首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

发表微生物新种的期刊

发布时间:

发表微生物新种的期刊

主要是你想投哪个级别的吧。省级,国家级。核心。外文期刊。有好多呢

国内生物类期刊中,排在第一的《Cell Research》杂志已经成为了本领域较为有影响力的期刊,不少著名学者都选择将新成果发表在该期刊上,其影响因子自突破10之后,今年又稳步上升至了12.413,这份期刊于1990年创刊,2001年首次获得影响因子,这份杂志由中国科学院上海生命科学研究院生物化学与细胞生物学研究所与中国细胞生物学学会共同主办。 同时,中科院的另外一份期刊:MOL PLANT(分子植物) 也升至6.337,排在第三,据报道这两份期刊SCI影响因子位于同学科前10%,另外中科院还有《国家科学评论》《中国病毒学》今年上半年被SCI正式收录。 MOL PLANT(分子植物)创刊于2008年,由中国科学院主管,中国科学院上海生命科学研究院植物生理生态研究所和中国植物生理与分子生物学学会共同主办,中国科学院上海生命科学信息中心承办。目前这份期刊在植物科学领域期刊中已位列亚洲第一,在全球植物生物学领域研究类期刊排名也很靠前,前面的几份期刊是Plant Cell, Plant Physiology, New Phytologist等,可见这一期刊已跻身国际植物学领域顶级期刊行列。 还有遗传学报(J GENET GENOMICS)也是发展迅猛,影响因子从去年的2.924上升至3.585,这份期刊由中国遗传学会,中国科学院遗传与发育生物学研究所主办,主要刊载动物、植物、医学和微生物等遗传学领域的研究论文,也包括该领域中的最新技术和最新方法。大

我是做环境微生物的,据我所知, 好的期刊有这一些 ISME>EM>AEM>FEMS MICROBIAL ECOLOGY=AMB .后两个稍微差一些,没那么多的名气. 不过EM的文章质量这两年有超过ISME的趋势, 影响力: JB=AEM>EM=ISME>FEMS seriers>AMB,其余非主流

呵呵,就个人的研究领域,关注点可能不一样。相对而言,在我所研究的领域,从1991年以来的EST中的相关文献每期都基本收集,认真阅读,再多看看其他杂志发表的一些文献,ACS本身的几个杂志中的文献,理论深度都要比EST要深一些。看一下,进行一下比较就大概了解了。 EST本身认可的文章,就是表征手段比较新,尽量贴近工程实践(EST不喜欢以模拟废水等进行实验所得出的数据),理论的深度提炼,不符合EST的录稿取向。 至于发表EST文章的事情,请到中国科学研生态中心去学习或者工作一段时间就知道了。表征手段及科研氛围都非常适合这里的学生、老师发顶级文章,亚洲唯一的EST编辑部在生态中心,我们都是把要发到EST的文章请EST编辑部的老师(很年轻)先看一看,录取率要高一些。仅水开放重点实验室2008年发表EST文章8篇(不含正在审稿的),生态的江老师是EST的编辑,他和他的学生就发的更多。 也没什么了不起的,只要努力,大家都一样。

applied and environmental microbiology杂志好像是周刊 or 半月刊之类的,美国微生物协会(ASM)主办的一杂志。这个杂志貌似 侧重于环境和生态等微生物 方面,而guodanni站友应该是检验科的,这就要看看他实验做的内容属于哪一块了;若是靠近病源微生物及耐药等方面,则这个杂志不合适。我曾经在这个杂志上发表过一短篇,感觉难度挺大的。 SCI杂志千万种,档次也各不相同;我是从事临床微生物的,这个领域主流杂志好像不是很多,知道的就是美国ASM主办的AAC,JCM;英国的JAC,这些都是4分往5分跑的;其他就是稍差一些了。今天手头刚好没有资料,不然就给多找几个杂志了。 另外,1分左右的微生物方面的SCI杂志很多,也很容易发表,楼主不妨自己google一下!

molecular ecology:太难了 要求非常高

1.文章引用率高 2.接收速度快,一个月左右就可返修,要是急着发的话这个杂志可以选择 3.微生物领域比较认可

该杂志很要求创新性 我投过两次。审稿时间大概都不到2个月,第一篇拒了,说没有新意,第二篇要求大修,而且改为短篇,这把我也改的够呛,我是拖了一个月才才开始改,在二个月的截止日搞到凌晨3点才投完,谁知第二天就接受了。总体感觉文章要有创新点,有别人没有发现过的东西,文章数据量的倒不是关键问题,我的第一篇数据量就很大,但也没有用。第一篇后来被JAM接受了,当然还是补了一点实验,补充的实验其实如果再投AEM可能也有戏,但是由于毕业的时间限制,所以不敢再投了。

9.4,杂志编辑和我联系:“We need more than 3 reviewers to make a final decision.”需要我再推荐1个以上的审稿人 9.13,我试着给杂志编辑发了一封邮件,咨询稿件处理的结果,9.14,编辑给出了决定:“The reviewer have recommended publication, but also suggest major revisions to your manuscript. Therefore, I invite you to respond to the reviewer' comments and revise your manuscript.” 三个审稿人给出的修改意见挺多的,其中一个从摘要到讨论,每个部分都提出了问题,幸好这些都不是太尖锐的问题,我根据他们的修改意见,一一进行了修改,并保留了一个具有修改标志的版本(这样可以看出我对文章的修改之处),然后给每个审稿人写了一封信,对每一个问题进行了回答。 9.26,通过杂志系统上传了最终的修改稿,并给编辑写了一封信,告诉他我已经按照审稿人的要求修改好了,并发送了具有修改标志的文章和给审稿人的信。 9.27,杂志编辑就给出了接受通知:“It is a pleasure to accept your manuscript entitled "xxxx" in its current form for publication in "Applied Microbiology and Biotechnology".”。

2014.07.07投稿Applied Microbiology and Biotechnology, 当天让修改内容,2014.07.15修改后重新上传 2014.07.16让修改内容 2014.07.18修改后重新上传,立刻变为with editor 2014.07.22, under review, 后时间又改为了08.05, 后时间又改为了08.11 2014.08.28审稿意见为大修,但是只有一个审稿人,而且,他的审稿意见说是大修,但其实他是想让补充一个实验,可实际上是根本不需要的一个实验,直接说明白就可以。整体来看小修都算不上。 2014.08.29将修改稿上传 2014.09.02另外一个审稿人的意见返回,应继续修改,属于小修 2014.09.03将稿件送语言公司进行修改 2014.09.11语言修回,重新将修改稿上传,很快退回,要求修改一些小格式 2014.09.12修改后将修改稿重新上传,当天with editor, 后来with editor的时间又改为了2014.09.13, 在2014.09.13的时间,状态变为decision in process, 在2014.09.15文章最终accept。 投稿中,投稿两三天的样子就修回了格式,一连修回了两次,效率很高,选的是Akira Kimura编辑,不晓得是不是送到她那里的,修回没两天就under review了,很开心!希望送审的编辑能够手下留情啊,马年马上发文章啊!上帝保佑!

AEM, JB,07年之后,他们的影响因子就从来没超过4分,所以没有掉到4以下之说. 之前我也很看重AEM,后来跟领域内小牛聊天,人家都是把最垃圾的论文丢到AEM. 他说5分以下的杂志,几乎每区别,可信度都不高. 后来投稿的时候,果断投AMB了,无他, AMB反应快,不收钱. 投AEM速度要慢,还收钱 .

各大期刊关于微生物的新闻

《环球科学》杂志是《科学美国人》中文版,该杂志最新一期评出了2007十大科学新闻,“人造生命诞生”位列榜首。 NO.1 人造生命诞生 2007年6月21日,美国生物学家克雷格·文特尔(Craig Venter)在《科学》杂志上介绍说,他的科学研究团队首次实现了不同物种间完整基因组的移植,向从零开始构建简单的基因组迈出了关键一步。10月初,文特尔再次宣布,他的团队化学合成了人工染色体,并成功移植到了另一个没有染色体的细胞中,创造出了有史以来第一个“人造生命”(Artificial Life)。研究人员可以定制人工染色体,让这些人造微生物具有各种用途,比如制造生物燃料、清理有毒废物,清除二氧化碳等。人造微生物的出现,是生物工程发展的一个里程碑。 NO.2 用人体皮肤细胞制造出“类胚胎干细胞” 2007年11月20日,日本京都大学的山中伸弥(Shinya Yamanaka)和美国威斯康星大学的詹姆斯·汤姆森(James Thomson)分别在《细胞》和《科学》杂志网络版上撰文,宣布他们各自领导的研究小组成功地把人体皮肤细胞,改造成类似胚胎干细胞的“万能细胞”。两个研究小组利用相同的基因重组技术,向皮肤细胞插入4个基因,将它们改造成了所谓的“iPS细胞”。这些细胞的功能与胚胎干细胞十分相似,能够培育成各类人体组织器官。这种技术不仅能避免因利用人类胚胎进行干细胞研究引发伦理争议,它的高效、便利也为进一步医学应用打开了大门。科学界评价这一突破为生物科学的里程碑,同时意味着风靡一时的胚胎干细胞克隆技术可能退出舞台。 NO.3 嫦娥一号升空,亚洲向月球进军 2007年10月24日,中国第一颗月球探测卫星“嫦娥一号”发射升空。11月26日,“嫦娥一号”在绕月轨道上拍摄的首张月球图像公布,表明卫星各项科学设备工作正常。“嫦娥一号”将在绕月轨道上进行为期一年的科学探测,对月面地形地貌、月球物质分布、月球土壤厚度及地月空间环境展开观测研究。在此之前,日本“月亮女神”探测器也于9月14日成功发射,并顺利进入绕月轨道。这两项月球探测任务的开展实施标志着,亚洲开始向月球进军,参与到全球探月热潮之中。 NO.4 太阳系外发现“第二地球” 2007年4月24日,欧洲南方天文台的天文学家宣布,他们在距离地球20.5光年的红矮星Gliese581周围,发现了迄今与地球最为相似的太阳系外行星。这颗行星的质量约为地球的5倍,表面温度可能介于0℃~40℃之间,恰好允许液态水存在于它的表面。这是科学家在太阳系外首次发现可能适合人类居住的行星。 7月12日,欧洲航天局和英国伦敦大学学院的天文学家宣布,他们在距离地球60多光年的另一颗行星的大气层中,发现了水蒸气的踪迹,不过这颗行星向阳面的表面温度高达2,000℃以上,不适合人类生存。这是天文学家首次确认太阳系外行星上有水存在。这些发现让致力于寻找外星生命的科学家们看到了希望。 NO.5 IPCC确认是人类导致气候变化,各国制定应对方案 2007年2月2日,联合国政府间气候变化专门委员会(IPCC)在法国巴黎发布第四份全球气候变化评估报告,称气候变暖已经是“毫无争议”的事实。科学家们比以往任何时候都更加确信,是人类影响了气候,而且人类导致的气候变化正在进一步发展。不过,人类的未来在很大程度上,仍然掌握在我们自己手里——变化的程度取决于人类如何对待温室气体的排放。 12月15日,联合国气候变化大会通过决议,制定了“巴厘岛路线图”,决定在2009年前就应对气候变化问题的新安排举行谈判。“路线图”还为谈判确立了明确议程,具体议题包括:适应气候变化消极后果的行动,减少温室气体排放的方法,广泛使用气候友好型技术的方法,以及对适应和减缓气候变化措施进行资助。 NO.6 发现构成DNA的第六元素 2007年8月26日,上海交通大学微生物代谢重点实验室宣布,他们发现DNA中存在第六种元素——硫。DNA是生命的物质基础,科学界以往认为,它是由五种元素——碳、氢、氧、氮和磷构成的。该实验室的科学家发现,许多微生物合成DNA后,还会进行一种叫“硫修饰”的工作,它们依靠基因组中的硫元素,改变遗传特性。这一发现开创了分子生物学的新领域——DNA硫修饰的研究,引起了国际上的高度重视。如果能够干扰这种“硫修饰”,就可能改造病菌,化解它们对人体的危害。药物的研发也可借鉴大自然中硫修饰的过程,通过基因药物,对癌症、艾滋病患者的DNA进行人工修饰,治疗疾病。 NO.7 人类癌症基因组计划启动 2007年3月8日,英国威康信托基金会桑格中心(Wellcome Trust Sanger Institute)的科学家在《自然》杂志上撰文表示,他们启动了一项大规模的癌症基因破译计划,目标锁定在致死率最高的肿瘤身上。就过去的研究来看,肿瘤的发生绝大多数和基因的变化有关,不过影响蛋白质活动的基因太多,不进行深入的序列分析,很难找到这些影响颇大却又很微小的变化。此次计划中,科学家将首先分析与200个特定肿瘤相关的500个目标基因。 科学家认为,测定肿瘤基因的序列并不困难,不过要找出真正引发癌症的关键基因变化,却是一个难度很高的工作。他们希望通过这样的测序计划,可以对未来找到关键的起始基因变化提供更多可用的线索。 NO.8 个人基因组时代来临 2007年5月31日,美国454生命科学公司向“DNA之父”沃森赠送了一张DVD光盘,其中记录了沃森本人基因组的所有信息,使他成为世界上首位获得自己基因组图谱的人。沃森的基因图谱绘制采用了新的测序技术,不但极大地提高了效率,而且只花费了不到200万美元。随着测序价格的进一步下降,个人基因组时代将全面来临。 10月11日,我国深圳华大基因研究院召开新闻发布会,宣布他们成功绘制出第一幅完整的中国人基因组图谱(又称“炎黄一号”),这是第一个亚洲人全基因序列图谱。科学家认为,这项基因组科学领域里程碑式的科学成果,对于中国乃至亚洲人的DNA、隐形疾病基因、流行病预测等领域的研究具有重要作用。 NO.9 在土卫六泰坦上发现液态湖泊 2007年1月4日,《自然》杂志封面文章公布可信的证据,表明土卫六泰坦上存在液态甲烷海洋或湖泊。科学家在20多年前就预测,甲烷能够以液态形式存在于泰坦的表面。2006年7月22日,美国航空航天局的“卡西尼”探测器飞掠泰坦,获得的雷达成像数据为泰坦上大量液体的存在提供了可信证据。这些液体在泰坦表面聚集成湖泊和海洋,使泰坦成为地球以外迄今发现的唯一一颗仍存在活跃液体循环的天体。这一发现将人类研究气候和液体循环的视线延伸到地球之外,有助于揭示早期地球演化过程,甚至揭开生命起源之谜。 NO.10 世界第一台分子机器诞生 2007年1月21日,法国图卢兹材料设计和结构研究中心研究院与德国柏林大学的科学家在《自然-纳米技术》上撰文宣布,他们成功地组装出了第一台真正意义上的分子机器。分子机器的主要构件是蛋白质等生物分子,能够行使某种加工功能,是近年来纳米研究领域的重点。它们的用途极为广泛,可以在人体细胞内清除病灶,充当药物运输的人造载体,构成分子阀门等。研究人员确信,他们发明的“分子轮”将在复杂的纳米机器上发挥重要作用,比如分子卡车和分子纳米机器人等。

是不是吃的越多越好?是不是什么最滋补就吃什么?答案或者不是这样的!因为很多时候这些吃进去的东西,可能会对人的肠道里的细菌微生物造成影响,从而导致抗癌药物的疗效大打折扣!

最近发布在国际权威杂志Nature官网的一则新闻对这一问题做了阐述。癌度对这篇文章进行编译,希望可以更好地帮助大家了解这方面的知识。

肠道细菌对抗癌药物的干扰

这则新闻首先抛出一个与众不同的观点——目前在肿瘤的个性化治疗方面,大多数的研究集中在患者的基因突变对药物的反应上,然而越来越多的证据表明,一个人的微生物组成,如肠道里微生物的群落和数量等,可能是决定一个药物是否起效的关键因素。

在今年6月份美国微生物学会会议上,美国的科学家公布了一些数据,也就是健康人的肠道微生物可以将一些药物代谢掉。人体的肠道微生物可以吃掉任何营养物质,不管这种营养物质来源于人的饮食,还是人正在使用的药物。这里一个问题是,如果一个人吃的药物被其肠道里的微生物给分解代谢成没用的物质了,或者更甚一步,代谢成有毒的物质了。这可就真是麻烦的问题了。

来自纽约爱因斯坦医学院的计算生物学家讨论了伊立替康这种化疗药物的数据,这种药物可以在某些患者那里导致严重的腹泻,2013年的顶级科学杂志Science报道了小鼠模型中,β-葡糖苷酸酶一种肠道细菌的蛋白酶,可以改变伊立替康和其他药物的化学结构。一般而言,肝脏是代谢药物并进行解毒的脏器,但是细菌蛋白酶直接将药物变成了有毒的化合物。

肠道菌群和肠道不良反应

为了验证一个人的肠道是否对其服用的药物代谢产生影响,由于人体的粪便里含有较多的肠道细菌,这些也对一个人的肠道菌群组成有一定的反应。

科学家搜集了20个健康人的粪便样本,使用临床常见的化疗药物伊立替康来处理这些样本,这些样本中的细菌与伊立替康反应时会产生一些化学物质,结果发现有4名患者的粪便里有较高毒性的伊立替康亚型,也就是细菌将伊立替康给代谢成毒性较高的形式了。

对这些粪便样本的蛋白进行了分析,这找到了线索,也就是高代谢能力的人肠道中含有一些细菌,这些细菌产生更多的β-葡糖苷酸酶,这些人们一旦β-葡糖苷酸酶水平升高,则可以将更多的葡萄糖输送至细胞中,当然也更容易吸收有毒的化学物质,以及导致严重的胃肠道疾病。研究者正在准备从使用伊立替康的患者哪里取粪便样本,以准备验证这一情况。

其他科学家的试验结果表明,一些类别的β-葡糖醛酸酶可以对一些抗炎药物进行修饰,如布诺芬等,这种修饰导致一些肠道毒性,如果一直长时间地服用那个药物,则就会导致肠道毒性。

解决肠道菌群影响药物疗效思路

目前已经确定了案例有十几个,也就是肠道的细菌影响抗癌药物的疗效的案例,不过这些动物模型并不能直接照搬到人身上来,因为动物和人的肠道里的细菌组成是不同的。这也是为何很多较为前沿的药物,只是在动物实验做了分析,即便是结果很好也不能直接搬到人身上来使用。而且已经鉴定出来一些蛋白酶,这些酶可将抗癌的药物分解,不过不知道目前人群中这些的分布情况,也就是张三、李四,究竟谁有一些特别的微生物产生这些降解药物的酶类,这个目前还不是很清楚。

6月2日发表在Science的论文报道了HIV药物替诺福韦对某些女性无效的情况,这些女性的阴道里含有一种加德纳杆菌,这种细菌能够快速地将药物分解成无活性的形式。但是科学家暂时不知道这一过程如何发生的,以及怎么去想办法阻止它。

未来,临床医生可能预先看看患者的肠道菌群情况,然后判断一种药物是否适合某个患者。当然如果患者的肠道菌群会干扰抗癌药物的疗效,则可以尝试使用一种酶抑制剂,或者把药物放在一种饮食中,通过食物给细菌提供能量。小鼠中,使用饮食干预的策略已经取得了一定成绩。

这是一篇很新颖的文章,告诉我们患者的肠道的细菌对抗癌药物的影响,因此我们很多时候观察到的,为何有人有基因突变,靶向药物仍然没有效果,或者很快耐药。为何同样的两个患者有人康复的快,而有人则一直备受煎熬,我们多么希望去探明清楚里面的原因呢,当然这个探索的过程不只是基因检测,还包含对肠道菌群的分析。以及陪伴与呵护的重要性。但是最重要的是,患者并不是什么都可以吃的,因为人的饮食直接影响了肠道菌群,这也就影响了药物的疗效。

那么说患者该吃什么呢?正常饮食,注重常规的营养,具体癌度后续会请营养方面的专家来科普这方面的知识。

编者:翱宇

原创文章,转载需授权后注明来源公众号:癌度

微生物期刊论文

微生物学杂志是核心期刊。

《微生物学杂志》创办于1978年,是由辽宁省科学技术厅主管,中国微生物学会、辽宁省微生物学会、辽宁省微生物科学研究院主办的综合性期刊。

《微生物学杂志》的主要栏目有“大家专版”、“研究报告”、“专题论述”、“研究简报”、“技术与方法”、“教学与研究”、“专题译述”、“论文摘要”、“产品推广”、“技术讲座”、“成果与产品信息”及“会议简讯”等刊。

《微生物学杂志》的读者对象为中国国内外科研人员、大中专院校师生、企业人士、医生及生物学爱好者。

《微生物学杂志》为中国科学引文数据库来源期刊、中国科技论文统计源期刊中国科技核心期刊、中国生物学核心期刊、中国核心期刊(遴选)数据库统计源期刊、中国学术期刊综合评价数据库统计源期刊、万方数据-数字化期刊群上网期刊、中国期刊全文数据库等收录期刊。

被《化学文摘》(CA)、《英联邦农业文摘》(CAB)、日本科学技术振兴机构数据库、《中国生物学文摘》等中国国内外检索刊物摘引和收录。

图样图森破,征稿都是关系户的

《土壤科学》《农业科学》 都可以吧

Current Opinion in Microbiology 《微生物学新见》英国 ISSN: 1369-5274, 1998年创刊,全年6期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子8.005。著名微生物学权威专业性学术期刊,刊载本学科的研究成果、新进展评论、重要参考资料评注和文献题录。 Enzyme and Microbial Technology《酶与微生物技术》美国 ISSN:0141-0229,1979年创刊,全年14期,Elsevier Science出版社,SCI、EI收录期刊,SCI 2005年影响因子1.705,2005年EI收录227篇。刊载生物技术的基础与应用方面的研究论文、评论、专利和文献摘要。报道相关的经济、规章和法律信息。 Food Chemistry《食品化学》英国 ISSN:0308-8146,1976年创刊,全年16期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子1.811。发表原始论文,内容包括食品化学分析,化学添加剂与毒素,与微生物、感觉、营养、生理有关的食品化学,食物加工与贮藏中分子结构的变化,农药对食品的影响,食品工程与技术的化学质量等。 Food Microbiology《食品微生物学》英国 ISSN:0740-0020,1983年创刊,全年6期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子1.592。刊载食品微生物学方面的论文、评论、会议报告、简讯和书评,涉及食品中微生物检验的新方法、食品中微生物的发生学与生物化学、食品防腐剂、食品包装系统、食品损坏与安全、发酵食品、食品佐料和食品酶等。 International Journal of Food Microbiology《国际食品微生物学杂志》荷兰 ISSN:0168-1605,1984年创刊,全年24期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子2.499。国际微生物学会联合会和国际食品微生物学与卫生委员会机关刊物。刊载食品微生物学及相关领域的研究论文、快报、述评及书评,涉及食品微生物学和安全性、食品质量和可接受性,以及相关的细菌学、免疫学、真菌学、寄生虫学、病毒学等。 Journal of Bioscience and Bioengineering《生物学与生物工程杂志》荷兰 ISSN:1389-1723,1923年创刊,全年12期,Elsevier Science出版社,SCI、EI收录期刊,SCI 2005年影响因子0.948, 2005年EI收录211篇。1998年前刊名为Journal of Fermentation and Bioengineering,原为日本发酵技术学会出版的《发酵学和生物工程杂志》。1999年该学会改名后,刊物随之改名。刊载生物科学与技术以及相关生物化学工程、食品技术和微生物学的基础与应用研究论文、札记、评论和文摘。 Journal of Fermentation and Bioengineering《发酵和生物工程杂志》荷兰 ISSN:1389-1723,1923年创刊,全年12期,Elsevier Science出版社,1998年后名为Journal of Bioscience and Bioengineering,原为日本发酵技术学会出版的《发酵学和生物工程杂志》。1999年该学会改名后,刊物随之改名。SCI、EI收录期刊,SCI 2005年影响因子0.948,2005年EI收录211篇。刊载生物科学与技术以及相关生物化学工程、食品技术和微生物学的基础与应用研究论文、札记、评论和文摘。 Journal of Microbiological Methods《微生物学方法杂志》荷兰 ISSN:0167-7012,1983年创刊,全年12期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子2.297。刊载微生物学研究与测定方法方面的研究论文和评论。内容涉及微生物的遗传学、生理学及新陈代谢,食品微生物学,生物技术,环境与应用生物学,工业微生物学,真菌学,原生动物学,藻类学,医学与兽医微生物学等(病毒学与免疫学除外)。 Microbes and Infection《微生物与感染》法国 ISSN:1286-4579,1999年创刊,全年15期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子3.154。主要刊载分子和细胞生物学、微生物之间的相互作用主机(病毒、细菌、寄生虫、真菌; 还朊病毒);当地感染的器官和组织的反应,包括本地及免疫病理;传染性疾病动物模型,包括防微生物非哺乳动物生物体;疫苗开发;临床和流行病学研究等方面的论文。 Microbial Pathogenesis《微生物病原学》英国 ISSN:0882-4010,1986年创刊,全年12期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子2.303。发表人和动物传染病细胞与分子生物学方面的原始论文、评论和札记,涉及病原学、毒性因素、寄生感染与抵抗、免疫机理学、遗传学、病原体、原核膜机体、原生动物等。 Process Biochemistry《生化工艺》英国 ISSN:0032-9592,1966年创刊,全年12期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子1.796。刊载微生物应用于工业、农业、食品、医药、能源、污染处理等方面的研究论文,报道新产品、新设备、新技术和国际会议的消息。 Research in Microbiology《微生物学研究》法国 ISSN:0923-2508,1886年创刊,全年10期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子2.426。历史悠久的专业性学术期刊,刊载有关基础微生物学、生理学和微生物遗传学、生态学、应用微生物学、工业微生物学、细菌学和医学真菌学等微生物学领域的研究论文。不包括病毒学和免疫学方面的内容。 Toxicon《毒素》英国 ISSN:0041-0101,1962年创刊,全年12期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子2.255。刊载动植物组织和微生物肌体衍生毒素方面的研究论文。 Trends in Microbiology《微生物学趋势》英国 ISSN:0966-842X,1992年创刊,全年12期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子6.648。刊载传染病毒研究的讨论、评论及进展新闻和书评,涉及细胞生物学、免疫学、病毒学生物技术和进化论等领域。 Veterinary Microbiology《兽医微生物学》荷兰 ISSN:0378-1135,1976年创刊,全年28期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子2.175。刊载家畜和家禽等动物微生物疾病的病源、病因、免疫、传染、预防、治疗、控制和药物应用等方面的研究论文、简讯和书评

二区微生物期刊

老外还是重视它的,那就看JCR分区吧

BZR(BRASSINAZOLE-RESISTANT)家族基因是编码参与油菜素内酯信号转导的植物特异性转录因子,在植物生长中起着至关重要的作用。 今天我就给大家带来一篇甜菜中BZR基因家族分析的文章。文章于2019年5月9日在线发表在BMC Plant Biology(影响因子3.93,中科院分区二区)。 具体分析内容如下: 一、甜菜中 BvBZR 基因的鉴定 通过鉴定,共鉴定出6个BvBZR基因: Bv5_cuzi 、 Bv_epwr 、 Bv1_fxre 、 Bv6_nyuw 、 Bv1_qnjn 、 Bv_yfzt 。 二、Motif分析和系统发育分析 为了阐明BZR家族的进化关系,作者基于来自甜菜、拟南芥、水稻和大白菜的41个BZR家族成员的氨基酸序列构建了系统发育树,并进行了motif分析。 三、 BvBZR 基因染色体分布和基因结构分析 作者将鉴定的6个 BvBZR 基因定位到了甜菜基因组的5条染色体上,并对基因结构进行了分析。 四、 BvBZR 基因的顺势作用原件分析 五、不同甜菜品种根茎的生长特征规律统计 作者统计了包括主根的生长曲线(根重)、主根的生长速度、主根的含糖量以及主根含糖量的增加速率4个指标。 六、与甜菜生长特征相关的基因表达模式和相关性分析 七、 BvBZR 基因在E型和Z型根、茎、叶组织中表达模式分析 八、 BvBZR 基因对植物激素响应的基因表达模式分析 为了研究 BvBZR 基因的表达水平是否受外源植物激素的调节,作者对甜菜根喷洒了IAA、ABA、MeJA、GA3共4种植物激素,并检测了 BvBZR 基因的表达水平。 九、 BvBZR 基因的亚细胞定位 作者首先使用Wolf PSORT软件对 BvBZR 基因进行亚细胞定位预测,并采用实验手段对预测结果进行了验证。 总结 到此为止,这篇基因家族类文章的所有分析就完成了,在内容上还是比较常规的,只是在实验方面补充了因的亚细胞定位实验和一些生长指标,并没有复杂的实验操作和分析内容,值得大多数研究者借鉴! 更多生物信息课程: 1. 文章越来越难发?是你没发现新思路,基因家族分析发2-4分文章简单快速,学习链接: 基因家族分析实操课程 、 基因家族文献思路解读 2. 转录组数据理解不深入?图表看不懂?点击链接学习深入解读数据结果文件,学习链接: 转录组(有参)结果解读 ; 转录组(无参)结果解读 3. 转录组数据深入挖掘技能-WGCNA,提升你的文章档次,学习链接: WGCNA-加权基因共表达网络分析 4. 转录组数据怎么挖掘?学习链接: 转录组标准分析后的数据挖掘 、 转录组文献解读 5. 微生物16S/ITS/18S分析原理及结果解读 、 OTU网络图绘制 、 cytoscape与网络图绘制课程 6. 生物信息入门到精通必修基础课,学习链接: linux系统使用 、 perl入门到精通 、 perl语言高级 、 R语言画图 7. 医学相关数据挖掘课程,不用做实验也能发文章,学习链接: TCGA-差异基因分析 、 GEO芯片数据挖掘 、 GSEA富集分析课程 、 TCGA临床数据生存分析 、 TCGA-转录因子分析 、 TCGA-ceRNA调控网络分析 8.其他课程链接: 二代测序转录组数据自主分析 、 NCBI数据上传 、 二代测序数据解读 。

导读

在人类繁衍至今的地球上,大多数物种正遭受着气候变化的影响 。微生物支持所有高等营 养生 命形式的存在。为了 了解地球上的人类和其他生命形式(包括那些我们尚未发现的)如何能够抵御人为的气候变化--重要的是纳入对微生物的了解。我们不仅应该了解微生物如何影响气候变化(包括温室气体的生产和消耗),还应该

核心作用以及其在全球范围内的重要性。它提醒人们 ,气候变化的影响将在很大程度上取决于微生物的 响应,而微生物的响应对于实现环境可持续发展的未来至关重要。

论文ID

原名: Scientists’ warning to humanity: microorganisms and climate change

译名: 科学家对人类的警告:微生物与气候变化

期刊: Nature Reviews Microbiology

IF: 34.648

DOI:

发表时间: 2019年

通信作者: Ricardo Cavicchioli

通信作者单位: 新南威尔士大学(The University of New South Wales)

文章上线一年就被引186次,可见期重要性和影响力

综述内容

2 海洋生物群

海洋生物占地球表面的70%,从沿海河口,红树林和珊瑚礁到公海(图1)。 温度 上升不仅会影响 生物过程 ,还会降低水的密度,导致分层和环流现象的发生,从而影响生物的扩散以及营养物质的运输。 降水,盐度和风也影响分层 ,混合以及环流。来自空气、河流和河口流动的养分输入同样会对微生物的组成和功能造成影响,而气候变化会影响所有这些物理因素。

海洋环境中除了数量庞大的海洋微生物外,还发挥着重要的生态系统功能。海洋微生物通过碳和氮的固定,使有机物矿化,形成海洋食物网以及全球碳和氮循环的基础。颗粒有机物中碳的沉积以及其固定到海洋沉积物中过程是大气中螯合CO 2 的关键长期机制。因此,通过矿化和海底储藏碳氮的释放之间的平衡决定了气候变化。除了变暖(由于大气中CO 2 浓度的增加,增强了温室效应),海洋环境自工业化前以来酸化了约0.1个pH单位,预计到本世纪末还会进一步减少0.3-0.4个单位。因此有必要了解海洋生物将做出何种响应。 温室气体浓度升高对海洋温度,酸化,分层,混合,温盐环流,养分供应,辐射和极端天气事件的影响会对海洋微生物菌群产生重大环境影响,这些影响包括生产力,海洋食物网,海底碳排放和固定等方面。

2.1 微生物影响气候变化

海洋浮游植物只占全球植物生物量的1%,但却完成了全球一半的光合作用(CO2 的固定以及OO 2 的产生)。与陆生植物相比,海洋浮游植物分布范围更广,受季节变化的影响较小,周转率更快。因此,浮游植物在全球范围内对气候变化反应迅速。太阳辐射、温度和淡水向地表水输入的增加加强了海洋分层,从而减少了营养物质从深水到地表水的输送,降低了初级生产力。相反,CO 2 含量的升高,在营养成分不受限制的情况下,可以增加浮游植物的初级生产力。一些研究表明,在过去的一个世纪里,全球海洋浮游植物的总体密度有所下降,但由于数据获得的有限性、分析方法的差异等多方面原因,这些结论需要进一步考证。也有研究发现全球海洋浮游植物产量增加以及特定区域或特定浮游植物群的变化。全球海水冰面积的下降,导致更高的光渗透率和潜在的更多初级生产;然而,对于可变混合模式、养分供给变化以及极地地区的生产力趋势影响的预测效应相存在矛盾的现象。这强调了收集关于浮游植物生产和微生物群落组成的 长期数据 的必要性。

除了海洋浮游植物对CO 2 固定的贡献外,化学自养古菌和细菌同样可以在深水黑暗条件下以及极地冬季期间在表层进行CO 2 的固定。海底产甲烷菌和甲烷氧化菌是CH 4 的重要生产者和消费者,但它们对这种温室气体大气通量的影响尚不确定。海洋病毒、嗜细菌细菌以及真核食草动物也是微生物食物网的重要组成部分。气候变化对捕食者-被捕食者的相互作用的影响,包括病毒-宿主的相互作用,可以影响全球生物地球化学循环。

气溶胶影响云的形成,从而影响阳光照射和降水,但它们影响气候的程度和方式仍不确定。海洋气溶胶由海盐、非海盐硫酸盐和有机分子的复杂混合物组成,可以作为云凝结的核,影响辐射平衡,从而影响气候。了解海洋浮游植物对气溶胶的贡献方式,可以更好地预测不断变化的海洋环境将如何影响云层和对气候的反馈。此外,大气本身含有大约10 22 个微生物细胞,确定大气微生物生长和形成聚集体的能力对于评估它们对气候的影响具有重要价值。

植物生长的沿海生境对于碳的固定具有十分重要的意义,人类活动,包括人为的气候变化,在过去的50年里使这些栖息地减少了25-50%,海洋捕食者的数量减少了高达90%。基于微生物活动决定了有多少碳被再矿化并释放为CO2 和CHCH 4 ,同时考虑到如此广泛的环境扰动,因此这些扰动对微生物群落的影响同样需要进一步评估。

2.2 气候变化对微生物的影响

气候变化扰乱了物种之间的相互作用,迫使物种适应、迁移或被其他物种取代或灭绝。 海洋变暖、酸化、富营养化和过度使用(例如捕鱼、 旅游 )共同导致珊瑚礁的衰退,并可能导致生态系统的改变 。一般来说,微生物比宏观生物更容易分散。然而,许多微生物物种存在生物地理差异,扩散、生活方式和环境因素强烈影响群落组成和功能。海洋酸化使海洋微生物的pH条件远远超出其 历史 范围,从而影响到其胞内pH水平。不善于调节体内pH值的物种会受到更大的影响,许多环境和生理因素影响微生物在其本土环境中的反应和整体竞争力。例如, 温度 升高会 增加 真核浮游植物的蛋白质合成 ,同时 降低细胞核糖体浓度 。由于真核浮游植物的生物量为~1 Gt C,核糖体富含磷酸盐,气候变化引起的氮磷比的改变将影响全球海洋的资源分配。海洋变暖被认为有利于较小的浮游生物而不是较大的浮游生物,改变了生物地球化学通量。 海洋温度升高、酸化和营养供应减少预计将增加浮游植物细胞外溶解有机质的释放,微生物食物网络的变化可能导致微生物产量增加,而牺牲更高的营养水平 。温度升高还可以缓解铁对固氮蓝藻的限制,对未来变暖海洋的食物网提供的新氮来源具有潜在的深远影响。需要认真注意如何量化和解释环境微生物对生态系统变化和与气候变化相关的压力的响应。因此,关键问题仍然是关于菌群转移的功能后果,例如碳再矿化与碳固存的变化,以及与养分循环之间的关系。

3 陆生生物

陆地生物量是海洋生物量的100倍,其中陆地植物约占全球一半的净初级生产力。土壤储存了约2万亿吨的有机碳,其数量远高于大气和植被中碳的总和。陆地环境中的微生物总数与海洋环境中的总数相似。土壤微生物调节储藏在土壤中以及释放到大气中的有机碳的数量,并通过提供调节生产力的多种营养元素间接地影响植物和土壤中的碳储存。

植物通过光合作用吸收大气中的CO 2 ,并产生有机质;相反,植物的自养呼吸和微生物的异养呼吸将CO 2 释放回大气中。温度影响这些过程之间的动态平衡,从而影响陆地生物圈捕获、储存人为碳排放的能力(图1)。而气候变暖可能加速碳的排放。森林覆盖陆地面积的30%,占陆地初级生产力的50%,对人为排放的CO 2 的固存率高达25%。永久冻土中的有机物质中碳的积累远超过呼吸所损失的,创造了最大的陆地碳汇。但由于气候变暖预计将使永久冻土减少28-53%,从而使大型碳库可用于微生物呼吸以及温室气体排放。

通过对表层土壤(10cm)和以及深层土壤(100cm)剖面进行对比评估发现,气候变暖会增加碳向大气中的排放。有关不同土壤地点之间碳损失的差异的进一步解释需要更多的预测变量。然而,来自全球对变暖反应的评估的预测表明,气候变暖条件下,陆地碳损失产生了积极的反馈,加速了气候变化的速度,特别是在寒冷和温带地区(这些地区储存全球大部分土壤碳)。

3.1 微生物对气候变化的影响

CO 2 含量的升高,提高了初级生产力,增加了植物凋落物含量,促进了微生物对凋落物的分解从而导致更高的碳排放。温度的影响不仅是微生物反应速率的动力学效应,也是植物输入刺激微生物生长的结果。一些固有的环境因素(如微生物群落组成、枯木密度、氮素可获得性和水分)影响微生物活动,这就需要通过地球系统模型对气候变暖所造成的土壤碳损失进行预测,以纳入对生态系统过程的控制。在这方面,植物养分的可获得性影响森林的净碳平衡,营养贫乏的森林比营养丰富的森林释放更多的碳。植物将约50%的固定的碳释放到土壤中,供微生物生长。分泌物除了被微生物利用作为能源外,还可以破坏矿物-有机体的结合,从微生物呼吸利用的矿物中释放出有机化合物,增加碳排放。这些植物-矿物质相互作用的相关性说明了在评估气候变化的影响时,除了生物相互作用(植物-微生物)之外,生物-非生物相互作用的重要性。

土壤有机质用于微生物降解还是长期储存取决于许多环境因素,包括土壤矿物特征、酸度、氧化还原状态、水的有效性、气候等方面。有机物的性质,特别是基质的复杂性,同样会影响微生物的分解。此外,不同土壤类型中微生物获取有机质的能力具有差异性。如果将可获得性考虑在内,预计大气中CO 2 含量的增加将促进微生物的分解能力,这会使得土壤中有机碳的留存量降低。升高的CO 2 浓度增强了植物和微生物之间对氮的竞争。食草动物会影响土壤中的有机质含量,从而影响微生物的生物量和活性。气候变化可以减少食草动物,导致全球氮和碳循环的总体变化,从而减少陆地碳的固定。有害动物(例如蚯蚓)通过间接影响植物(例如,增加土壤肥力)和土壤微生物来影响温室气体排放。蚯蚓肠道中的厌氧环境含有执行反硝化并产生NO2 的微生物。蚯蚓提高了土壤肥力,它们的存在可以导致温室气体净排放,尽管温度升高和降雨量减少对有害生物摄食和微生物呼吸的综合影响可能会减少排放。

在泥炭地,抗腐烂的枯枝落叶等会抑制微生物分解,同时水饱和度限制了氧的交换,促进了厌氧菌的生长以及CO2 和CHCH 4 的释放。植物凋落物组成和相关微生物过程的变化(例如,减少对氮的固定化和增强的异养呼吸)正在将泥炭地从碳汇转变为碳源。永久冻土的融化使得微生物可以分解先前冻结的碳,释放CO2 和CHCH 4 。永久冻土的融化导致了水饱和土壤的增加,这促进了产甲烷菌和一系列微生物产生CH 4 和CO 2 。据预测,到本世纪末,缺氧环境的碳排放将比好氧环境的排放在更大程度上驱动气候变化。

3.2 气候变化对微生物的影响

气候的改变可以直接(例如季节性和温度)或间接(例如植物组成、植物凋落物和根系分泌物)影响微生物群落的结构和多样性。土壤微生物多样性影响植物多样性,对包括碳循环在内的生态系统功能很重要。短期实验室模拟变暖以及长期(50多年)自然地热变暖最初都促进了土壤微生物的生长和呼吸,导致CO 2 净释放,随着基质的耗尽,导致生物量减少,微生物活性降低。这意味着微生物群落不容易适应高温,由此产生的对反应速率和底物损耗的影响减少了碳的整体损耗。相比之下,一项长达10年的研究发现,土壤群落能够通过改变基质使用的模式以适应升高的温度,从而减少碳的损失。在年平均温度范围超过20 C的森林土壤中也发现了细菌和真菌群落的实质性变化。

微生物生长对温度的响应是复杂多变的。微生物生长效率是衡量微生物如何有效地将有机物转化为生物量的指标,效率较低意味着更多的碳被释放到大气中。一项为期一周的实验室研究发现,温度升高导致微生物周转率增加,但微生物生长效率没有变化,同时该研究预测,气候变暖将促进土壤中的碳积累。一项长达18年的实地研究发现,土壤温度越高,微生物的效率就会降低,在这段时间结束时,不易分解的底物的分解会增加,同时土壤碳的净损失也会增加。

气候变化通过温度、降水、土壤性质和植物输入等几个相互关联的因素直接或间接地影响微生物群落及其功能。由于沙漠中的土壤微生物受到碳的限制,植物增加的碳输入促进了含氮化合物的转化,微生物生物量,多样性,酶活性以及对复杂有机物的利用。虽然这些变化可能会增强呼吸作用和土壤中碳的净损失,但干旱和半干旱地区具有的特点可能意味着它们可以起到碳汇的作用。为了更好地了解地上植物生物量对CO 2 水平和季节性降水的响应,我们仍需增加对微生物群落响应以及功能的了解。

气候变化同样也使湖泊、海水等环境中富营养化的频率、强度和持续时间增加。水华蓝藻能够产生各种神经毒素、肝毒素和皮毒素,危害鸟类和哺乳动物的 健康 。有毒蓝藻目前已造成了包括中国太湖在内的全世界多个地区严重的水质问题。气候变化直接和间接地有利于蓝藻的生长,许多形成水华的蓝藻可以在相对较高的温度下生长。与此同时,湖泊和水库热分层的增加使浮力蓝藻能够向上漂浮并形成密集的表面水华,这使它们能够更好地获得光,更加具有选择性优势。目前实验室和原位实验都证明了有害的蓝藻 Microcystis 属具有适应高CO 2 的能力。因此,气候变化和CO 2 含量的增加预计会影响蓝藻水华的菌株组成。

4 农业

根据世界银行表明(世界银行关于农业用地的数据),近40%的陆地环境专门用于农业。这一比例在未来预计有可能增加,这将导致土壤中碳、氮和磷以及其他养分的循环发生重大变化。此外,这些变化与生物多样性的丧失息息相关。增加对使用植物和动物相关的微生物的了解,以提高农业可持续性发展,减轻气候变化对粮食生产的影响,但这样做需要更好地了解微生物对气候变化的响应。

4.1 微生物对气候变化的影响

甲烷菌在自然和人工厌氧环境中产生甲烷,此外还有与化石燃料相关的人为甲烷的排放(图2)。近年来(2014-2017)大气CH 4 水平显著升高,但其背后的原因尚不清楚。尽管 水稻 仅覆盖了10%的可用耕地,但却养活了全球一半的人口,同样,稻田也贡献了农业20%的CH 4 排放的。据预测,到本世纪末,人为气候变化将使水稻生产产生的CH 4 排放量翻一番。 反刍动物 是人为CH 4 排放的最大单一来源,反刍动物肉类生产所产生的碳排放比植物高蛋白食物生产的碳排放高19-48倍;即使是非反刍动物肉类生产所产生的CH 4 也比植物高蛋白食物生产的碳排放高出3-10倍。 化石燃料 的燃烧和化肥的使用大大增加了环境中可利用氮含量,扰乱了全球生物地球化学过程,威胁到生态系统的可持续发展。农业是温室气体NO2 的最大排放者,NO2 通过微生物氧化和氮的还原而释放。气候变化扰乱了微生物氮转化(分解、矿化、硝化、反硝化和固定)和N 2 O的释放速率。迫切需要了解气候变化和其他人类活动对氮化合物微生物转化的影响。

4.2 气候变化对微生物的影响

升温和干旱强烈地影响着作物的生长。以真菌为基础的土壤食物网在广泛管理的农业(例如牧场)中很常见,而以细菌为基础的食物网通常出现在集约化系统中,但与后者相比,前者更能适应干旱环境。对全球范围内的表层土进行评估发现, 土壤真菌和细菌占据了特定的生态位,并且对降水和土壤pH的响应不同,这表明气候变化将对它们的丰度、多样性和功能产生不同的影响 。预计由于气候变化而增加的干旱会导致全球旱地中细菌和真菌的多样性和丰度的减少,这种减少将进一步降低微生物群落的整体功能,从而限制了它们支持植物生长的能力。

气候变化和富营养化(由于化肥的施用)对微生物竞争力的综合影响存在不可预测的影响。例如,营养丰富通常有利于有害的藻类繁殖,但在相对较深的Zurich湖中观察到了不同的结果。

5 感染性疾病

气候变化影响着海洋和陆地生物群中疾病的发生和传播(图3),这取决于不同的 社会 经济、环境和宿主病原体特有的因素。了解疾病的传播和设计有效的控制策略需要充分了解病原体、及其传播媒介和宿主的生态学,以及扩散和环境因素(表1)。例如,海洋酸化还可能直接导致鱼类等有机体的组织损伤,潜在地导致免疫系统减弱,从而创造细菌入侵的机会。对于农作物来说,当人们考虑对病原体的响应时,包括CO 2 水平、气候变化、植物与病原体的相互作用在内的不同相互作用的因素都是重要的。不同的的微生物能够引起不同的植物疾病,进而影响作物生产,导致饥荒,并威胁粮食安全。病原体的传播和疾病的出现是通过物种的运输和引进来促进的,并受天气对扩散的影响和生长环境条件的影响。

表1 病原体对气候和环境因素的传播响应。

气候变化可以通过改变宿主和寄生虫的适应来增加疾病风险。对于外温动物(如两栖动物),温度可以通过扰乱免疫反应,从而增加感染的易感性。每月和每天不可预测的环境温度波动增加了古巴树蛙对病原菊苣真菌 Batrachochytrium dendrobatidis 的敏感性。温度升高对感染的影响与真菌在纯培养中生长能力下降形成对比,说明在评估气候变化的相关性时,更应该注重于评估宿主-病原体的反应(而不是从分离微生物的生长速率研究中推断)。气候变化预计会增加一些人类病原体对抗生素的耐药率。2013-2015年的数据表明,日最低温度提高10 C,将导致 Escherichia coli , Klebsiella pneumoniae 以及 Staphylococcus aureus 的抗生素耐药率增加2-4%。潜在的潜在机制包括:高温促进抗药性可遗传因子的水平基因转移,以及提高病原体生长率,促进环境的持久性、携带和传播等。

食源性、气源性、水源性和其他环境病原体可能易受气候变化的影响(表1)。对于媒介传播的疾病,气候变化将影响媒介的分布,从而影响疾病传播的范围,以及媒介传播病原体的效率。许多传染病,包括几种媒介传播疾病和水传播疾病,都受到大规模气候现象(如ENSO)造成的气候变化的强烈影响,这种现象每隔几年就会破坏全球约三分之二地区的正常降雨模式和温度变化。据报道,与ENSO有关的疾病有疟疾、登革热、齐卡病毒病、霍乱、鼠疫、非洲马病和许多其他重要的人类和动物性疾病。

尽管已经在自然和实验室条件下,微生物种群的适应机制已有研究,但与动物(包括人类)和植物相比,微生物物种适应当地环境的研究较少。与植物和动物相关的病毒、细菌和真菌病原体以影响生态系统功能、影响人类 健康 和粮食安全的方式适应非生物和生物因素。病原农业真菌的适应模式很好地说明了微生物活动与人类活动之间的循环反馈。“农业适应”病原体引起流行病的可能性比自然产生的菌株更高,这会对作物生产构成更大的威胁。真菌病原体通过进化以适应更高的温度来增强它们入侵新的栖息地的能力,这使真菌病原体对自然和农业生态系统构成的威胁更加复杂。

6 微生物减缓气候变化

增加对微生物相互作用的了解将有助于设计缓解和控制气候变化及其影响的措施。例如,了解蚊子如何对Wolbachia细菌(节肢动物的一种常见共生体)作出反应,通过将Wolbachia引入埃及伊蚊种群并将其释放到环境中,从而减少了寨卡病毒、登革热和基孔肯雅病毒的传播。在农业方面,了解将NO2 还原为无害N 2 的微生物的生态生理学的进展为减少排放提供了选择。生物炭是广泛和间接减轻气候变化微生物影响的农业解决方案的一个例子。生物炭是通过限制氧条件下生物质的热化学转化而产生的,其可以通过减少微生物矿化和减少根系分泌物对矿物释放有机物的影响,从而促进植物的生长,减少碳的释放,从而改善有机质的存留。

微生物生物技术可以为可持续发展提供解决方案,微生物技术同样为实现联合国17个可持续发展目标中的许多目标提供了实用的解决方案(化学品、材料、能源和补救措施),解决贫困、饥饿、 健康 、清洁水、清洁能源、经济增长、产业创新、可持续发展等问题。毫无疑问,通过提高公众对全球变暖中微生物的主要作用的认识,即通过实现 社会 的微生物学素养,无疑会促进对此类行动的支持。

7 总结

微生物对固碳做出了重大贡献,特别是海洋浮游植物,它们固定的净CO 2 与陆地植物一样多。因此,影响海洋微生物光合作用和随后在深水中储存固定碳的环境变化对全球碳循环具有重要意义。微生物还通过异养呼吸(CO 2 )、产甲烷(CH 4 )和反硝化(N 2 O)等作用对温室气体排放做出重大贡献。许多因素影响微生物温室气体捕获与排放的平衡,包括生物群落、当地环境、食物网的相互作用和反应,特别是人为气候变化和其他人类活动。 直接影响微生物的人类活动包括温室气体排放、污染、农业活动以及人口增长,这些活动促进了气候变化、污染、农业活动以及疾病传播 。人类活动改变了碳固定与释放的比率,将加速气候变化的速度。相比之下,微生物也提供了重要的机会,可以通过改善农业、生产生物燃料和修复污染来补救人为问题。

为了理解可控范围内小规模相互作用的微生物多样性和活动如何转化为大系统通量,重要的是将研究结果从个体扩展到群落,再到整个生态系统。为了了解世界各地不同地点的生物地球化学循环和气候变化反馈,我们需要关于推动物质循环的生物(包括人类、植物和微生物)以及调节这些生物活动的环境条件(包括气候、土壤理化特性、地形、海洋温度、光和混合)的定量信息。

现存的生命经过了数十亿年的进化,产生了巨大的生物多样性,而微生物多样性与宏观生命相比实际上是无限的。 由于人类活动的影响,宏观生物的生物多样性正在迅速下降 ,这表明动植物物种的宿主特异性微生物的生物多样性也将减少。然而,与宏观生物相比,人类 对微生物与人为气候变化之间的联系所知甚少 。我们可以认识到微生物对气候变化的影响,以及气候变化对微生物的影响,但我们对生态系统的了解并不全面,因此,在解释人为气候变化对生物系统造成的影响方面仍存在挑战。由于人类的活动,正导致气候变化,这对全球生态系统的正常行驶功能造成影响。在海洋和陆地生物群落中,微生物驱动的温室气体排放的增加,并积极地反馈给气候变化。忽视微生物群落对气候变化的作用、影响和反馈反应可能导致会导致对人类的发展造成威胁。目前迫切需要立即、持续和协调一致的努力,明确将微生物纳入研究、技术开发以及政策和管理决策当中。

10000+:菌群分析 宝宝与猫狗 梅毒狂想曲 提DNA发Nature Cell专刊 肠道指挥大脑

系列教程:微生物组入门 Biostar 微生物组 宏基因组

专业技能:学术图表 高分文章 生信宝典 不可或缺的人

微生物核心期刊

问题一:微生物学通报初审有不需要修搞的吗 各位: 写了篇文章,想投稿微生物学通报,想问一下这个期刊是不是核心期刊?一般的版面费是多少?审稿需要多长时间?一般什么时候能得到录用通知?这个期刊的水平怎么样?急求!谢谢 举报删除此信息 ellieyin (站内联系TA) 我学姐投过 说一个月审稿 euteamo (站内联系TA) 是中科院微生物所的杂志,很规范,要求也较严格,建议回复提问时注明引用,是货真价实的核心期刊,不过没微生物学报级别高,如果感觉不错的话,改投后者更佳,我五年前投了一稿,审稿2个月左右, gl19860312 (站内联系TA) 微生物学通报,是核心期刊 一般的版面费是200 或者250 期刊主页上面有 审稿国内一般要30天左右 收到录用通知 从投稿到接受一般2 3个月 这个期刊的水平 很不错 核心期刊 awvc (站内联系TA) journals.im.ac/wswxtb/ch/index.aspx 五、发表费和稿费 论文一经录用,将在发表前根据版面收取一定的发表 费(200 元/面,彩图另加500 元,不计数量),并酌付稿酬 (50 元/面)。期刊出版后给每篇文章的作者寄送2 本样刊。 编辑部会及时开据发票、并以挂号信邮寄给作者。 编辑部会留有发票的复印件、并保留3 个月,逾期编辑 部将不再负责提供任何收据。 六、联系方式 地址: (100101)北京市朝阳区北辰西路1 号中科院微 生物所内 awvc (站内联系TA) 投稿方式 我刊现已启用远程投稿系统,投稿时请登陆我刊新网址journals.im.ac/wswxtb,首次远程投稿需要先注册,然后按照您的用户名和密码登录,点击稿件管理―投稿,按照提示提交您的稿件,作者必须在网站投.doc格式的电子稿,添加行号,图与文字编好页码、图号后合成一个文件上传。凡不符合要求〈书写要求〉的文稿,本刊恕不受理。 本刊所有通知会同时发给投稿作者和通讯作者(能对稿件负责的人,导师或课题负责人),所以注册和投稿时请务必正确填写其E-mail邮箱;必要时编辑会通过电话联系作者,所以投稿作者或第一作者最好填写手机号以确保及时联系。 我们收到贵稿后一般会在当日或次日(节假日除外)给您发去“收稿回执”;通过编辑部内审后您将收到“审理费通知单”,请您根据要求补寄150元审理费。 作者网上注册流程: 首先登录我刊网址journals.im.ac/wswxtb,点击页面左上方作者稿件查询下的〔注册〕,在出现的页面中逐一填写个人信息,标有*输入项为必填项,输入完成后点击页面下方的〔注册〕,系统会提示:“注册成功! 点此登录本系统!” 注册和投稿时若出现问题,请及时联系编辑部(Tel: ; E-mail: [email protected] ),我们会在第一时......>> 问题二:微生物学报和微生物学通报哪个好? 在国内来说都挺牛的,都是中科院主办的。个人认为微生物学报更好一些 问题三:微生物就业前景怎么样?就业方向如何 基础微生物主要包括基础微生物和应用微生物。 学基础微生物的,基本就是去研究所和大学,但是这个要坚持念完博士,不然还是要和应用微生物的竞争。 学应用的就业包括,发酵工程相关的行业(啤酒、酸奶等),防疫检测部门,生物制药等等,不一而足,还是很广阔的。 问题四:微生物学的就业前景怎么样 微生物专业的毕业生,可对口的工作类型有:酿造、发酵、制药、质检、作物改良、食品生产、生物技术公司、科研单位等,应该说就业前景还是很不错的。 问题五:微生物的发展前景 微生物学前景 一、微生物学在解决人类面临的五大危机中的作用 人所共知,当前人类正面临着多种危机,诸如粮食危机、能源匮乏、资源紧缺、生态恶化和人 *** 炸等。人类进入21世纪后,将遇到从利用有限的矿物资源时代过渡到利用无限的生物资源时代而产生的一系列新问题。由于微生物细胞不仅是一个比面值(specificsurface)大、生化转化能力强、能进行快速自我复制的生命系统,而且它们还具有物种、遗传、代谢和生态类型的多样性,使得它们能够在解决人类面临的各种危机中发挥其不可替代的独特作用。现分述如下。 (一)微生物与粮食 粮食生产是全人类生存中至关重要的大事。微生物在提高土壤肥力、改进作物特性(如构建固氮植物)、促进粮食增产、防治粮食作物的病虫害、防止粮食霉腐变质以及把多余粮食转化为糖、单细胞蛋白、各种饮料和调味品等方面,都可大显身手。 (二)微生物与能源 当前,化石能源日益枯竭问题正在严重地困扰着世界各国。微生物在能源生产上有其独特的优点:①把自然界蕴藏量极其丰富的纤维素转化成乙醇。据估计,我国年产植物秸秆多达5~6亿吨,如将其中的10%进行水解和发酵,就可生产燃料酒精700~800万吨,余下的糟粕仍可作饲料和肥料,以保证土壤中钾、磷元素的正常供应。目前已发现有高温厌氧菌例如Closiridiumthermocellum(热纤梭菌)等能直接分解纤维素产生乙醇。②利用产甲烷菌把自然界蕴藏量最丰富的可再生资源――“生物量”(biomass)转化成甲烷。这是一项利国、利民、利生态、利子孙的具有重大战略意义的措施。③利用光合细菌、蓝细菌或厌氧梭菌类等微生物生产“清洁能源”――氢气。④通过微生物发酵产气或其代谢产物来提高石油采收率。⑤研究微生物电池并使之实用化。 (三)微生物与资源 微生物能将地球上永无枯竭之虞的纤维素等可再生资源转化成各种化工、轻工和制药等工业原料。这些产品除了传统的乙醇、丙酮、丁醇、乙酸、甘油、异丙醇、甲乙酮、柠檬酸、乳酸、苹果酸、反丁烯二酸和甲叉丁二酸等外,还可生产水杨酸、乌头酸、丙烯酸、己二酸、丙烯酰胺、癸二酸、长链脂肪酸、长链二元醇、2,3-丁二醇、γ-亚麻酸油和聚羟基丁酸酯(PHB),等等。由于发酵工程具有代谢产物种类多、原料来源广、能源消耗低、经济效益高和环境污染少等优点,故必将逐步取代目前需高温、高压、能耗大和“三废”严重的化学工业。 微生物在金属矿藏资源的开发和利用上也有独特的作用。第九章中已述及的细菌沥滤技术,就可把长期以来废弃的低品位矿石、尾矿、矿渣中所含的铜、镍、铀等十余种金属不断溶解和提取出来,变成新的重要资源。 (四)微生物与环境保护 在环境保护方面可利用微生物的地方甚多:①利用微生物肥料、微生物杀虫剂或农用抗生素来取代会造成环境恶化的各种化学肥料或化学农药;②利用微生物生产的PHB制造易降解的医用塑料制品以减少环境污染;③利用微生物来净化生活污水和有毒工业污水;④利用微生物技术来监察环境的污染度,例如用艾姆氏法检测环境中的“三致”物质,利用EMB培养基来检查饮水中的肠道病原菌等。 (五)微生物与人类健康 微生物与人类健康有着密切的关系。首先是因为各种传染病构成了人类的主要疾病,而防治这类疾病的主要手段又是各种微生物产生的药物,尤其是抗生素。自从遗传工程开创以来,进一步扩大了微生物代谢产物的范围和品种,使昔日只由动物才能产生的胰岛素、干扰素和白细胞介素等高效药物纷纷转向由“工程菌”来生产。与人类生殖、避孕等密切相关的甾体激素类药物也早已从化工生产方式转向微生物生物转化......>> 问题六:微生物菌种怎么选择啊? 市面上有很多微生物制剂的菌种,多种多样,造成在选择上产生很大困惑,下边是选择菌种的方法: 1、微生物菌种选择 动物消化道微生物具有多样性和特异性,不同动物种类对菌种的要求不同,同一菌株用于不同动物,产生的效果差异也较大。使用时一定要掌握菌种的特性和功效,选择不当起不到应有效果,反而会破坏原有菌群,甚至引发疾病 2、微生物菌种应用时间 微生物制剂应用要从子畜开始使用,以保证有益菌优先定植。因为制剂进入体内后要有一段时间进行微生物菌群调整才能定植下来。 一般认为,乳酸菌类在各种动物的各阶段添加均较好,芽孢杆菌类在生长期添加较好,在幼龄期可以添加;曲霉菌类在幼龄期,水产动物全期不必添加;酵母菌类在生长期不必添加;在水产动物养殖中,以改善水质为目的时,可将微生物制剂或光合细菌直接洒于水中。 3、微生物菌种添加方式 一般粉状饲料添加微生物制剂效果较好,颗粒饲料和膨化饲料在加工过程中的高温可造成10%~30%的芽孢杆菌,90%以上的肠球菌以及99%以上的酵母失活,而乳酸杆菌几乎全部被杀灭。因此,在颗粒饲料中要使用耐热,耐挤压的芽孢杆菌制剂。乳酸菌不耐高温,应采用冻干后包被或采用喷雾干燥的方式制成的乳酸菌制剂。使用时最好采用饮水方式,以利于乳酸菌优先粘附于肠壁。 4、微生物菌种剂量与浓度 微生物制剂中必须含有相当数量的活菌才能达到效果。当进入动物肠道食糜中外源菌数大于1000万个每克时,都会对肠道内原有菌群产生较大的影响。因此,微生物制剂在产品中活菌数含量为10亿~20亿每克时效果最佳。 我国正式批准生产的微生物制剂中规定每克芽孢杆菌含量要多于5亿个。以酵母菌产品为例,目前市场上销售的产品活菌数从每克几亿到200亿不等,在选择是要认真鉴别。 5、微生物菌种抗生素的影响 细菌类的微生物制剂对抗生素敏感,不宜与抗生素同时使用,使用微生物制剂的前后二天应停止使用抗生素。最好先用抗菌药物清理肠道,为益生菌的定植和繁殖扫除障碍,然后再饲喂微生物制剂,可提高使用效果。酵母菌类属于真核生物,生物学活性与细菌完全不同,对抗生素、磺胺类药物和一些抗菌剂有天然抗性,可与抗生素同时使用。 6、微生物菌种保存条件和期限 微生物制剂均为活菌制剂,由于大多数菌种在饲料加工、运输中容易失活,应用中要注意保存期限。通常微生物制剂应密封保存于阴凉避光处,储存时间不宜过长,有效期一般为一年左右,随着保存时间的延长,活菌数量不断减少。厌氧菌类暴露在空气中容易死亡,有的产品对其进行了包被或真空包装处理,应在打开包装后规定的时间内用完。酵母类属于兼性厌氧菌,可以保存较长时间。芽孢杆菌类有效期比其他类型长,可达2年左右。 问题七:学哥,学姐们请问江南大学微生物学怎么样,难考吗 楼主,您好,江南大学的微生物学专业在比南大的知名度高,所以相对来说肯定考江南大学的,以后毕业就业相对也好一点。

你是想问微生物学通报属于什么等级是吗?属于三核期刊。微生物学通报杂志属于核心期刊,是北大核心期刊,又是统计源期刊,也是CSCD核心期刊,由国家中医药管理局主管,中华中医药学会主办的综合性学术期刊。期刊一般分为普刊和核心期刊,核心期刊比普刊级别高,核心期刊中也分为北大核心奇卡、统计源核心期刊、CSCD核心期刊等,微生物通报属于三核期刊,级别高。

相关百科

热门百科

首页
发表服务