM 图像。

方案 2. (a) PCSs 的空间高效填充结构和 (b) 层堆叠多孔 碳结构的方案

图2. (a) PCSs 的 XRD 和 (b) 拉曼图谱,(c) CCAC-Fe-M-50% N 1s 的 XPS 光谱,以及 (d) CCAC-Fe-M 的 Fe 2p 的 XPS 光谱-50%。

图3. 6 M KOH 中的三电极设置

图4. 1M Na2SO4中的两电极设置

文献 :

韩国科学家声称,他们找到了一种方法,可以将烟头转化为蓄电设备的材料,这种材料可以为手机和电动汽车提供电力。首尔国立大学的研究人员最近在《纳米技术》杂志上发表了一篇论文,解释了将香烟过滤嘴转化为超级电容器的过程。香烟过滤嘴主要由醋酸纤维素纤维制成,丢弃时可能会危害环境。研究人员说:“我们的研究表明,香烟过滤嘴可以转化为高效的碳材料,这可以通过简单的步骤实现。这不仅可以提供绿色解决方案,还可以满足社会的能源需求。”最终,这些滤波器将被制成所谓的超级电容器。与普通电容器相比,科学家说它们可以储存更多的电,充电更快,寿命更长。研究人员表示:“由于其低成本、高孔隙率、良好的导电性和稳定性,碳被认为是制造超级电容器的优秀材料。”根据美国反吸烟组织“AmericansforNonsmokers'Rights”,烟头是世界上最常见的垃圾,每年形成76.5万吨垃圾。

相关百科

热门百科

首页
发表服务