首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

数学解题方法研究论文

发布时间:

数学解题方法研究论文

高中数学是培养高中升思维能力的重要的学科,也是高考考试中占重要地位的一门学科,如何才能提高数学教学的有效性呢?本文是我为大家整理的高中数学有效性教学研究论文,欢迎阅读! 高中数学有效性教学研究论文篇一:高中数学作业的有效性 一切实把握好“度”。 教师要认真钻研教材,正确掌握教学目标和学生实际,认真挑选与教学目标密切关联的作业内容,合理安排作业的量,正确把握作业的难易度,哪些是必做题,哪些是选做题。让学生根据自己的知识水平量力而行。 二做好作业前期准备。 作业前期准备有学生和教师的准备。学生首先认真阅读课本,本节知识点有哪些,需要掌握到什么程度,知识点之间有什么联络,研究例题,反思老师怎么分析、怎么讲解、怎么板书。其次反思本节知识难点的分解,反思所涉及的数学思想。最后再做作业。教师根据所任教班级的学生学情来把握是否有必要题意解释,适当地点拨,甚至详讲。 三精选作业内容。 1.选择涉及本节知识的部分较易的作为作业。如:学习全集补集概念课后布置作业:1若C∪A={5},则5与U,A的关系如何2已知全集U={1,2,3,4,5,6},C∪A={5,6},则A=____2.选择以涉及本节知识为主,但相对稍难的作为选作作业。例如,学习全集补集概念课后布置作业:已知 *** A={1,3,x},B={1,x2},设全集为U,若B∪〔UB=A,求〔UB.3.选择以章节知识为主,但具有一定的综合性、拓展性的作为章节复习作业。例如, *** 复习课后布置作业:设全集U={x∈N+|x≤8},若A∩C∪B={2,8},C∪A∪C∪B={1,2,3,4,5,6,7,8},求 *** A 四精选题型 要注重变式题、同类题、多解题、易错题、探究题题型的精选。1.变式题变式题指对原命题交换条件和结论或变换部分条件得出新题。这类题型有助于学生开阔思路,思维灵活多变,培养解题的灵活性,思维的发散性以及创新能力。例如,学习空间图形的基本关系与公理后布置作业:在平面几何中,对于三条直线a,b,c存在下面三个重要命题:若a‖b,b‖c,则有a‖c;若a⊥c,a‖b则有b⊥c:若a⊥c,b⊥c则有a‖b,它们都是真命题,若把a,b,c换成i不在同一个平面内的三条直钱,ii三个平面α,β,γ,iii其中两条直线换成两个平面,另一条还是直线,iv其中一条直线换成平面,另两条还是直线。一共可得到16个不同的命题,其中将正确的命题写在空白处。2.同类题同类题指具有多题一解的一类题。这类题型让学生领悟一类题解题的一般规律,加深对知识的理解,培养类聚思维,化归思想。例如,学习了简单的幂函式后布置作业:1已知fx+2f1x=2x,求fx的解析式。2若函式fxgx分别是R上的奇函式,偶函式,且满足fx-gx=x3+2x2+1求fx的解析式。3.多解题多解题是指是有多种解法的一类题。这类题型可以开拓学生解题思路,激发学生发散性思维和创新能力。但要注意多解不是目的,主要是能从多解中寻求最佳解法。例如,学习完直线与圆的位置关系后布置作业:已知x,y满足x+y=3,求证:x+52+y-22≥184.易错题易错题是一类具有隐含条件,解题稍一疏忽,就会因考虑不周到而失误的题目。这类题型能够考察出学生考虑问题是否全面,思维是否缜密。例如,在学习了 *** 间的基本关系后布置作业:已知 *** A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B哿A,求实数m的取值范围没有考虑B=Φ时的特殊情况而失误在学习了导数后布置作业求过点P1,2且与曲线fx=x3-2x+3相切的直线方程。没有考虑P不是切点的情况而失误5.探究题探究题是指提供情境,从中发现问题进行探究的一类问题。这类题型可以培养学生观察能力与思维能力,分析问题和解决问题能力。例如,学习完指数函式后布置作业:fx是定义在R上的函式,且满足fx•gx=fx+y,当x>0时,fx>1,f0≠0,求证:1f0=1;2fxf-x=1;3当x<0时,0 五做好作业的指导 对学生作业的指导是提高有效性的重要保证。成绩好的学生往往喜欢独立思考,独立完成作业;而成绩不理想的学生往往不善于独立思考,喜欢依赖别人。教师要根据学生在课堂上掌握情况预知作业进展情况,预料学生做作业时可能存在的问题,布置作业前在课堂上进行提示或讲解,之后学生再做作业,效果会更好一些,真正达到做作业的实效。 六改进作业的评价 批改作业,教师要做到及时,认真,把批改作业中发现的问题,错误以及所犯错误的数量,性质进行记录分析,并在下一次课中有针对性的指出,纠正。教师往往对作业评价只打“√”或“×,这样不利于调动学生学习的积极性。教师应改变对作业简单地打“√”或“×”的评价方式。可以改“×”为在出错的地方打“?”或提示语的方式,使学生明确错在何处或何因出错。根据学生作业情况反馈资讯及时作出正确评价。对于优秀作业或解题有创意的作业用赞美的语言或采用优秀作业展览的形式来激励学生。总之,让学生感受到老师的关爱,以及自己勤奋严谨获得的成功,增加学好数学自信心。 作者:姜长虹 单位:内蒙古扎兰屯第一中学 高中数学有效性教学研究论文篇二:高中数学教学模式 一、在高中数学实现有效的教学模式的意义 高中数学是培养高中升思维能力的重要的学科,也是高考考试中占重要地位的一门学科。纵观高中数学的内容,我们发现高中数学的难度比较大,单单依靠学生自学是无法完全掌握这门学科的,还需要教师对于知识的归纳和总结,提供给学生一种解题的思维和技巧。因此在提高高中数学课堂的有效性显得尤为重要。实现高中课堂学习的有效性,可以提高学生学习的效率。高中课程的学习不同于初中课程,高中每门课程的难度都比较大,要全面兼顾好每门课程的学习,因此学习效率对于高中生而言尤为重要,只有提高了学生的学习效率,学生才有更多的时间用于身体锻炼和学习更多的内容,这样才能培养全面的人才,贯彻新课改的要求。 二、如何实现高中数学有效的教学模式 一高中数学教师要创新教学模式,改变沉闷的教学氛围。在传统的高中数学教学模式之中,教师往往忽视教学氛围对于学生学习的重要作用,在枯燥的教学环境中,学生往往对课程的学习也不感兴趣。因此为了使高中数学课堂更加高效率,教师在教学模式上也要创新和改革,改变以往不符合学生学习规律的教学方法,建立起新的教学模式,活跃课堂气氛,提高学生学习的积极性。例如教师在教学生抛物线这个知识点的时候,老师可以在上课时,用一根粉笔,直接用手将粉笔往上抛,以这种生动的形式来作为课堂导课。这样不仅仅在一瞬间抓住了学生的注意力,还能够让学生将今天所学的知识与自己的生活实际联络在一起,不仅仅体现了新课改的要求,还极大的激发了学生学习的兴趣。 二高中数学教师要以学生作为教学的主体,给予学生更多的关注和鼓励。总所周知,学生对于这个老师的好感与学好这门课程是密切相关的,因此,教师要和学生建立良好的师生关系。高中数学的知识点比较难,考验学生较强的思维能力,但是很多学生在面对高中数学时常常有挫败感和恐惧感,这些挫败感和恐惧感极大的阻碍了学生学习高中数学。因此高中数学老师在教学中应该这样做,例如,在为学生讲述数列这一个知识点的时候,要求学生做相应的基础知识的练习,刚开始对学生要求做的练习的难度不应该太大,慢慢培养学生的成就感和对于高中数学的喜爱。除此之外,教师在教授课程的速度也不应该太快,要考虑到学生的接受能力,对于那些数学基础比较差的学生,教师要有足够的耐心去教,不要随意放弃任何一位学生,对于基础差的,跟不上全班学习进度的学生,高中数学教师可以为这些学生在课前找一些基础的练习题,让这些学生提前练习,学会笨鸟先飞,逐步跟上全班的数学水平。 三高中数学教师要创新自我的课堂教学设计,善于使用肢体语言让学生得到肯定。在新课改的背景下,高中数学教师不仅仅作为一名传授课堂知识的工作者,还要学会如何有效地将课堂知识传授到学生的身上,让学生真正的掌握知识。课堂知识的传授不在于教师讲授了多少,而在于学生吸收了多少。在创新课堂教学设计中,例如高中教师在讲授函式的单调性的时候,可以采用设问的方法,让学生主动思考,例如,教师可以让学生回答一次函式的单调性,然后再想想我们所学的函式方程,他们的单调性又存在什么特点,通过问题教学法,层层的问题的设定,让学生在思考问题中自己发现函式单调性的内在规律,除此之外,教师在教学的过程中,要常常对学生微笑,运用肢体语言给予学生更多的鼓励和肯定,让学生在学习中逐渐找到自我的学习方法和成就感。 作者:黄兵 单位:贵州省遵义县第一中学 高中数学有效性教学研究论文篇三:高中数学的有效教学 一、采取恰当的教学方法 高中数学这门学科虽然是一门对逻辑性思维具有较高要求的一门学科,但是在整个的教学过程中,笔者认为教师还应该积极地根据教学的不同内容和知识特点采取不一样的教学方法,从而更好地促进学生的能力发展和实现有效教学这一目标.所谓采取恰当的教学方法具体而言就是要根据函式和三角函式这一类的知识点采取数形结合、讲练结合的方式来开展教学;要根据立体几何的立体空间特点引导学生通过观察立体图形的方式开展教学;要根据 *** 、命题、概率等内容采取透析概念、侧重语言文字转化为数学语言的方式来开展教学;等等. 通过这样一系列的各种各样的方式,将有效地提升学生的认识,引导学生分别从不同的方面找出不同的思考方式,从而更好地开展高中数学教学,有效地提升学生对知识的理解.例如,在讲“ *** ”时,教师要注意加强对 *** 、元素、子集、 *** 的特征等概念的学习,加强学生对 *** 的基本运算交集、补集、并集的概念区分.特别是要引导学生对 *** 内元素的互异性这一具体运用以及具体的教学例子的讲解,帮助学生获得提升和发展.通过这样一种细化不同知识点的方式,将有效地提升学生对 *** 内各个概念的理解,也将更好地提升整个教学的效率,从而实现高中数学有效教学. 二、注重教学的启发性 高中数学这门学科因为具有很强的逻辑性所以对学生的思维发展是一个挑战,也是一个重要的契机.所以,在整个的教学实施过程中,笔者认为教师还应该积极地引导学生在教学实施的过程中注重教学的启发性,从而更好地发散学生的思维,促进学生的创新行思维和经纬网式的综合性思维的发展.在教学过程中,教师要注意通过一些具有启发性的题目和内容来锻炼学生的思维,鼓励学生去探究有关的知识点和激励学生去思考,激发学生的潜力。这样一改,学生能够在第一眼就发现这个题目解答的最便捷方法就是属性结合,可以将已知内容看做一个圆,而需要求解的内容则是一条直线.然后就是求解该直线与圆之间相交的范围.随后,教师再引导学生切入到之前的题目中,从而更好地激发学生的思维,有效地启发了学生思考. 作者:陈督武 单位:浙江乐清市白象中学 看过" 高中数学有效性教学研究论文"的还:

一、配方法配方法是对数学(shuxue)式子进行一种定向变形(配成"完全平方")的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用"裂项"与"添项"、"配"与"凑"的技巧,从而完成配方。有时也将其称为"凑配法"。最常见的配方是进行恒等变形,使数学(shuxue)式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。二、换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。三、待定系数法要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x)g(x)的充要条件是:对于一个任意的a值,都有f(a)g(a);或者两个多项式各同类项的系数对应相等。待定系数法解题的关键是依据已知,正确列出等式或方程。使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解。使用待定系数法,它解题的基本步骤是:第一步,确定所求问题含有待定系数的解析式;第二步,根据恒等的条件,列出一组含待定系数的方程;第三步,解方程组或者消去待定系数,从而使问题得到解决。如何列出一组含待定系数的方程,主要从以下几方面着手分析:①利用对应系数相等列方程;②由恒等的概念用数值代入法列方程;③利用定义本身的属性列方程;④利用几何条件列方程。比如在求圆锥曲线的方程时,我们可以用待定系数法求方程:首先设所求方程的形式,其中含有待定的系数;再把几何条件转化为含所求方程未知系数的方程或方程组;最后解所得的方程或方程组求出未知的系数,并把求出的系数代入已经明确的方程形式,得到所求圆锥曲线的方程。四、定义法所谓定义法,就是直接用数学定义解题。数学中的定理、公式、性质和法则等,都是由定义和公理推演出来。定义是揭示概念内涵的逻辑方法,它通过指出概念所反映的事物的本质属性来明确概念。定义是千百次实践后的必然结果,它科学地反映和揭示了客观世界的事物的本质特点。简单地说,定义是基本概念对数学实体的高度抽象。用定义法解题,是最直接的方法,本讲让我们回到定义中去。五、数学归纳法归纳是一种有特殊事例导出一般原理的思维方法。归纳推理分完全归纳推理与不完全归纳推理两种。不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有着广泛的应用。它是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n)时成立,这是递推的基础;第二步是假设在n=k时命题成立,再证明n=k+1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。这两个步骤密切相关,缺一不可,完成了这两步,就可以断定"对任何自然数(或n≥n且n∈N)结论都正确"。由这两步可以看出,数学归纳法是由递推实现归纳的,属于完全归纳。运用数学归纳法证明问题时,关键是n=k+1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。六、参数法参数法是指在解题过程中,通过适当引入一些与题目研究的数学对象发生联系的新变量(参数),以此作为媒介,再进行分析和综合,从而解决问题。直线与二次曲线的参数方程都是用参数法解题的例证。换元法也是引入参数的典型例子。辨证唯物论肯定了事物之间的联系是无穷的,联系的方式是丰富多采的,科学的任务就是要揭示事物之间的内在联系,从而发现事物的变化规律。参数的作用就是刻画事物的变化状态,揭示变化因素之间的内在联系。参数体现了近代数学中运动与变化的思想,其观点已经渗透到中学数学的各个分支。运用参数法解题已经比较普遍。参数法解题的关键是恰到好处地引进参数,沟通已知和未知之间的内在联系,利用参数提供的信息,顺利地解答问题。七、反证法与前面所讲的方法不同,反证法是属于"间接证明法"一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。法国数学家阿达玛(Hadamard)对反证法的实质作过概括:"若肯定定理的假设而否定其结论,就会导致矛盾"。具体地讲,反证法就是从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明。反证法所依据的是逻辑思维规律中的"矛盾律"和"排中律"。在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的"矛盾律";两个互相矛盾的判断不能同时都假,简单地说"A或者非A",这就是逻辑思维中的"排中律"。反证法在其证明过程中,得到矛盾的判断,根据"矛盾律",这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以"否定的结论"必为假。再根据"排中律",结论与"否定的结论"这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。反证法的证题模式可以简要的概括我为"否定→推理→否定"。即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是"否定之否定"。应用反证法证明的主要三步是:否定结论→推导出矛盾→结论成立。实施的具体步骤是:第一步,反设:作出与求证结论相反的假设;第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;第三步,结论:说明反设不成立,从而肯定原命题成立。在应用反证法证题时,一定要用到"反设"进行推理,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫"归谬法";如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫"穷举法"。在数学解题中经常使用反证法,牛顿曾经说过:"反证法是数学家最精当的武器之一"。一般来讲,反证法常用来证明的题型有:命题的结论以"否定形式"、"至少"或"至多"、"唯一"、"无限"形式出现的命题;或者否定结论更明显。具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆

数学方法与解题研究论文

高中数学是培养高中升思维能力的重要的学科,也是高考考试中占重要地位的一门学科,如何才能提高数学教学的有效性呢?本文是我为大家整理的高中数学有效性教学研究论文,欢迎阅读! 高中数学有效性教学研究论文篇一:高中数学作业的有效性 一切实把握好“度”。 教师要认真钻研教材,正确掌握教学目标和学生实际,认真挑选与教学目标密切关联的作业内容,合理安排作业的量,正确把握作业的难易度,哪些是必做题,哪些是选做题。让学生根据自己的知识水平量力而行。 二做好作业前期准备。 作业前期准备有学生和教师的准备。学生首先认真阅读课本,本节知识点有哪些,需要掌握到什么程度,知识点之间有什么联络,研究例题,反思老师怎么分析、怎么讲解、怎么板书。其次反思本节知识难点的分解,反思所涉及的数学思想。最后再做作业。教师根据所任教班级的学生学情来把握是否有必要题意解释,适当地点拨,甚至详讲。 三精选作业内容。 1.选择涉及本节知识的部分较易的作为作业。如:学习全集补集概念课后布置作业:1若C∪A={5},则5与U,A的关系如何2已知全集U={1,2,3,4,5,6},C∪A={5,6},则A=____2.选择以涉及本节知识为主,但相对稍难的作为选作作业。例如,学习全集补集概念课后布置作业:已知 *** A={1,3,x},B={1,x2},设全集为U,若B∪〔UB=A,求〔UB.3.选择以章节知识为主,但具有一定的综合性、拓展性的作为章节复习作业。例如, *** 复习课后布置作业:设全集U={x∈N+|x≤8},若A∩C∪B={2,8},C∪A∪C∪B={1,2,3,4,5,6,7,8},求 *** A 四精选题型 要注重变式题、同类题、多解题、易错题、探究题题型的精选。1.变式题变式题指对原命题交换条件和结论或变换部分条件得出新题。这类题型有助于学生开阔思路,思维灵活多变,培养解题的灵活性,思维的发散性以及创新能力。例如,学习空间图形的基本关系与公理后布置作业:在平面几何中,对于三条直线a,b,c存在下面三个重要命题:若a‖b,b‖c,则有a‖c;若a⊥c,a‖b则有b⊥c:若a⊥c,b⊥c则有a‖b,它们都是真命题,若把a,b,c换成i不在同一个平面内的三条直钱,ii三个平面α,β,γ,iii其中两条直线换成两个平面,另一条还是直线,iv其中一条直线换成平面,另两条还是直线。一共可得到16个不同的命题,其中将正确的命题写在空白处。2.同类题同类题指具有多题一解的一类题。这类题型让学生领悟一类题解题的一般规律,加深对知识的理解,培养类聚思维,化归思想。例如,学习了简单的幂函式后布置作业:1已知fx+2f1x=2x,求fx的解析式。2若函式fxgx分别是R上的奇函式,偶函式,且满足fx-gx=x3+2x2+1求fx的解析式。3.多解题多解题是指是有多种解法的一类题。这类题型可以开拓学生解题思路,激发学生发散性思维和创新能力。但要注意多解不是目的,主要是能从多解中寻求最佳解法。例如,学习完直线与圆的位置关系后布置作业:已知x,y满足x+y=3,求证:x+52+y-22≥184.易错题易错题是一类具有隐含条件,解题稍一疏忽,就会因考虑不周到而失误的题目。这类题型能够考察出学生考虑问题是否全面,思维是否缜密。例如,在学习了 *** 间的基本关系后布置作业:已知 *** A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B哿A,求实数m的取值范围没有考虑B=Φ时的特殊情况而失误在学习了导数后布置作业求过点P1,2且与曲线fx=x3-2x+3相切的直线方程。没有考虑P不是切点的情况而失误5.探究题探究题是指提供情境,从中发现问题进行探究的一类问题。这类题型可以培养学生观察能力与思维能力,分析问题和解决问题能力。例如,学习完指数函式后布置作业:fx是定义在R上的函式,且满足fx•gx=fx+y,当x>0时,fx>1,f0≠0,求证:1f0=1;2fxf-x=1;3当x<0时,0 五做好作业的指导 对学生作业的指导是提高有效性的重要保证。成绩好的学生往往喜欢独立思考,独立完成作业;而成绩不理想的学生往往不善于独立思考,喜欢依赖别人。教师要根据学生在课堂上掌握情况预知作业进展情况,预料学生做作业时可能存在的问题,布置作业前在课堂上进行提示或讲解,之后学生再做作业,效果会更好一些,真正达到做作业的实效。 六改进作业的评价 批改作业,教师要做到及时,认真,把批改作业中发现的问题,错误以及所犯错误的数量,性质进行记录分析,并在下一次课中有针对性的指出,纠正。教师往往对作业评价只打“√”或“×,这样不利于调动学生学习的积极性。教师应改变对作业简单地打“√”或“×”的评价方式。可以改“×”为在出错的地方打“?”或提示语的方式,使学生明确错在何处或何因出错。根据学生作业情况反馈资讯及时作出正确评价。对于优秀作业或解题有创意的作业用赞美的语言或采用优秀作业展览的形式来激励学生。总之,让学生感受到老师的关爱,以及自己勤奋严谨获得的成功,增加学好数学自信心。 作者:姜长虹 单位:内蒙古扎兰屯第一中学 高中数学有效性教学研究论文篇二:高中数学教学模式 一、在高中数学实现有效的教学模式的意义 高中数学是培养高中升思维能力的重要的学科,也是高考考试中占重要地位的一门学科。纵观高中数学的内容,我们发现高中数学的难度比较大,单单依靠学生自学是无法完全掌握这门学科的,还需要教师对于知识的归纳和总结,提供给学生一种解题的思维和技巧。因此在提高高中数学课堂的有效性显得尤为重要。实现高中课堂学习的有效性,可以提高学生学习的效率。高中课程的学习不同于初中课程,高中每门课程的难度都比较大,要全面兼顾好每门课程的学习,因此学习效率对于高中生而言尤为重要,只有提高了学生的学习效率,学生才有更多的时间用于身体锻炼和学习更多的内容,这样才能培养全面的人才,贯彻新课改的要求。 二、如何实现高中数学有效的教学模式 一高中数学教师要创新教学模式,改变沉闷的教学氛围。在传统的高中数学教学模式之中,教师往往忽视教学氛围对于学生学习的重要作用,在枯燥的教学环境中,学生往往对课程的学习也不感兴趣。因此为了使高中数学课堂更加高效率,教师在教学模式上也要创新和改革,改变以往不符合学生学习规律的教学方法,建立起新的教学模式,活跃课堂气氛,提高学生学习的积极性。例如教师在教学生抛物线这个知识点的时候,老师可以在上课时,用一根粉笔,直接用手将粉笔往上抛,以这种生动的形式来作为课堂导课。这样不仅仅在一瞬间抓住了学生的注意力,还能够让学生将今天所学的知识与自己的生活实际联络在一起,不仅仅体现了新课改的要求,还极大的激发了学生学习的兴趣。 二高中数学教师要以学生作为教学的主体,给予学生更多的关注和鼓励。总所周知,学生对于这个老师的好感与学好这门课程是密切相关的,因此,教师要和学生建立良好的师生关系。高中数学的知识点比较难,考验学生较强的思维能力,但是很多学生在面对高中数学时常常有挫败感和恐惧感,这些挫败感和恐惧感极大的阻碍了学生学习高中数学。因此高中数学老师在教学中应该这样做,例如,在为学生讲述数列这一个知识点的时候,要求学生做相应的基础知识的练习,刚开始对学生要求做的练习的难度不应该太大,慢慢培养学生的成就感和对于高中数学的喜爱。除此之外,教师在教授课程的速度也不应该太快,要考虑到学生的接受能力,对于那些数学基础比较差的学生,教师要有足够的耐心去教,不要随意放弃任何一位学生,对于基础差的,跟不上全班学习进度的学生,高中数学教师可以为这些学生在课前找一些基础的练习题,让这些学生提前练习,学会笨鸟先飞,逐步跟上全班的数学水平。 三高中数学教师要创新自我的课堂教学设计,善于使用肢体语言让学生得到肯定。在新课改的背景下,高中数学教师不仅仅作为一名传授课堂知识的工作者,还要学会如何有效地将课堂知识传授到学生的身上,让学生真正的掌握知识。课堂知识的传授不在于教师讲授了多少,而在于学生吸收了多少。在创新课堂教学设计中,例如高中教师在讲授函式的单调性的时候,可以采用设问的方法,让学生主动思考,例如,教师可以让学生回答一次函式的单调性,然后再想想我们所学的函式方程,他们的单调性又存在什么特点,通过问题教学法,层层的问题的设定,让学生在思考问题中自己发现函式单调性的内在规律,除此之外,教师在教学的过程中,要常常对学生微笑,运用肢体语言给予学生更多的鼓励和肯定,让学生在学习中逐渐找到自我的学习方法和成就感。 作者:黄兵 单位:贵州省遵义县第一中学 高中数学有效性教学研究论文篇三:高中数学的有效教学 一、采取恰当的教学方法 高中数学这门学科虽然是一门对逻辑性思维具有较高要求的一门学科,但是在整个的教学过程中,笔者认为教师还应该积极地根据教学的不同内容和知识特点采取不一样的教学方法,从而更好地促进学生的能力发展和实现有效教学这一目标.所谓采取恰当的教学方法具体而言就是要根据函式和三角函式这一类的知识点采取数形结合、讲练结合的方式来开展教学;要根据立体几何的立体空间特点引导学生通过观察立体图形的方式开展教学;要根据 *** 、命题、概率等内容采取透析概念、侧重语言文字转化为数学语言的方式来开展教学;等等. 通过这样一系列的各种各样的方式,将有效地提升学生的认识,引导学生分别从不同的方面找出不同的思考方式,从而更好地开展高中数学教学,有效地提升学生对知识的理解.例如,在讲“ *** ”时,教师要注意加强对 *** 、元素、子集、 *** 的特征等概念的学习,加强学生对 *** 的基本运算交集、补集、并集的概念区分.特别是要引导学生对 *** 内元素的互异性这一具体运用以及具体的教学例子的讲解,帮助学生获得提升和发展.通过这样一种细化不同知识点的方式,将有效地提升学生对 *** 内各个概念的理解,也将更好地提升整个教学的效率,从而实现高中数学有效教学. 二、注重教学的启发性 高中数学这门学科因为具有很强的逻辑性所以对学生的思维发展是一个挑战,也是一个重要的契机.所以,在整个的教学实施过程中,笔者认为教师还应该积极地引导学生在教学实施的过程中注重教学的启发性,从而更好地发散学生的思维,促进学生的创新行思维和经纬网式的综合性思维的发展.在教学过程中,教师要注意通过一些具有启发性的题目和内容来锻炼学生的思维,鼓励学生去探究有关的知识点和激励学生去思考,激发学生的潜力。这样一改,学生能够在第一眼就发现这个题目解答的最便捷方法就是属性结合,可以将已知内容看做一个圆,而需要求解的内容则是一条直线.然后就是求解该直线与圆之间相交的范围.随后,教师再引导学生切入到之前的题目中,从而更好地激发学生的思维,有效地启发了学生思考. 作者:陈督武 单位:浙江乐清市白象中学 看过" 高中数学有效性教学研究论文"的还:

数学归纳思想在各学段之特点和教学启示

第一章 导论

数学方法与解题研究的论文

初中数学方程教学方法研究论文

【摘要】 在新的教学背景下,每一门科目的教师都在不断寻找最简便有用的授课方法。方程是一种解决问题的方法,在数学、物理、化学等学科中都有广泛的运用,因此教师要利用教学课堂把方程这一知识点详细地给学生进行讲解,使学生可以运用好这一解题方法。在数学的具体授课中,教师要从学生的审题、列方程、解方程、验证方程等各个环节进行讲解,学生要熟练掌握方程这一知识点,运用这一知识点可以解决很多数学问题。通过教师方程的课堂讲解,学生能够学会独立分析问题,学会亲自动手动脑解决问题,开拓自己的学习潜能。通过教师的课堂讲解,学生能更快地明白解题思路,同时掌握更多的学习方法与技能。本文对初中数学中方程教学的有效方法应用进行了深入探究,对相应的问题提出了解决方法。

【关键词】 初中数学;方程教学;方法应用

初中数学中方程知识的教学占据着一定的比重,这一知识点可以贯穿到很多的学习内容中,并成为初中数学题目中解题的基础方法。对于方程教学来说,教师不仅要重视学生的解题思路和方程规律特点的讲解,还要对实践操作中的审题环节、作业反馈出现的问题重点关注。通过这样的方式,才能促进学生对于方程更高效的学习,更透彻更全方位地掌握方程知识。教师在制定教学计划的时候,要进行教材内容的分析,确定好教学主题,明确授课目的,做好知识点的衔接贯通、技巧讲解、教学逻辑性等方面的设计。通过这样的教学方法的制定,激发学生对于方程学习的兴趣、启发学生动脑思考能力,从而促进学生该学科成绩的提升。

一、培养学生的方程意识与思维

初中方程授课主要集中在一元一次方程、二元一次方程与一元二次方程的学习,不一样的形式在解题的运用方法方面也有很大的差异。因此,学生在学习过程中要掌握好每个方程的定义以及解题方法,加减法的运用在方程中是非常广泛的,教师在课堂中要利用理论性的教学方式来为学生讲解方程的不同定义以及意义,让学生通过教师课堂的'讲述分清方程的用法,尤其在选择填空题的解题方法中,教师可以引导学生做题的方法,可以运用画图的方式直接作题。在常见的题型中,如果题面上几何与方程没有太多联系,教师就要通过教学引导,引导学生运用代入方式来构建方程的形式来答题。学生刚接触方程就去解答问题往往还不熟练,因此教师要时刻提醒学生用方程的思想去回答问题,使学生形成习惯,建立高效的方程运用思想。要让学生了解到,题目中给了很多的数量关系,学生就要采取构建式子的形式去解答问题,从而利用方程去解答问题。教师通过这样的方式指导学生答题,既可以培养学生利用方程思想解决问题的习惯,又可以培养学生的动脑思考能力,从而教师也达到了制定的教学计划。

二、一题多变式教学方式应用于方程授课

在初中应用题教学过程中,教师首先要引导学生对应用题要有大概的了解,在把题意读懂的基础上进行分析解答,同时教师可以利用一道习题进行改编,使学生学会举一反三。例如:一个生产队有玉米400亩,收玉米340000斤,平均每亩产多少斤?这是一道求平均数的问题,通过教师的引导又可以发现:如果没有告诉我们总量,那么我们可以先求出总产量。这道题又可以改变成另外一种形式:一个生产队有玉米400亩,分两组收割,第一组收割180000斤,第二组收割160000斤,那么平均每亩产多少斤玉米?因为方程的形式并不是一成不变的,学生可以在这道应用题的基础上进行改编,再变成另外一道方程习题。教师也可以通过小组竞赛的方式来激发学生做题的动力,教师把学生分为几个小组,同时让小组成员进行讨论,看哪个小组能改编的题目最多、最新颖。通过这样的方式,学生可以在旧知识的基础上得到新的东西,从而学生的动脑能力也得到了极大的提高。

三、一题多解式的教学方法应用于方程授课

在初中数学中,应用题是学生拿分数的一项题型,应用题可以培养学生解决问题、分析问题的能力,应用题的解决方法是多种多样的。教师可以鼓励学生多分析,用多种方式去解决应用题。学生想出的解决方法越多,越有助于培养学生独立分析问题的能力,还要思考简单的解决步骤,这样就不会束缚自己的思想,从而思维也得到了锻炼。例如:小红和小明在400米的环形跑道上练习长跑,同一时间同一地点向相同的方向出发,已知小红的速度是8米每秒,小明的速度是10米每秒。那么请问小红跑了几圈以后,小明就可以超过小红一圈?这道题有很多的解答方式,教师可以先指导学生运用普通的解答方式解答问题,接下来要引导学生利用方程去解答问题,从中让学生对比两种解答方法有什么差异或相同之处。从各种角度去寻找不同的解决方式,让学生从不同的解法中获得启发。教师用鼓励的形式去激励学生的动脑能力,在数学的学习中解题的思路有很多种,在答案正确的基础上,学生的思路没有绝对的对与错,教师可以通过引导把学生的思路引到简单的解题方式中,从中也培养了学生的独立思考能力,提升学生对于数学解题的兴趣。通过初中数学中方程的授课,学生对方程有了大概的认识。通过习题的练习,培养了学生独立动脑思考能力及分析问题、解决问题能力,激发了学生对于数学学习的兴趣。用方程的形式解决实际遇到的问题,这种解题方式很高效,这种新形式的解题方法在教学中也许不能立即看出效果,教师要对学生进行长久的训练以及培养,让学生熟记这一解决问题的方法及思路。通过长时间的练习,学生提升了分析问题的能力,养成了推理判断的习惯以及自主解决问题的能力。教师也要随时进行新的授课方法的引进,对自己的授课方式进行总结与完善,从而真正提高学生的课堂效率,达到授课的教学目的。

【参考文献】

[1]卢春华.初中数学教学反思刍议[J].中学教学参考,2016(31):90-90.

[2]刘廷超.刍议在初中数学教学中数学思想和方法的渗透[J].科学咨询,2015(51):130-130.

一、配方法配方法是对数学(shuxue)式子进行一种定向变形(配成"完全平方")的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用"裂项"与"添项"、"配"与"凑"的技巧,从而完成配方。有时也将其称为"凑配法"。最常见的配方是进行恒等变形,使数学(shuxue)式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。二、换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。三、待定系数法要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x)g(x)的充要条件是:对于一个任意的a值,都有f(a)g(a);或者两个多项式各同类项的系数对应相等。待定系数法解题的关键是依据已知,正确列出等式或方程。使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解。使用待定系数法,它解题的基本步骤是:第一步,确定所求问题含有待定系数的解析式;第二步,根据恒等的条件,列出一组含待定系数的方程;第三步,解方程组或者消去待定系数,从而使问题得到解决。如何列出一组含待定系数的方程,主要从以下几方面着手分析:①利用对应系数相等列方程;②由恒等的概念用数值代入法列方程;③利用定义本身的属性列方程;④利用几何条件列方程。比如在求圆锥曲线的方程时,我们可以用待定系数法求方程:首先设所求方程的形式,其中含有待定的系数;再把几何条件转化为含所求方程未知系数的方程或方程组;最后解所得的方程或方程组求出未知的系数,并把求出的系数代入已经明确的方程形式,得到所求圆锥曲线的方程。四、定义法所谓定义法,就是直接用数学定义解题。数学中的定理、公式、性质和法则等,都是由定义和公理推演出来。定义是揭示概念内涵的逻辑方法,它通过指出概念所反映的事物的本质属性来明确概念。定义是千百次实践后的必然结果,它科学地反映和揭示了客观世界的事物的本质特点。简单地说,定义是基本概念对数学实体的高度抽象。用定义法解题,是最直接的方法,本讲让我们回到定义中去。五、数学归纳法归纳是一种有特殊事例导出一般原理的思维方法。归纳推理分完全归纳推理与不完全归纳推理两种。不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有着广泛的应用。它是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n)时成立,这是递推的基础;第二步是假设在n=k时命题成立,再证明n=k+1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。这两个步骤密切相关,缺一不可,完成了这两步,就可以断定"对任何自然数(或n≥n且n∈N)结论都正确"。由这两步可以看出,数学归纳法是由递推实现归纳的,属于完全归纳。运用数学归纳法证明问题时,关键是n=k+1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。六、参数法参数法是指在解题过程中,通过适当引入一些与题目研究的数学对象发生联系的新变量(参数),以此作为媒介,再进行分析和综合,从而解决问题。直线与二次曲线的参数方程都是用参数法解题的例证。换元法也是引入参数的典型例子。辨证唯物论肯定了事物之间的联系是无穷的,联系的方式是丰富多采的,科学的任务就是要揭示事物之间的内在联系,从而发现事物的变化规律。参数的作用就是刻画事物的变化状态,揭示变化因素之间的内在联系。参数体现了近代数学中运动与变化的思想,其观点已经渗透到中学数学的各个分支。运用参数法解题已经比较普遍。参数法解题的关键是恰到好处地引进参数,沟通已知和未知之间的内在联系,利用参数提供的信息,顺利地解答问题。七、反证法与前面所讲的方法不同,反证法是属于"间接证明法"一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。法国数学家阿达玛(Hadamard)对反证法的实质作过概括:"若肯定定理的假设而否定其结论,就会导致矛盾"。具体地讲,反证法就是从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明。反证法所依据的是逻辑思维规律中的"矛盾律"和"排中律"。在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的"矛盾律";两个互相矛盾的判断不能同时都假,简单地说"A或者非A",这就是逻辑思维中的"排中律"。反证法在其证明过程中,得到矛盾的判断,根据"矛盾律",这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以"否定的结论"必为假。再根据"排中律",结论与"否定的结论"这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。反证法的证题模式可以简要的概括我为"否定→推理→否定"。即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是"否定之否定"。应用反证法证明的主要三步是:否定结论→推导出矛盾→结论成立。实施的具体步骤是:第一步,反设:作出与求证结论相反的假设;第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;第三步,结论:说明反设不成立,从而肯定原命题成立。在应用反证法证题时,一定要用到"反设"进行推理,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫"归谬法";如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫"穷举法"。在数学解题中经常使用反证法,牛顿曾经说过:"反证法是数学家最精当的武器之一"。一般来讲,反证法常用来证明的题型有:命题的结论以"否定形式"、"至少"或"至多"、"唯一"、"无限"形式出现的命题;或者否定结论更明显。具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆

"数学是一切科学之母"、"数学是思维的体操",它是一门研究数与形的科学,它不处不在。要掌握技术,先要学好数学,想攀登科学的高峰,更要学好数学。 数学,与其他学科比起来,有哪些特点?它有什么相应的思想方法?它要求我们具备什么样的主观条件和学习方法?本讲将就数学学科的特点,数学思想以及数学学习方法作简要的阐述。 一、数学的特点(一) 数学的三大特点严谨性、抽象性、广泛的应用性所谓数学的严谨性,指数学具有很强的逻辑性和较高的精通性,一般以公理化体系来体现。 什么是公理化体系呢?指得是选用少数几个不加定义的概念和不加逻辑证明的命题为基础,推出一些定理,使之成为数学体系,在这方面,古希腊数学家欧几里得是个典范,他所著的《几何原本》就是在几个公理的基础上研究了平面几何中的大多数问题。在这里,哪怕是最基本的常用的原始概念都不能直观描述,而要用公理加以确认或证明。 中学数学和数学科学在严谨性上还是有所区别的,如,中学数学中的数集的不断扩充,针对数集的运算律的扩充并没有进行严谨的推证,而是用默认的方式得到,从这一点看来,中学数学在严谨性上还是要差很多,但是,要学好数学却不能放松严谨性的要求,要保证内容的科学性。 比如,等差数列的通项是通过前若干项的递推从而归纳出通项公式,但要予以确认,还需要用数学归纳法进行严格的证明。 数学的抽象性表现在对空间形式和数量关系这一特性的抽象。它在抽象过程中抛开较多的事物的具体的特性,因而具有十分抽象的形式。它表现为高度的概括性,并将具体过程符号化,当然,抽象必须要以具体为基础。 至于数学的广泛的应用性,更是尽人皆知的。只是在以往的教学、学习中,往往过于注重定理、概念的抽象意义,有时却抛却了它的广泛的应用性,如果把抽象的概念、定理比作骨骼,那么数学的广泛应用就好比血肉,缺少哪一个都将影响数学的完整性。高中数学新教材中大量增加数学知识的应用和研究性学习的篇幅,就是为了培养同学们应用数学解决实际问题的能力。 二、高中数学的特点往往有同学进入高中以后不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。为什么会这样呢?让我们先看看高中数学和初中数学有些什么样的转变吧。 1、理论加强2、课程增多3、难度增大4、要求提高三、掌握数学思想高中数学从学习方法和思想方法上更接近于高等数学。学好它,需要我们从方法论的高度来掌握它。我们在研究数学问题时要经常运用唯物辩证的思想去解决数学问题。数学思想,实质上就是唯物辩证法在数学中的运用的反映。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,初步公理化思想,数形结合思想,运动思想,转化思想,变换思想。 例如,数列、一次函数、解析几何中的直线几个概念都可以用函数(特殊的对应)的概念来统一。又比如,数、方程、不等式、数列几个概念也都可以统一到函数概念。 再看看下面这个运用"矛盾"的观点来解题的例子。 已知动点Q在圆x2+y2=1上移动,定点P(2,0),求线段PQ中点的轨迹。 分析此题,图中P、Q、M三点是互相制约的,而Q点的运动将带动M点的运动;主要矛盾是点Q的运动,而点Q的运动轨迹遵循方程x02+y02=1①;次要矛盾关系:M是线段PQ的中点,可以用中点公式将M的坐标(x,y)用点Q的坐标表示出来。 x=(x0+2)/2 ②y=y0/2 ③显然,用代入的方法,消去题中的x0、y0就可以求得所求轨迹。 数学思想方法与解题技巧是不同的,在证明或求解中,运用归纳、演绎、换元等方法解题问题可以说是解题的技术性问题,而数学思想是解题时带有指导性的普遍思想方法。在解一道题时,从整体考虑,应如何着手,有什么途径?就是在数学思想方法的指导下的普遍性问题。 有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。只有在解题思想的指导下,灵活地运用具体的解题方法才能真正地学好数学,仅仅掌握具体的操作方法,而没有从解题思想的角度考虑问题,往往难于使数学学习进入更高的层次,会为今后进入大学深造带来很有麻烦。 在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。 要打赢一场战役,不可能只是勇猛冲杀、一不怕死二不怕苦就可以打赢的,必须制订好事关全局的战术和策略问题。解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。一般地,在解题中所采取的总体思路,是带有原则性的思想方法,是一种宏观的指导,一般性的解决方案。 中学数学中经常用到的数学思维策略有: 以简驭繁、数形结全、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅如果有了正确的数学思想方法,采取了恰当的数学思维策略,又有了丰富的经验和扎实的基本功,一定可以学好高中数学。 四、学习方法的改进身处应试教育的怪圈,每个教师和学生都不由自主地陷入"题海"之中,教师拍心某种题型没讲,高考时做不出,学生怕少做一道题,万一考了损失太惨重,在这样一种氛围中,往往忽视了学习方法的培养,每个学生都有自己的方法,但什么样的学习方法才是正确的方法呢?是不是一定要"博览群题"才能提高水平呢? 现实告诉我们,大胆改进学习方法,这是一个非常重大的问题。 (一) 学会听、读我们每天在学校里都在听老师讲课,阅读课本或者资料,但我们听和读对不对呢? 让我们从听(听讲、课堂学习)和读(阅读课本和相关资料)两方面来谈谈吧。 学生学习的知识,往往是间接的知识,是抽象化、形式化的知识,这些知识是在前人探索和实践的基础上提炼出来的,一般不包含探索和思维的过程。因此必须听好老师讲课,集中注意力,积极思考问题。弄清讲得内容是什么?怎么分析?理由是什么?采用什么方法?还有什么疑问?只有这样,才可能对教学内容有所理解。 听讲的过程不是一个被动参预的过程,在听讲的前提下,还要展开来分析:这里用了什么思想方法,这样做的目的是什么?为什么老师就能想到最简捷的方法?这个题有没有更直接的方法? "学而不思则罔,思而不学则殆",在听讲的过程中一定要有积极的思考和参预,这样才能达到最高的学习效率。 阅读数学教材也是掌握数学知识的非常重要的方法。只有真正阅读和数学教材,才能较好地掌握数学语言,提高自学能力。一定要改变只做题不看书,把课本当成查公式的辞典的不良倾向。阅读课本,也要争取老师的指导。阅读当天的内容或一个单元一章的内容,都要通盘考虑,要有目标。 比如,学习反正弦函数,从知识上来讲,通过阅读,应弄请以下几个问题: (1) 是不是每个函数都有反函数,如果不是,在什么情况下函数有反函数? (2)正弦函数在什么情况下有反函数?若有,其反函数如何表示? (3)正弦函数的图象与反正弦函数的图象是什么关系? (4)反正弦函数有什么性质? (5)如何求反正弦函数的值? (二) 学会思考爱因斯坦曾说:"发展独立思考和独立判断的一般能力应当始终放在首位",勤于思考,善于思考,是对我们学习数学提出的最基本的要求。一般来说,要尽力做到以下两点。 1、善于发现问题和提出问题 2、善于反思与反求

初一数学小论文浅谈多媒体技术在教学中的作用 一个有经验的教师在编写教案时,都要明确教学目的、重点、难点、课时安排和教学过程等,甚至对自己的语言、表情、和板书等都有所考虑,对于教具、实物、模型和实验都要事先做好准备。其目的在于让学生明确和接受所要讲解的知识。有了多媒体技术,这一切都变得更容易实现了。因为用多媒体来辅助教学,以逼真、生动的画面,动听悦耳的音响来创造教学的文体化情景,使抽象的教学内容具体化、清晰化,使学生的思维活跃,兴趣盎然地参与教学活动,有助于学生发挥学习的主动性,从而优化教学过程。具体的说,在现在各科的课堂教学中,多媒体技术有如下几点作用: 一、调整学生情绪,激发学习兴趣 兴趣是由外界事物的刺激而引起的一种情绪状态,它是学生学习的主要动力。然而许多的教学内容通常本身较为枯燥无味,这就需要每位教师善于采用不同的教学手段,以激发学生的兴趣。根据心理学规律和小学生学习特点,有意注意持续的时间很短,加之课堂思维活动比较紧张,时间一长,学生极易感到疲倦,就很容易出现注意力不集中,学习效率下降等,这时适当地选用合适的多媒体方式来刺激学生,吸引学生,创设新的兴奋点,激发学生思维动力,以使学生继续保持最佳学习状态。 如在教学“长方形的面积”时,老是运用公式计算面积,学生感觉比较厌倦,为了吸引学生注意力,活跃课堂气氛,拓宽学生思路,运用多媒体出示了一道“智慧爷爷”出的思考题:把一个正方形裁成两个完全相同的长方形,裁成的两个长方形周长之和与正方形周长有何变化?把两个完全相同的长方形拼成一个正方形,它们的周长又有何变化?先让学生根据题意想象,然后再电脑演示。演示过程中,画面不断闪烁,使学生清楚地感受到了周长的变化。同学们一看,兴趣来了。最后让学生互相讨论,就这样让学生在开放自由的情况下解决了该题,同时培养了学生的想像力。 二、形象导入新课,创设学习情景 导入新课,是课堂教学的重要一环。“好的开始是成功的一半”,在课的起始阶段,迅速集中学生的注意力,把他们思绪带进特定的学习情境中,激发起学生浓厚的学习兴趣和强烈的求知欲,对一堂课教学的成败与否起着至关重要的作用。运用电教媒体导入新课,可有效地开启学生思维的闸门,激发联想,激励探究,使学生的学习状态由被动变为主动,使学生在轻松愉悦的氛围中学到知识。 如低年级学生,他们的定向能力尚处在较低的层次,他们的注意状态仍然取决于教学的直观性和形象性,很容易被新异的刺激活动而兴奋起来。针对这些情况,运用多媒体,激起学生的学习兴趣。教《锄禾》这课,在导入新课时,可以用一组“动画”:“太阳火辣辣地炙烤着大地,辛勤的农民手拿锄头用力地耕种,大颗大颗的汗珠从额头滚落下来,滴入稻田里。”此情此景,学生已有深刻的感性认识,随后,我又在图画上方出示古诗,诗句和图相对照,激起学生思维的层层涟漪。对于刚才“明于心而不明于口”的心理状态,立刻解决带点字锄、汗、粒等的解释已是一触即发了。 三、突出学习重点,突破学习难点 传统的教学往往在突出教学重点,突破教学难点问题上花费大量的时间和精力,即使如此,学生仍然感触不深,易产生疲劳感甚至厌烦情绪。突出重点,突破难点的有效方法是变革教学手段。由于多媒体形象具体,动静结合,声色兼备,所以恰当地加以运用,可以变抽象为具体,调动学生各种感官协同作用,解决教师难以讲清,学生难以听懂的内容,从而有效地实现精讲,突出重点,突破难点,取得传统教学方法无法比拟的教学效果。 如在教学“圆柱的体积”一课时,为了让学生更好地理解和掌握圆柱体积计算公式推导这一重点,电脑演示把一个圆柱体的底面平均分成若干等份(平均分成16等份、32等份……),然后把圆柱切开,通过动画拼成一个近似的长方体(平均分的份数越多,就越接近于长方体)。反复演示几遍,让学生自己感觉并最后体会到这个近似的长方体的体积与原来的圆柱的体积是完全相等的。再问学生还发现了什么?通过动画演示体会到这个近似的长方体的底面积、高与圆柱的底面积、高的关系,从而推导出求圆柱的体积公式,使得这课的重难点轻易地突破,大大提高了教学效率,培养了学生的空间想象能力。 四、增强训练密度,提高教学效果 在练习巩固中,由于运用多媒体教学,省去了板书和擦拭的时间,能在较短的时间内向学生提供大量的习题,练习容量大大增加。这时可以预先拟好题目运用电脑设置多种题型全方位,多角度、循序渐进的突出重难点。当学生出错后(电脑录音)耐心地劝他不要灰心,好好想想再来一次,这符合小学生争强好胜的性格,生动有趣地复习巩固了新识。 总之,恰当地选准多媒体的运用与课堂教学的最佳结合点,要考虑各层次学生的接受能力和反馈情况,适时适量的运用多媒体,适当增强课件的智能化。就能较好地激发学生的兴趣,使学生独立地、创造性地完成学习任务,这样的教学才可以说是得多媒体教学之精髓了

高中数学解题方法研究论文

一、配方法配方法是对数学(shuxue)式子进行一种定向变形(配成"完全平方")的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用"裂项"与"添项"、"配"与"凑"的技巧,从而完成配方。有时也将其称为"凑配法"。最常见的配方是进行恒等变形,使数学(shuxue)式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。二、换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。三、待定系数法要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x)g(x)的充要条件是:对于一个任意的a值,都有f(a)g(a);或者两个多项式各同类项的系数对应相等。待定系数法解题的关键是依据已知,正确列出等式或方程。使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解。使用待定系数法,它解题的基本步骤是:第一步,确定所求问题含有待定系数的解析式;第二步,根据恒等的条件,列出一组含待定系数的方程;第三步,解方程组或者消去待定系数,从而使问题得到解决。如何列出一组含待定系数的方程,主要从以下几方面着手分析:①利用对应系数相等列方程;②由恒等的概念用数值代入法列方程;③利用定义本身的属性列方程;④利用几何条件列方程。比如在求圆锥曲线的方程时,我们可以用待定系数法求方程:首先设所求方程的形式,其中含有待定的系数;再把几何条件转化为含所求方程未知系数的方程或方程组;最后解所得的方程或方程组求出未知的系数,并把求出的系数代入已经明确的方程形式,得到所求圆锥曲线的方程。四、定义法所谓定义法,就是直接用数学定义解题。数学中的定理、公式、性质和法则等,都是由定义和公理推演出来。定义是揭示概念内涵的逻辑方法,它通过指出概念所反映的事物的本质属性来明确概念。定义是千百次实践后的必然结果,它科学地反映和揭示了客观世界的事物的本质特点。简单地说,定义是基本概念对数学实体的高度抽象。用定义法解题,是最直接的方法,本讲让我们回到定义中去。五、数学归纳法归纳是一种有特殊事例导出一般原理的思维方法。归纳推理分完全归纳推理与不完全归纳推理两种。不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有着广泛的应用。它是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n)时成立,这是递推的基础;第二步是假设在n=k时命题成立,再证明n=k+1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。这两个步骤密切相关,缺一不可,完成了这两步,就可以断定"对任何自然数(或n≥n且n∈N)结论都正确"。由这两步可以看出,数学归纳法是由递推实现归纳的,属于完全归纳。运用数学归纳法证明问题时,关键是n=k+1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。六、参数法参数法是指在解题过程中,通过适当引入一些与题目研究的数学对象发生联系的新变量(参数),以此作为媒介,再进行分析和综合,从而解决问题。直线与二次曲线的参数方程都是用参数法解题的例证。换元法也是引入参数的典型例子。辨证唯物论肯定了事物之间的联系是无穷的,联系的方式是丰富多采的,科学的任务就是要揭示事物之间的内在联系,从而发现事物的变化规律。参数的作用就是刻画事物的变化状态,揭示变化因素之间的内在联系。参数体现了近代数学中运动与变化的思想,其观点已经渗透到中学数学的各个分支。运用参数法解题已经比较普遍。参数法解题的关键是恰到好处地引进参数,沟通已知和未知之间的内在联系,利用参数提供的信息,顺利地解答问题。七、反证法与前面所讲的方法不同,反证法是属于"间接证明法"一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。法国数学家阿达玛(Hadamard)对反证法的实质作过概括:"若肯定定理的假设而否定其结论,就会导致矛盾"。具体地讲,反证法就是从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明。反证法所依据的是逻辑思维规律中的"矛盾律"和"排中律"。在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的"矛盾律";两个互相矛盾的判断不能同时都假,简单地说"A或者非A",这就是逻辑思维中的"排中律"。反证法在其证明过程中,得到矛盾的判断,根据"矛盾律",这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以"否定的结论"必为假。再根据"排中律",结论与"否定的结论"这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。反证法的证题模式可以简要的概括我为"否定→推理→否定"。即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是"否定之否定"。应用反证法证明的主要三步是:否定结论→推导出矛盾→结论成立。实施的具体步骤是:第一步,反设:作出与求证结论相反的假设;第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;第三步,结论:说明反设不成立,从而肯定原命题成立。在应用反证法证题时,一定要用到"反设"进行推理,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫"归谬法";如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫"穷举法"。在数学解题中经常使用反证法,牛顿曾经说过:"反证法是数学家最精当的武器之一"。一般来讲,反证法常用来证明的题型有:命题的结论以"否定形式"、"至少"或"至多"、"唯一"、"无限"形式出现的命题;或者否定结论更明显。具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆

在高中数学教学过程中,教师要注意积极的营造出良好的课堂氛围,从而有效的激发出学生的学习积极性。本文是我为大家整理的关于高中数学教学论文 范文 ,欢迎阅读! 高中数学教学论文范文篇一:高中数学教学 反思 一、与时俱进的更新教学理念 教师要积极的与时俱进,转变原有的教学观念。以往的高中数学教学过程中,大多侧重于对各种数学知识的讲授。在新课程大背景下,教师要积极的更新教学理念,将教学重点放在培养学生的学习能力上。因此,在具体的教学活动中,教师应该大胆的抛弃以往的“注入式”教学模式,积极开展“启发式”教学。引导学生分析各种数学问题,并启发学生思考问题,并运用学过的数学知识来解决实际问题。同时,教师还要注意对学生的学习过程进行反思,思考学生的学习效果以及存在的问题等,然后予以合理的 总结 和引导。 二、营造良好的教学氛围 在高中数学教学过程中,良好的教学气氛十分重要。因此,教师要注意积极的营造出良好的课堂氛围,从而有效的激发出学生的学习积极性。在高中阶段,学生需要学习的科目较多难度较大,整体学习压力较大。而且,很多学生都认为高中数学十分枯噪乏味,甚至晦涩难懂,学习积极性不高。加上数学本身具有较强的严谨性院,因此实际课堂气氛往往会流于便沉闷,无法调动起学生的学习积极性院。所以,在具体的教学实践中,教师便要注意准确的把握学生的实际情况,并结合教材内容,联系学生日常生活中较为熟悉的各种数学问题展开教学。尽可能的激发学生的兴趣,提高教学效率。 三、充分保证学生的主体地位 在教学过程中,学生是主体,所有教学活动的开展都要紧密围绕学生这个中心。但是,就目前的实际情况来看,在很多高中数学教学活动中,教师仍然占据着主体地位,主宰着整个课堂。处于这样的模式之下,学生只能十分被动的、机械的跟随教师的脚步,接受教师对各种数学知识的讲授。在这样的教学模式下,学生显然无法很好的开展学习活动。所以,教师要注意积极的转变自身的角色,充分保证学生的主体地位。时刻将自己放在服务者和引导者的位置上,并始终围绕学生为主体这个中心来开展各项教学活动。并积极的通过各种方式,为学生提供足够的发挥自身主体性院的空间。例如,在课堂上,教师要注意和学生进行互动,并鼓励学生随时举手发表自己的意见。 四、积极完善 教学 方法 俗话说,“教无定法”。对高中数学来讲,涉及到大量的数学知识,每节课的具体教学内容和教学任务以及教学目标等都各不相同。因此,教师要注意积极的完善教学方法,针对不同的教学内容和教学目标等,选用合适的教学方法,展开针对性较强的教学。例如,在讲解立体几何相关知识的时候,教师便可以应用演示法,向学生展示各种几何模型。并借助教学模型,更好的引导学生理解各种几何结论。而且,在一节课中,按照实际教学需要,教师还可以积极的将多种教学方法结合在一起使用。同时,教师还要注意全面把握学生的实际情况,尽可能的提高教学方法的针对性。总之,只要能够为教学活动服务,都是好的教学方法。 五、将现代化技术引课堂 随着时代的发展,越来越多的现代化技术开始被大量的应用到高中数学的教学过程中,因此,教师要注意熟练掌握一定的现代化教学技术,并将其合理的应用于教学活动中。高中数学涉及到大量的概念和公式等,单纯由教师进行口头讲授,学生大多会感到十分枯噪乏味。对于一些难度较大的知识点,还会出现难于理解的现象,影响教学效果。此时,教师便可以积极的将各种现代化技术利用引入课堂。课前,教师可以先对教学内容进行深入的分析,然后将教学内容制作成PPT,并从网络上收集一些有趣的教学素材和案例等,制作出内容丰富,趣味十足的课件。然后,在教学过程中,教师便可以适时的将PPT展示给学生们观看。并带领学生一起观察课件内容,分析各种数学问题。这样一来,不但有效的增加了课堂容量,还可以提高学生的兴趣,有效提高教学的效率。例如,在讲解立体几何中一些问题的时候,教师便可以利用多媒体技术,将题目和相关图形直观的展示在学生们的面前。在讲解棱锥体积公式推导过程的时候,也可以利用电脑进行演示。 高中数学教学论文范文篇二:高中数学信息技术的运用 一信息技术在高中数学教学中应用的必要性 信息技术在高中数学教学中的运用,能够形成动态的数学知识,帮助学生更好地理解有关知识,提高学生对问题的观察、分析和解决能力。高中数学的内容与图形有关的较多,高中生的各方面能力发展还不完善,教师要进行适当的引导,帮助其理解难度较大的图形问题,运用信息技术,能够使这些抽象的知识具体化,使原本静态的图形“动起来”,将复杂的问题简单化。如在教学立体图形三视图时,以长方体为例,教师借助多媒体教学设备向学生展示一些生活中的长方体,让学生对长方体的直观图有所了解,然后从这些生活物品中分离出的长方体直观图,让学生对长方体的高、长、宽有初步的认识,同时让学生找出屏幕上长方体的高、长、宽,并进行三视图的绘画。此外,还可以让学生找出生活中的长方体,培养学生的空间 想象力 。因此,在高中数学教学中运用信息技术有助于提高教学的质量,培养学生的综合能力,对教学有很大的促进作用。 二高中数学教学中运用信息技术的策略分析 1.对软件进行模拟,将抽象的数学知识具体化 高中数学的教学,其实质是学生在教师的正确引导下,探究解决问题的办法,并进行创新的过程。信息技术的应用,给高中数学教学提供了丰富的教学资源。如在教学空间四边形时,假如教师单纯地在黑板上为学生展示空间四边形的平面图,学生很容易形成空间四边形的对角线是相交的这一错误观念。教学时借助几何画板可为学生画出立体的空间四边形,并向学生展示旋转的空间四边形。通过这种方式,使学生对空间四边形有了形象具体的认识,使学生的空间感得到增强,提高了其想象力和观察力,对异面直线的知识有了更好的理解。 2.利用信息技术设置有效的教学情境,激发学生的学习兴趣 在传统的高中数学教学中,教师通常是通过对旧知识的复习引入本节知识的内容,有时直接提出本节课程要学习的知识,数学知识的抽象性较强,理解起来有一定的难度,这种方式使课堂变得枯燥乏味,很难调动学生学习的积极性,不能激发起学生的兴趣。学生只有对数学产生了兴趣,学习才会有动力,才能主动学习,教学中忽视对学生兴趣的培养将会降低教学的最终效果。利用信息技术,将声音、动画和视频进行有效的结合,为学生设置生动的教学情境,将学生吸引到课堂中,可激发学生的学习兴趣。如在“等比数列求和”的教学过程中,借助信息技术为学生讲述象棋发明的小 故事 。将学生的注意力吸引到教学中,从而引出本节要学习的等比数列求和知识,有效地激发学生对要学习知识的兴趣,让学生进行思考,国王是否有足够的能力满足发明者提出的要求,让学生自主研究等比数列的求和方法。 三总结 本文首先阐述了信息技术在高中数学教学中运用的必要性,再结合笔者的实际教学情况,说明了应用信息技术的具体策略,希望能够帮助广大的高中数学教师在教学中运用好信息技术,提高数学课的教学效果。 高中数学教学论文范文篇三:高中数学新课程实践 一、高中数学教学内容的转变 现在新课程高中数学教材分为选修和必修,有不同的版本,其中又分为不同的模块,不同的学生可以根据自己的发展和需要选学不同的模块和内容,满足个性化的发展,摒弃了以前的高中数学教材以往所有高中生一种教材的教学诟病。其特点突出学生是主体,教师为主导;突出双基,删除了过时的内容并且补充了适合学生发展和社会进步的新内容,注重对数学思维能力的提高;强调发展学生的数学应用意识;体现数学的 文化 价值;注重现代信息技术与课程的整合,较好的把握了新的课程标准对高中数学内容的要求。例如,必修3中新增了算法的内容。“算法”在当今数学和科学技术中的作用已经凸现出来,他是数学及其应用的重要组成部分,是计算机科学的重要基础。在社会发展中发挥着越来越大的作用,已融入社会生活的方方面面。此外,学习和体会算法的基本思想对于理解算理、提高 逻辑思维 能力、发展有条理的思考和表达也是十分重要和有效的。在教学中,我们要让学生结合具体实例,感受、学习和体会算法的基本思想;学习和体验算法的程序框图、基本算法语言;并将算法的思想方法渗透到高中数学的有关内容中,学习分析、解决问题的一种方法。 二、高中数学教学方式的转变 在传统的高中数学教学中,大多数教师教学观念陈旧,把教科书当成学生学习的惟一对象,照本宣科,不加分析的满堂灌,学生则听得很乏味,感觉有点看电影。改变教与学的方式,是高中新课程标准的基本理念,在高中数学教学中,教师应把学生当成学习的主人,充分挖掘学生的潜能,处处激发学生学习数学的兴趣。教师不能大包大揽,把结论或推理直接展现给学生,而是要让学生独立思考,在此基础上,让师生、生生进行充分的合作与交流,努力实现多边互动。积极倡导“自主、合作、探究”的教学模式。同时,由于学生认知方式、水平、思维策略和学习能力的不同,一定会有个体差异,所以教师要实施“差异教学”使人人参与,人人获得必需的数学,这样也体现了教学中的民主、平等关系。 三、高中数学教学结构的转变 传统的封闭式教学,所有问题皆在课堂内解决(尤其高中数学课),学生时时处在被动接受的地位。在新的课程理念要求下,高中数学课由封闭式转变为开放式,给学生广阔的学习时空。教师开放组织形式,如教学统计知识时,教师可以组织学生调查单位、厂矿里各种生产情况、入口年龄分布情况等把课堂延伸到课外。开放教学内容,新课程教材在一定程度上与生产生活实践相结合,如个人所得税的计算等。为此,教师应引导学生走向家庭、社会寻找鲜活的数学内容,开放教学形式,允许学生根据学习需要,课前自学、尝试练习、提出疑问、小组合作等不受限制。开放教学过程。教师应给学生充分的探究机会,时刻关注并捕捉教学过程中师生互动产生的新情况、新问题,及时调整教学进程。 四、高中数学教学手段的转变 随着新课程实验的深入,它呼唤课堂教学要走向现代化,取而代之的是现代信息技术手段的广泛应用:多媒体教学平台的使用、 网络技术 的应用等,一改以往只凭“一张嘴、一支粉笔、一本书”的传统的课堂教学模式。例如,教学必修3中“统计”中的“数据收集和整理”的习题时,教师利用电脑设计教学情境,把课本上的插图变成实景,屏幕上有声有色地出现一辆辆摩托车、小汽车、大客车、载重车通过一路口,学生在实景中搜集数据,解决了课本难以解决的问题,学生的注意力集中,学习兴趣高涨,充分体会到实地收集数据的快感,收到事半功倍的效果,还有如教学必修4中探究函数y=Asin(ωx+φ)的图象,利用多媒体展现图象的平移、变换实况,学生能直观的看到变化的过程情景,自然容易接受。教学实践证明,运用现代信息技术手段,对改变学生学习数学的方式,激发学生学习数学的兴趣,提高课堂高中数学教学效率将产生重大的影响。运用现代信息技术手段教学不仅可以帮助学生理解数学概念、探索数学结论,还应鼓励学生使用现代技术手段处理繁杂的计算、解决实际问题,以取得更多的时间和精力去探索和发现数学的规律,培养创新精神和实践能力。 五、高中数学教学评价的转变 如今新的课程标准下,充分发挥了评价的整体性、激励性、发展性功能,注重评价主体多元、评价内容多元、评价方法多元、评价标准多元。一改以往以分数论英雄的学生学习成果评价体系和教师教学效果评价体系。作为高中数学教学的评价,要求建立合理、科学的评价体系,既关注数学学习结果,也关注数学学习过程,既关注数学学习的水平,也关注数学学习活动中的情感态度变化,再者,客观上,由于所选模块的不同,班与班,学生与学生失去可比性,在新的评价体系中,还引入了模糊的等级评价以及评价内容的多元化,如选课时数、平时成绩、模块成绩等占不同比例,对评价发生了巨大变化。新课程下的高中数学教学评价更趋科学合理,对转变应试 教育 为素质教育有积极的推动作用,当然对未来高考的改革、人才的选拔方式也提出了更高的要求。总之,高中课程改革是一项复杂的系统工程,任重道远。就高中数学课程改革而言,目前遇到的困难只是暂时的,我们不能怨天尤人。高中数学课程必须改,但怎么改,不仅是专家的事,每一个高中数学教师都要自觉学习、贯彻课改新理念,反思、改进自己的教学行为,客观冷静地分析和对待高中课程改革中出现的新情况,争取尽快走出一条适合自己的改革之路。

数学方法论与解题研究的论文

"数学是一切科学之母"、"数学是思维的体操",它是一门研究数与形的科学,它不处不在。要掌握技术,先要学好数学,想攀登科学的高峰,更要学好数学。 数学,与其他学科比起来,有哪些特点?它有什么相应的思想方法?它要求我们具备什么样的主观条件和学习方法?本讲将就数学学科的特点,数学思想以及数学学习方法作简要的阐述。 一、数学的特点(一) 数学的三大特点严谨性、抽象性、广泛的应用性所谓数学的严谨性,指数学具有很强的逻辑性和较高的精通性,一般以公理化体系来体现。 什么是公理化体系呢?指得是选用少数几个不加定义的概念和不加逻辑证明的命题为基础,推出一些定理,使之成为数学体系,在这方面,古希腊数学家欧几里得是个典范,他所著的《几何原本》就是在几个公理的基础上研究了平面几何中的大多数问题。在这里,哪怕是最基本的常用的原始概念都不能直观描述,而要用公理加以确认或证明。 中学数学和数学科学在严谨性上还是有所区别的,如,中学数学中的数集的不断扩充,针对数集的运算律的扩充并没有进行严谨的推证,而是用默认的方式得到,从这一点看来,中学数学在严谨性上还是要差很多,但是,要学好数学却不能放松严谨性的要求,要保证内容的科学性。 比如,等差数列的通项是通过前若干项的递推从而归纳出通项公式,但要予以确认,还需要用数学归纳法进行严格的证明。 数学的抽象性表现在对空间形式和数量关系这一特性的抽象。它在抽象过程中抛开较多的事物的具体的特性,因而具有十分抽象的形式。它表现为高度的概括性,并将具体过程符号化,当然,抽象必须要以具体为基础。 至于数学的广泛的应用性,更是尽人皆知的。只是在以往的教学、学习中,往往过于注重定理、概念的抽象意义,有时却抛却了它的广泛的应用性,如果把抽象的概念、定理比作骨骼,那么数学的广泛应用就好比血肉,缺少哪一个都将影响数学的完整性。高中数学新教材中大量增加数学知识的应用和研究性学习的篇幅,就是为了培养同学们应用数学解决实际问题的能力。 二、高中数学的特点往往有同学进入高中以后不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。为什么会这样呢?让我们先看看高中数学和初中数学有些什么样的转变吧。 1、理论加强2、课程增多3、难度增大4、要求提高三、掌握数学思想高中数学从学习方法和思想方法上更接近于高等数学。学好它,需要我们从方法论的高度来掌握它。我们在研究数学问题时要经常运用唯物辩证的思想去解决数学问题。数学思想,实质上就是唯物辩证法在数学中的运用的反映。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,初步公理化思想,数形结合思想,运动思想,转化思想,变换思想。 例如,数列、一次函数、解析几何中的直线几个概念都可以用函数(特殊的对应)的概念来统一。又比如,数、方程、不等式、数列几个概念也都可以统一到函数概念。 再看看下面这个运用"矛盾"的观点来解题的例子。 已知动点Q在圆x2+y2=1上移动,定点P(2,0),求线段PQ中点的轨迹。 分析此题,图中P、Q、M三点是互相制约的,而Q点的运动将带动M点的运动;主要矛盾是点Q的运动,而点Q的运动轨迹遵循方程x02+y02=1①;次要矛盾关系:M是线段PQ的中点,可以用中点公式将M的坐标(x,y)用点Q的坐标表示出来。 x=(x0+2)/2 ②y=y0/2 ③显然,用代入的方法,消去题中的x0、y0就可以求得所求轨迹。 数学思想方法与解题技巧是不同的,在证明或求解中,运用归纳、演绎、换元等方法解题问题可以说是解题的技术性问题,而数学思想是解题时带有指导性的普遍思想方法。在解一道题时,从整体考虑,应如何着手,有什么途径?就是在数学思想方法的指导下的普遍性问题。 有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。只有在解题思想的指导下,灵活地运用具体的解题方法才能真正地学好数学,仅仅掌握具体的操作方法,而没有从解题思想的角度考虑问题,往往难于使数学学习进入更高的层次,会为今后进入大学深造带来很有麻烦。 在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。 要打赢一场战役,不可能只是勇猛冲杀、一不怕死二不怕苦就可以打赢的,必须制订好事关全局的战术和策略问题。解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。一般地,在解题中所采取的总体思路,是带有原则性的思想方法,是一种宏观的指导,一般性的解决方案。 中学数学中经常用到的数学思维策略有: 以简驭繁、数形结全、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅如果有了正确的数学思想方法,采取了恰当的数学思维策略,又有了丰富的经验和扎实的基本功,一定可以学好高中数学。 四、学习方法的改进身处应试教育的怪圈,每个教师和学生都不由自主地陷入"题海"之中,教师拍心某种题型没讲,高考时做不出,学生怕少做一道题,万一考了损失太惨重,在这样一种氛围中,往往忽视了学习方法的培养,每个学生都有自己的方法,但什么样的学习方法才是正确的方法呢?是不是一定要"博览群题"才能提高水平呢? 现实告诉我们,大胆改进学习方法,这是一个非常重大的问题。 (一) 学会听、读我们每天在学校里都在听老师讲课,阅读课本或者资料,但我们听和读对不对呢? 让我们从听(听讲、课堂学习)和读(阅读课本和相关资料)两方面来谈谈吧。 学生学习的知识,往往是间接的知识,是抽象化、形式化的知识,这些知识是在前人探索和实践的基础上提炼出来的,一般不包含探索和思维的过程。因此必须听好老师讲课,集中注意力,积极思考问题。弄清讲得内容是什么?怎么分析?理由是什么?采用什么方法?还有什么疑问?只有这样,才可能对教学内容有所理解。 听讲的过程不是一个被动参预的过程,在听讲的前提下,还要展开来分析:这里用了什么思想方法,这样做的目的是什么?为什么老师就能想到最简捷的方法?这个题有没有更直接的方法? "学而不思则罔,思而不学则殆",在听讲的过程中一定要有积极的思考和参预,这样才能达到最高的学习效率。 阅读数学教材也是掌握数学知识的非常重要的方法。只有真正阅读和数学教材,才能较好地掌握数学语言,提高自学能力。一定要改变只做题不看书,把课本当成查公式的辞典的不良倾向。阅读课本,也要争取老师的指导。阅读当天的内容或一个单元一章的内容,都要通盘考虑,要有目标。 比如,学习反正弦函数,从知识上来讲,通过阅读,应弄请以下几个问题: (1) 是不是每个函数都有反函数,如果不是,在什么情况下函数有反函数? (2)正弦函数在什么情况下有反函数?若有,其反函数如何表示? (3)正弦函数的图象与反正弦函数的图象是什么关系? (4)反正弦函数有什么性质? (5)如何求反正弦函数的值? (二) 学会思考爱因斯坦曾说:"发展独立思考和独立判断的一般能力应当始终放在首位",勤于思考,善于思考,是对我们学习数学提出的最基本的要求。一般来说,要尽力做到以下两点。 1、善于发现问题和提出问题 2、善于反思与反求

论联想思维在中学数学解题中的应用摘 要: 在中学数学的解题过程中,面对有创造性的题目时,往往无从着手,在一番冥思苦想之后,却有“原来是这样”的感叹。而在传统的教学中,对这样的感叹往往不能言传,只能意会。本文就此不能言传的问题进行重新审视,提出一种非逻辑的思维形式----数学联想思维。着重对联想思维在中学数学教学的作用以及如何在中学数学教学中创造联想思维进行讨论。关键词: 联想思维 数学解题 数学思维联想是由当前感知的事物回忆起有关另一事物的心理过程。在数学思维活动中,联想可以沟通数学对象和有关知识间的联系。而联想思维是人们在认识事物的过程中,根据事物之间的某种联系,由一事物联想到另一事物的心理过程。它是一种由此及彼的思维活动。联想思维在认识活动过程中起着桥梁和纽带的作用。对于一些未知的数学知识,通过已知知识和未知知识之间的联系,从而使一些有未知知识的数学问题得以解决。在数学的具体解题过程中,通过对题设中的条件、图形特征以及求解目标分析,从而联想到有关已知的定义、定理、法则等,最终找到解题的思路和方法。本文将对在数学中运用的联想思维进行研究,包括其作用以及如何培养。一、联想思维在中学数学教学中的作用。1、运用联想思维,使一些数学问题由表及里。在数学的知识块中,有很多的知识是表面的,甚至是最基本的,而恰恰是这些表面而基本的知识是我们解决相关数学问题的关键所在。2、运用联想思维,使一些数学问题由难及易。3、运用联想思维,使一些数学问题由阻变通。爱因斯坦认为:科学研究真正可贵的因素是直觉思维,同样,数学解题中联想灵感迸发也离不开直觉思维。对问题在作全面的思考之后,不经详尽的推理步骤,直接触及对象的本质,迅速得出预感性判断。可以说联想是灵感诱发而产生的。特别地,在一些若干问题往往无从下手,着不到边。这时就需由联想来产生解题灵感。使本来困难、受阻的题目,迎刃而解。通过以上的理论和例子我们发现,联想思维在具体的解题过程中,有着非常重要的作用。其思维方式不仅可以使很多数学题目,特别是着手较难的数学题目,可以通过这种思维形式得到轻而易举的解决。而这样的联想思维是在具体的学习过程中逐步培养起来的。而数学是一门有着与现实生活密切联系的学科。在日常的生活、工作以及学习中培养这种思维是无意识,也是潜意识。如何培养这种联想思维是中学数学教师的一项任务所在。但与此同时,对于不同的教学内容和不同的教学对象,所实施的联想教学是不同的,也就说其途径是不一样的,如何使这项教学内容达到最佳的效果呢?下面介绍几种方法。二、如何在中学数学教学中创造联想思维。1、由此及彼,拓展联想空间。联想是产生直觉的先导。猜想则是直觉的结果,所谓直觉,信息加工的原理来看,就是将零散、孤立的信息快速联系和重组,从中产生新的有价值信息,联系和重组的能力依赖于每个人的联想空间,因此不时地引导学生对面临的问题进行联想。2、启发直觉,挖掘数学美感。数学美主要表现在数学本身的简单性,对称性,相似性和和谐性。美的观点一旦与数学问题的条件与结论的特征结合,思维主体就凭借已有的知识和经验产生审美直觉。从而确定解题总体思想和入手方向。例如O.K.吉霍米曾说过:在心理中,思维被看作解题活动虽然思维并不是总等于解题,但可以断言,形成最有效办法是通过解题来实现。而联想灵感是创造性思维中最富有创造性特征的重要组成部分,所以联想灵感在解题中有着不可低估的作用。再者,在中学数学的教学中对联想思维的培养是很重要的,中学数学教师在授课的同时要注重对这些思维的培养。参考文献:[1] 郑敏信. 数学方法论[M].广西教育出版社。1998,8[2] 林保平. 浅谈高中数学教学中的发现法[J],数学通报,1989,6

一、课内重视听讲,课后及时复习。 新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。 二、适当多做题,养成良好的解题习惯。 要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。 三、调整心态,正确对待考试。 首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。 在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。 由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。 如何学好数学2 高中生要学好数学,须解决好两个问题:第一是认识问题;第二是方法问题。 有的同学觉得学好教学是为了应付升学考试,因为数学分所占比重大;有的同学觉得学好数学是为将来进一步学习相关专业打好基础,这些认识都有道理,但不够全面。实际上学习教学更重要的目的是接受数学思想、数学精神的熏陶,提高自身的思维品质和科学素养,果能如此,将终生受益。曾有一位领导告诉我,他的文科专业出身的秘书为他草拟的工作报告,因为华而不实又缺乏逻辑性,不能令他满意,因此只得自己执笔起草。可见,即使将来从事文秘工作,也得要有较强的科学思维能力,而学习数学就是最好的思维体操。有些高一的同学觉得自己刚刚初中毕业,离下次毕业还有3年,可以先松一口气,待到高二、高三时再努力也不迟,甚至还以小学、初中就是这样“先松后紧”地混过来作为“成功”的经验。殊不知,第一,现在高中数学的教学安排是用两年的时间学完三年的课程,高三全年搞总复习,教学进度排得很紧;第二,高中数学最重要、也是最难的内容(如函数、立几)放在高一年级学,这些内容一旦没学好,整个高中数学就很难再学好,因此一开始就得抓紧,那怕在潜意识里稍有松懈的念头,都会削弱学习的毅力,影响学习效果。 至于学习方法的讲究,每位同学可根据自己的基础、学习习惯、智力特点选择适合自己的学习方法,我这里主要根据教材的特点提出几点供大家学习时参考。 l、要重视数学概念的理解。高一数学与初中数学最大的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-l)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而 y=f(x-l)与 y=f(1-x)的图象却关于直线 x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。 2‘学习立体几何要有较好的空间想象能力,而培养空间想象能力的办法有二:一是勤画图;二是自制模型协助想象,如利用四直角三棱锥的模型对照习题多看,多想。但最终要达到不依赖模型也能想象的境界。 3、学习解析几何切忌把它学成代数、只计算不画图,正确的办法是边画图边计算,要能在画图中寻求计算途径。 4、在个人钻研的基础上,邀几个程度相当的同学一起讨论,这也是一种好的学习方法,这样做常可以把问题解决得更加透彻,对大家都有益。

相关百科

热门百科

首页
发表服务