首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

ccd视觉检测论文

发布时间:

ccd视觉检测论文

替代人工,减少企业的运营成本以及招聘压力提高产品的质量,提高产品的质量度提高公司的实力,增大产量

基于图像处理的轴类零件尺寸检测技术研究及其精度分析黄杰贤 【摘要】: 据不完全统计,我国年产轴类零件的总量在10亿件左右,需要测量尺寸的约占70%。就目前国内许多制造业对零件的尺寸检测而言,其检测工作还停留在单纯人工视觉或人工视觉与机械量具、光学仪器相结合对产品进行人工抽检的阶段[1]。人工检测往往存在:效率低、可靠性差、检测精度不高、成本高、容易出错等弊端。它已经不适合现代工业企业发展的要求。采用基于图像检测的尺寸检测方法,不仅可以避免人工检测的缺点,而且能实现对加工零件在线、快速、准确和非接触的自动化检测,而目前基于CCD对轴类零件检测的研究工作中,还存在着检测精度不高。检测数据不够稳定等问题。 本研究课题结合学科发展趋势和实际应用需求,在参考大量文献和剖析工业领域的CCD数据采集系统的基础上,着眼于研究基于图象处理的轴类零件尺寸高精度检测技术,本文主要进行以下几个方面的工作: (1)采用Prewitt算子完成对图像边缘初步定位,在此基础上,通过对图像边缘灰度变化的离散值作最小二乘曲线拟合,并对该拟合曲线求极值,得到边缘的精确位置 (2)为了减少干扰对测量值的影响,采用误差数据处理方法筛选出有一定精度的检测数据,然后对这些检测数据求平均值,获得稳定的检测数据。 (3)针对线阵CCD在高精度检测的过程中,因镜头畸变等原因产生误差的问题,提出了用已知的多尺寸轴类零件为参照物,建立误差畸变校正模型,对检测值进行畸变校正,实现高精度检测 【关键词】:线阵CCD 图像处理 最小二乘曲线拟合 误差理论 畸变校正 【学位授予单位】:广东工业大学【学位级别】:硕士【学位授予年份】:2008【分类号】:TP391.41【DOI】:CNKI:CDMD:2.2008.083647【目录】: 摘要4-5Abstract5-6目录6-9Content9-12第一章 绪论12-161.1 课题研究的意义12-131.1.1 测量技术的重要性121.1.2 国内测量技术的现状及其弊端12-131.1.3 本课题研究的意义131.2 基于图像处理的轴类零件尺寸检测技术的研究现状及其发展趋势13-151.2.1 国内情况13-141.2.2 国外情况141.2.3 国内外基于CCD尺寸检测技术发展的趋势14-151.3 论文的主要研究内容151.4 本章小结15-16第二章 图像测量系统硬件设计16-222.1 系统组成162.2 精密机械位移扫描控制系统16-172.3 线阵CCD摄像机17-182.4 光学照明系统18-192.5 图像采集系统19-202.6 装夹工作台的设计202.7 计算机及处理软件20-212.8 本章小结21-22第三章 基于图象处理的轴类零件边缘的精确定位22-343.1 图像处理原理22-253.1.1 数字图像处理的目的223.1.2 数字图像处理主要研究的内容22-243.1.3 数字图像处理的优点24-253.2 轴类零件边缘的边缘检测25-273.3 零件边缘的精确定位27-333.3.1 最小二乘曲线拟合的概念27-303.3.2 用多项式进行最小二乘曲线拟合30-313.3.3 基于曲线拟合的边缘精确定位31-333.4 本章小节33-34第四章 误差数据处理34-424.1 一维正态分布34-364.2 偶然误差的规律性36-394.2.1 偶然误差36-374.2.2 偶然误差的分析37-394.3 边缘检测数据误差处理39-414.4 本章小结41-42第五章 畸变校正42-495.1 畸变的产生425.2 畸变校正的基本原理42-435.3 畸变校正的具体方法43-465.3.1 检测参照物图像的边缘43-455.3.2 畸变补偿函数的建立45-465.4 检验畸变校正函数465.5 检验实验结果46-485.6 本章小节48-49第六章 软件设计49-526.1 软件设计496.2 界面设计与功能说明49-516.3 本章小结51-52第七章 尺寸检测实验结果与数据分析52-567.1 多阶梯轴测量结果52-547.1.1 测量数据52-547.1.2 测量结果分析547.2 误差与精度分析54-557.3 本章小结55-56总结与展望56-58参考文献58-61攻读学位期间发表的论文61-62致谢62 下载全文 更多同类文献 CAJ格式全文 (如何获取全文? 欢迎:购买知网卡、在线咨询) CAJViewer阅读器支持CAJ,PDF文件格式

一、检测精度高,检测效率快。CCD视觉检测设备使用机器视觉技术基于CCD工业相机进行检测。根据系统控制,误差不大,高检测效率可以超过每分钟400-1200个。一些小零件可能超过数千甚至十多万的速率。二、量子功率高。这是它的最大优势,CCD视觉检测平均量子功率为30%至50%,最高量子功率可高达90%,约为普通胶卷的100倍。三、节省人工成本,能够进行高重复性工作。CCD视觉检测能够长时间稳定工作,人眼很难长时间观察同一物体,并且机器视觉可以长时间执行测量,分析和识别任务。而人工检测很容易有漏检误检的情况。一台视觉检测设备可以承担多名员工的日常检测任务,不容易被打断,不会生病,不需要休息,并且可以继续进行高韧性工作,对应用的自然环境要求低,除了节省产品成本外,还大大提高了生产率。四、具有更宽的光谱响应范围。CCD的光谱响应为400-1100nm,比常规照相对近红外的有效谱带(350-700nm)长得多。使用人眼不可见的红外测量,扩大了人的视觉范围五、检测范围广,可以检测外观缺陷和尺寸测量。机器视觉技术可以根据多工位检测方法,一次准确测量待检测产品的轮廓,规格,外观缺陷,产品长宽比等多方面的性能参数;手动检测对不同的检测内容有不同的响应,只有根据多站点的协作与协调,不同的人员检测标准是不同的,很容易出现虚假检测。六、提高产品质量和错误率。CCD视觉检测设备基于系统控制,可通过自动检测技术将良品与不良品区分开,然后自动将它们放置在不同的部位。与人工检测相比,ccd视觉检测设备减少了错误率,使产品品质大大提高,并提高了公司的信任度和综合实力。七、CCD视觉检测线性好。成像强度与入射光通量成比例,并且具有极好的线性关系。

CCD视觉检测是指利用CCD相机作为数据采集设备,通过图像处理算法对采集到的图像进行处理,实现自动化检测和测量的技术。它主要应用于自动化生产线上,对物体的缺陷、尺寸、形状、位置、颜色等进行检测和识别。常见的应用领域包括以下几个方面:

ai视觉目标检测论文

人工智能是20世纪计算机科学发展的重大成就,在许多领域有着广泛的应用。以下是我整理的人工智能的毕业论文范文的相关资料,欢迎阅读!

摘要:人工智能是20世纪计算机科学发展的重大成就,在许多领域有着广泛的应用。论述了人工智能的定义,分析了目前在管理、教育、工程、技术、等领域的应用,总结了人工智能研究现状,分析了其发展方向。

关键词:人工智能;计算机科学;发展方向

中图分类号:TP18

文献标识码:A

文章编号:1672-8198(2009)13-0248-02

1人工智能的定义

人工智能(Artificial Intelligence,AI),是一门综合了计算机科学、生理学、哲学的交叉学科。“人工智能”一词最初是在1956年美国计算机协会组织的达特莫斯(Dartmouth)学会上提出的。自那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。由于智能概念的不确定,人工智能的概念一直没有一个统一的标准。著名的美国斯坦福大学人工智能研究中心尼尔逊教授对人工智能下了这样一个定义“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。”而美国麻省理工学院的温斯顿教授认为“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”童天湘在《从“人机大战”到人机共生》中这样定义人工智能:“虽然现在的机器不能思维也没有“直觉的方程式”,但可以把人处理问题的方式编入智能程序,是不能思维的机器也有智能,使机器能做那些需要人的智能才能做的事,也就是人工智能。”诸如此类的定义基本都反映了人工智能学科的基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。

2人工智能的应用领域

2.1人工智能在管理及教学系统中的应用

人工智能在企业管理中的应用。刘玉然在《谈谈人工智能在企业管理中的应用》一文中提到把人工智能应用于企业管理中,认为要做的工作就是搞清楚人的智能和人工智能的关系,了解人工智能的外延和内涵,搭建人工智能的应用平台,搞好企业智能化软件的开发工作,这样,人工智能就能在企业决策中起到关键的作用。

人工智能在智能教学系统中的应用。焦加麟,徐良贤,戴克昌(2003)在总结国际上相关研究成果的基础上,结合其在开发智能多媒体汉德语言教学系统《二十一世纪汉语》的过程中累积的实践经验,介绍了智能教学系统的历史、结构和主要技术,着重讨论了人工智能技术与方法在其中的应用,并指出了当今这个领域上存在的一些问题。

2.2人工智能专家系统在工程领域的应用

人工智能专家系统在医学中的应用。国外最早将人工智能应用于医疗诊断的是MYCIN专家系统。1982年,美国Pittsburgh大学Miller发表了著名的作为内科医生咨询的Internist 2I内科计算机辅助诊断系统的研究成果,1977年改进为Internist 2Ⅱ,经过改进后成为现在的CAU-CEUS,1991年美国哈佛医学院Barnett等开发的DEX-PLAIN,包含有2200种疾病和8000种症状。我国研制基于人工智能的专家系统始于上世纪70年代末,但是发展很快。早期的有北京中医学院研制成“关幼波肝炎医疗专家系统”,它是模拟著名老中医关幼波大夫对肝病诊治的程序。上世纪80年代初,福建中医学院与福建计算机中心研制的林如高骨伤计算机诊疗系统。其他如厦门大学、重庆大学、河南医科大学、长春大学等高等院校和其他研究机构开发了基于人工智能的医学计算机专家系统,并成功应用于临床。

人工智能在矿业中的应用。与矿业有关的第一个人工智能专家系统是1978年美国斯坦福国际研究所的矿藏勘探和评价专家系统PROSPECTOR,用于勘探评价、区域资源估值和钻井井位选择等。20世纪80年代以来,美国矿山局匹兹堡研究中心与其它单位合作开发了预防煤矿巷道底臌、瓦斯治理和煤尘控制的专家系统;弗尼吉亚理工学院及州立大学研制了模拟连续开采过程中开采、装载、运输、顶板锚固和设备检查专家系统Consim;阿拉斯加大学编写了地下煤矿采矿方法选择专家系统。

2.3人工智能在技术研究中的应用

人工智能在超声无损检测中的应用。在超声无损检测(NDT)与无损评价(NDE)领域中,目前主要广泛采用专家系统方法对超声损伤(UT)中缺陷的性质,形状和大小进行判断和归类;专家在传统超声无损检测与智能超声无损检测之间架起了一座桥梁,它能把一般的探伤人员变成技术熟练。经验丰富的专家。所以在实际应用中这种智能超声无损检测有很大的价值。

人工智能在电子技术方面的应用。沈显庆认为可以把人工智能和仿真技术相结合,以单片机硬件电路为专家系统的知识来源,建立单片机硬件配置专家系统,进行故障诊断,以提高纠错能力。人工智能技术也被引入到了计算机网络领域,计算机网络安全管理的常用技术是防火墙技术,而防火墙的核心部分就是入侵检测技术。随着网络的迅速发展,各种入侵手段也在层出不穷,单凭传统的防范手段已远远不能满足现实的需要,把人工智能技术应用到网络安全管理领域,大大提高了它的安全性。马秀荣等在《简述人工智能技术在网络安全管理中的应用》一文中具体介绍了如何把人工智能技术应用于计算机网络安全管理中,起到了很好的安全防范作用。

3人工智能的发展方向

3.1人工智能的发展现状

国外发展现状。目前,AI技术在美国、欧洲和日本发展很快。在AI技术领域十分活跃的IBM公司。已经为加州劳伦斯・利佛摩尔国家实验室制造了号称具有人脑的千分之一的智力能力的“ASCII White”电脑,而且正在开发的更为强大的新超级电脑――“蓝色牛仔(blue jean)”,据其研究主任保罗・霍恩称,预计“蓝色牛仔”的智力水平将大致与人脑相当。麻省理工学院的AI实验室进行一个的代号为cog的项目。cog计划意图赋予机器人以人类的行为,该实验的一个项目是让机器人捕捉眼睛的移动和面部表情,另一个项目是让机器人抓住从它眼前经过的东西,还有一个项目则是让机器人学会聆听音乐的节奏并将其在鼓上演奏出来。由于人工智能有着广大的发展前景,巨大的发展市场被各国和各公司所看好。除了IBM等公司继续在AI技术上大量投入,以保证其领先地位外,其他公司在人工智能的分支研究方面,也保持着一定的投入比例。微软公司总裁比尔・盖茨在美国华盛顿召开的AI(人工智能)国际会议上进行了主题演讲,称微软研究院目前正致力于AI的基础技术与应用技术的研究,其对象包括自我决定、表达知识与信息、信息检索、机械学习、数据采集、自然语言、语音笔迹识别等。

我国人工智能的研究现状。很长一段时间以来,机械

和自动控制专家们都把研制具有人的行为特征的类人性机器人作为奋斗目标。中国国际科技大学在国家863计划和自然科学基金支持下,一直从事两足步行机器人、类人性机器人的研究开发,在1990年成功研制出我国第一台两足步行机器人的基础上,经过科研10年攻关,于2000年11月,又成功研制成我国第一台类人性机器人。它有人一样的身躯、四肢、头颈、眼睛,并具备了一定的语言功能。它的行走频率从过去的每六秒一步,加快到每秒两步;从只能平静地静态不行,到能快速自如的动态步行;从只能在已知的环境中步行,到可在小偏差、不确定环境中行走,取得了机器人神经网络系统、生理视觉系统、双手协调系统、手指控制系统等多项重大研究成果。

3.2人工智能发展方向

在信息检索中的应用。人工智能在网络信息检索中的应用,主要表现在:①如何利用计算机软硬件系统模仿、延伸与扩展人类智能的理论、方法和技术,包括机器感知、机器思维、机器行为,即知识获取、知识处理、知识利用的过程。②由于网络知识信息既包括规律性的知识,如一般原理概念,也包括大量的经验知识,这些知识不可避免地带有模糊性、随机性、不可靠性等不确定性因素,对其进行推理,需要利用人工智能的研究成果。

基于专家系统的入侵检测方法。入侵检测中的专家系统是网络安全专家对可疑行为的分析后得到的一套推理规则。一个基于规则的专家系统能够在专家的指导下,随着经验的积累而利用自学习能力进行规则的扩充和修正,专家系统对历史记录的依赖性相对于统计方法较小,因此适应性较强,可以较灵活地适应广普的安全策略和检测要求。这是人工智能发展的一个主要方向。

人工智能在机器人中的应用。机器人足球系统是目前进行人工智能体系统研究的热点,其即高科技和娱乐性于一体的特点吸引了国内外大批学者的兴趣。决策系统主要解决机器人足球比赛过程中机器人之间的协作和机器人运动规划问题,在机器人足球系统设计中需要将人工智能中的决策树、神经网络、遗传学的等算法综合运用,随着人工智能理论的进一步发展,将使机器人足球有长足的发展。

4结语

由上述的讨论我们可以看到,目前人工智能的应用领域相当广泛。无论是学术界还是应用领域对人工智能都高度重视。人工智能良好的发展和应用前景,要求我们必须加大研究和投入力度,以使人工智能的发展能为人类服务。

下一页分享更优秀的<<<人工智能的毕业论文范文

研发了移动端高效卷积神经网络ShuffleNet、开源深度学习框架天元MegEngine、AI生产力平台Brain++创新技术、在顶级学术会议和期刊上发表学术论文100余篇论文、在计算机视觉领域深耕等贡献。

旷视首席科学家、知名AI学者孙剑博士去世,他在该领域有哪些贡献?在学术层面,孙老师是计算机视觉领域全世界最知名、最顶级的一批科学家。他的工作ResNet(12w+ citations)、Faster RCNN(4w+ citations)等极大的推动了人工智能的发展和落地应用,在科学、工程、社会领域为人类的福祉做出了巨大的贡献。以孙老师为代表的一批学术偶像激励了无数的青年学生投入到了国内深度学习、计算机视觉的研究当中,极大的促进了国内相关领域科学研究和产业落地的发展和繁荣。孙老师的工作也让国际同行更多的关注国内的工作,有次学生问我为什么这么多self-supervised learning工作在做semantic seg下游任务的时候使用UperNet作为头部网络?我告诉他,做semantic seg的主要还是集中在国内,而在国内这批学者中,老外信得过孙老师。

还跟朋友半开玩笑地说:随着恺明去FAIR之后又做出了像MoCo MAE这样也有影响力的工作,他跟孙剑老师的citation上涨的趋势不会那么同步了。不过让人震惊又难过的是孙剑老师的publication再也不会更新了,我们失去了一位值得尊敬的前辈。看到这个沉重的消息有种强烈的不真实感,因为好像了解ResNet,Faster RCNN这些我们这个时代视觉领域基石性的创新工作好像还是在昨天。突然就要创造它们的这个伟大的人告别了。但正如寻梦环游记所说:没有一个人在记得你的一切时,你才算从这个世界上真正的消失。所以孙剑老师可能永远不会跟这个世界告别,因为他和他都工作不断启发着我们这些后一代的视觉人,他对视觉领域的贡献永远会激励着我们继续前进。

机器视觉技术检测论文

1研究现状及存在的问题水果实时分级系统主要功能是水果外部品质和内部品质的自动检测。水果的外部品质检测的项目有大小、形状、颜色、表面缺陷等,内部品质无损检测的项目为水果的硬度、糖含量、酸度、口味及某些内部缺陷等。1.1水果外部品质的自动检测水果的尺寸和颜色检测技术已比较成熟,且在国外已经实现自动化检测,在国内也有按重量或尺寸分级的系统。但果面的缺陷检测却一直成为水果实时分级的障碍。果面缺陷检测的技术比较复杂,目前存在以下几方面难题。1.1.1对水果整个表面进行实时视觉检测比较困难在水果分选生产线上,输送机构输送水果并把水果整个表面呈现给摄像机,这是水果实时分级系统比较关键的组成部分,因为当水果通过时,要求视觉系统能快速检查每个水果的全部果面,即使很小的缺陷面积,也会使得水果级别发生很大变化。同时,设计的视觉分级系统必须满足高生产率的要求。在这方面,国外学者(Growe,1996,Tao,1996)[1,2]采用滚子输送带使水果一边移动一边自身转动,从而使安装在输送带上方的摄像机能采集到水果的多个面的图像,达到全表面检测的目的。但由于水果大小和形状不规则,造成水果旋转速度不一致且难以保证按同一轴线旋转。此外,水果旋转两端的表面部分摄像机无法采集到,因此,分级误差较大。1.1.2快速而准确地测定水果表面的各种缺陷且与梗、萼凹陷区正确区分比较困难Miller等(1991)[3]对桃子的分选试验表明:因不能正确区分水果表面的缺陷和梗、萼凹陷区,由此产生的分级误差为25%左右。Rehkugler等(1986)[4]利用机械定向机构使苹果梗、萼处于垂直方向并绕梗萼轴旋转,CCD线扫描摄像机可扫描苹果的整个表面且形成一幅图像,该方法的特点是由机械定向机构定位水果梗、萼区,摄像机对此区不需要再检查。但因为受定向机构速度的限制,还达不到实时分级的速度,试验结果为每分钟选30个苹果。Yang(1996)[5]利用结构光图像与散射光图像相结合来区分梗、萼区和缺陷区,综合两方面图像处理的结果,共抽取16个特征参数,再利用BP神经网络区分苹果的梗、萼区和缺陷区,分辨精度为95%,但还需要进一步把试验结果应用于实际水果分选生产线中。Growe等(1996)[1]采取在780 nm附近带域内,用结构光由一黑白摄像机进行水果表面的凹陷度检测;在750 nm带域内的散射光照射下,由一黑白摄像机进行水果表面的可疑缺陷区检测。水果的输送旋转装置及摄像机布置如图1a所示,采用的双锥滚筒输送带可使水果一方面沿水平方向作平移运动,另一方面又绕自身水平轴作旋转运动。两个黑白CCD摄像机用来采集750 nm附近的散射光图像和780 nm附近的结构光图像,水果旋转一周摄取两次图像。两个黑白摄像机采集的图像经过设计的接口电路后,被合成为一幅黑白图像,合成过程如图1b所示。图像的处理由流水线图像处理系统完成。试验结果表明:每个水果采集两幅图像时,缺陷检测的速度可达5个/s,但误差较大,如对于苹果,碰伤检测的准确率仅为51%。试验表明,要想得到较高的检测精度,每个水果应采集5幅以上的图像,结构光至少6条以上。此外,由于水果尺寸不同所造成各个水果旋转速度的不一致,也是产生测量误差的原因。徐娟(1997)[6]及Nakano(1997)[7]利用人工神经网络法对缺陷区和梗萼区进行区分,试验表明神经网络的区分准确率较低。在果面各种缺陷的快速检测方面,Throop(1997)[8]等人研究了多光谱测量技术,对10个品种的苹果的22种缺陷,在460~1 030 nm光谱范围内,每隔10 nm试验测定了它们的反射光谱特性,其中对3种苹果同一种缺陷测量的结果如图2所示。图中纵坐标的马氏距离反映了水果缺陷区与正常区反射强度的差别程度,距离越大,两者差别越大。由图中曲线可看出:在中心为540 nm、740 nm、1 030 nm三波段附近,3种苹果同一缺陷与正常区的反射强度的差别表现为最大或最小值,最后通过对3个波段的图像进行简单的减法和阈值处理,即可得到检测的缺陷,下一步应考虑实际应用的实现。(a)(b)图1图像采集布置图与图像合成示意图(a)输送装置及摄像机布置(b) 图像合成示意图图23种苹果同一缺陷在460~1 030 nm范围内与正常区反射强度的差别情况1.1.3球形水果表面引起光照强度在投影面内呈曲面分布,以及二维图像上的透视区域与水果实际表面存在的畸变,给图像的缺陷检测带来困难和造成误差Tao(1996)[2]提出的球形变换法很好地解决了第一个问题。基本思想如图3所示:带缺陷的原始物体图像(OOI)与该物体反表面无缺陷的图像(IOI)相加得到变换后的物体图像(TOI),此图像具有平面物体图像的性质,而缺陷区低于该平面,然后经过简单阈值处理即可得缺陷区。何东健(1997)[9]提出了缺陷透视图像面积发生畸变的校正方法,但对复杂形状的缺陷区进行校正,还存在一定的困难。Nakano(1997)[7]利用一旋转平台使水果旋转,每旋转18°CCD摄像机采集一幅图像,苹果旋转一周可得20幅图像,为消除苹果球面面积的畸变,每幅图像只保留中间13 cm宽度的幅面,再全部合成一幅苹果整个表面的展开图像,此法非常有效,但在分选生产线上实现比较困难。图3球形变换方法1.1.4传统的图像处理及模式识别算法的速度不适合实时分选线的要求国外一般采用高速图像处理硬件与简单有效的图像处理软件相结合的途径,来实现水果的实时分级。如Yang(1996)[5]利用的是Transputer系统、结构光法和洪水算法;Growe等(1996)[1]研制的系统,图像的大部分工作由流水线图像处理硬件系统完成;Tao(1996)[2]采用的是专用Merlin图像处理系统和简单有效的球形变换法,研制的苹果分选系统已应用到水果分选生产线上,其分选速度可达3 165个/min。国内研究者(刘禾,1998,徐娟,1997,杨秀坤,1997,何东健,1997)[6,9~11]大多利用一般的微机和图像采集卡,开发了一些图像处理和模式识别的新算法,如把人工神经网络、模糊理论、遗传算法、图像形态学、分形理论、小波理论及人工智能理论用于图像特征的抽取和识别。但由于图像处理的硬件速度太低,故只能限于静态水果图像分选的算法研究。此外,水果分级的算法应具备人工分级的一些优良性能,如学习与记忆功能,因为目前的一些分级算法的训练样本都比较少,而要分级的水果品种多变且量大。1.2水果内部品质无损检测反映水果内部品质的主要指标有硬度、糖含量、酸度、口味及内部缺陷等。目前国内外研究的主要方法和存在的问题如下。1.2.1水果的硬度检测水果的硬度可间接反映水果的成熟度、运输中的抗损坏性、储藏期等。目前用于水果硬度检测的方法主要有变形法和声学法。变形法就是在一定时间内给水果施加一定的动态力或冲击力,然后根据测得的变形量确定水果的硬度。如Schmilovitch等(1995)[12]研制成功了枣子硬度自动检测系统,其原理是把枣子放在两平板之间,在上面板施加5~8 N的动态力,根据所测变形量的大小把枣子分成4个硬度等级。Delwiche(1991)[13]利用冲击法研制了苹果硬度自动检测系统,发现冲击力会造成苹果表面的轻微损伤。变形法只能测量水果表面的局部硬度,实际上,水果表面硬度变化较大,故限制了变形法的应用。声学法包括声波脉冲响应法和超声波法,声波脉冲响应法(20~1 500 Hz)就是利用一麦克风测量受轻微敲击水果的声波强度,由此确定水果的硬度。Armstrong等(1993)[14]试验研究了所测声波强度与水果硬度的关系,发现二者有很好的相关关系。此法的优点是简单、无损,且能反映水果的整体硬度,缺点是必须注意周围噪声的绝缘及机械振动的消除,此外水果形状也影响测量精度。超声波(>20 000 Hz)法是根据超声波在水果等介质中传播时,能量衰减系数的大小来确定水果硬度。但由于水果内部含有较多气隙且各向异性,故超声波很难穿透整个水果。1.2.2糖含量、酸度、口味的自动检测糖含量、酸度比较有潜力的检测方法是近红外法(NIR)和磁共振法(MR)。近红外法又分穿透法、反射法和部分穿透法,部分穿透法原理如图4所示。穿透法对水果不适应,反射法一般用于水果表面特征的检测,因此常用的方法是部分穿透法。由图4可看出,在部分穿透法中,光线经过的路径比穿透法短,且入射光线与接收器有一夹角,此夹角的确定对测量起关键作用,此外二者之间必须加一隔板。884 nm和834 nm测得量的比值已用于桃子、苹果(Slaughter ,1995)[15]糖含量的自动测定。Slaughter等(1996)[16]对西红柿,在400~1 100 nm的光谱范围内进行部分穿透性测量试验,结果表明:800~1 000 nm范围的信息对糖含量的确定最有用,测得的相关系数r=0.92, 但酸度测量比较困难。Mizrach(1997)[17]利用超声波法试验研究了超声波衰减系数和芒果硬度、糖含量、酸度的关系,但其超声波测量探头必须与果面接触,故限制了在线的应用。因此,利用近红外多光谱技术测定水果内部糖含量及其他成分是很有前途的,为达到实时应用的目的,应进一步确定最合适的一两个波段并与计算机视觉技术结合。磁共振及磁共振成像(MRI)技术也是测定水果内部成分的有效方法,其依据是物质内部的某些原子核(H、C、P等)在外部磁场作用下,可与射频区域的电磁波辐射相互作用。Chen等(1996)[18]利用此法对鳄梨的成熟度和鲜杏梅的糖含量进行了一些研究,得到了较好的结果。此法的主要缺点是设备昂贵。图4部分穿透法与水果的口味相关的化学成分主要是可挥发性芳香化合物,当水果成熟时,就会在周围空气中散发这种挥发性芳香气体。Benady等(1995)[19]研制的电子传感器可以测量这种气体的浓度。1.2.3水果内部缺陷的检测西瓜的内部空心用超声波检测已比较成熟。其他缺陷的检测,目前国外正研究利用X射线法、磁共振和磁共振成像技术等方法测量,因成本高及安全性等问题,故很难在农业中推广应用。2研究的途径及方向探讨水果实时分级系统的进一步研究应从两方面入手,一方面要加快水果外部品质的计算机视觉实时分选技术的研究;另一方面也要进行水果内部品质的无损检测技术的研究。因为水果分级的主要目的是选出高质量的水果,故水果内外品质的检测技术都十分重要。在水果的外部品质检测方面,应进行多种技术集成的应用研究。(1) 对于水果整个表面机器视觉快速检测的问题,可采用机械与光学技术相结合,设计合理的传送机构,既保证水果在传送带上比较平稳地移动,又可由视觉系统快速检测到水果的全部表面。尽量减小因水果不规则运动造成的分级误差、损伤及图像的模糊。(2) 对于果梗、萼区与缺陷的检测与视觉区分方面,应采用多光谱技术与机器视觉技术相结合,研究水果图像上可疑缺陷区的关键特征参数的抽取方法,得到简单、有效、快速的图像处理和识别方法。(3) 在球形果面造成的光反射强度呈曲面分布及曲面成像面积的畸变问题,可从光照设计、图像合成及软件补偿3方面综合考虑。光照的充分设计可解决第一个问题;多幅图像的有效合成,可解决畸变问题。我们通过试验表明:一个水果至少应采集5幅图像,然后再合成为一幅,可基本保证水果整个表面上缺陷的有效检测,以避免畸变误差。软件补偿的方法必须简单而有效,以适合高速的要求。(4) 在实时系统的图像处理器硬件设计方面,首先应采取先进的并行CPU芯片,如TMS320C80等;其次处理板的设计应与视觉系统结合起来考虑,如采集多路视觉信号的合成问题,机械机构与视觉系统的同步电路设计等。当然,也可引进国外比较成熟的高速图像处理主板,而其他技术可由国内自行开发,这样可以加快国内水果实时分级系统实现自动化的步伐。(5) 在图像处理和识别的软件设计方面,应把传统方法与现代新方法(神经网络,并行算法,遗传算法,模糊技术,人工智能,图像形态学,分形学,小波变换等)结合起来,改变传统图像信息的超数据量表达方式,寻求图像表达与解释的新方法,力求图像处理和识别算法的快速性、有效性及鲁棒性。在水果内部品质检测方面,声学振动法是实现硬度自动检测的有效方法,但应设法消除影响测量精度的因素,并进行在生产线上的应用开发;近红外局部投射法和磁共振法是水果糖含量、酸度等内部成分自动检测的有效方法。在国内,近红外局部投射法更有应用前景,应进一步研究其通用性、稳定性和实用性;内部缺陷的无损检测应进一步研究新原理和新方法,应采取自己开发和从国外引进相结合的方式。此外,应进行多种传感器测量信息集成技术的研究,这是水果内外品质实现实时自动检测与分级的有效途径。3结语利用各种现代技术的高度集成,在水果分选生产线上同时完成水果内外品质的检测与分级是将来进一步研究的方向和目的。随着科学技术的飞速发展,在我国近期有望实现农产品品质的自动化检测与分级。

这个要你有看有没有相关的研究了,对这方面是否有些了解,如果有了解的话就还是比较好。

记得是写论文,我觉得还是比较好写,你也可以查找相关的资料

机器视觉喷码检测论文

ICCV论文是计算机视觉领域最高级别的会议论文

计算机视觉是使用计算机及相关设备对生物视觉的一种模拟。它的主要任务就是通过对采集的图片或视频进行处理以获得相应场景的三维信息,就像人类和许多其他类生物每天所做的那样。

计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。

CVPR录用标准

CVPR有着较为严苛的录用标准,会议整体的录取率通常不超过30%,而口头报告的论文比例更是不高于5%。而会议的组织方是一个循环的志愿群体,通常在某次会议召开的三年之前通过遴选产生。CVPR的审稿一般是双盲的,也就是说会议的审稿与投稿方均不知道对方的信息。

通常某一篇论文需要由三位审稿者进行审读。最后再由会议的领域主席(area chair)决定论文是否可被接收。

应该属于视觉工业,不仅要检测能不能喷到,还要检测喷的效果是否符合要求。不是很复杂。去年在北京的包装展上还看到韩国有这样的产品。和几个搞工控设备的聊了一下,好像都能做。

记得是写论文,我觉得还是比较好写,你也可以查找相关的资料

标定好的真实数据

ccd外观检测设备论文

ccd视觉检测设备的优势有以下三条优势:

1、非接触测量,对于观测者与被观测者都不会产生任何损伤,从而提高系统的可靠性。

2、具有较宽的光谱响应范围,例如使用人眼看不见的红外测量,扩展了人眼的视觉范围。

3、能够长时间稳定工作,人类难以长时间对同一对象进行观察,而机器视觉则可以长时间地作测量、分析和识别任务。

CCD (Charge-Coupled Device)检测机器视觉是一种利用CCD图像传感器对物体进行图像采集和处理的技术。其原理是将物体反射或透过的光线经过透镜或光学系统聚焦到CCD图像传感器上,将光信号转换成电信号,经过处理后生成图像。CCD检测机器视觉可以实现对物体的形状、大小、颜色等特征进行快速、准确的检测和识别,广泛应用于工业自动化、机器人视觉、医学图像处理、安防监控等领域。

机器视觉检测系统又称工业视觉系统,其原理是:将感产品或区域进行成像,然后根据其图像信息用专用的图像处理软件进行处理,根据处理结果软件能自动判断产品的位置、尺寸、外观信息,并根据人为预先设定的标准进行合格与否的判断,输出其判断信息

产品外观自动检测设备采用CCD相机将被检测的目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号,图像处理系统对这些信号进行各种运算来抽取目标的特征,如面积、数量、位置、长度,再根据预设的允许度和其他条件输出结果,包括尺寸、角度、个数、合格/不合格、有/无等,实现自动识别功能 。

相关百科

热门百科

首页
发表服务