首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

贝叶斯分类方法研究论文

发布时间:

贝叶斯分类方法研究论文

用支持向量机和贝叶斯两种方法对蛋白质四级结构进行分类研究。结果表明,基于支持向量机的分类结果最好,其l0CV检验的总分类精度、正样本正确预测率、Matthes相关系数和假阳性率分别为74.2%、84.6%、0.474、38.9%;基于贝叶斯的分类结果没有支持向量机的分类结果好,但其l0CV检验的假阳性率最低(15.9%).这些结果说明同源寡聚蛋白质一级序列包含四级结构信息,同时特征向量的确表示了埋藏在缔合亚基作用部位接触表面的基本信息。

我也是法学专业的,前天刚答辩完,只不过我是刑法第一个出场,论文又涉及极具争议的邓玉娇案,所以答辩居然花了50分钟。根据我的答辩过程,说说我的感受吧,希望对你有用。自述方面,先向老师说问候语,然后介绍自己是某级某班的某某,自己论文的题目,论文主体研究的目的,意义。接着介绍论文的结构,分几个部分,每个部分写的是什么,以及自己的研究成果。最后结束语要感谢自己的导师,希望各位答辩老师指正。自述要尽量简练,让答辩老师熟悉论文的大概,尽量在5分钟内完成。你也可以上网搜一些答辩自述的范文来修改,然后背下来也行。接下来就是老师问问题了。问题只要根据你论文的内容来定,比如对于小产权房的一些法律问题发表你的观点,也会对你论文中的案例进行提问,也会问一些理论方面的问题等。每个老师的注重都不一样,根据你刚写的论文目录,我觉得你论文的每一个部分都可能被问,特别是法律界定、法律风险和小产权房问题的解决对策。所以一定要多看自己的论文,最好滚瓜烂熟,因为好多问题都是论文中会涉及到的,老师也想看看你对你论文研究的熟悉程度。一般来说,答辩需要15分钟左右(包括自述5分钟),老师会至少提2到3个问题,由易到难。我因为邓玉娇案子就杯具了,被问了十多个问题。最后,还有杀手锏,如果碰到一些很难的问题不会答,你就直接说:“老师,我水平有限,这个问题我还没有深入研究,请您指教。”这招屡试不爽,这样老师也不会为难你了。最后还是那句话,要熟悉自己的论文,答辩的时候要随即应变,不要跟老师降嘴,这样对你没好处。答辩时候没必要紧张,一般都会过的,除非你真的是答非所问,一问三不知。以上就是我的经验,祝你好运。

各位老师,上午好!我叫谢天香,是07计2班的学生,我的论文题目是贝叶斯分类算法的设计与实现。论文是在导师的悉心指导下完成的,在这里我向我的导师表示深深的谢意,同时向各位老师参加我的论文答辩表示衷心的感谢。下面我将本论文设计的目的和主要内容向各位老师作一汇报,恳请各位老师批评指导。首先,我想谈谈这个毕业论文设计的目的及意义。……其次,我想谈谈这篇论文的结构和主要内容。本文分成4个部分.第1章,绪论。主要介绍了贝叶斯分类器研究的意义,国内外发展现状和本课题研究内容。第2章,贝叶斯分类算法概述。介绍了本系统采取的核心算法—贝叶斯算法的数学模型,贝叶斯分类器的工作原理与理论原型。第3章,贝叶斯分类算法的设计与实现。讨论了贝叶斯分类算法的设计模型,分析了该模型实验的各个步骤,以及具体实现。第4章,总结。对本论文进行了总结工作,并指出这些方法不足之处,为将来的实验研究作好了铺垫。最后,我想谈谈这篇论文和系统存在的不足。由于我把178个样本分成了130个训练样本和48个测试样本,训练样本与测试样本的比例不是很高,所以得到的TP没有达到理想的程度。这篇论文的写作以及修改的过程,也是我越来越认识到自己知识与经验缺乏的过程。虽然,我尽可能地收集材料,运用自己所学的知识进行论文写作,但论文还是存在许多不足之处,有待改进。请各位评委老师多批评指正,让我在今后的学习中学到更多,谢谢!这是我的开场白希望对你有用

各位老师,下午好!我叫***,是**级**班的学生,我的论文题目是--------------------,论文是在**导师的悉心指点下完成的,在这里我向我的导师表示深深的谢意,向各位老师不辞辛苦参加我的论文答辩表示衷心的感谢,并对三年来我有机会聆听教诲的各位老师表示由衷的敬意。下面我将本论文设计的目的和主要内容向各位老师作一汇报,恳请各位老师批评指导。首先,我想谈谈这个毕业论文设计的目的及意义。作为计算机应用的一部分,图书销售管理系统对图书销售进行管理,具有着手工管理所无法比拟的优点,极大地提高图书销售管理效率及在同行业中的竞争力.因此,图书销售管理系统有着广泛的市场前景和实际的应用价值.其次,我想谈谈这篇论文的结构和主要内容。本文分成五个部分.第1部。。第2部。。第3部~第5部这篇论文的写作以及系统开发的过程,也是我越来越认识到自己知识与经验缺乏的过程。虽然,我尽可能地收集材料,竭尽所能运用自己所学的知识进行论文写作和系统开发,但论文还是存在许多不足之处,系统功能并不完备,有待改进.请各位评委老师多批评指正,让我在今后的学习中学到更多。谢谢!开场白就这个样子了至于提问么,这要看老师了,但问题都出自你的论文,你必须的熟悉你写的内容。顺便看熟自己的参考文献,别老师问了打不出。的明确自己为什么要写这篇论文,用意何在,所论内容问题何在,你的解决方法是什么。至于具体问题我就说不出来了。

贝叶斯分类器及其研究论文

贝叶斯分类器,即是以贝叶斯决策理论为基础的分类器,什么是贝叶斯决策理论呢?

贝叶斯决策论是贝叶斯学派关于统计推断(根据已有资料或者说数据,对未知问题作出判断)的理论,要理解贝叶斯理论,就不得不和他的 “老对手”——频率学派(经典学派)一起聊。

首先我们看看统计推断的问题是什么。statistical inference 是学统计的目的,即根据样本数据,对总体进行统计推断(假设检验 或 预测).是指统计学中研究如何根据样本数据去推断总体数量特征的方法。统计推断主要可以分为两大类:一类是参数估计问题;另一类是假设检验问题。

关于这些问题,从20世纪上半页至今,频率学派和贝叶斯学派两大学派一直在辩论,也一直互相不服。贝叶斯学派的发展在二十世纪滞后于频率学派,所以我们在学校教材上学到的统计推断的方法基本上都是频率学派的,比如最大似然估计、卡方检验、T检验、矩估计等等。

两个学派争论的点是什么呢?

现在应该对贝叶斯学派的思想有了一点认识了。那我们看看在分类问题上贝叶斯分类器是怎么一回事呢?

贝叶斯分类器是一类分类算法的总称,贝叶斯定理是这类算法的核心,因此统称为贝叶斯分类。

在分类问题中,我们可以根据样本 计算出在样本中各个类别 出现的概率,即后验概率 ,根据之前对贝叶斯统计推断的介绍,还需要引入各种推断结果所带来的损失,我们定义 为将 误分为 时所产生的损失,根据误判出现的概率和导致的损失,可以计算出错误分类是产生的期望损失,称之为“风险”:

设想我们制定了一个判定准则 来对 进行分类得到 ,如果每个分类结果 都是风险最小的结果,那个总体的风险 也是最小的,这就是贝叶斯判定准则,称 为贝叶斯最优分类器。

贝叶斯最优分类器为:

后验概率最大化与风险最小化 :对于二分类问题,λ要么等于0要么等于1

当 ,即正确分类时, ,所以可以计算此时所以条件风险(该条件下的风险)为

就是根据样本 进行分类,想想以前讲过的KNN、LR等,所做的不就是这个工作吗,这种直接对 进行建模来预测 的方法,都叫做 判别式模型(Discriminative Model) ,判别式模型不考虑样本的产生模型,直接研究预测模型。如果我们换一种思路,先得到联合分布 ,再得到后验概率 ,这就是 生成式模型(Generative Model) ,顾名思义,生成式模型会研究样本的产生模型,判别式模型和生成式模型都是监督学习中的概念。

显然生成模型比判别模型包含更多的信息,可以做到更多的事,实际上由生成模型可以得到判别模型,但由判别模型得不到生成模型,贝叶斯分类器就是从生成模型的角度来解决分类问题,怎么实现呢?

是类“先验”(prior)概率; 是样本x相对于类标记c的类条件概率(class-conditional probability); 是用于归一化的“证据”(evidence)因子。

类先验概率 表达了样本空间中各类样本所占的比例,根据大数定律,当训练集包含充足的独立同分布样本时, 可通过各类样本出现的频率来进行估计 . 看起来是样本出现的概率,对给定样本 ,从形式上也可以看出 与样本的类标记无关 ,因此估计 的问题就转化为如何基于训练数据D来估计先验 和 的问题,所以问题的重点就是怎么求 ,得到 就能得到联合概率 ,也能能得到一个贝叶斯分类器了。那么怎么完成呢?能直接通过样本中的频率来统计吗?

对 来说,由于它涉及关于x 所有属性的联合概率,直接根据样本出现的频率来估计将会遇到严重的困难,例如,假设样本的 d 个属性都是二值的,则样本空间将有 种可能的取值,在现实应用中,这个值往往远大于训练样本数m,也就是说,很多样本取值在训练集中根本没有出现,直接使用频率来估计 显然不可行,因为"未被观测到"与"出现概率为零"通常是不同的。

那应该怎么计算呢?先说第一种方法: 最大似然估计 。

要求得类条件概率 ,如果我们什么信息都没有肯定是不行的,所以一般假设我们知道它的概率分布,然后用一定方法来求出分布的参数即可。对于求分布的参数,一般使用最大似然估计MLE,虽然MLE是频率学派的估计方法,不过好用的东西大家一起用嘛,贝叶斯学派有个差不多的估计方法:最大后验估计MAP,不过MAP比MLE多了个作为因子的先验概率P(θ),更复杂一些,这些内容咱们下回再讲。

说回最大似然估计,说到最大似然估计就不得不问一句,什么是似然?这里需要好好的说道说道,只有搞清楚似然的概念才能理解怎么计算它。

极大似然是频率学派的参数估计方法,似然即参数的似然,是由频率学派建立的、极大似然估计中的重要概念。从前文可知,频率学派认为参数是确定值,参数的似然就表达了给定样本 下某参数为这个确定值的可能性。在计算上,参数的似然值等于在该参数下事件发生的概率 。也就是说,似然值可以用概率来计算,但似然却不是概率,因为频率学派的体系下, 参数不是随机变量,故似然不是概率 ,概率是在确定参数的情况下,观测结果发生的可能性,概率的对象是概率空间中的事件,而似然的对象是参数。

因此,似然函数定义为:似然函数 是给定样本x时,关于参数θ的函数,其在数值上等于给定参数θ后变量X的概率

值得注意的是,因为 不是随机变量,所以各个 所对应的似然值是不能做累加的,我们都知道: ,这也是概率的一个基本性质,而似然是不满足这一点的, 并不为1,比如两个不均匀的硬币,正面的概率未知作为 ,给定 为观察到一次正面, 时 , 时 ,显然加和大于1,其实甚至可以说这样相加是没有意义的,因为 只是似然函数的自变量,并不是概率空间里的取值。这也从一方面说明似然是不满足概率定理(柯尔莫果洛夫公理)的三个条件的,似然并不是概率。

关于似然,知乎上还有一个很形象的例子,他山之石,可以借鉴一下, 如何理解似然函数?HiTao的回答

其中的核心观点是:似然和概率两个函数有着不同的名字,却源于同一个函数。 是一个有着两个变量的函数。 如果,你将θ设为常量,则你会得到一个概率函数(关于x的函数);如果,你将x设为常量你将得到似然函数(关于θ的函数) 。

举一个例子: 有一个硬币,它有 的概率会正面向上,有 的概率反面向上。现有正反序列: 。无论 的值是多少,这个序列的概率值为

比如,如果 ,则得到这个序列的概率值为0。如果 ,概率值为1/1024。 尝试所有 可取的值,画出了下图,即为似然函数的函数图像:

可以看出 时的似然值最大,即0.7是最可能是真值的参数值,这就是最大似然估计的思想了。

现在应该对似然有了一定的了解了,我们回忆一下贝叶斯分类器说到哪了,对:

我们的目标是用最大似然估计计算得到 ,得到联合分布,具体做法及MLE和MAP的区别下一篇再细说~

主要参考资料

《机器学习》周志华 如何理解似然函数?HiTao的回答

.

贝叶斯公式直接的应用就是学习,啥意思,就是根据经验对新发生的事物进行判断。抽象地说就是这样。应用的原因就是为了预测未来,规避风险。就和你知道很多鸟都是黑色的,但是其中乌鸦是黑色的可能性最大,于是当你再看到一只黑色的鸟的时候,你就会想着这只鸟是不是乌鸦。包括你学习贝叶斯也是这样的,别人都说贝叶斯很厉害[先验],然后你找了很多案例,最后想看看贝叶斯成功的概率是多少[后验],其本质就是这个

贝叶斯推理研究综述_思想政治教育

我给你找了一篇简单的论文这是一篇关于朴素贝叶斯分类器的论文

关于贝叶斯方法的若干研究论文

贝叶斯学派的基本观点如下:

贝叶斯学派奠基性的工作是贝叶斯的论文,也许是他自己感到他的学说还有不完善的地方,这一论文在他生前没有发表,而是在他死后由他的朋友发表的。著名的数学家拉普拉斯用贝叶斯提出的方法,导出了重要的“相继律”,贝叶斯的方法和理论逐渐被人理解和重视起来。

尽管贝叶斯方法可以推导出一些有意义的问题,但在理论上和实际应用中还是出现了各种各样的问题,因而在 19 世纪并未被大家普遍接受。20 世纪初,意大利的菲纳特,英国的杰弗莱都对贝叶斯学派的理论作出了新的贡献。

第二次世界大战后,瓦尔德提出了统计的决策理论,在这一理论中贝叶斯解占有重要的地位;信息论的发展也对贝叶斯学派作出了新的贡献:更重要的是在一些实际应用的领域中,贝叶斯方法取得了成功,贝叶斯学派成了一股不容忽视的力量。

贝叶斯学派的基本观点是: 任一个未知量都可以看作一个随机变量,应用一个概率分布去描述对的未知状况。这个概率分布是在抽样前就有的关于的先验信息的概率陈述。

这个概率分布被称为先验分布。有时还简称为先验。因为任一未知量都有不确定性,而在表述不确定性程度时,概率和概率分布是最好的语言。贝叶斯学派很重视先验信息的收集、挖掘和加工,使它数量化,形成先验分市。

参加到统计推断中来,以提高统计推断的质量。忽视先验信息的利用,有时是一种浪费,有时还会导致不合理的结论。

二、贝叶斯统计学派与频率统计学派之间的批评

贝叶斯学派对经典学派的批评主要是下面两点:频率学派对一些统计问题的提法不妥,包括估计问题中的置信区间和假设检验问题频率统计学派判断方法好坏的标准不妥。贝叶斯学派赞成主观概率但不等于说主张用主观随意的方式去选取先验分布。

写作话题: 贝叶斯预测模型在矿物含量预测中的应用贝叶斯预测模型在气温变化预测中的应用贝叶斯学习原理及其在预测未来地震危险中的应用基于稀疏贝叶斯分类器的汽车车型识别信号估计中的贝叶斯方法及应用贝叶斯神经网络在生物序列分析中的应用基于贝叶斯网络的海上目标识别贝叶斯原理在发动机标定中的应用贝叶斯法在继电器可靠性评估中的应用相关书籍: Arnold Zellner 《Bayesian Econometrics: Past, Present and Future》Springer 《贝叶斯决策》黄晓榕 《经济信息价格评估以及贝叶斯方法的应用》张丽 , 闫善文 , 刘亚东 《全概率公式与贝叶斯公式的应用及推广》周丽琴 《贝叶斯均衡的应用》王辉 , 张剑飞 , 王双成 《基于预测能力的贝叶斯网络结构学习》张旭东 , 陈锋 , 高隽 , 方廷健 《稀疏贝叶斯及其在时间序列预测中的应用》邹林全 《贝叶斯方法在会计决策中的应用》周丽华 《市场预测中的贝叶斯公式应用》夏敏轶 , 张焱 《贝叶斯公式在风险决策中的应用》臧玉卫 , 王萍 , 吴育华 《贝叶斯网络在股指期货风险预警中的应用》党佳瑞 , 胡杉杉 , 蓝伯雄 《基于贝叶斯决策方法的证券历史数据有效性分析》肖玉山 , 王海东 《无偏预测理论在经验贝叶斯分析中的应用》严惠云 , 师义民 《Linex损失下股票投资的贝叶斯预测》卜祥志 , 王绍绵 , 陈文斌 , 余贻鑫 , 岳顺民 《贝叶斯拍卖定价方法在配电市场定价中的应用》刘嘉焜 , 范贻昌 , 刘波 《分整模型在商品价格预测中的应用》《Bayes方法在经营决策中的应用》《决策有用性的信息观》《统计预测和决策课件》《贝叶斯经济时间序列预测模型及其应用研究》《贝叶斯统计推断》《决策分析理论与实务》

贝叶斯推理研究综述_思想政治教育

贝叶斯理论,是英国数学家贝叶斯(1701年—1761年) Thomas Bayes发明创造的一系列概率论理论,并广泛应用于数学、工程等领域。在数学领域,贝叶斯分类算法应用于统计分析、测绘学,贝叶斯公式应用于概率空间,贝叶斯估计应用于参数估计,贝叶斯区间估计应用于数学中的区间估计,贝叶斯风险、贝叶斯统计、贝叶斯序贯决策函数、经验贝叶斯方法应用于统计决策论。在工程领域,贝叶斯定理应用于人工智能、心理学、遗传学,贝叶斯分类器应用于模式识别、人工智能,贝叶斯分析应用于计算机科学,贝叶斯决策、贝叶斯逻辑、人工智能应用于人工智能,贝叶斯推理应用于数量地理学、人工智能,贝叶斯学习应用于模式识别。在其他领域,贝叶斯主义应用于自然辩证法,有信息的贝叶斯决策方法应用于生态系统生态学。

贝叶斯论文答辩问题

我也是法学专业的,前天刚答辩完,只不过我是刑法第一个出场,论文又涉及极具争议的邓玉娇案,所以答辩居然花了50分钟。根据我的答辩过程,说说我的感受吧,希望对你有用。自述方面,先向老师说问候语,然后介绍自己是某级某班的某某,自己论文的题目,论文主体研究的目的,意义。接着介绍论文的结构,分几个部分,每个部分写的是什么,以及自己的研究成果。最后结束语要感谢自己的导师,希望各位答辩老师指正。自述要尽量简练,让答辩老师熟悉论文的大概,尽量在5分钟内完成。你也可以上网搜一些答辩自述的范文来修改,然后背下来也行。接下来就是老师问问题了。问题只要根据你论文的内容来定,比如对于小产权房的一些法律问题发表你的观点,也会对你论文中的案例进行提问,也会问一些理论方面的问题等。每个老师的注重都不一样,根据你刚写的论文目录,我觉得你论文的每一个部分都可能被问,特别是法律界定、法律风险和小产权房问题的解决对策。所以一定要多看自己的论文,最好滚瓜烂熟,因为好多问题都是论文中会涉及到的,老师也想看看你对你论文研究的熟悉程度。一般来说,答辩需要15分钟左右(包括自述5分钟),老师会至少提2到3个问题,由易到难。我因为邓玉娇案子就杯具了,被问了十多个问题。最后,还有杀手锏,如果碰到一些很难的问题不会答,你就直接说:“老师,我水平有限,这个问题我还没有深入研究,请您指教。”这招屡试不爽,这样老师也不会为难你了。最后还是那句话,要熟悉自己的论文,答辩的时候要随即应变,不要跟老师降嘴,这样对你没好处。答辩时候没必要紧张,一般都会过的,除非你真的是答非所问,一问三不知。以上就是我的经验,祝你好运。

概率图模型是用图来表示变量概率依赖关系的理论,结合概率论与图论的知识,利用图来表示与模型有关的变量的联合概率分布。由图灵奖获得者Pearl开发出来。

如果用一个词来形容概率图模型(Probabilistic Graphical Model)的话,那就是“优雅”。对于一个实际问题,我们希望能够挖掘隐含在数据中的知识。概率图模型构建了这样一幅图,用观测结点表示观测到的数据,用隐含结点表示潜在的知识,用边来描述知识与数据的相互关系, 最后基于这样的关系图获得一个概率分布 ,非常“优雅”地解决了问题。

概率图中的节点分为隐含节点和观测节点,边分为有向边和无向边。从概率论的角度,节点对应于随机变量,边对应于随机变量的依赖或相关关系,其中 有向边表示单向的依赖,无向边表示相互依赖关系 。

概率图模型分为 贝叶斯网络(Bayesian Network)和马尔可夫网络(Markov Network) 两大类。贝叶斯网络可以用一个有向图结构表示,马尔可夫网络可以表 示成一个无向图的网络结构。更详细地说,概率图模型包括了朴素贝叶斯模型、最大熵模型、隐马尔可夫模型、条件随机场、主题模型等,在机器学习的诸多场景中都有着广泛的应用。

长久以来,人们对一件事情发生或不发生的概率,只有固定的0和1,即要么发生,要么不发生,从来不会去考虑某件事情发生的概率有多大,不发生的概率又是多大。而且概率虽然未知,但最起码是一个确定的值。比如如果问那时的人们一个问题:“有一个袋子,里面装着若干个白球和黑球,请问从袋子中取得白球的概率是多少?”他们会想都不用想,会立马告诉你,取出白球的概率就是1/2,要么取到白球,要么取不到白球,即θ只能有一个值,而且不论你取了多少次,取得白球的 概率θ始终都是1/2 ,即不随观察结果X 的变化而变化。

这种 频率派 的观点长期统治着人们的观念,直到后来一个名叫Thomas Bayes的人物出现。

托马斯·贝叶斯Thomas Bayes(1702-1763)在世时,并不为当时的人们所熟知,很少发表论文或出版著作,与当时学术界的人沟通交流也很少,用现在的话来说,贝叶斯就是活生生一民间学术“屌丝”,可这个“屌丝”最终发表了一篇名为“An essay towards solving a problem in the doctrine of chances”,翻译过来则是:机遇理论中一个问题的解。你可能觉得我要说:这篇论文的发表随机产生轰动效应,从而奠定贝叶斯在学术史上的地位。

这篇论文可以用上面的例子来说明,“有一个袋子,里面装着若干个白球和黑球,请问从袋子中取得白球的概率θ是多少?”贝叶斯认为取得白球的概率是个不确定的值,因为其中含有机遇的成分。比如,一个朋友创业,你明明知道创业的结果就两种,即要么成功要么失败,但你依然会忍不住去估计他创业成功的几率有多大?你如果对他为人比较了解,而且有方法、思路清晰、有毅力、且能团结周围的人,你会不由自主的估计他创业成功的几率可能在80%以上。这种不同于最开始的“非黑即白、非0即1”的思考方式,便是 贝叶斯式的思考方式。

先简单总结下频率派与贝叶斯派各自不同的思考方式:

贝叶斯派既然把看做是一个随机变量,所以要计算的分布,便得事先知道的无条件分布,即在有样本之前(或观察到X之前),有着怎样的分布呢?

比如往台球桌上扔一个球,这个球落会落在何处呢?如果是不偏不倚的把球抛出去,那么此球落在台球桌上的任一位置都有着相同的机会,即球落在台球桌上某一位置的概率服从均匀分布。这种在实验之前定下的属于基本前提性质的分布称为 先验分布,或着无条件分布 。

其中,先验信息一般来源于经验跟历史资料。比如林丹跟某选手对决,解说一般会根据林丹历次比赛的成绩对此次比赛的胜负做个大致的判断。再比如,某工厂每天都要对产品进行质检,以评估产品的不合格率θ,经过一段时间后便会积累大量的历史资料,这些历史资料便是先验知识,有了这些先验知识,便在决定对一个产品是否需要每天质检时便有了依据,如果以往的历史资料显示,某产品的不合格率只有0.01%,便可视为信得过产品或免检产品,只每月抽检一两次,从而省去大量的人力物力。

而 后验分布 π(θ|X)一般也认为是在给定样本X的情况下的θ条件分布,而使π(θ|X)达到最大的值θMD称为 最大后验估计 ,类似于经典统计学中的 极大似然估计 。

综合起来看,则好比是人类刚开始时对大自然只有少得可怜的先验知识,但随着不断观察、实验获得更多的样本、结果,使得人们对自然界的规律摸得越来越透彻。所以,贝叶斯方法既符合人们日常生活的思考方式,也符合人们认识自然的规律,经过不断的发展,最终占据统计学领域的半壁江山,与经典统计学分庭抗礼。

条件概率 (又称后验概率)就是事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在B条件下A的概率”。

比如上图,在同一个样本空间Ω中的事件或者子集A与B,如果随机从Ω中选出的一个元素属于B,那么这个随机选择的元素还属于A的概率就定义为在B的前提下A的条件概率:

联合概率:

边缘概率(先验概率):P(A)或者P(B)

贝叶斯网络(Bayesian network),又称信念网络(Belief Network),或有向无环图模型(directed acyclic graphical model),是一种概率图模型,于1985年由Judea Pearl首先提出。它是一种模拟人类推理过程中因果关系的不确定性处理模型,其网络拓朴结构是一个有向无环图(DAG)。

贝叶斯网络的有向无环图中的节点表示随机变量

它们可以是可观察到的变量,或隐变量、未知参数等。认为有因果关系(或非条件独立)的变量或命题则用箭头来连接。若两个节点间以一个单箭头连接在一起,表示其中一个节点是“因(parents)”,另一个是“果(children)”,两节点就会产生一个条件概率值。

例如,假设节点E直接影响到节点H,即E→H,则用从E指向H的箭头建立结点E到结点H的有向弧(E,H),权值(即连接强度)用条件概率P(H|E)来表示,如下图所示:

简言之,把某个研究系统中涉及的随机变量,根据是否条件独立绘制在一个有向图中,就形成了贝叶斯网络。其主要用来描述随机变量之间的条件依赖,用圈表示随机变量(random variables),用箭头表示条件依赖(conditional dependencies)。

此外,对于任意的随机变量,其联合概率可由各自的局部条件概率分布相乘而得出:

1. head-to-head

依上图,所以有:P(a,b,c) = P(a) P(b) P(c|a,b)成立,即在c未知的条件下,a、b被阻断(blocked),是独立的,称之为head-to-head条件独立。

2. tail-to-tail

考虑c未知,跟c已知这两种情况:

3. head-to-tail

还是分c未知跟c已知这两种情况:

wikipedia上是这样定义因子图的:将一个具有多变量的全局函数因子分解,得到几个局部函数的乘积,以此为基础得到的一个双向图叫做因子图(Factor Graph)。

通俗来讲,所谓因子图就是对函数进行因子分解得到的 一种概率图 。一般内含两种节点:变量节点和函数节点。我们知道,一个全局函数通过因式分解能够分解为多个局部函数的乘积,这些局部函数和对应的变量关系就体现在因子图上。

举个例子,现在有一个全局函数,其因式分解方程为:

其中fA,fB,fC,fD,fE为各函数,表示变量之间的关系,可以是条件概率也可以是其他关系。其对应的因子图为:

在概率图中,求某个变量的边缘分布是常见的问题。这问题有很多求解方法,其中之一就是把贝叶斯网络或马尔科夫随机场转换成因子图,然后用sum-product算法求解。换言之,基于因子图可以用 sum-product 算法 高效的求各个变量的边缘分布。

详细的sum-product算法过程,请查看博文: 从贝叶斯方法谈到贝叶斯网络

朴素贝叶斯(Naive Bayesian)是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法。朴素贝叶斯原理简单,也很容易实现,多用于文本分类,比如垃圾邮件过滤。**朴素贝叶斯可以看做是贝叶斯网络的特殊情况:即该网络中无边,各个节点都是独立的。 **

朴素贝叶斯朴素在哪里呢? —— 两个假设 :

贝叶斯公式如下:

下面以一个例子来解释朴素贝叶斯,给定数据如下:

现在给我们的问题是,如果一对男女朋友,男生想女生求婚,男生的四个特点分别是不帅,性格不好,身高矮,不上进,请你判断一下女生是嫁还是不嫁?

这是一个典型的分类问题,转为数学问题就是比较p(嫁|(不帅、性格不好、身高矮、不上进))与p(不嫁|(不帅、性格不好、身高矮、不上进))的概率,谁的概率大,我就能给出嫁或者不嫁的答案!这里我们联系到朴素贝叶斯公式:

我们需要求p(嫁|(不帅、性格不好、身高矮、不上进),这是我们不知道的,但是通过朴素贝叶斯公式可以转化为好求的三个量,这三个变量都能通过统计的方法求得。

等等,为什么这个成立呢?学过概率论的同学可能有感觉了,这个等式成立的条件需要特征之间相互独立吧!对的!这也就是为什么朴素贝叶斯分类有朴素一词的来源,朴素贝叶斯算法是假设各个特征之间相互独立,那么这个等式就成立了!

但是为什么需要假设特征之间相互独立呢?

根据上面俩个原因,朴素贝叶斯法对条件概率分布做了条件独立性的假设,由于这是一个较强的假设,朴素贝叶斯也由此得名!这一假设使得朴素贝叶斯法变得简单,但有时会牺牲一定的分类准确率。

朴素贝叶斯优点 :

朴素贝叶斯缺点 :

理论上,朴素贝叶斯模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为朴素贝叶斯模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,在属性个数比较多或者属性之间相关性较大时,分类效果不好。

朴素贝叶斯模型(Naive Bayesian Model)的 朴素(Naive)的含义是"很简单很天真" 地假设样本特征彼此独立. 这个假设现实中基本上不存在, 但特征相关性很小的实际情况还是很多的, 所以这个模型仍然能够工作得很好。

新闻分类 GitHub: 点击进入

【 机器学习通俗易懂系列文章 】

从贝叶斯方法谈到贝叶斯网络

各位老师,上午好!我叫谢天香,是07计2班的学生,我的论文题目是贝叶斯分类算法的设计与实现。论文是在导师的悉心指导下完成的,在这里我向我的导师表示深深的谢意,同时向各位老师参加我的论文答辩表示衷心的感谢。下面我将本论文设计的目的和主要内容向各位老师作一汇报,恳请各位老师批评指导。首先,我想谈谈这个毕业论文设计的目的及意义。……其次,我想谈谈这篇论文的结构和主要内容。本文分成4个部分.第1章,绪论。主要介绍了贝叶斯分类器研究的意义,国内外发展现状和本课题研究内容。第2章,贝叶斯分类算法概述。介绍了本系统采取的核心算法—贝叶斯算法的数学模型,贝叶斯分类器的工作原理与理论原型。第3章,贝叶斯分类算法的设计与实现。讨论了贝叶斯分类算法的设计模型,分析了该模型实验的各个步骤,以及具体实现。第4章,总结。对本论文进行了总结工作,并指出这些方法不足之处,为将来的实验研究作好了铺垫。最后,我想谈谈这篇论文和系统存在的不足。由于我把178个样本分成了130个训练样本和48个测试样本,训练样本与测试样本的比例不是很高,所以得到的TP没有达到理想的程度。这篇论文的写作以及修改的过程,也是我越来越认识到自己知识与经验缺乏的过程。虽然,我尽可能地收集材料,运用自己所学的知识进行论文写作,但论文还是存在许多不足之处,有待改进。请各位评委老师多批评指正,让我在今后的学习中学到更多,谢谢!这是我的开场白希望对你有用

各位老师,上午好!我叫谢天香,是07计 2班的学生,我的论文题目是贝叶斯分类算法的设计与实现。论文是在导师的悉心指导下完成的,在这里我向我的导师表示深深的谢意,同时向各位老师参加我的论文答辩表示衷心的感谢。下面我将本论文设计的目的和主要内容向各位老师作一汇报,恳请各位老师批评指导。首先,我想谈谈这个毕业论文设计的目的及意义。……其次,我想谈谈这篇论文的结构和主要内容。本文分成4个部分.第1章,绪论。主要介绍了贝叶斯分类器研究的意义,国内外发展现状和本课题研究内容。第2章,贝叶斯分类算法概述。介绍了本系统采取的核心算法—贝叶斯算法的数学模型,贝叶斯分类器的工作原理与理论原型。第3章,贝叶斯分类算法的设计与实现。讨论了贝叶斯分类算法的设计模型,分析了该模型实验的各个步骤,以及具体实现。第4章,总结。对本论文进行了总结工作,并指出这些方法不足之处,为将来的实验研究作好了铺垫。最后,我想谈谈这篇论文和系统存在的不足。由于我把178个样本分成了130个训练样本和48个测试样本,训练样本与测试样本的比例不是很高,所以得到的TP没有达到理想的程度。这篇论文的写作以及修改的过程,也是我越来越认识到自己知识与经验缺乏的过程。虽然,我尽可能地收集材料,运用自己所学的知识进行论文写作,但论文还是存在许多不足之处,有待改进。请各位评委老师多批评指正,让我在今后的学习中学到更多,谢谢!这是我的开场白 希望对你有用

关于贝叶斯的毕业论文

各位老师,上午好!我叫谢天香,是07计 2班的学生,我的论文题目是贝叶斯分类算法的设计与实现。论文是在导师的悉心指导下完成的,在这里我向我的导师表示深深的谢意,同时向各位老师参加我的论文答辩表示衷心的感谢。下面我将本论文设计的目的和主要内容向各位老师作一汇报,恳请各位老师批评指导。首先,我想谈谈这个毕业论文设计的目的及意义。……其次,我想谈谈这篇论文的结构和主要内容。本文分成4个部分.第1章,绪论。主要介绍了贝叶斯分类器研究的意义,国内外发展现状和本课题研究内容。第2章,贝叶斯分类算法概述。介绍了本系统采取的核心算法—贝叶斯算法的数学模型,贝叶斯分类器的工作原理与理论原型。第3章,贝叶斯分类算法的设计与实现。讨论了贝叶斯分类算法的设计模型,分析了该模型实验的各个步骤,以及具体实现。第4章,总结。对本论文进行了总结工作,并指出这些方法不足之处,为将来的实验研究作好了铺垫。最后,我想谈谈这篇论文和系统存在的不足。由于我把178个样本分成了130个训练样本和48个测试样本,训练样本与测试样本的比例不是很高,所以得到的TP没有达到理想的程度。这篇论文的写作以及修改的过程,也是我越来越认识到自己知识与经验缺乏的过程。虽然,我尽可能地收集材料,运用自己所学的知识进行论文写作,但论文还是存在许多不足之处,有待改进。请各位评委老师多批评指正,让我在今后的学习中学到更多,谢谢!这是我的开场白 希望对你有用

各位老师,上午好!我叫谢天香,是07计2班的学生,我的论文题目是贝叶斯分类算法的设计与实现。论文是在导师的悉心指导下完成的,在这里我向我的导师表示深深的谢意,同时向各位老师参加我的论文答辩表示衷心的感谢。下面我将本论文设计的目的和主要内容向各位老师作一汇报,恳请各位老师批评指导。首先,我想谈谈这个毕业论文设计的目的及意义。……其次,我想谈谈这篇论文的结构和主要内容。本文分成4个部分.第1章,绪论。主要介绍了贝叶斯分类器研究的意义,国内外发展现状和本课题研究内容。第2章,贝叶斯分类算法概述。介绍了本系统采取的核心算法—贝叶斯算法的数学模型,贝叶斯分类器的工作原理与理论原型。第3章,贝叶斯分类算法的设计与实现。讨论了贝叶斯分类算法的设计模型,分析了该模型实验的各个步骤,以及具体实现。第4章,总结。对本论文进行了总结工作,并指出这些方法不足之处,为将来的实验研究作好了铺垫。最后,我想谈谈这篇论文和系统存在的不足。由于我把178个样本分成了130个训练样本和48个测试样本,训练样本与测试样本的比例不是很高,所以得到的TP没有达到理想的程度。这篇论文的写作以及修改的过程,也是我越来越认识到自己知识与经验缺乏的过程。虽然,我尽可能地收集材料,运用自己所学的知识进行论文写作,但论文还是存在许多不足之处,有待改进。请各位评委老师多批评指正,让我在今后的学习中学到更多,谢谢!这是我的开场白希望对你有用

贝叶斯推理研究综述_思想政治教育

用支持向量机和贝叶斯两种方法对蛋白质四级结构进行分类研究。结果表明,基于支持向量机的分类结果最好,其l0CV检验的总分类精度、正样本正确预测率、Matthes相关系数和假阳性率分别为74.2%、84.6%、0.474、38.9%;基于贝叶斯的分类结果没有支持向量机的分类结果好,但其l0CV检验的假阳性率最低(15.9%).这些结果说明同源寡聚蛋白质一级序列包含四级结构信息,同时特征向量的确表示了埋藏在缔合亚基作用部位接触表面的基本信息。

相关百科

热门百科

首页
发表服务