稀疏成份分析及在雷达成像处理中的应用稀疏成份分析是一种新兴的信号分析方法。它以过完备词典为基础,能从有限的观测数据中获得信号的稀疏表示,有效地挖掘信号的自然属性和本质的驱动源,提高变换域的分辨率,为信号处理提供了有力的工具。作为信号处理的重要组成部分,雷达成像技术无论在军事还是民用上都有巨大的应用潜力。雷达成像本质上就是一个信号表示过程,由于高频区雷达目标散射行为具有局部特性,用稀疏成份分析方法能提高雷达图像的质量,有利于图像分析和目标识别。针对雷达成像的应用背景,本文研究了稀疏成份分析中稀疏性度量函数构造的一般准则等理论问题,以及基于稀疏成份分析的雷达成像算法,包括一维距离像、二维逆合成孔径雷达成像和多频段雷达信号综合技术等。研究了稀疏成份分析中度量函数的构造和算法分析等理论问题。利用稀疏成份分析方法研究了高分辨一维距离像稀疏表示的原子构造与相关算法,并对算法的参数估计性能进行了理论分析。研究了基于稀疏成份分析的逆合成孔径雷达成像算法。根据雷达目标散射信号的稀疏表示模型,研究了多频段多分辨雷达信号综合技术。根据雷达目标的理想点散射体模型和几何绕射模型,分析了多频段雷达回波观测信号的联系与差别,并利用稀疏成份分析方法提出了高分辨一维距离像的多频段信号综合成像技术。针对多频段窄带组网雷达检测海上目标的应用背景,根据雷达目标在低分辨回波中的稀疏分布特性和海杂波的分布特性,提出了多雷达距离分辨率匹配处理技术,提高了雷达回波的距离分辨率并实现了多雷达距离分辨率的匹配统一,为多频段窄带雷达信号综合提供了统一的基础。
1 引 言 据不完全统计,2014年我国城市道路出现塌陷事故2000余起,全国遭受道路塌陷事故影响的城市超过50个,主要分布于北京、上海、广东等20余个省区市。国土资源部、水利部发布的材料显示,全国受道路塌陷影响的城区范围接近2万平方公里。道路塌陷事故主要集中在三个区域,分别是:长江三角洲地区、珠江三角洲地区、华北地区。道路塌陷事故严重威胁了城市的公共安全,破坏了正常的交通秩序。如果能够提前发现并进行处理,就可以在最大程度上减小道路突然塌陷带来的损失。目前道路快速检测有效的手段是通过分析探地雷达图像,发现道路地下病害。 1.1 研究的目的与意义道路是一个城市最重要的基础设施,也是人员往来、经济发展的重要通道。随着我国经济、技术的快速发展,城市道路里程不断增加、交通运输越来越便利。城市规模的不断扩大,城市人口的不断增加,使得地面空间已无法满足人们的需求,地下空间就成为地面空间的有益补充,从各类管线到地下交通网络,地下空间的利用也趋于层次化和规模化。再加上浅层地质结构的多样性和复杂性,使得城市道路下方夯土随时都可能会受到自然的和人为的影响。因此,在道路建设快速发展的同时,道路养护工作也开始受到重视。2014 年年初,北京市交通委路政局通过城市道路巡查信息管理软件,设立道路养护站点,有效缩短了道路病害修复时间[1]。探测和修复道路地下病害是道路养护的关键问题。通常情况下,地下病害主要有疏松、空洞和富水异常(下面简称富水)三类。这些隐患可能导致路面出现唧浆、龟裂等病害,严重的空洞甚至会导致路面突然塌陷。2014 年 9 月 25 日上午,北京黄杉木店路富华家园西南门发生路面塌陷,半间房屋塌陷掉入坑中,所幸无人员伤亡[2]。传统的道路养护与检测方法主要依靠人力完成,不仅准确度较差,而且具有明显的滞后。近些年来,道路塌陷时有发生,由于养护与检测手段落后,致使人民生命财产遭受严重损失。2012 年 4 月 1 日,北京市民杨女士途经北礼士路物华大厦东侧的便道时,突遇路面塌陷,坠入热水坑。4 月 9 日,杨女士终因医治无效死亡,年仅 27 岁[3]。因此,道路检测急需采用先进仪器,利用先进的地球物理技术实现准确的检测和养护。尽可能减小不必要的损失。探地雷达(Ground Penetrating Radar, GPR)是应用地球物理科学的重要组成部分。探地雷达能够发射和接收微波段高频宽带电磁波。由于电磁波在地下介质交界面会发生反射,通过分析地下介质界面反射电磁波的波形特征,就能够获取地下目标的空间位置,构成材质等特征信息[4]。.......... 1.2 国内外研究状况和进展探地雷达的发展前后经历了 100 多年,这期间,德国人做出了重要贡献。探地雷达的雏形诞生于 1904 年,德国人 Hulsemeyer 发现电磁波能够探测地面金属物体[5]。1910 年德国人 Leimbach 和 L wy 第一次具体阐明了探地雷达相关技术,并获得了专利。1926 年,德国人 Hülsenbeck 发现介电常数不同的介质,会在其交界面产生电磁波反射,他以此提出了运用高频电磁波脉冲探测地下目标体的思路[6]。在第二次世界大战(1939 年-1945 年)期间,处于军事目的和战争需要,探地雷达得到了快速发展和应用,浅地层目标探测得以实现。1960 年越战时期,麻省理工学院推出了一种探测浅地层空洞的设备,用于发现越南战场中的地道[7]。同年,CookJ.C 用脉冲雷达在矿井中做了试验,但是由于地下介质比起空气,具有较强的电磁波衰减特性,加之地质情况的多样性,电磁波在地下的传播要比在空气中复杂的多[8]。随着电子信息技术的发展,仪器的信噪比得到了很大提高。探地雷达应用范围也迅速扩大,从早期的冰层、岩盐矿等弱耗介质扩展到土层、岩层、煤层等有耗介质。上世纪 70 年代以后,探地雷达被应用于石灰岩采石场的探测、工程地质探测、煤矿井探测等。进入上世纪 80 年代,随着民用市场的兴起,无载频脉冲探地雷达率先进入市场,发达国家竞先研制出民用探地雷达产品。之后,随着探地雷达产品不断更新换代,目前探地雷达技术已经相对成熟[9]。探地雷达技术用于路基路面检测始于上世纪 80 年代。1983 年,美国人 Benson等人就已经开展了公路沉降和塌陷的相关研究[10]。1984 年,Rodeick 等人采用探地雷达进行高速公路空洞探测研究[11]。1991 年,美国联邦公路局在道路工程应用中取得了一系列进展,成功探测了路基分层的厚度和路面脱空、路基空洞等道路病害。1993 年,日本人関口森江(M. Sekiguchi)等将探地雷达与钻孔摄像机结合起来,开发了一种道路结构探测系统[12]。1994 年,Kim Roddis 等比较了堪萨斯州 11种不同类型道路在探地雷达数据分析上的差异,这些差异主要是由于路基材质和设计结构决定的[13]。1995 年,美国劳雷工业公司与 GSSI 公司合作,在 10 个月内推出了世界第一套空气耦合高速路面检测雷达系统,并在中国一次试验成功,如图 1.2 所示。......... 2 探地雷达技术及数据特征 探地雷达是目前城市道路地下病害探测的主要手段,具有检测速度快、精度高的优点。本章从电磁场理论入手,导出了电磁波的波动方程。在理论介绍的基础上,阐述了探地雷达技术的原理和现状,对探地雷达数据的形式、特点和标定等问题作了简要说明。 2.1 电磁场理论1820 年,丹麦物理学家奥斯特首次发现了电流对磁针的作用,即电流的磁效应。1837 年,英国物理学家法拉第首先提出自然界同时存在着电场和磁场,电场和磁场都只能在一定的范围起作用,将原先难以捉摸的“超距作用”变为可以理解和研究的“场”。从 1855 年开始,英国物理学家麦克斯韦在研究弹性力学和结构力学之余,又对新兴的电磁学感兴趣,将自己熟悉的弹性力学和电磁现象结合起来,通过三篇论文将电磁场理论用简洁、对称、完美数学形式表示出来,经后人整理成为经典电动力学的基础,这就是麦克斯韦方程组[55]。据此,他在 1865 年就预言了电磁波的存在。1888 年,德国物理学家赫兹在麦克斯韦去世 10 年之后,终于用实验验证了电磁波的存在。经典电动力学认为静电场和静磁场分别由静止电荷和恒定电流所产生,它们各自独立,分别满足各自的方程。当电荷、电流的分布随时间变化时,电场和磁场就不再相互独立,而是相互激发、相互影响、形成统一的电磁场。电磁波就产生于这个时变的电磁场。由此可见,以上由麦克斯韦方程组导出的,描述电磁场波动特征的一组微分方程就称为波动方程。波动方程可以描述自然界中的各种波动现象,包括横波和纵波,例如声波、光波和水波等等。波动方程是分析电磁波在各类介质中传播的重要数学基础。........ 2.2 探地雷达技术探地雷达(Ground Penetrating Radar)是一种用于地下介质结构探测的电磁仪器,它通过发射天线发射高频宽带(1MHz~10GHz)电磁波,再通过接收天线接受地下介质的反射电磁波,最后将反射电磁波通过数字电路转换成数字信号记录到存储设备上。由于探地雷达具有探测精度高,速度快等优点,是工程无损探测的一种重要的手段。目前,意大利系统工程公司(IDS)、瑞典 MALA 公司、加拿大探测器及软件公司(SSI)和美国地球物理探测设备公司(GSSI)是探地雷达的制造商,他们都推出了用于道路检测的探地雷达产品,如图 2.1 所示。从 80 年代开始,经过三十多年的研究和开发,国内探地雷达产品已经发展成熟,逐渐形成了自己的体系,从信号采集到数据处理,均达到了世界领先水准,在国内外具有一定知名度。中国矿业大学(北京)资源与安全开采国家重点实验室、长安大学公路学院等单位在探地雷达的理论研究,仪器开发和应用推广等方面做出了重要贡献。目前进入市场的产品包括中国矿业大学(北京)研制的城市道路检测探地雷达系统,如图 2.2 所示,中国电子科技集团公司第二十二研究所(青岛)的 LTD 系列探地雷达等等。探地雷达技术与其他道路无损检测技术相比,具有检测速度快,检测精度高的优点,因此成为城市道路检测的主要手段。然而,探地雷达数据与其他地球物理探测数据一样,具有解释难度大、人工解释经验需求高、解释周期长的困难,这对探地雷达道路检测的应用和普及造成了一定困难。本文采用中国矿业大学(北京)的探地雷达仪器,研究其道路地下探测图像和地下异常识别方面的算法,降低数据解释的难度,缩短解释的周期。............ 3 道路病害物理模型设计与特征测量 .........173.1 物理模型的结构 ...... 173.2 物理模型的设计 ...... 203.3 物理模型的特征测量 ...... 233.3.1 地下空洞探测 ........ 233.3.2 密实度监测 .... 353.3.3 路面沉降监测 ........ 393.4 本章小结 .......... 424 城市道路地下异常识别算法 .....434.1 基于希尔伯特边际谱的地下异常识别算法 .......... 434.1.1 经验模态分解 ........ 434.1.2 希尔伯特谱和边际谱 .... 454.1.3 实验结果与分析 .... 464.2 基于核匹配追踪的地下异常识别算法 .......... 554.3 本章小结 .......... 675 城市道路地下异常度量算法 .....695.1 探地雷达数据预处理 ...... 695.1.1 探地雷达数据降噪 ........ 695.1.2 探地雷达数据偏移归位 ........ 765.1.3 探地雷达数据精细配准 ........ 815.1.4 探地雷达数据标间配准 ........ 965.2 基于周期探测的地下异常度量算法 ...... 995.3 城市道路地下病害探测应用 ........ 1065.4 本章小结 .........110 5 城市道路地下异常度量算法 以往城市道路地下病害解释只能在一次探测结果上进行,因其结果经常受到周围环境的严重干扰,解释结果存在误差。由于危及城市道路安全的地下空洞会随着时间不断恶化,需要对城市道路进行多次探测。通过比较不同时期探测数据的差异,识别城市道路地下病害。为准确比较不同时期探测数据的差异,需要对城市道路地下异常准确度量,确定城市道路地下异常的位置及范围。具体说来,首先通过迭代 Myriad 滤波降噪算法,降低探地雷达数据中的噪声干扰。接着通过克希霍夫积分偏移算法,对探地雷达探测图像中的信号进行偏移归位,从而有效提高位置和范围计算的精度。然后通过探地雷达图像精细配准算法或标间配准算法,将两幅图像的相似区域完全对应到相同位置。最后,选择适合的滑动窗口,通过相关性比较探地雷达数据的差异,度量地下异常的位置和范围。 5.1 探地雷达数据预处理在探地雷达图像数据的采集过程中,噪声干扰是难以克服的现象。随着探测深度的增加,反射信号的噪声也越来越明显[77-78]。噪声干扰按照来源区分,主要有以下几类:一、发射天线和接收天线之间存在耦合波干扰。即使采用了金属等屏蔽材料,依然不能保证发射天线的电磁波不会耦合到接收天线上;二、发射天线与发射电缆阻抗不匹配。发射天线与发射电缆连接时必须考虑阻抗匹配问题,否则会导致能量损耗,形成驻波干扰信号;三、天线发射信号与天线屏蔽罩之间的振荡干扰。对于宽频带天线而言,屏蔽罩难以保证对所有频率信号均良好屏蔽,往往会存在天线发射信号与天线屏蔽罩之间的振荡干扰;四、天线馈点反射信号干扰。馈点是天线与馈线的连接点,尽管可以采用吸收材料吸收部分反射信号,仍会有部分信号引起驻波干扰;五、发射脉冲信号的旁瓣干扰。理论上,发射脉冲信号不存在旁瓣,在现实中不可能只有主瓣信号,这些旁瓣信号也会引起干扰。 ........ 结论 本文以探地雷达探测图像为研究对象,重点分析了目前探地雷达用于城市道路地下病害探测的相关技术难点,重点突破探地雷达图像解释难度大、人力解释经验需求高、解释周期长的困难。重点围绕城市道路地下异常识别与度量的目标,建立城市道路地下空洞动态演化模型,研究基于探地雷达图像的异常识别、异常度量等关键问题。本文的主要工作可以归纳如下:一、通过城市道路地下病害物理模型实验,能够得到以下结论:当地下施工等扰动发生时,一方面由于扰动形成地下空洞,周围土体由于受到应力不均,引起密实度下降,从而引起路面沉降。另一方面,地下形成空洞会导致地下土体与空气接触,水分持续挥发引起密实度下降,进而引起路面沉降。二、通过城市道路地下异常识别算法研究,能够得到以下结论:1、由于地下空洞和金属管线两种异常均能引起希尔伯特边际谱的变化,因此基于希尔伯特边际谱的地下异常识别算法不仅可以用于地下空洞的探测,还可以用于金属管线的探测。基于希尔伯特边际谱的地下异常识别算法能够对单一的砂质粉土模型,通过边际谱的幅值大小估计密实度状况,进而发现地下异常。在城市道路地下探测的过程中,受到地下管线、构筑物等影响,通过上述算法估计的密实度可能存在误差。2、基于核匹配追踪的地下异常识别算法。通过小波核函数的占比估计密实度状况,从而发现地下异常。平均密实度的估计结果不会受到金属管线的干扰,对探测地下松散和空洞病害具有较好的应用前景。三、通过城市地下异常度量算法研究,能够得到以下结论:1、通过迭代 Myriad 滤波降噪算法,降低探地雷达数据中的噪声干扰,取得最佳信噪比为 28.357dB,与 Myriad 滤波降噪算法相比信噪比提升了 3.5dB。因此,相比于Myriad滤波降噪算法,迭代Myriad滤波降噪算法能够取得更好的滤波效果。2、通过克希霍夫积分偏移算法,能够对探地雷达探测图像中的信号进行偏移归位,当参数为 30 时,可以达到最佳的偏移效果。3、通过探地雷达数据精细配准算法或标间配准算法,保持数据的一致性。通过实验证明,精细配准和标间配准在丢道达到 90%的情况下,还原的探地雷达数据与原数据的相关系数仍然能够达到 0.9 以上。这就能够部分去除由于数据丢道、采集软件设置、含水率变化等因素引起的一致性差异。由于配准通过水平和垂直方向的差值实现,因此减少了对信号特征的破坏。..........参考文献(略)
本文仅供学习使用,并非商业用途,全文是针对哈尔滨工业大学刘文之的论文《移动机器人的路径规划与定位技术研究》进行提炼与学习。论文来源中国知网,引用格式如下: [1]刘文之. 基于激光雷达的SLAM和路径规划算法研究与实现[D].哈尔滨工业大学,2018.
相关坐标系转换原理已经在前一篇文章写完了,直接上转换方程。
这里他的运动模型选择的是基于里程计的运动模型,还有一种基于速度的运动模型,其实都差不多,整体思想都一样。里程计是通过计算一定时间内光电编码器输出脉冲数来估计机器人运动位移的装置,主要是使用光电码盘。根据光电码盘计算出此时轮子的速度,然后通过已知的轮子半径来获得单位时间 每个轮子 的位移增量。
高等数学可知单位时间位移增量就是速度,对速度在一定时间上进行积分就得到这一段时间所走过的路程。
根据上图,我们可以求出来机器人航向角角速度、圆弧运动半径和机器人角度变化量,由此可以解的机器人在当前时刻的位姿。
实际上也是有误差,所以单独依靠里程计会与实际结果产生较大误差,所以必须引入其他的外部传感器对外部环境的观测来修正这些误差,从而提高定位精度。
首先肯定需要将激光雷达所测得的端点坐标从极坐标、机器人坐标中转换到世界坐标中。
这张略过,暂时不需要看这个
路径规划算法介绍:
因为该算法会产生大量的无用临时途径,简单说就是很慢,所以有了其他算法。
了解两种代价之后,对于每一个方块我们采用预估代价与当前路径代价相加的方法,这样可以表示每一个路径点距离终点的距离。在BFS搜索过程的基础上,优先挑选总代价最低的那个路径进行搜索,就可以少走不少弯路。(算法讲解 )
在局部路径规划算法之中,我们选用DWA算法(dynamic window approach),又叫动态窗口法。动态窗口法主要是在速度(v, w)空间中采样多组速度,并模拟机器人在这些速度下一定时间内的轨迹。在得到多组轨迹后,对这些轨迹进行评价,选取最优的轨迹所对应的速度来驱动机器人运动。 state sampling就是按照之前给出的全局路径规划,无论是Dijkstra还是A* 都可以方便的得到state sampling,DWA算法所需要提前建立的action sampling有两种:
但是无论是什么情况,上述所做的工作就是把机器人的位移转化到世界坐标中来,而不是机器人坐标系。速度采样结束之后,只需要对小车的轨迹进行评判,就可以得到最优解了。下面介绍速度采样的办法。
对速度进行采样一般有以下三个限制:
当确定了速度范围之后,就需要根据速度分辨率来对小车速度离散化,在每一时刻将小车在不同直线速度角速度组合下所即将要行驶的距离都可视化出来。
其中每一条轨迹都是很多小直线连接起来的。
需要用评价函数来对上述轨迹进行选择,选择最适合的轨迹
最后为了让三个参数在评价函数里所发挥的作用均等,我们使用归一化处理来计算权重。
算法流程整体如下:
【从高科技战争特点看我国国防现代化】上个世纪80年代的美国远程突袭利比亚开创了高科技战争的先河,90年代的海湾战争又宣告了高科技战争的成形与完善。当美国大兵用伤亡区区几十人的代价取得整场战争胜利的时候;当伊拉克百万雄师被打的溃不成军的时候;当战争在几十天就完全终结的时候,我们心中除了无比的震撼,还有对自身安全的忧虑和对未来我军建设的思考。一、什么是高科技战争所谓高科技,在科学术语中侧重的是新科技、尖端科技的涵义,它与一般科技没有明确的时间界定,发明较早而技术复杂,能巨大改变原有做事方式、方法的,大大提高办事效率的技术,人们也愿意称之为高科技。而战争中的高科技我认为与一般的定义应有区别,它更应被定义为:改变作战模式,决定战争进程,提高战争效率,与高科技人才相结合,与战略敌军科技相比不至于落后的新型、可实用的技术。只有明确了这个定义,我们才能更明确的提出我国国防现代化的方向,走出许多认识上的误区。比如说:我国产的有些雷达,技术水平达到了国际先进,但在装备部队后发现,它们易于受潜在战略敌方的干扰而无法工作。那么这些雷达即使采用了高科技,却因为他作用与老式雷达一样,在敌军面前不堪一击,所以也不能称之为高技术(武器)。相反,我国的红旗2导弹,虽有50年左右的历史,但其与新的导弹技术相接合,加之指挥员战术思想的先进,即使在新的战争中亦能发挥有效的作用,那么它就应该被称之为高科技。总结:判断高科技必须以效果相结合,对敌人没用的科技即使水平再高也不能盲目崇拜。二、高科技战争的特点人员知识层次高。新战争的特点要求更多掌握现代科技知识的复合型人才。战争机器的日益复杂导致操作所需技能的大幅提高,仅仅拥有高科技武器装备还不能形成战斗力,还必须具备能熟练操作武器的战斗人员。这里有个现成的例子:据外电报道,台湾在买入幻影2000战斗机和F16-BLOCK5/10战斗机共250余架后,却因战斗机飞行员短缺而只能形成70%的战斗力,造成极大的浪费。想要拥有大量熟练的军人,首先要改革兵役制度,变义务兵役制度为义务兵役制度与招募兵役制度相结合,大力发展招募兵役制度。保留高素质的核心队伍,这样才能稳定、提高军队的战斗力。武器技术含量高,使用复杂。高科技武器的名称由来就是源于其使用技术的尖端性、复杂性。任何一种高科技武器都综合了多种先进技术,比如闻名于世的"战斧"导弹,它就集新材料科学、燃料科学、电子计算机技术、制导技术、卫星导航技术等于一身,不可谓技术不高。高科技武器的使用也相对复杂。因为高技术武器的制造与运用都结合了大量的尖端技术,其制造、维护、训练、使用对人员的要求也相对较高。操作人员少有不慎或武器某系统、零件的失灵都会造成武器的失效。一些报道曾经指出,我军的一些部队面对新型装备,竟然因恐惧其技术复杂而放置于仓库不敢使用,这也从侧面证明武器技术含量的提高和高技术武器渴求高技术人才。战争空间由三维向多维发展。战争已经不仅仅是海、陆、空三维。外层空间作战、电子战、心理战、网络战已成为现代战争不可或缺的部分。俄罗斯最近成立第四军--天战部队就是战争空间多维化的标志之一。高成本,低伤亡,高费效。不可质疑,高科技战争是高成本的战争,区区一个月的海湾战争,美国打完了近一年的军费,如果不是盟国的赞助,美国在经济上是经不起长期的高科技战争的。这也是高科技战争的一个致命的弱点,谁也不能长期承担。所以海湾战争后,美国努力发展低成本智能攻击武器,以避免打不起战争的尴尬境地。虽然如此,极低的伤亡,极佳的攻击效果仍然让高科技战争成为未来战争的发展必然。由此可见,"高技术战争",是高素质军事人才以技术含量高、造价高的武器在拓展的空间实施快速的打击,以达成高效率军事行动的战争。三、我国国防现代化与高科技战争(一)建立现代军事理论,构造现代国防体制要运用高科技构筑我国的现代化国防,首先一点就是必须建立科学、系统、具前瞻性、与国情、军情相结合的军事理论。在此军事理论的指导下有步骤的开展高技术的研究与运用,避免盲目与浪费。战争的胜利与否很大程度上决定于军事理论和战略指导思想的先进与否,我们必须深刻理解这一点。我军能在极度劣势下在朝鲜战争中战平(胜)美军,关键就在于我军军事理论非常成熟,通过了长期战争的检验。检验军事理论的正确性无非两个途径:战争检验和借鉴它国经验。鉴于我国的和平外交政策,我们无法通过前者来作出检验,那么我们只有靠观察外军战斗和跟踪新军事理论来进行判断,这之中又要考虑不同的国情和军情,逐步修正以求合理。(如此做法,必然会存在误差,所以我认为没有实战检验的我军军事理论是我军能否在未来战争中取胜的最不确定的因素。)(二)应重点发展以下科技:军用电子技术。在现代高技术武器的发展中,军用电子技术是其核心和基础,从近期发生的几场局部战争看,军用电子技术已从作战保障跃为作战手段,成为现代作战行动的先导,并贯穿于战争的全过程。军用计算机技术。现代战争的高速化,使武器装备的自动化控制显得极为重要,其中计算机扮演着重要的角色。随着信息技术的迅速发展及在军事上的广泛应用,未来战场将是一个由众多计算机通过有线或无线等方式,把遍布于陆、海、空、天、电诸领域的侦查监视、定位导航、火力打击、指挥控制、支援保障等系统乃至单车、单炮、单兵等基本作战单元连接在一起而形成的网络世界。敌对双方在计算机网络上的争斗将构成战争的主要内容。网络上的争斗不只是力量和智慧的较量,更是技术、技能和技巧的抗衡,正如有人所描述的那样,是"键盘上的战争"。军用探测技术。军用探测技术是高技术战争中制胜的重要因素之一,是航天技术与信息技术相结合的产物。目前,已发展和投入使用的军用探测技术有:1、雷达探测技术。它是利用物体对无线电波的反射特性来发现和测定目标位置的"无线电定位技术"。它广泛地应用于战场侦察、防卫、引导、火控等现代战争的各个方面。2、光学探测技术。它以光学成像技术为基础,主要用各种光学摄影机进行的战场照相侦察。3、地面传感探测技术。这是一种通过地面目标所引起的电、声、磁、地面振动和红外辐射等物理变化来确定目标的探测技术。4、夜视技术。是用于在黑暗环境中帮助人眼增强视觉的一种专门技术。在现代战场上广泛使用的夜视装置主要有:红外夜视仪、微光夜视仪、微光电视及热成像仪四种。未来军用探测技术的发展趋势是:空间上的立体化;速度上的实时化;手段上的综合化;侦察、监视与打击上的一体化。军用制导技术。精确制导武器的产生和发展,完全依赖于精确制导技术。因此,精确制导技术在整个现代军事高技术的发展中占据着十分重要的地位。目前,被开发和广泛使用的精确制导技术主要有:微波制导、红外制导、电视制导、毫米波制导、指令制导和地图匹配制导。精确制导技术将向高精度、抗干扰、全天候、智能化和低成本方向发展,特别是显现出综合化的趋势。如"毫米波辐射图象匹配制导"、"地貌景象匹配制导",以及"全球定位系统"(GPS),就是综合化的制导方式。科索沃战争中大出风头的"战斧"式巡航导弹以及JDAM炸弹等采用的就是"惯性导航+地形匹配+数字式景象匹配区域相关器"这一综合制导方式。隐身技术。隐身技术是指用来防止己方武器被敌方雷达、红外、声纳和可见光有效探测的伪装技术。它是近年来举世瞩目的一项重大军事技术,同激光武器和巡航导弹一起被誉为当今军事上的三大法宝。目前隐身兵器采取的主要隐身技术有:反雷达探测隐身技术、反红外探测隐身技术、反光学探测隐身技术和反声纳探测隐身技术等。军用激光技术。激光技术是人类二十世纪六十年代的重大科学技术成就,它是光学、光谱学与电子学发展到一定程度以及这些学科相互结合的必然产物。比较成熟或影响较大的军事应用主要有:1、激光制导;2、激光雷达;3、激光测距;4、激光通信;5、激光对抗;6、激光模拟;7、激光武器。值得注意的是,美国经过近年来不断加大对军用激光技术的投入,以经把体积庞大,实验性的激光武器成功的转变为可安装在大型武器平台上,具有一定实战功能的武器。按此发展速度,再不远的将来,激光武器很可能成为一个改变战争模式的决定性武器,而导弹将因无法突破激光防御而不得不退出历史舞台。军用智能技术。随着军用智能技术的发展,各种智能化武器将对未来作战产生深远影响。目前,不仅在专家鉴定系统(TECA)、自然语言理解、语言识别和视觉处理等基础研究方面取得突破性的成果,而且还研制成功了大量的智能武器系统,如智能导弹、智能地雷、智能坦克以及智能机器人等,形成了一个庞大的智能武器家族。军用航天技术。航天技术广泛运用于军事领域,使武器装备的效能发生了革命性的变化。它的发展主要集中在保障军事行动的军事卫星、进攻性与防御性空间武器,以及多用于载人军事航天系统三个方面。美国空军司令部和航空航天局正在为军事、科研和商业上应用联手开发进入太空技术。目前,美国空间司令部已接近于能够部署一种灵活有效的带翼航天器,支援太空军事行动。太空军事化是一个噩梦,一个已经开始的噩梦。(二)培养高科技人才在高素质新型军事人才的培养上必须树立超前意识,坚持人才培养先行。要紧紧抓住人才质量建设这个根本,加大人才培养的力度,要培养大批懂得高科技知识的指挥人才,培养大批能够担当打赢未来高技术局部战争重任、经得起各种风浪考验的高素质新型军事人才,实现我军人才质量建设的整体性飞跃。我军有在战争中培养人才的传统和经验,但在新的年代,我们培养军事人才的途径更多的是依靠体制。必须建立这样一个完备的体制:①机会平等,公平竞争。这是一个高效培养体系的共同特点,这样才能从人群中选拔出真正的人才,才能促进全面的提高。②开放灵活,鼓励创新。绝对不能闭门造车,要积极吸收国内外的新经验、新方法;让人才走出国门,让人才与世界接轨。③系统全面,高低有序。要给每以个想晋级的军人以机会,培养高低各类人才;培养体系要由低到高,逐渐深入。④保持压力,终生培训。结合新的要求,对已完成培训的各阶段军事人员进行再培训,保持合适的淘汰率,促使军事人员不断提高;培训要在服役期内全程进行,保障部队战斗力。对军事人才的基本要求:爱国;强壮的身体和过硬的军事知识;健康的心理和强健的神经;积极上进,能自我提高。(三)加强武器管理"管理"就是国防科研和军工生产管理,只有搞好手中武器装备的管理,才能形成战斗力。什么是战斗力?即人、武器加上相互间的结合。要搞好管理,就要提高官兵与武器的结合能力。如何管理?首先,要让武器的研制体现以人为本的原则,不能让人的体力和脑力负担过重,要让士兵爱上武器而不是相反。第二,武器的维护保养和更新换代要科学、经济的进行。第三,加强训练,让士兵熟悉武器的性能和操作技巧。自20世纪90年代,全军上下掀起了一个轰轰烈烈、扎扎实实的学习现代科技特别是高科技知识的热潮,全军科技大练兵,一切为打赢,通过科技练兵,提高了官兵素质。四、反思与总结成功的高科技战争需要多种因素的完美结合,它需要有新思想、新技术、优秀人才和先进的管理。这些资源中,新技术以及其在战争中运用带来的巨大资金、物资消耗是我军面临的最大难题。国力现状决定了我国不可能在该领域投入更多的资金,如何利用有限的资源完成我军的现代化任务是我们的最艰巨的任务。结合外军,特别是美军军事发展的经验,我认为要着重做好以下几点:坚持有所为,有所不为。我们不搞全球扩张,不搞军事讹诈。所以我们无须航母(暂时)、全球监视系统和全球定位系统(需要区域监视和定位系统)、海外军事基地……。但我们必须在事关战略平衡的洲际导弹、核潜艇、战略防空系统以及决定战争胜负的精确制导武器、先进战斗机等战术武器上保证技术不致落后。军民结合,降低成本。美军成功降低高科技武器成本的方法是高科技军民通用,技术广泛和大量的运用使武器的单位成本大大降低。如果说以前美军在大量使用精密武器时心里还有所经济顾虑的话,现在的美军完全可以率性而为了。我军也应走同样的道路,让民用企业也参与技术研究,让军事技术民用化,提高技术的通用性和可应用性,降低使用成本。取消军工企业的生产垄断,让私营企业和外资企业参与研制和生产,引入竞争机制,提高投资效率,降低生产成本。综上所述,高科技战争并不可怕,它对我军现代化建设既是挑战,也是机遇。只要我们能运用国力快速上升的有利时机,把握全局,科学计划,全力而为,就必然能赶上高科技浪潮,建成一只现代化的军队。
设计主题是指你这次设计的概念、创意、设计方面的主题关键词。而标题是针对你整个毕业论文的,可以侧重余你此次设计的创意等方面,也可以说你通过这次设计对整个服装设计产生的新想法,你的心得体会等等都可以。
一个论文主题下可以有N个论文题目,就像是课题下的子课题一样,比如:以下的20个论文题目都隶属于国际贸易理论与政策问题的论文主题1、当代国际分工与贸易格局的分析2、国际贸易中的“碳”不平等交换理论与实证分析3、产业内贸易问题研究【可以分国别或者地区】4、当代国际贸易【包括服务贸易】的发展特征与趋势研究5、世界市场价格的变化和趋势6、对外贸易依存度及其应用研究7、贸易条件及相关问题的研究与分析8、比较利益说的现代分析9、国家竞争优势理论的分析与评价10、新贸易理论的分析与评价11、战略性贸易政策及其适用性研究12、幼稚工业保护与发展中国家工业化问题研究13、贸易自由化与世界贸易体制研究14、贸易保护政策选择的理论分析15、关于日美贸易摩擦中汇率问题的思考16、动态比较优势理论对服务贸易竞争力提升的启示及策略17、制度差异视角下的国际贸易摩擦分析18、服务贸易竞争力内生性因素的实证研究19、WTO争端解决机制研究【包括案例分析】20、战后GATT/WTO与IMF对国际贸易的影响
课题和论文的区别在于评职称成果、研究对象、表现方式的不同。
1、课题和论文是两种不同的评职称成果,课题属于业绩成果,论文属于论文论著或者学术成果。论文一种内容表现的形式,是体裁。课题是项目,是为了解决问题研究问题的题材。课题可以用很多表现形式来结题。
2、课题和论文研究的对象不同。论文是以论点为核心,可以有十分广泛的内容,往往是对成功尝试的总结或者理论升华。课题往往是一个项目,解决的问题都是待解决的,具有超前性,课题往往不知道有没有期待的结果。
3、课题和论文的表现方式不同。课题结题方式可以是论文表现,也可以是专著,也可以是专利,也可以是报告。论文就是一种学术表现形式,论文往往直接发往期刊杂志,以杂志发表为完成成果。
地质雷达在水利工程质量检测中的应用1 前言 地质雷达作为近十余年来发展起来的地球物理高新技术方法,以其分辨率高、定位准确、快速经济、灵活方便、剖面直观、实时图象显示等优点,备受广大工程技术人员的青睐。现已成功地应用于岩土工程勘察、工程质量无损检测、水文地质调查、矿产资源研究、生态环境检测、城市地下管网普查、文物及考古探测等众多领域,取得了显著的探测效果和社会经济效益,并在工程实践中不断完善和提高,必将在工程探测领域发挥着愈来愈重要的作用。而地质雷达技术用于堤防隐患的探测尚属初步阶段,通过广大物探技术人员的共同努力,达到了解和掌握不同隐患类型在雷达图像上的反映特征,在不断总结探测经验的基础上,提高异常的判断能力和精度,较确切地推定堤防工程隐患的性质和位置,以便指导有关管理单位加强堤防工程重点部位的维护和防范,提高和巩固堤防工程的运行周期和防洪能力。本文以永定河堤防工程护砌质量检测为实例,说明地质雷达技术在堤防工程探测中的应用情况,以此与同行进行切磋,推动堤防工程探测技术的发展,不妥之处,敬请批评指正。2 基本原理地质雷达与探空雷达相似,利用高频电磁波(主频为数十数百乃至数千兆赫)以宽频带短脉冲的形式,由地面通过发射天线(T)向地下发射,当它遇到地下地质体或介质分界面时发生反射,并返回地面,被放置在地表的接收天线(R)接收,并由主机记录下来,形成雷达剖面图。由于电磁波在介质中传播时,其路径、电磁波场强度以及波形将随所通过介质的电磁特性及其几何形态而发生变化。因此,根据接收到的电磁波特征,既波的旅行时间(亦称双程走时)、幅度、频率和波形等,通过雷达图像的处理和分析,可确定地下界面或目标体的空间位置或结构特征。雷达波(电磁波)在界面上的反射和透射遵循Snell定律。实际观测时,由于发射天线与接收天线的距离很近,所以其电磁场方向通常垂直于入射平面,并近似看作法向入射,反射脉冲信号的强度,与界面的反射系数和穿透介质的衰减系数有关,主要取决于周围介质与反射目的体的电导率和介电常数,对于以位移电流为主的介质,既大多数岩石介质属非磁性、非导电介质,常常满足σ/ωε<<1,于是衰减系数(β)的近似值为:既衰减系数与电导率(σ)及磁导率(μ)的平方根成正比,与介电常数(ε)的平方根成反比。而界面的反射系数为:式中Z为波阻抗,其表达式为:显然,电磁波在地层中的波阻抗值取决于地层特性参数和电磁波的频率。由此可见,电磁波的频率(ω=2πf)越高,波阻抗越大。对于雷达波常用频率范围(25~1000MHz),一般认为σ<<ωε,因而反射系数r可简写成:上式表明反射系数r主要取决于上下层介电常数差异。应用雷达记录的双程反射时间可以求得目的层的深度H:式中:t为目的层雷达波的反射时间;c为雷达波在真空中的传播速度(0.3m/ns);εr为目的层以上介质相对介电常数均值。3 工程概况北京市界内永定河左、右堤防于清朝乾隆年间修筑,后经数次维修和加固形成现有规模,主体为梯形,顶宽约10m,可见堤高约5~6m,堤内坡坡度为1:1.5~1:2.0,外坡相对较缓为1: 2.0~1: 2.5。堤身为人工堆积,主要由粉细砂(中下游段)、卵砾石(上游段)组成。介质构成复杂多变,分布不均,且处于包气带中,极为干燥。堤基为第四系全新统地层,岩性以粉细砂为主,下游段出现黑色淤泥质粘土夹层,层厚约0.7~2.0m。地下水位埋深(自地表计):卢沟桥附近约20.0m,至下游逐渐变浅,达省/市界附近(石佛寺)一带约2.0m。永定河卢沟桥下游至省/市界左、右堤防共划定险工段12处23段,分布在左堤约60Km和右堤约30Km范围内,其险工段内坡为浆砌石(厚约40cm——原设计标准)结合铅丝石笼构成的护砌,并于1964~1989年间营建,浆砌石护坡除可见堤身部分露出外,其余部分与铅丝石笼水平护底均埋于河滩滩地以下,一般为3.0~5.0m,外铺8.0m的铅丝石笼护底。这些险工段在历史上均有决口或抢险加固的记载。为满足北京市对永定河防洪设计的需要,保证该堤防渡汛万无一失,故进行地球物理勘探工作,以检测堤防工程的护砌质量,便于99年6月份之前进行加固处理。4 测试技术及资料处理为判断险工段堤内坡护险浆砌石质量的优劣,沿内坡坡脚布置一条雷达探测剖面,并按其走向连续测试。外业施测使用瑞典MALA地质仪器有限公司生产的RAMAC/GPR地质雷达系统,天线的中心频率为250MHz,收发天线的间距为0.6m。实测采用剖面法,且收发天线方向与测线方向平行。记录点距为0.2m,采样频率为3893MHz,单一记录迹线的采样点数为512,迭加次数为16,记录时窗为180ns,若取堤身土体的雷达波速为0.08~0.10m/ns,表层浆砌石的雷达波速为0.10~0.12m/ns,综合考虑该地层剖面特征,选取雷达波速中值为0.10m/ns,则此时该雷达系统的最小纵向分辨率为8~10cm。雷达资料的数据处理与地震反射法勘探数据处理基本相同,主要有:①滤波及时频变换处理;②自动时变增益或控制增益处理;③多次重复测量平均处理;④速度分析及雷达合成处理等,旨在优化数据资料,突出目的体、最大限度地减少外界干扰,为进一步解释提供清晰可辨的图像。处理后的雷达剖面图和地震反射的时间剖面图相似,可依据该图进行地质解释。5 成果分析地质雷达资料的地质解释是地质雷达探测的目的。由数据处理后的雷达图像,全面客观地分析各种雷达波组的特征(如波形、频率、强度等),尤其是反射波的波形及强度特征,通过同相轴的追踪,确定波组的地质意义,构制地质——地球物理解释模型,依据剖面解释获得整个测区的最终成果图。地质雷达资料反映的是地下地层的电磁特性(介电常数及电导率)的分布情况,要把地下介质的电磁特性分布转化为地质分布,必须把地质、钻探、地质雷达这三个方面的资料有机结合起来,建立测区的地质——地球物理模型,才能获得正确的地下地质结构模式。雷达资料的地质解释步骤一般为:⑴ 反射层拾取根据勘探孔与雷达图像的对比分析,建立各种地层的反射波组特征,而识别反射波组的标志为同相性、相似性与波形特征等。⑵ 时间剖面的解释在充分掌握区域地质资料,了解测区所处的地质结构背景的基础上,研究重要波组的特征及其相互关系,掌握重要波组的地质结构特征,其中要重点研究特征波的同相轴的变化趋势。特征波是指强振幅、能长距离连续追踪、波形稳定的反射波。同时还应分析时间剖面上的常见特殊波(如绕射波和断面波等),解释同相轴不连续带的原因等。下部架空时的图像,该剖面第三反射同相轴自剖面点9.4m处断开,形成“背斜”状的强反射层,此现象延续到剖面点12.8m处,此段浆砌石与下部土体分离导致架空,其范围与已知情况吻合。 通过雷达测试成果的地质解释共圈定出73处浆砌石存在不同程度的隐患或质量较差,这些隐患的类型一般为:①浆砌石厚度较薄;②浆砌石与下部土体分离形成架空;③浆砌石胶结不良或松散;④浆砌石出现裂缝等不良现象。 护砌整体质量较差的堤段多为年久失修严重,浆砌石与下部堤身土体接触差,多形成架(悬)空状态,造成护砌断裂、塌陷等不良现象较普遍,且多具一定规模。而造成上述现象存在的原因,笔者分析后认为浆砌石面存在许多缝隙,且砂浆质量差、少浆,下部又无防渗护层,堤身土体多由粉细砂组成,经降水入渗,粉细砂局部被冲刷淘失,在砌石与堤身土体之间形成空洞,并有继续扩大发展之趋势。该物探成果经开挖验证(见图4——开挖照片),完全符合客观实际,受到了甲方的赞誉。6 结语地质雷达以其高效快速、高精度在护险工程探测中能够发挥重要作用,取得了良好的应用效果,且对浅层或超浅层的工程探测中有着十分广阔的应用前景,然而地质雷达的探测深度和精度与所采用的天线频率有很大关系,天线的频率越低探测深度越大,则精度越低;而天线的频率越高,探测深度越浅,则精度越高。本次采用中心频率250MHz的天线进仅供参考,请自借鉴。希望对您有帮助。
稀疏成份分析及在雷达成像处理中的应用稀疏成份分析是一种新兴的信号分析方法。它以过完备词典为基础,能从有限的观测数据中获得信号的稀疏表示,有效地挖掘信号的自然属性和本质的驱动源,提高变换域的分辨率,为信号处理提供了有力的工具。作为信号处理的重要组成部分,雷达成像技术无论在军事还是民用上都有巨大的应用潜力。雷达成像本质上就是一个信号表示过程,由于高频区雷达目标散射行为具有局部特性,用稀疏成份分析方法能提高雷达图像的质量,有利于图像分析和目标识别。针对雷达成像的应用背景,本文研究了稀疏成份分析中稀疏性度量函数构造的一般准则等理论问题,以及基于稀疏成份分析的雷达成像算法,包括一维距离像、二维逆合成孔径雷达成像和多频段雷达信号综合技术等。研究了稀疏成份分析中度量函数的构造和算法分析等理论问题。利用稀疏成份分析方法研究了高分辨一维距离像稀疏表示的原子构造与相关算法,并对算法的参数估计性能进行了理论分析。研究了基于稀疏成份分析的逆合成孔径雷达成像算法。根据雷达目标散射信号的稀疏表示模型,研究了多频段多分辨雷达信号综合技术。根据雷达目标的理想点散射体模型和几何绕射模型,分析了多频段雷达回波观测信号的联系与差别,并利用稀疏成份分析方法提出了高分辨一维距离像的多频段信号综合成像技术。针对多频段窄带组网雷达检测海上目标的应用背景,根据雷达目标在低分辨回波中的稀疏分布特性和海杂波的分布特性,提出了多雷达距离分辨率匹配处理技术,提高了雷达回波的距离分辨率并实现了多雷达距离分辨率的匹配统一,为多频段窄带雷达信号综合提供了统一的基础。
稀疏成份分析及在雷达成像处理中的应用稀疏成份分析是一种新兴的信号分析方法。它以过完备词典为基础,能从有限的观测数据中获得信号的稀疏表示,有效地挖掘信号的自然属性和本质的驱动源,提高变换域的分辨率,为信号处理提供了有力的工具。作为信号处理的重要组成部分,雷达成像技术无论在军事还是民用上都有巨大的应用潜力。雷达成像本质上就是一个信号表示过程,由于高频区雷达目标散射行为具有局部特性,用稀疏成份分析方法能提高雷达图像的质量,有利于图像分析和目标识别。针对雷达成像的应用背景,本文研究了稀疏成份分析中稀疏性度量函数构造的一般准则等理论问题,以及基于稀疏成份分析的雷达成像算法,包括一维距离像、二维逆合成孔径雷达成像和多频段雷达信号综合技术等。研究了稀疏成份分析中度量函数的构造和算法分析等理论问题。利用稀疏成份分析方法研究了高分辨一维距离像稀疏表示的原子构造与相关算法,并对算法的参数估计性能进行了理论分析。研究了基于稀疏成份分析的逆合成孔径雷达成像算法。根据雷达目标散射信号的稀疏表示模型,研究了多频段多分辨雷达信号综合技术。根据雷达目标的理想点散射体模型和几何绕射模型,分析了多频段雷达回波观测信号的联系与差别,并利用稀疏成份分析方法提出了高分辨一维距离像的多频段信号综合成像技术。针对多频段窄带组网雷达检测海上目标的应用背景,根据雷达目标在低分辨回波中的稀疏分布特性和海杂波的分布特性,提出了多雷达距离分辨率匹配处理技术,提高了雷达回波的距离分辨率并实现了多雷达距离分辨率的匹配统一,为多频段窄带雷达信号综合提供了统一的基础。
北京理工大学雷达技术研究所隶属于北京理工大学信息与电子学院,由毛二可院士于1964年创立。在学校历届领导的关怀和指导下,雷达所围绕雷达电子技术,经过四十多年的奋斗和发展,在航空、航天、导航、制导等诸多领域取得了一系列科研成果,完成了多项全国第一的科研任务。我所曾获国家科技成果奖6项,省部级奖20余项,在国内外期刊上发表EI论文800多篇,SCI论文100余篇。雷达技术研究所目前主要研究方向和领域包括:新体制雷达系统、高速实时信号处理、感知探测与控制、航天遥感电子技术、卫星导航系统、电子对抗、图像信号实时处理等。在当今世界以研发各种新体制雷达为主导的科技前沿中,可以说已经有了中国雷达科技工作者的一席之地。毛院士不仅自己长期追踪着国际新体制雷达的前沿阵地,而且像航船的舵手那样,把握着整个创新团队的发展方向。这个方向,从学术和战略而言,就是研发各种新体制雷达;从学风和战术来论,是结合国家需求进行系统和技术创新。毛院士曾多次阐述他的观点,国内的几个大的雷达研究所的强项在雷达的大工程、大机械件方面,但这并非高等学校的优势。高等学校如何在强手如林的同行竞争中生存和发展,如何为提高国家的自主创新能力做出贡献,就要发挥智力密集型的优势,在研制新体制雷达上下功夫。京理工大学雷达技术研究所毛二可创新团队致力于在雷达技术领域把高水平的学术研究与国家和产业的重大需求结合起来,把研究前沿技术与培养优秀学生结合起来,努力为国家和社会输送优秀人才和高水平科研成果。