首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

光缆论文答辩

发布时间:

光缆论文答辩

不要太挑剔了

光纤通信在配电网自动化上的应用 论文 1前言随着国家经济的发展和人民生活水平的提高,人们对电力的需求日益增长,同时对供电的可靠性和供电质量提出了更高的要求。配网馈线自动化是配网系统提高供电可靠性最直接有效的技术手段之一。在近几年国家加大了对城网和农网的改造,国内各大供电局对配电网自动化的投入也在加大。在配网自动化实现的过程中,我们发现通信问题是一个难点问题。在此,仅就光纤通信在配网自动化方面的应用谈一点认识和体会。 2配电网自动化对通信的要求 同调度SCADA系统一样,配电自动化系统也需要一个有效的通信网,同时他有自己的特点:终端数量极多。配网系统拥有众多的开闭所、配电变压器、柱上断路器,要对这些设备进行监控就需要许多FTU和TTU,同时这些FTU随配电设备安装,地域分布广,通讯节点分散。 配网自动化系统的规模、复杂程度和自动化程度决定了通信系统应满足下述要求: (1)可靠性: 配网系统的通信设备有很多暴露在室外,环境恶劣,因此必须能够抵御高温、低温、日晒、雨淋、风雪、冰雹和雷电等自然环境的侵袭。同时,尽量避免各种电磁干扰,保证长期稳定可靠地工作,并要求在线路停电时,通信系统仍能正常工作。 (2)经济性: 考虑到配电网系统的总体经济效益,通信系统的投资不应过大,力争充分利用现有的主网通信资源,进行主、配网整体规划,避免重复投资。 (3)寻址量大: 通信系统不仅要考虑目前及未来的数据传输的需要,还要考虑系统升级的要求。 (4)双向通信: 配网自动化要实现遥测、遥信、遥控功能,就必须要求具有双向通信能力。 (5)容易操作和免维护。 根据以上的要求,伴随着光纤价格的下降,目前,光纤通信正广泛地应用于电力系统。 3光纤通信 自激光器和低损耗光纤问世以来,光纤通信系统以其技术、经济上无可比拟的优越性而迅速崛起,并风靡全球。该系统是以光纤为传输介质,以光为载波信号传递信息的通信系统,应用的光波波长为1.0~1.μm靘,整个系统由电端机、光端机、光缆和中继器构成。光纤可分为单模光纤(SMF)、多模光纤(MMF)、长波长低射散光纤(LMF)、保偏光纤(PMF)及塑料光纤(POF)等很多种;常用的为单模和多模光纤,多模光纤就是传输多个光波模式,而单模光纤只传输一个光波模式。单模光纤比多模光纤传输距离长,目前一般地,光信号在多模光纤内可传6km左右,在单模光纤内可传30km。因此,单模光设备的价格要高于多模光设备。实用的光纤通常都是由多根光纤、加强芯、保护材料、固定材料等组合成光缆构成的传输线。 光纤MODEM可完成光信号与数字信号之间的相互转换。光纤MODEM一般有一个以上的数据口用以传递同步或异步信号。通信速率可达到2Mbps或更高,配网常用的通信速率一般为同步N×64K或异步19200bps以下。故足以满足配网通信的需要,光纤MODEM的连接示意图如下:另外,还有一种光纤MODEM具有双环自愈功能。这一功能使通信的可靠性大大增强。其功能示意图如图2所示:图2(I)中,A,B,C三点是通过自愈光MODEM实现的双环网,若在D点发生故障,则如图2(II)所示,光路在A站和C站愈合(环回),使通信不受影响,同时向主站发出相应的告警及定位信号,使维修人员及时修复故障段光缆。4光纤通信的特点 光纤通信具有通信容量大,衰减小,不怕雷击,抗电磁干扰、抗腐蚀、保密性好、可靠性高、敷设方便等优点,不过投资费用相对较高,尤其对于城区内直埋式电缆线路的光纤敷设,施工费用将更大。 5光纤通信在配电网上的实现方案 光纤通信的组网方式非常灵活,可以构架成星型、链型、树状、网状、单纤网、双纤网、环上多分支、多环相交、多环相切等各种拓扑结构的网络。 根据配电自动化系统的特点,光纤网通常需组成环型网,并与计算机局域网连接,实现数据共享。常用的组网方式如图3所示。图3中:“S”表示网络服务器,“W1、W2、Wn”表示工作站,“b”表示变电所,“k”表示开闭所,“T”表示配电变压器。 实际工程设计中,充分考虑到电力通信专网拓扑结构的复杂性,SDH传输系统可以采用多达126个E1(2M口)全交叉连接和双主光环+多光分支的设计思想。基本构架为1~3个SDH/STM-1双纤自愈环相交或相切,而且在需要时,可通过更换光卡的方式在线升级为SDH/STM-4。如果局调度中心局域网位于网络地理中心,建议设计为相切环,以调度中心为切点,如图4所示;如果局调度中心局域网偏离网络地理中心,建议设计为相交环,由于调度中心不在交点,为了环间可靠转接,各环相交至少两点,互为保护路由,如图5所示。6结束语 在实际的配网自动化的通信系统,必须构建一个成本低、收效高的双向通信系统,用可以接受的费用在可靠性和信息流量方面提供非常高的性能。同时,由于配电网自动化系统所要完成的功能太多而系统复杂,采用单一的通信系统来满足所有的功能需要是不现实的,也是不经济的。因此,在配电网自动化系统中,要应用多种通信方式,按综合的经济技术指标而选取其中最优的组合。在电力系统中较常用的通信方式还有一点多址数字微波、数传电台、无线扩频、专线电缆、邮电本地网、载波、扩频载波等,可供组网时选择。

一、FTTH 随着Internet宽带应用的日益发展和普及,宽带接入技术不断推陈出新,人们对接入带宽需求也不断提高,宽带接入技术发展也日新月异,市场竞争也日趋白热化。市场的迅速变化,催生光纤到家(FTTH)接入技术的发展和应用,我们认为FTTH正向我们走来。1.FTTH能提供超高带宽 众所周知,当前宽带接入技术如ADSL、基于5类线的LAN接入和cable modem 等都只能提供低于10M的接入带宽,而利用光纤为传输媒介的FTTH接入网从理论上可以为用户提供无限的带宽,就目前成熟的FTTH技术可以轻而易举为用户提供0至1G范围内的任意带宽。2.有低成本、技术成熟的FTTH解决方案 由于市场需要的驱动,FTTH技术近年取得了长足进步,基于以太网的点对点网络拓扑结构的光接入网技术以其技术成熟、成本低等优势,已在FTTH中得到了广泛的应用,特别是在北美、日本和韩国。基于以太网的FTTH解决方案沿用了成熟的以太网技术,在技术层面上,它具有能轻易提供100M或1G的带宽、与现有计算机网络无缝链接等优势;在运营维护层面上,具有网络结构简单、建设和运营维护成本低的优势;而在应用和业务层面上,具有支持目前Internet所有宽带应用的能力,支持数据、话音和视频广播的多种业务能力。 除了成熟的基于以太网的点对点的FTTH技术外,近年还发展基于以太网的一点对多点网络拓扑结构的无源光网络(Passive Optical Network—PON)的宽带接入技术。但由于其标准尚未统一,尚未有大规模应用,其设备成本也仍然偏高。但业内人士一致认为,基于以太网的PON宽带接入技术也是一种较理想FTTH技术,随着其技术标准的颁布和器件价格的大幅下降,它将与基于以太网的点对点网络拓扑结构的FTTH接入技术互为补充,在FTTH中得到了广泛的应用。截止2003年6月美国已有FTTH用户98万,日本有46万户,并预计在今后几年,美国和日本FTTH用户将以每年超过200%的增长速度增加。3.运营商的竞争需要FTTH 从中国电信独家垄断国内电信市场被打破之日起,国内电信业的竞争便日趋激烈,特别是对Internet宽带接入市场的竞争更是显得白热化。参与宽带接入市场竞争企业几乎包括了目前所有电信运营商。其中,传统电信运营商有中国电信、中国联通等,新兴电信运营有中国网通、铁通等,驻地网运营商有长城宽带、聚友网络等。表1.2.1是中国主要宽带接入技术发展现状与前景。从表中可看出,由于其技术上和组网上的缺陷,基于5类线的LAN接入技术很难再有大规模的发展;由于我国CATV网络发展不均衡、行业垄断明显和住宅区住户密集的市场特征,Cable Modem宽带接入技术始终没有很好发展,预计在将来其发展也将继续受到限制;VDSL是比ADSL更高带宽的接入技术,但由于其技术不甚成熟、接入距离短等缺陷,至今没有在国内应用,但近期内可能会开始使用;而ADSL是目前我国最普及、发展最好的宽带接入技术,尽管ADSL存在带宽受限、出线率低等缺点,但其仍将以技术成熟、网络建设成本低等优点,在未来将进一步得到发展。无论ADSL或VDSL,都将使拥有接入电话线资源的中国电信在未来宽带接入市场一统天下。显而易见。为了打破中国电信ADSL对宽带接入市场的垄断,其他运营商只有选择技术新、更具竞争力的接入手段与其竞争,那就是FTTH!4.房地产开发商的竞争需要FTTH 目前国内房地产市场竞争非常激烈,房地产开发商往往通过在小区或大楼采用最先进的宽带接入技术,别出心裁包装商品房,如几年前使用综合布线大楼、智能化小区,后来使用所谓宽频社区、宽带上网等概念进行炒作。可以预见,随着光纤到家的全光接入网技术的成熟和市场的逐步形成,宽带接入技术的主要用户之一房地产开发商将会积极从现有宽带接入技术的过渡方案,转移到全光接入网最终解决方案,进行房地产市场全新概念的下一轮炒作。5.为用户提供多业务需要FTTH 如今是通信技术飞速发展和信息爆炸的年代,人们已在享受多种通信技术和信息来源,人们自然需要能支撑多种通信业务的宽带通信接入技术,能满足这一需求的无疑是以光纤为传输媒介的FTTH宽带接入技术。如前所述,光纤宽带接入技术是接入网的最终和全业务解决方案,它突破了目前宽带通信瓶颈,在接入网同时实现计算机互联网、电话网和有线电视网的三网合一,提供数据、话音和视频多种业务。6.廉价的光缆推动FTTH 最近几年,由于光纤拉制工艺日趋完善,光缆价格一降再降,目前室外光缆每芯每公里已低于400元人民币,已经低于铜缆、五类线的价格。廉价光缆无疑为实现低成本的FTTH宽带接入提供更大可能。 综上所述,在接入网大规模铺设光缆和提供光纤宽带接入的时机已成熟!而且从宽带接入技术和市场发展趋势看,谁今天铺设FTTH的光缆,谁就拥有通信的未来。二、EPON和GPON前景比较 EPON和GPON具有各自的技术定位,不存在严格的优劣之分;但目前看来EPON的技术成熟度和商用化程度已经远远超过GPON。 的确,从FTTx在我国以及整个亚太地区的发展情况来看,EPON已成为实现FTTx的主流选择。 EPON发展态势喜人 在我国,EPON在商用化和实际性能方面均已有着不凡的表现。 在商用化方面,EPON正在向全国范围扩展。据记者了解,在结束了北京、上海、湖北、广东四地两万户的采用EPON的FTTH试点工程之后,中国电信认为EPON技术商用化趋于成熟,并于2006年底开放新的EPON试点方案,允许各个省市在总部备案后进行试点工程。 同时,EPON设备厂商也在迅速跟进中国市场EPON商用化的进程。PMC-Sierra公司在不久前香港举行的第十届ITU世界电信展上,推出了据称是第一款的端到端EPON芯片方案,并且率先针对中国电信集团新的数据加密与解密算法、服务程序质量以及分类协议标准进行的设计,非常适合于在中国市场的大规模部署。 而在实际性能方面,EPON通过附加一些增强特性,已经能越来越好地满足更多技术需求。记者在与北邮光通信中心和光网络研究室了解到,传统认为EPON弱在支持TDM业务,但目前EPON设备商采用各种TDMoverEthernet的专利技术和在普通以太网上使用各种PWE3设备,一般都能满足不同环境下的TDM业务传输需求;通过在设备方面附加增强特性,EPON在QoS和OAM方面已经能很好与GPON标准中定义的大部分功能相媲美。 可以说,EPON技术本身的易部署性和对以太网的继承性,决定了它强大的生命力。EPON继承了以太网“简单即是美”的优良传统,尽量在技术标准的框架内作小的改动来增加功能,EPON和其技术联盟可以说是一直处于相互推动的良性发展。有专家指出,美欧地区采用从APON/BPON到GPON,是符合他们自身技术演进道路的,而能在亚太地区实现FTTx规模化的,是符合亚太市场需要的EPON。 可以预见,在包交换网络成为主流的今天,继承了以太网技术的EPON将在FTTx领域发挥巨大的作用。 GPON受困成本瓶颈 相较于EPON如火如荼的发展态势,GPON却一直受制于自身的技术复杂性带来的高成本。成本是与技术产品的商业化密切相关,而PON系统里核心芯片和光收发模块的成本在很大程度上决定了整个PON系统的成本。 在芯片方面,许巍告诉记者,目前还没有一款真正意义上的GPON商业芯片问世,大都是测试芯片。GPON芯片需要全新设计封装格式,“技术门槛”较高,芯片成本下降难;而且现有的GPON产品,大部分是针对北美市场的需求,对中国市场没有做过深入调查,还没有真正符合中国市场需求GPON产品面世。GPON芯片成本已经与EPON芯片成本拉开了很大差距。 光模块成本问题更是一个瓶颈问题。烽火通信的市场部总监高鹏告诉记者,GPON对于光模块设备技术指标的高要求,也将成为其设备商降低成本的瓶颈问题,而且“不是单纯的上量就能解决的”。 从来自光模块厂商的数据得知,GPON光模块中对于ONU发射机的功率和OLT接收机的灵敏度要求很高,只能采用DFB发射机和APD接收机,而它们的成本几乎是EPON模块中所使用的传统FP发射机和PIN接收机的6倍。 另外,GPON的光模块要满足很好的突发同步指标,对模块中的驱动和前后放大芯片要求很高,还要满足3类ODN的功率预算。以上这些因素,共同构成了GPON光模块成本降低过程中一道难以逾越的屏障。 GPON或将成为备用选择 EPON技术的成熟度和可行性,业界已经毋庸置疑,但并不能就此认为GPON在市场上已没有立足之地。不考虑成本因素的情况下,GPON在下行线路速率、线路效率、安全性、支持业务类型、网管能力等很多方面都有明显的理论优势。很多分析家认为,如果我国IPTV前景进一步明朗,市场对接入网下行带宽、多业务承载的需求会进一步扩大,等届时将对GPON起到很大的拉动作用,引导GPON产业联盟的成熟和设备成本的下降。 目前国内很多通信设备制造商对EPON和GPON的态度是重点介入EPON,但同时对GPON做另一手准备的态度。对此,许巍表示说,GPON对运营商多种业务,特别是语音业务的优良承载性,将始终是它的优势。他谈到,EPON的技术成熟程度和其广泛的商用化,决定了EPON成为当前FTTx领域内的主导技术,但大多数厂商并不打算放弃做GPON产品,他们在做FTTx产品和解决方案时,更多考虑EPON光接入网系统的可升级性,比如长光的EPON产品能够通过仅仅更换一块板型器件等简单的方式,平滑地过渡到GPON系统。 运营商方面,尽管早已对EPON的成熟度做出了明确的认可,但对GPON采取的也是不排斥的态度。7月上旬至8月下旬,中国电信集团公司在上海进行了国内首次GPON设备功能验证测试,参加测试的厂商有华为、 阿尔卡特、西门子等通信设备提供商,大部分测试设备都获得了比较让人满意的性能指标。当然,这些设备都还只是处于测试阶段,离规模化生产的商用标准还有很大差离。EPON的优点主要表现在: (1)相对成本低,维护简单,容易扩展,易于升级。EPON结构在传输途中不需电源,没有电子部件,因此容易铺设,基本不用维护,长期运营成本和管理成本的节省很大;EPON系统对局端资源占用很少,模块化程度高,系统初期投入低,扩展容易,投资回报率高;EPON系统是面向未来的技术,大多数EPON系统都是一个多业务平台,对于向全IP网络过渡是一个很好的选择。 (2)提供非常高的带宽。EPON目前可以提供上下行对称的1.25Gb/s的带宽,并且随着以太技术的发展可以升级到10Gb/s。 (3)服务范围大。EPON作为一种点到多点网络,以一种扇出的结构来节省CO的资源,服务大量用户。 (4)带宽分配灵活,服务有保证。对带宽的分配和保证都有一套完整的体系。 专家分析,EPON和GPON并非水火不容,很可能同时生存。对于带宽、多业务和安全性要求较高的大宗接入客户,以GPON实现的FTTx自然更有市场。目前看来,EPON已经成为国内FTTx领域的主流,而随着成本下降,GPON今后或将成为部分EPON市场的补充和升级选择。

光纤通信光源技术论文篇二 我国光纤通信技术综述 光纤通信的发展依赖于光纤通信技术的进步。近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围不断扩大。 1. 我国光纤光缆发展的现状 1.1普通光纤 普通单模光纤是最常用的一种光纤。随着光通信系统的发展,光中继距离和单一波长信道容量增大,G.652.A光纤的性能还有可能进一步优化,表现在1550rim区的低衰减系数没有得到充分的利用和光纤的最低衰减系数和零色散点不在同一区域。符合ITUTG.654规定的截止波长位移单模光纤和符合G.653规定的色散位移单模光纤实现了这样的改进。 1.2核心网光缆 我国已在干线(包括国家干线、省内干线和区内干线)上全面采用光缆,其中多模光纤已被淘汰,全部采用单模光纤,包括G.652光纤和G.655光纤。G.653光纤虽然在我国曾经采用过,但今后不会再发展。G.654光纤因其不能很大幅度地增加光纤系统容量,它在我国的陆地光缆中没有使用过。干线光缆中采用分立的光纤,不采用光纤带。干线光缆主要用于室外,在这些光缆中,曾经使用过的紧套层绞式和骨架式结构,目前已停止使用。 1.3接入网光缆 接入网中的光缆距离短,分支多,分插频繁,为了增加网的容量,通常是增加光纤芯数。特别是在市内管道中,由于管道内径有限,在增加光纤芯数的同时增加光缆的光纤集装密度、减小光缆直径和重量,是很重要的。接入网使用G.652普通单模光纤和G.652.C低水峰单模光纤。低水峰单模光纤适合于密集波分复用,目前在我国已有少量的使用。 1.4室内光缆 室内光缆往往需要同时用于话音、数据和视频信号的传输。并目还可能用于遥测与传感器。国际电工委员会(IEC)在光缆分类中所指的室内光缆,笔者认为至少应包括局内光缆和综合布线用光缆两大部分。局用光缆布放在中心局或其他电信机房内,布放紧密有序和位置相对固定。综合布线光缆布放在用户端的室内,主要由用户使用,因此对其易损性应比局用光缆有更严格的考虑。 1.5电力线路中的通信光缆 光纤是介电质,光缆也可作成全介质,完全无金属。这样的全介质光缆将是电力系统最理想的通信线路。用于电力线杆路敷设的全介质光缆有两种结构:即全介质自承式(ADSS)结构和用于架空地线上的缠绕式结构。ADSS光缆因其可以单独布放,适应范围广,在当前我国电力输电系统改造中得到了广泛的应用。国内已能生产多种ADSS光缆满足市场需要。但在产品结构和性能方面,例如大志数光缆结构、光缆蠕变和耐电弧性能等方面,还有待进一步完善。ADSS光缆在国内的近期需求量较大,是目前的一种热门产品。 2. 光纤通信技术的发展趋势 对光纤通信而言,超高速度、超大容量和超长距离传输一直是人们追求的目标,而全光网络也是人们不懈追求的梦想。 2.1超大容量、超长距离传输技术波分复用技术极大地提高了光纤传输系统的传输容量,在未来跨海光传输系统中有广阔的应用前景。近年来波分复用系统发展迅猛,目前1.6Tbit/的WDM系统已经大量商用,同时全光传输距离也在大幅扩展。提高传输容量的另一种途径是采用光时分复用(OTDM)技术,与WDM通过增加单根光纤中传输的信道数来提高其传输容量不同,OTDM技术是通过提高单信道速率来提高传输容量,其实现的单信道最高速率达640Gbit/s。 仅靠OTDM和WDM来提高光通信系统的容量毕竟有限,可以把多个OTDM信号进行波分复用,从而大幅提高传输容量。偏振复用(PDM)技术可以明显减弱相邻信道的相互作用。由于归零(RZ)编码信号在超高速通信系统中占空较小,降低了对色散管理分布的要求,且RZ编码方式对光纤的非线性和偏振模色散(PMD)的适应能力较强,因此现在的超大容量WDM/OTDM通信系统基本上都采用RZ编码传输方式。WDM/OTDM混合传输系统需要解决的关键技术基本上都包括在OTDM和WDM通信系统的关键技术中。 2.2光孤子通信 光孤子是一种特殊的ps数量级的超短光脉冲,由于它在光纤的反常色散区,群速度色散和非线性效应相互平衡,因而经过光纤长距离传输后,波形和速度都保持不变。光孤子通信就是利用光孤子作为载体实现长距离无畸变的通信,在零误码的情况下信息传递可达万里之遥。 光孤子技术未来的前景是:在传输速度方面采用超长距离的高速通信,时域和频域的超短脉冲控制技术以及超短脉冲的产生和应用技术使现行速率10~20Gbit/s提高到100Gbit/s以上;在增大传输距离方面采用重定时、整形、再生技术和减少ASE,光学滤波使传输距离提高到100000km以上;在高性能EDFA方面是获得低噪声高输出EDFA。当然实际的光孤子通信仍然存在许多技术难题,但目前已取得的突破性进展使人们相信,光孤子通信在超长距离、高速、大容量的全光通信中,尤其在海底光通信系统中,有着光明的发展前景。 2.3全光网络 未来的高速通信网将是全光网。全光网是光纤通信技术发展的最高阶段,也是理想阶段。传统的光网络实现了节点间的全光化,但在网络结点处仍采用电器件,限制了目前通信网干线总容量的进一步提高,因此真正的全光网已成为一个非常重要的课题。 全光网络以光节点代替电节点,节点之间也是全光化,信息始终以光的形式进行传输与交换,交换机对用户信息的处理不再按比特进行,而是根据其波长来决定路由。 目前,全光网络的发展仍处于初期阶段,但它已显示出了良好的发展前景。从发展趋势上看,形成一个真正的、以WDM技术与光交换技术为主的光网络层,建立纯粹的全光网络,消除电光瓶颈已成为未来光通信发展的必然趋势,更是未来信息网络的核心,也是通信技术发展的最高级别,更是理想级别。 结语 光通信技术作为信息技术的重要支撑平台,在未来信息社会中将起到重要作用。虽然经历了全球光通信的"冬天"但今后光通信市场仍然将呈现上升趋势。从现代通信的发展趋势来看,光纤通信也将成为未来通信发展的主流。人们期望的真正的全光网络的时代也会在不远的将来如愿到来。 看了“光纤通信光源技术论文”的人还看: 1. 光通信技术论文 2. 光纤技术论文 3. 光纤传感技术论文 4. 光通信技术论文(2) 5. 电力系统光纤通信技术论文

光纤与光缆毕业论文

光纤通信技术的发展趋势[摘要]对光纤通信技术领域的主要发展热点作一简述与展望,主要有超高速传输系统,超大容量波分复用系统,光联网技术,新一代的光纤,IP over SDH与IP overOptical以及光接入网.关键词:光纤 超高速传输 超大容量波分复用 光联网光纤通信的诞生与发展是电信史上的一次重要革命.近几年来,随着技术的进步,电信管理体制的改革以及电信市场的逐步全面开放,光纤通信的发展又一次呈现了蓬勃发展的新局面,本文旨在对光纤通信领域的主要发展热点作一简述与展望.1 向超高速系统的发展从过去2O多年的电信发展史看,网络容量的需求和传输速率的提高一直是一对主要矛盾.传统光纤通信的发展始终按照电的时分复用(TDM)方式进行,每当传输速率提高4倍,传输每比特的成本大约下降30%~40%;因而高比特率系统的经济效益大致按指数规律增长,这就是为什么光纤通信系统的传输速率在过去20多年来一直在持续增加的根本原因.目前商用系统已从45Mbps增加到10Gbps,其速率在20年时间里增加了20O0倍,比同期微电子技术的集成度增加速度还快得多.高速系统的出现不仅增加了业务传输容量,而且也为各种各样的新业务,特别是宽带业务和多媒体提供了实现的可能.目前10Gbps系统已开始大批量装备网络,全世界安装的终端和中继器已超过5000个,主要在北美,在欧洲,日本和澳大利亚也已开始大量应用.我国也将在近期开始现场试验.需要注意的是,10Gbps系统对于光缆极化模色散比较敏感,而已经敷设的光缆并不一定都能满足开通和使用10Gbps系统的要求,需要实际测试,验证合格后才能安装开通.在理论上,上述基于时分复用的高速系统的速率还有望进一步提高,例如在实验室传输速率已能达到4OGbps,采用色度色散和极化模色散补偿以及伪三进制(即双二进制)编码后已能传输100km.然而,采用电的时分复用来提高传输容量的作法已经接近硅和镓砷技术的极限,没有太多潜力可挖了,此外,电的40Gbps系统在性能价格比及在实用中是否能成功还是个未知因素,因而更现实的出路是转向光的复用方式.光复用方式有很多种,但目前只有波分复用(WDM)方式进入大规模商用阶段,而其它方式尚处于试验研究阶段.2 向超大容量WDM系统的演进光纤接入|光纤传输如前所述,采用电的时分复用系统的扩容潜力已尽,然而光纤的200nm可用带宽资源仅仅利用了不到1%,99%的资源尚待发掘.如果将多个发送波长适当错开的光源信号同时在一极光纤上传送,则可大大增加光纤的信息传输容量,这就是波分复用(WDM)的基本思路.采用波分复用系统的主要好处是:(1)可以充分利用光纤的巨大带宽资源,使容量可以迅速扩大几倍至上百倍;(2)在大容量长途传输时可以节约大量光纤和再生器,从而大大降低了传输成本;(3)与信号速率及电调制方式无关,是引入宽带新业务的方便手段;(4)利用WDM网络实现网络交换和恢复可望实现未来透明的,具有高度生存性的光联网.鉴于上述应用的巨大好处及近几年来技术上的重大突破和市场的驱动,波分复用系统发展十分迅速.如果认为1995年是起飞年的话,其全球销售额仅仅为1亿美元,而2000年预计可超过40亿美元,2005年可达120亿美元,发展趋势之快令人惊讶.目前全球实际敷设的WDM系统已超过3000个,而实用化系统的最大容量已达320Gbps(2*16*10Gbps),美国朗讯公司已宣布将推出80个波长的WDM系统,其总容量可达200Gbps(80*2.5Gbps)或400Gbps(40*10Gbps).实验室的最高水平则已达到2.6Tbps(13*20Gbps).预计不久实用化系统的容量即可达到1Tbps的水平.可以认为近2年来超大容量密集波分复用系统的发展是光纤通信发展史上的又一里程碑.不仅彻底开发了无穷无尽的光传输键路的容量,而且也成为IP业务爆炸式发展的催化剂和下一代光传送网灵活光节点的基础.3 实现光联网——战略大方向上述实用化的波分复用系统技术尽管具有巨大的传输容量,但基本上是以点到点通信为基础的系统,其灵活性和可靠性还不够理想.如果在光路上也能实现类似SDH在电路上的分插功能和交叉连接功能的话,无疑将增加新一层的威力.根据这一基本思路,光的分插复用器(OADM)和光的交叉连接设备(OXC)均已在实验室研制成功,前者已投入商用.实现光联网的基本目的是:(1)实现超大容量光网络;(2)实现网络扩展性,允许网络的节点数和业务量的不断增长;(3)实现网络可重构性,达到灵活重组网络的目的;(4)实现网络的透明性,允许互连任何系统和不同制式的信号;(5)实现快速网络恢复,恢复时间可达100ms.鉴于光联网具有上述潜在的巨大优势,发达国家投入了大量的人力,物力和财力进行预研,特别是美国国防部预研局(DARPA)资助了一系列光联网项目,如以Be11core为主开发的"光网技术合作计划(ONTC)",以朗讯公司为主开发的"全光通信网"预研计划","多波长光网络(MONET)"和"国家透明光网络(NTON)"等.在欧洲和日本,也分别有类似的光联网项目在进行.光纤接入|光纤传输综上所述光联网已经成为继SDH电联网以后的又一新的光通信发展高潮.其标准化工作将于2000年基本完成,其设备的商用化时间也大约在2000年左右.建设一个最大透明的.高度灵活的和超大容量的国家骨干光网络不仅可以为未来的国家信息基础设施(NII) 奠定一个坚实的物理基础,而且也对我国下一世纪的信息产业和国民经济的腾飞以及国家的安全有极其重要的战略意义.4 新一代的光纤近几年来随着IP业务量的爆炸式增长,电信网正开始向下一代可持续发展的方向发展,而构筑具有巨大传输容量的光纤基础设施是下一代网络的物理基础.传统的G.652单模光纤在适应上述超高速长距离传送网络的发展需要方面已暴露出力不从心的态势,开发新型光纤已成为开发下一代网络基础设施的重要组成部分.目前,为了适应干线网和城域网的不同发展需要,已出现了两种不同的新型光纤,即非零色散光纤(G.655光纤)和无水吸收峰光纤(全波光纤).4.1 新一代的非零色散光纤 非零色散光纤(G.655光纤)的基本设计思想是在1550窗口工作波长区具有合理的较低色散,足以支持10Gbps的长距离传输而无需色散补偿,从而节省了色散补偿器及其附加光放大器的成本;同时,其色散值又保持非零特性,具有一起码的最小数值(如2ps/(nm.km)以上),足以压制四波混合和交叉相位调制等非线性影响,适宜开通具有足够多波长的DWDM系统,同时满足TDM和DWDM两种发展方向的需要.为了达到上述目的,可以将零色散点移向短波长侧(通常1510~1520nm范围)或长波长侧(157nm附近),使之在1550nm附近的工作波长区呈现一定大小的色散值以满足上述要求.典型G.655光纤在1550nm波长区的色散值为G.652光纤的1/6~1/7,因此色散补偿距离也大致为G.652光纤的6~7倍,色散补偿成本(包括光放大器,色散补偿器和安装调试)远低于G.652光纤.4.2 全波光纤 与长途网相比,城域网面临更加复杂多变的业务环境,要直接支持大用户,因而需要频繁的业务量疏导和带宽管理能力.但其传输距离却很短,通常只有50~80km,因而很少应用光纤放大器,光纤色散也不是问题.显然,在这样的应用环境下,怎样才能最经济有效地使业务量上下光纤成为网络设计至关重要的因素.采用具有数百个复用波长的高密集波分复用技术将是一项很有前途的解决方案.此时,可以将各种不同速率的业务量分配给不同的波长,在光路上进行业务量的选路和分插.在这类应用中,开发具有尽可能宽的可用波段的光纤成为关键.目前影响可用波段的主要因素是1385nm附近的水吸收峰,因而若能设法消除这一水峰,则光纤的可用频谱可望大大扩展.全波光纤就是在这种形势下诞生的.全波光纤采用了一种全新的生产工艺,几乎可以完全消除由水峰引起的衰减.除了没有水峰以外,全波光纤与普通的标准G.652匹配包层光纤一样.然而,由于没有了水峰,光纤可以开放第5个低损窗口,从而带来一系列好处:(1)可用波长范围增加100nm,使光纤的全部可用波长范围从大约200nm增加到300nm,可复用的波长数大大增加;(2)由于上述波长范围内,光纤的色散仅为155Onm波长区的一半,因而,容易实现高比特率长距离传输;(3)可以分配不同的业务给最适合这种业务的波长传输,改进网络管理;(4)当可用波长范围大大扩展后,允许使用波长间隔较宽,波长精度和稳定度要求较低的光源,合波器,分波器和其它元件,使元器件特别是无源器件的成本大幅度下降,这就降低了整个系统的成本.5 IP over SDH与IP over Optical以IP业务为主的数据业务是当前世界信息业发展的主要推动力,因而能否有效地支持IP业务已成为新技术能否有长远技术寿命的标志.目前,ATM和SDH均能支持IP,分别称为IP over ATM和IP over SDH两者各有千秋.IP over ATM利用ATM的速度快,颗粒细,多业务支持能力的优点以及IP的简单,灵活,易扩充和统一性的特点,可以达到优势互补的目的,不足之处是网络体系结构复杂,传输效率低,开销损失大(达25%~30%).而SDH与IP的结合恰好能弥补上述IP overATM的弱点.其基本思路是将IP数据包通过点到点协议(PPP)直接映射到SDH帧,省掉了中间复杂的ATM层.具体作法是先把IP数据包封装进PPP分组,然后利用HDLC组帧,再将字节同步映射进SDH的VC包封中,最后再加上相应SDH开销置入STM-N帧中即可.IP over SDH在本质上保留了因特网作为IP网的无连接特征,形成统一的平面网,简化了网络体系结构,提高了传输效率,降低了成本,易于IP组插和兼容的不同技术体系实现网间互联.最主要优点是可以省掉ATM方式所不可缺少的信头开销和IP overATM封装和分段组装功能,使通透量增加25%~30%,这对于成本很高的广域网而言是十分珍贵的.缺点是网络容量和拥塞控制能力差,大规模网络路由表太复杂,只有业务分级,尚无优先级业务质量,对高质量业务难以确保质量,尚不适于多业务平台,是以运载IP业务为主的网络理想方案.随着千兆比高速路由器的商用化,其发展势头很强.采用这种技术的关键是千兆比高速路由器,这方面近来已有突破性进展,如美国Cisco公司推出的12000系列千兆比特交换路由器(GSR),可在千兆比特速率上实现因特网业务选路,并具有5~60Gbps的多带宽交换能力,提供灵活的拥塞管理,组播和QOS功能,其骨干网速率可以高达2.5Gbps,将来能升级至10Gbps.这类新型高速路由器的端口密度和端口费用已可与ATM相比,转发分组延时也已降至几十微秒量级,不再是问题.总之,随着千兆比特高速路由器的成熟和IP业务的大发展,IP overSDH将会得到越来越广泛的应用.光纤接入|光纤传输但从长远看,当IP业务量逐渐增加,需要高于2.4Gbps的链路容量时,则有可能最终会省掉中间的SDH层,IP直接在光路上跑,形成十分简单统一的IP网结构(IP overOptical).显然,这是一种最简单直接的体系结构,省掉了中间ATM层与SDH层,减化了层次,减少了网络设备;减少了功能重叠,简化了设备,减轻了网管复杂性,特别是网络配置的复杂性;额外的开销最低,传输效率最高;通过业务量工程设计,可以与IP的不对称业务量特性相匹配;还可利用光纤环路的保护光纤吸收突发业务,尽量避免缓存,减少延时;由于省掉了昂贵的ATM交换机和大量普通SDH复用设备,简化了网管,又采用了波分复用技术,其总成本可望比传统电路交换网降低一至二个量级!综上所述,现实世界是多样性的,网络解决方案也不会是单一的,具体技术的选用还与具体电信运营者的背景有关.三种IP传送技术都将在电信网发展的不同时期和网络的不同部分发挥自己应有的历史作用.但从面向未来的视角看,IP over Optical将是最具长远生命力的技术.特别是随着IP业务逐渐成为网络的主导业务后,这种对IP业务最理想的传送技术将会成为未来网络特别是骨干网的主导传送技术.在相当长的时期,IP over ATM,IP overSDH和IP over Optical将会共存互补,各有其最佳应用场合和领域.6 解决全网瓶颈的手段——光接入网过去几年间,网络的核心部分发生了翻天覆地的变化,无论是交换,还是传输都已更新了好几代.不久,网络的这一部分将成为全数字化的,软件主宰和控制的,高度集成和智能化的网络.而另一方面,现存的接入网仍然是被双绞线铜线主宰的(90%以上),原始落后的模拟系统.两者在技术上的巨大反差说明接入网已确实成为制约全网进一步发展的瓶颈.目前尽管出现了一系列解决这一瓶颈问题的技术手段,如双绞线上的xDSL系统,同轴电缆上的HFC系统,宽带无线接入系统,但都只能算是一些过渡性解决方案,唯一能够根本上彻底解决这一瓶颈问题的长远技术手段是光接入网.接入网中采用光接入网的主要目的是:减少维护管理费用和故障率;开发新设备,增加新收入;配合本地网络结构的调整,减少节点,扩大覆盖;充分利用光纤化所带来的一系列好处;建设透明光网络,迎接多媒体时代. 所谓光接入网从广义上可以包括光数字环路载波系统(ODLC)和无源光网络(PON)两类.数字环路载波系统DLC不是一种新技术,但结合了开放接口VS.1/V5.2,并在光纤上传输综合的DLC(IDLC),显示了很大的生命力,以美国为例,目前的1.3亿用户线中,DLC/IDLC已占据3600万线,其中IDLC占2700万线.特别是新增用户线中50%为IDLC,每年约500万线.至于无源光网络技术主要是在德国和日本受到重视.德国在1996年底前共敷设了约230万线光接入网系统,其中PON约占100万线.日本更是把PON作为其网络光纤化的主要技术,坚持不懈攻关十多年,采取一系列技术和工艺措施,将无源光网络成本降至与铜缆绞线成本相当的水平,并已在1998年全面启动光接入网建设,将于2010年达到6000万线,基本普及光纤通信网,以此作为振兴21世纪经济的对策.近来又计划再争取提前到2005年实现光纤通信网.光纤接入|光纤传输在无源光网络的发展进程中,近来又出现了一种以ATM为基础的宽带无源光网络(APON),这种技术将ATM和PON的优势相互结合,传输速率可达622/155Mbps,可以提供一个经济高效的多媒体业务传送平台并有效地利用网络资源,代表了多媒体时代接入网发展的一个重要战略方向.目前国际电联已经基本完成了标准化工作,预计1999年就会有商用设备问世.可以相信,在未来的无源光网络技术中,APON将会占据越来越大的份额,成为面向21世纪的宽带投入技术的主要发展方向.7 结束语从上述涉及光纤通信的几个方面的发展现状与趋势来看,完全有理由认为光纤通信进入了又一次蓬勃发展的新高潮.而这一次发展高潮涉及的范围更广,技术更新更难,影响力和影响面也更宽,势必对整个电信网和信息业产生更加深远的影响.它的演变和发展结果将在很大程度上决定电信网和信息业的未来大格局,也将对下一世纪的社会经济发展产生巨大影响.

去万方知网维普找啊。

光纤通信在配电网自动化上的应用 论文 1前言随着国家经济的发展和人民生活水平的提高,人们对电力的需求日益增长,同时对供电的可靠性和供电质量提出了更高的要求。配网馈线自动化是配网系统提高供电可靠性最直接有效的技术手段之一。在近几年国家加大了对城网和农网的改造,国内各大供电局对配电网自动化的投入也在加大。在配网自动化实现的过程中,我们发现通信问题是一个难点问题。在此,仅就光纤通信在配网自动化方面的应用谈一点认识和体会。 2配电网自动化对通信的要求 同调度SCADA系统一样,配电自动化系统也需要一个有效的通信网,同时他有自己的特点:终端数量极多。配网系统拥有众多的开闭所、配电变压器、柱上断路器,要对这些设备进行监控就需要许多FTU和TTU,同时这些FTU随配电设备安装,地域分布广,通讯节点分散。 配网自动化系统的规模、复杂程度和自动化程度决定了通信系统应满足下述要求: (1)可靠性: 配网系统的通信设备有很多暴露在室外,环境恶劣,因此必须能够抵御高温、低温、日晒、雨淋、风雪、冰雹和雷电等自然环境的侵袭。同时,尽量避免各种电磁干扰,保证长期稳定可靠地工作,并要求在线路停电时,通信系统仍能正常工作。 (2)经济性: 考虑到配电网系统的总体经济效益,通信系统的投资不应过大,力争充分利用现有的主网通信资源,进行主、配网整体规划,避免重复投资。 (3)寻址量大: 通信系统不仅要考虑目前及未来的数据传输的需要,还要考虑系统升级的要求。 (4)双向通信: 配网自动化要实现遥测、遥信、遥控功能,就必须要求具有双向通信能力。 (5)容易操作和免维护。 根据以上的要求,伴随着光纤价格的下降,目前,光纤通信正广泛地应用于电力系统。 3光纤通信 自激光器和低损耗光纤问世以来,光纤通信系统以其技术、经济上无可比拟的优越性而迅速崛起,并风靡全球。该系统是以光纤为传输介质,以光为载波信号传递信息的通信系统,应用的光波波长为1.0~1.μm靘,整个系统由电端机、光端机、光缆和中继器构成。光纤可分为单模光纤(SMF)、多模光纤(MMF)、长波长低射散光纤(LMF)、保偏光纤(PMF)及塑料光纤(POF)等很多种;常用的为单模和多模光纤,多模光纤就是传输多个光波模式,而单模光纤只传输一个光波模式。单模光纤比多模光纤传输距离长,目前一般地,光信号在多模光纤内可传6km左右,在单模光纤内可传30km。因此,单模光设备的价格要高于多模光设备。实用的光纤通常都是由多根光纤、加强芯、保护材料、固定材料等组合成光缆构成的传输线。 光纤MODEM可完成光信号与数字信号之间的相互转换。光纤MODEM一般有一个以上的数据口用以传递同步或异步信号。通信速率可达到2Mbps或更高,配网常用的通信速率一般为同步N×64K或异步19200bps以下。故足以满足配网通信的需要,光纤MODEM的连接示意图如下:另外,还有一种光纤MODEM具有双环自愈功能。这一功能使通信的可靠性大大增强。其功能示意图如图2所示:图2(I)中,A,B,C三点是通过自愈光MODEM实现的双环网,若在D点发生故障,则如图2(II)所示,光路在A站和C站愈合(环回),使通信不受影响,同时向主站发出相应的告警及定位信号,使维修人员及时修复故障段光缆。4光纤通信的特点 光纤通信具有通信容量大,衰减小,不怕雷击,抗电磁干扰、抗腐蚀、保密性好、可靠性高、敷设方便等优点,不过投资费用相对较高,尤其对于城区内直埋式电缆线路的光纤敷设,施工费用将更大。 5光纤通信在配电网上的实现方案 光纤通信的组网方式非常灵活,可以构架成星型、链型、树状、网状、单纤网、双纤网、环上多分支、多环相交、多环相切等各种拓扑结构的网络。 根据配电自动化系统的特点,光纤网通常需组成环型网,并与计算机局域网连接,实现数据共享。常用的组网方式如图3所示。图3中:“S”表示网络服务器,“W1、W2、Wn”表示工作站,“b”表示变电所,“k”表示开闭所,“T”表示配电变压器。 实际工程设计中,充分考虑到电力通信专网拓扑结构的复杂性,SDH传输系统可以采用多达126个E1(2M口)全交叉连接和双主光环+多光分支的设计思想。基本构架为1~3个SDH/STM-1双纤自愈环相交或相切,而且在需要时,可通过更换光卡的方式在线升级为SDH/STM-4。如果局调度中心局域网位于网络地理中心,建议设计为相切环,以调度中心为切点,如图4所示;如果局调度中心局域网偏离网络地理中心,建议设计为相交环,由于调度中心不在交点,为了环间可靠转接,各环相交至少两点,互为保护路由,如图5所示。6结束语 在实际的配网自动化的通信系统,必须构建一个成本低、收效高的双向通信系统,用可以接受的费用在可靠性和信息流量方面提供非常高的性能。同时,由于配电网自动化系统所要完成的功能太多而系统复杂,采用单一的通信系统来满足所有的功能需要是不现实的,也是不经济的。因此,在配电网自动化系统中,要应用多种通信方式,按综合的经济技术指标而选取其中最优的组合。在电力系统中较常用的通信方式还有一点多址数字微波、数传电台、无线扩频、专线电缆、邮电本地网、载波、扩频载波等,可供组网时选择。

1.光是一种电磁波可见光部分波长范围是:390~760nm(毫微米)。大于760nm部分是红外光,小于390nm部分是紫外光。目前光纤中应用较多的是:850,1310,1550三种。2.光的折射,反射和全反射。因光在不同物质中的传播速度是不同的,所以光从一种物质射向另一种物质时,在两种物质的交界面处会产生折射和反射。而且,折射光的角度会随入射光的角度变化而变化。当入射光的角度达到或超过某一角度时,折射光会消失,入射光全部被反射回来,这就是光的全反射。不同的物质对相同波长光的折射角度是不同的(即不同的物质有不同的光折射率),相同的物质对不同波长光的折射角度也是不同。光纤通讯就是基于以上原理而形成的。光纤结构及种类 3.光纤的种类:A.按光在光纤中的传输模式可分为:单模光纤和多模光纤。多模光纤:中心玻璃芯较粗(50或62.5μm),可传多种模式的光。但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。例如:600MB/KM的光纤在2KM时则只有300MB的带宽了。因此,多模光纤传输的距离就比较近,一般只有几公里。单模光纤:中心玻璃芯较细(芯径一般为9或10μm),只能传一种模式的光。因此,其模间色散很小,适用于远程通讯,但其色度色散起主要作用,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。B.按最佳传输频率窗口分:常规型单模光纤和色散位移型单模光纤。常规型:光纤生产厂家将光纤传输频率最佳化在单一波长的光上,如1310nm。色散位移型:光纤生产长家将光纤传输频率最佳化在两个波长的光上,如:1310nm和1550nm。C.按折射率分布情况分:突变型和渐变型光纤。突变型:光纤中心芯到玻璃包层的折射率是突变的。其成本低,模间色散高。适用于短途低速通讯,如:工控。但单模光纤由于模间色散很小,所以单模光纤都采用突变型。渐变型光纤:光纤中心芯到玻璃包层的折射率是逐渐变小,可使高模光按正弦形式传播,这能减少模间色散,提高光纤带宽,增加传输距离,但成本较高,现在的多模光纤多为渐变型光纤。4.常用光纤规格:单模:8/125μm,9/125μm,10/125μm多模:50/125μm,欧洲标准62.5/125μm,美国标准工业,医疗和低速网络:100/140μm,200/230μm塑料:98/1000μm,用于汽车控制 1.光纤的通频带很宽.理论可达30亿兆赫兹。2.无中继段长.几十到100多公里,铜线只有几百米。3.不受电磁场和电磁辐射的影响。4.重量轻,体积小。例如:通2万1千话路的900对双绞线,其直径为3英寸,重量8吨/KM。而通讯量为其十倍的光缆,直径为0.5英寸,重量450P/KM。5.光纤通讯不带电,使用安全可用于易燃,易暴场所。6.使用环境温度范围宽。7.化学腐蚀,使用寿命长。

光缆敷设论文范文

光纤通信的优点光纤通信之所以受到人们的极大重视,这是因为和其它通信手段相比,具有无以伦比的优越性。1、通信容量大 从理论上讲,一根仅有头发丝粗细的光纤可以同时传输1000 亿个话路。虽然目前远远未达到如此高的传输容量,但用一根光纤同时传输24 万个话路的试验已经取得成功,它比传统的明线、同轴电缆、微波等要高出几十乃至上千倍以上。一根光纤的传输容量如此巨大,而一根光缆中可以包括几十根甚至上千根光纤,如果再加上波分复用技术把一根光纤当作几根、几十根光纤使用,其通信容量之大就更加惊人了。2、中继距离长 由于光纤具有极低的衰耗系数(目前商用化石英光纤已达0.19dB/km 以下),若配以适当的光发送与光接收设备,可使其中继距离达数百公里以上。这是传统的电缆(1.5km)、微波(50km)等根本无法与之相比拟的。因此光纤通信特别适用于长途一、二级干线通信。据报导,用一根光纤同时传输24 万个话路、100 公里无中继的试验已经取得成功。此外,已在进行的光孤子通信试验,已达到传输120 万个话路、6000 公里无中继的水平。因此,在不久的将来实现全球无中继的光纤通信是完全可能的。 3、保密性能好 光波在光纤中传输时只在其芯区进行,基本上没有光“泄露”出去,因此其保密性能极好。 4、适应能力强 适应能力强是指,不怕外界强电磁场的干扰、耐腐蚀,可挠性强(弯曲半径大于25 厘米时其性能不受影响)等。 5、体积小、重量轻、便于施工维护 光缆的敷设方式方便灵活,既可以直埋、管道敷设,又可以水底和架空。6、原材料来源丰富,潜在价格低廉 制造石英光纤的最基本原材料是二氧化硅即砂子,而砂子在大自然界中几乎是取之不尽、用之不竭的。因此其潜在价格是十分低廉的 为何光纤速度快? FTTH(光纤入户)之类的光纤通信服务越来越普及。一说到“光纤”,人们首先就会联想到与铜线传导电信号相比,其数据传输速度更快。这是为什么呢?下面就来介绍一下这方面的情况。 光具有每秒可环绕地球7圈半的速度。也许有人认为这一点是光通信比使用铜线的电通信快的原因,其实完全错了。因为通信中所说的速度不是信号传输的快慢,而是传输数据的能力。仅从信号传输的速度来看,在铜线中传导的电信号与在光纤中传导的光信号并没有太大的差别。但在相同时间里,使用光纤通信的线路所传输的数据量远大于铜线,所以速度就快。 在光纤通信中,发送方将电信号转换成了激光的闪烁(即激光信号)。要想在短时间内传输大量的信息,就要增加闪烁次数。也就是说,短时间内能够多大程度地使激光闪烁,将决定数据传输速度的高低。 使用铜线传导电信号时原理也是如此。通过打开和关闭电信号,或反转正、负极性,来传输数据。能多大程度地更快地打开和关闭电信号、反转电极极性,将决定其数据传输速度。 两者的不同就在于光纤打开和关闭信号的速度(即频率)极限远远高于铜线。这就是使用光纤能够进行高速通信的最主要的原因。 使用铜线的通信不仅是电信号的打开和关闭,还通过各种方法提高传输速度。使用双绞线的千兆位以太网,通过详细地改变电压值,可一次传输5位信息,而不是打开和关闭的2位信息,而且还通过把4对双绞线组成一束实现了1Gbit/秒的传输速度。千兆位以太网的传输方式可以说作为电信号通信技术现今为止已经接近了极限。 而光纤通信使用一根光纤就已经实现了相当于千兆位的1000倍的Tbit /秒级通信。而且,光纤通信速度目前远远没有达到极限。据美国贝尔实验室2001年6月公布的估算结果称,从理论上来讲在光纤通信中足以实现100Tbit/秒的传输速度。现有技术丝毫没有充分发挥光纤的潜力。 与已经接近极限的电信号通信技术相比,光纤通信技术仍有巨大的发展空间。从电信号通信技术发展历程来看光纤通信技术的发展阶段,目前的光通信技术可以说只相当于十几年前1200bit/秒的调制解调器

线路敷设情况可以从敷设方式、敷设材料、敷设时间等方面来写:1、敷设方式:线路采用XX方式敷设,包括地下敷设、架空敷设等。2、敷设材料:线路采用XX材料进行敷设,如电缆、光缆等。3、敷设时间:本项目线路的敷设时间为XX年XX月至XX年XX月,总计XX个月。4、敷设质量:线路敷设质量符合国家和地方的相关标准和要求,经过了严格的检验和测试,达到了预期的效果。

光纤接入技术与其他接人技术相比,最大优势在于可用带宽,开发潜力巨大,这是其他接入技术无法相比的。光纤接入网还有传输质量好、传输距离长、抗干扰能力强、网络可靠性高和节约管道资源等特点。另外,SDH和APON设备的标准化程度都比较高,有利于降低生产和运行维护成本。 光接入网(0AN)从技术上可分为有源光网络(AON)和无源光网络(PoN)2类。AoN又可分为基于SDH 的AoN和基于PDH的AoN。PON可分为基于ATM的P0N(APON)及基于以太网的PoN(EP0N)。

邮电大学的?是长通院重邮南邮北邮西安邮电广邮?

光缆线路论文题目

通信工程1电力系统专用的几种特殊光缆2光缆工程应用选择3光纤的传输衰减设计电力系统有强大的电力网,遍布全国的城市和农村,借助于电力线路及杆塔建设光纤通信网是完全可行的。并且可以为发展电网自动化和新型继电保护提供宽频通道。目前,电力系统的城网和农网改造也为电力通信的发展带来了极好的机遇,许多省、地(市)电力局和县电力局都纷纷建设光纤电路,为实现宽带综合业务数字网(B-ISDN)做好充分准备。现就电力系统专用的几种特殊光缆的特点、架设方式,城网改造中光缆选择应用时必须注意的问题,及光纤的传输衰减设计等几个方面作一探讨。1电力系统专用的几种特殊光缆电力系统专用的特殊光缆有4种:无金属捆绑式光缆(AD-Lash)、无金属缠绕式光缆(GWWOP)、无金属自撑式光缆(ADSS)、架空地线复合光缆(OPGW)。无金属捆绑式架空光缆(AD-Lash)和无金属缠绕式光缆(GWWOP)是在电力线路上建设光纤通信网络的一种既经济又快捷的方式,它们用自动捆绑机和缠绕机将光缆捆绑和缠绕在地线或相线上。它们共同的优点是:光缆重量轻、造价低、安装迅速。在地线或10 kV/30 kV相线上可不停电安装。它们共同的缺点是:由于都采用了有机合成材料做外护套,因此都不能承受线路短路时相线或地线上产生的高温,都有外护套材料老化问题,施工时都需要专用机械,因此在电力系统中都未能得到广泛的应用。......http://

找189期刊网 陈老师 一切搞定

看你侧重哪个方面啦,给你几个参考意见咯光通信器件:器件发展与演变,性能指标如何提高等光网络物理层与链路层:编码、调制方式等对信号传输的影响光网络上层:网络协议等或者写写未来发展趋势等,不过这个比较空,如果你不熟悉的话也不太好找资料

光缆的铺设毕业论文

“彭州市行政中心政务外网”设计与实现 数学与计算机科学学院 计算机科学与技术(网络管理) 2005级 xx 指导教师:xx 摘要 :21世纪是网络的时代。无论是机关团体、企事业单位、园区都有或即将拥有自己的网络,“怎样建立一个适合自己的网络”是所有单位都关心的问题。本文通过对网络系统设计满足投资经济实惠、网络性能稳定的前提下,保证网络系统具有安全性、先进性、可靠性、可用性、可维护性和可扩展性的同时,以实现网站浏览、电子邮件、文件下载、公文交换、视频会议、领导桌面、可视电话等众多网络服务。使系统有较高的性价比。 关键词 :系统集成 ;综合布线; 灾备 Abstract :The 21st century is the era of networks. Both the organ groups, enterprises and institutions, the park has or is about to have their own networks, "How to build a network of their own" is that all units are concerned about. In this paper, the design of network systems to meet the investment cost, network performance stability, and ensure network security, advanced reliability, availability, maintainability and scalability at the same time in order to achieve the web browser, e-mail , file download, document exchange, video conferencing, the leading desktop video telephony and other network services. Allowing the system to a higher cost. Key words :Systems integration; General wiring; Disaster Recovery 1 系统概述 1.1 项目背景及概况 彭州市行政中心办公大楼由办公、会议、餐饮等主要功能区组成,主楼12层,东西附楼各为4层。电子政务外网中心机房设在主楼4层,主要安放服务器以及防火墙等设备;主楼楼层配线间设在一、三、五、七、九、十一层,安放边缘交换机以及配线架、机柜等设备,每个楼层配线间负责两层楼的信息插座。 彭州市电子政务外网网络平台是为彭州市网上办公提供统一的网络平台,在统一的网络平台上,能够规范各部门的业务流程和办事程序,统一资源规划、资源管理,统一网络建设。建立统一的信息发布机制,在网上发布各部门的职能、机构组成、办事章程,各项文件、资料、档案等,实现信息资源的共享。 1.2 网络建设目标 对系统的建设按照“总体规划、分布实施”的思路,在制定总体规划时,遵循“切合实际、分布实施、循序渐进、安全有效”的基本原则,网络结构的选择应具有安全性、先进性、可靠性、可用性和可维护性,扩充升级方便,可保护前期投资。 (1)基本构架采用国际流行的intranet/internet网络技术,以TCP/IP为基本传输协议。 (2)网络内部主干采用千兆光纤以太网技术,实现100M到桌面,满足系统业务需求,如视频会议,VOD点播和IP电话等对大量数据传输和服务质量,带宽分配的要求。 (3)市级内部采用先进的MPLS/VPN技术,构建全市的各部门级VPN,达到全彭州市政务的互相连通; (4)采用先进的虚拟网络和基于端口认证技术,按职能部门划分虚拟局域网,以增强网络内部安全性; (5)采用防火墙和入侵检测实现联动,主动对系统实现在线实时监控,提高网络安全性和可靠性。 2 方案设计与实现 2.1综合布线 (1) 工作区子系统设计 各工作区均采用标准RJ-45 双中结构的信息插座,信息插座安装于墙上,其旁边配一单相电源插座,信息插座和电源插座的低边沿线距地水平面30cm。工作区子系统由终端设备连接到信息插座之间的设备组成。包括:信息插座、插座盒、连接跳线和适配器组成。 (2) 水平区子系统 水平区子系统应由工作区用的信息插座,楼层分配线设备至信息插座的水平电缆、楼层配线设备和跳线等组成。全部选用超5 类4 对非屏蔽双绞线。 (3) 垂直主干线子系统 该子系统应由.......... (5) 管理子系统 管理子系统设备设置.......... (6) 建筑群 建筑群子系统由两个及两个以上建筑物的语音/数据组成的一个建筑群综合布线系统,包括连接各建筑物之间的线缆和配线设备。建筑群子系统宜采用地下管道敷设方式,管道内敷设的铜缆或光缆应遵循电话管道和入孔的各项设计规定。此外安装时至少应预留1-2个备用管孔,以供扩充之用,建筑群子系统采用直接沟内敷设时,如果在同一沟埋入了其他的图像监控电缆,应设立明显的共同。此采用IBDN 多模光纤连接主楼与两座附楼。 2.2 综合布线图 ............................................. ................................................ 结束语 网络内部主干采用千兆光纤以太网技术,实现100M到桌面,以满足视频会议,VOD点播和IP电话等对大量数据传输带宽分配的要求,保证服务质量,。市级内部采用先进的MPLS/VPN技术,构建全市的各部门级VPN,达到全彭州市政务的互相连通;采用先进的虚拟网络和基于端口认证技术,按职能部门划分虚拟局域网,让部门之间相互独立,以增强网络内部安全性;采用身份认证、防火墙和入侵检测等主动对系统在线实时监控其安全和可靠的与外界进行通信。 参考文献: [1] 徐振明,秦智,韩斌. 组网工程[J]. 西安:西安电子科技大学出版社,2006,1(1). [2] 王相林. 组网技术与配置[J]. 北京:清华大学出版社,2007.1. [3] 斯桃枝,李战国,王泽成. 计算机网络系统集成[J]. 北京:北京大学出版社, 2006. [4] 刘晓辉. 局域网构建与实战——中小型网络应用解决方案[J].北京:北京科海电子出版社, 2006. [5] [美]Vijay Bollapragada,Mohamed Khalid,Scott Wainner. IPSec VPN 设计[J]. 北京:人民邮电出版社, 2006. [6] [美]Keith Hutton Amir Ranjbar. CCIE #8669 CCDP自学指南:设计Csico网络体系结构(ARCH)[J]. 北京:人民邮电出版社, 2006.6. [7] 由IBM提供的“Iter [IT客]”之‘企业灾难的救生员与我的定海神针—灾备演练’2008年电脑报12期. 以上是我的论文,(中间大部分省略,图表和图显示不出来),

光纤通信技术的发展趋势[摘要]对光纤通信技术领域的主要发展热点作一简述与展望,主要有超高速传输系统,超大容量波分复用系统,光联网技术,新一代的光纤,IP over SDH与IP overOptical以及光接入网.关键词:光纤 超高速传输 超大容量波分复用 光联网光纤通信的诞生与发展是电信史上的一次重要革命.近几年来,随着技术的进步,电信管理体制的改革以及电信市场的逐步全面开放,光纤通信的发展又一次呈现了蓬勃发展的新局面,本文旨在对光纤通信领域的主要发展热点作一简述与展望.1 向超高速系统的发展从过去2O多年的电信发展史看,网络容量的需求和传输速率的提高一直是一对主要矛盾.传统光纤通信的发展始终按照电的时分复用(TDM)方式进行,每当传输速率提高4倍,传输每比特的成本大约下降30%~40%;因而高比特率系统的经济效益大致按指数规律增长,这就是为什么光纤通信系统的传输速率在过去20多年来一直在持续增加的根本原因.目前商用系统已从45Mbps增加到10Gbps,其速率在20年时间里增加了20O0倍,比同期微电子技术的集成度增加速度还快得多.高速系统的出现不仅增加了业务传输容量,而且也为各种各样的新业务,特别是宽带业务和多媒体提供了实现的可能.目前10Gbps系统已开始大批量装备网络,全世界安装的终端和中继器已超过5000个,主要在北美,在欧洲,日本和澳大利亚也已开始大量应用.我国也将在近期开始现场试验.需要注意的是,10Gbps系统对于光缆极化模色散比较敏感,而已经敷设的光缆并不一定都能满足开通和使用10Gbps系统的要求,需要实际测试,验证合格后才能安装开通.在理论上,上述基于时分复用的高速系统的速率还有望进一步提高,例如在实验室传输速率已能达到4OGbps,采用色度色散和极化模色散补偿以及伪三进制(即双二进制)编码后已能传输100km.然而,采用电的时分复用来提高传输容量的作法已经接近硅和镓砷技术的极限,没有太多潜力可挖了,此外,电的40Gbps系统在性能价格比及在实用中是否能成功还是个未知因素,因而更现实的出路是转向光的复用方式.光复用方式有很多种,但目前只有波分复用(WDM)方式进入大规模商用阶段,而其它方式尚处于试验研究阶段.2 向超大容量WDM系统的演进光纤接入|光纤传输如前所述,采用电的时分复用系统的扩容潜力已尽,然而光纤的200nm可用带宽资源仅仅利用了不到1%,99%的资源尚待发掘.如果将多个发送波长适当错开的光源信号同时在一极光纤上传送,则可大大增加光纤的信息传输容量,这就是波分复用(WDM)的基本思路.采用波分复用系统的主要好处是:(1)可以充分利用光纤的巨大带宽资源,使容量可以迅速扩大几倍至上百倍;(2)在大容量长途传输时可以节约大量光纤和再生器,从而大大降低了传输成本;(3)与信号速率及电调制方式无关,是引入宽带新业务的方便手段;(4)利用WDM网络实现网络交换和恢复可望实现未来透明的,具有高度生存性的光联网.鉴于上述应用的巨大好处及近几年来技术上的重大突破和市场的驱动,波分复用系统发展十分迅速.如果认为1995年是起飞年的话,其全球销售额仅仅为1亿美元,而2000年预计可超过40亿美元,2005年可达120亿美元,发展趋势之快令人惊讶.目前全球实际敷设的WDM系统已超过3000个,而实用化系统的最大容量已达320Gbps(2*16*10Gbps),美国朗讯公司已宣布将推出80个波长的WDM系统,其总容量可达200Gbps(80*2.5Gbps)或400Gbps(40*10Gbps).实验室的最高水平则已达到2.6Tbps(13*20Gbps).预计不久实用化系统的容量即可达到1Tbps的水平.可以认为近2年来超大容量密集波分复用系统的发展是光纤通信发展史上的又一里程碑.不仅彻底开发了无穷无尽的光传输键路的容量,而且也成为IP业务爆炸式发展的催化剂和下一代光传送网灵活光节点的基础.3 实现光联网——战略大方向上述实用化的波分复用系统技术尽管具有巨大的传输容量,但基本上是以点到点通信为基础的系统,其灵活性和可靠性还不够理想.如果在光路上也能实现类似SDH在电路上的分插功能和交叉连接功能的话,无疑将增加新一层的威力.根据这一基本思路,光的分插复用器(OADM)和光的交叉连接设备(OXC)均已在实验室研制成功,前者已投入商用.实现光联网的基本目的是:(1)实现超大容量光网络;(2)实现网络扩展性,允许网络的节点数和业务量的不断增长;(3)实现网络可重构性,达到灵活重组网络的目的;(4)实现网络的透明性,允许互连任何系统和不同制式的信号;(5)实现快速网络恢复,恢复时间可达100ms.鉴于光联网具有上述潜在的巨大优势,发达国家投入了大量的人力,物力和财力进行预研,特别是美国国防部预研局(DARPA)资助了一系列光联网项目,如以Be11core为主开发的"光网技术合作计划(ONTC)",以朗讯公司为主开发的"全光通信网"预研计划","多波长光网络(MONET)"和"国家透明光网络(NTON)"等.在欧洲和日本,也分别有类似的光联网项目在进行.光纤接入|光纤传输综上所述光联网已经成为继SDH电联网以后的又一新的光通信发展高潮.其标准化工作将于2000年基本完成,其设备的商用化时间也大约在2000年左右.建设一个最大透明的.高度灵活的和超大容量的国家骨干光网络不仅可以为未来的国家信息基础设施(NII) 奠定一个坚实的物理基础,而且也对我国下一世纪的信息产业和国民经济的腾飞以及国家的安全有极其重要的战略意义.4 新一代的光纤近几年来随着IP业务量的爆炸式增长,电信网正开始向下一代可持续发展的方向发展,而构筑具有巨大传输容量的光纤基础设施是下一代网络的物理基础.传统的G.652单模光纤在适应上述超高速长距离传送网络的发展需要方面已暴露出力不从心的态势,开发新型光纤已成为开发下一代网络基础设施的重要组成部分.目前,为了适应干线网和城域网的不同发展需要,已出现了两种不同的新型光纤,即非零色散光纤(G.655光纤)和无水吸收峰光纤(全波光纤).4.1 新一代的非零色散光纤 非零色散光纤(G.655光纤)的基本设计思想是在1550窗口工作波长区具有合理的较低色散,足以支持10Gbps的长距离传输而无需色散补偿,从而节省了色散补偿器及其附加光放大器的成本;同时,其色散值又保持非零特性,具有一起码的最小数值(如2ps/(nm.km)以上),足以压制四波混合和交叉相位调制等非线性影响,适宜开通具有足够多波长的DWDM系统,同时满足TDM和DWDM两种发展方向的需要.为了达到上述目的,可以将零色散点移向短波长侧(通常1510~1520nm范围)或长波长侧(157nm附近),使之在1550nm附近的工作波长区呈现一定大小的色散值以满足上述要求.典型G.655光纤在1550nm波长区的色散值为G.652光纤的1/6~1/7,因此色散补偿距离也大致为G.652光纤的6~7倍,色散补偿成本(包括光放大器,色散补偿器和安装调试)远低于G.652光纤.4.2 全波光纤 与长途网相比,城域网面临更加复杂多变的业务环境,要直接支持大用户,因而需要频繁的业务量疏导和带宽管理能力.但其传输距离却很短,通常只有50~80km,因而很少应用光纤放大器,光纤色散也不是问题.显然,在这样的应用环境下,怎样才能最经济有效地使业务量上下光纤成为网络设计至关重要的因素.采用具有数百个复用波长的高密集波分复用技术将是一项很有前途的解决方案.此时,可以将各种不同速率的业务量分配给不同的波长,在光路上进行业务量的选路和分插.在这类应用中,开发具有尽可能宽的可用波段的光纤成为关键.目前影响可用波段的主要因素是1385nm附近的水吸收峰,因而若能设法消除这一水峰,则光纤的可用频谱可望大大扩展.全波光纤就是在这种形势下诞生的.全波光纤采用了一种全新的生产工艺,几乎可以完全消除由水峰引起的衰减.除了没有水峰以外,全波光纤与普通的标准G.652匹配包层光纤一样.然而,由于没有了水峰,光纤可以开放第5个低损窗口,从而带来一系列好处:(1)可用波长范围增加100nm,使光纤的全部可用波长范围从大约200nm增加到300nm,可复用的波长数大大增加;(2)由于上述波长范围内,光纤的色散仅为155Onm波长区的一半,因而,容易实现高比特率长距离传输;(3)可以分配不同的业务给最适合这种业务的波长传输,改进网络管理;(4)当可用波长范围大大扩展后,允许使用波长间隔较宽,波长精度和稳定度要求较低的光源,合波器,分波器和其它元件,使元器件特别是无源器件的成本大幅度下降,这就降低了整个系统的成本.5 IP over SDH与IP over Optical以IP业务为主的数据业务是当前世界信息业发展的主要推动力,因而能否有效地支持IP业务已成为新技术能否有长远技术寿命的标志.目前,ATM和SDH均能支持IP,分别称为IP over ATM和IP over SDH两者各有千秋.IP over ATM利用ATM的速度快,颗粒细,多业务支持能力的优点以及IP的简单,灵活,易扩充和统一性的特点,可以达到优势互补的目的,不足之处是网络体系结构复杂,传输效率低,开销损失大(达25%~30%).而SDH与IP的结合恰好能弥补上述IP overATM的弱点.其基本思路是将IP数据包通过点到点协议(PPP)直接映射到SDH帧,省掉了中间复杂的ATM层.具体作法是先把IP数据包封装进PPP分组,然后利用HDLC组帧,再将字节同步映射进SDH的VC包封中,最后再加上相应SDH开销置入STM-N帧中即可.IP over SDH在本质上保留了因特网作为IP网的无连接特征,形成统一的平面网,简化了网络体系结构,提高了传输效率,降低了成本,易于IP组插和兼容的不同技术体系实现网间互联.最主要优点是可以省掉ATM方式所不可缺少的信头开销和IP overATM封装和分段组装功能,使通透量增加25%~30%,这对于成本很高的广域网而言是十分珍贵的.缺点是网络容量和拥塞控制能力差,大规模网络路由表太复杂,只有业务分级,尚无优先级业务质量,对高质量业务难以确保质量,尚不适于多业务平台,是以运载IP业务为主的网络理想方案.随着千兆比高速路由器的商用化,其发展势头很强.采用这种技术的关键是千兆比高速路由器,这方面近来已有突破性进展,如美国Cisco公司推出的12000系列千兆比特交换路由器(GSR),可在千兆比特速率上实现因特网业务选路,并具有5~60Gbps的多带宽交换能力,提供灵活的拥塞管理,组播和QOS功能,其骨干网速率可以高达2.5Gbps,将来能升级至10Gbps.这类新型高速路由器的端口密度和端口费用已可与ATM相比,转发分组延时也已降至几十微秒量级,不再是问题.总之,随着千兆比特高速路由器的成熟和IP业务的大发展,IP overSDH将会得到越来越广泛的应用.光纤接入|光纤传输但从长远看,当IP业务量逐渐增加,需要高于2.4Gbps的链路容量时,则有可能最终会省掉中间的SDH层,IP直接在光路上跑,形成十分简单统一的IP网结构(IP overOptical).显然,这是一种最简单直接的体系结构,省掉了中间ATM层与SDH层,减化了层次,减少了网络设备;减少了功能重叠,简化了设备,减轻了网管复杂性,特别是网络配置的复杂性;额外的开销最低,传输效率最高;通过业务量工程设计,可以与IP的不对称业务量特性相匹配;还可利用光纤环路的保护光纤吸收突发业务,尽量避免缓存,减少延时;由于省掉了昂贵的ATM交换机和大量普通SDH复用设备,简化了网管,又采用了波分复用技术,其总成本可望比传统电路交换网降低一至二个量级!综上所述,现实世界是多样性的,网络解决方案也不会是单一的,具体技术的选用还与具体电信运营者的背景有关.三种IP传送技术都将在电信网发展的不同时期和网络的不同部分发挥自己应有的历史作用.但从面向未来的视角看,IP over Optical将是最具长远生命力的技术.特别是随着IP业务逐渐成为网络的主导业务后,这种对IP业务最理想的传送技术将会成为未来网络特别是骨干网的主导传送技术.在相当长的时期,IP over ATM,IP overSDH和IP over Optical将会共存互补,各有其最佳应用场合和领域.6 解决全网瓶颈的手段——光接入网过去几年间,网络的核心部分发生了翻天覆地的变化,无论是交换,还是传输都已更新了好几代.不久,网络的这一部分将成为全数字化的,软件主宰和控制的,高度集成和智能化的网络.而另一方面,现存的接入网仍然是被双绞线铜线主宰的(90%以上),原始落后的模拟系统.两者在技术上的巨大反差说明接入网已确实成为制约全网进一步发展的瓶颈.目前尽管出现了一系列解决这一瓶颈问题的技术手段,如双绞线上的xDSL系统,同轴电缆上的HFC系统,宽带无线接入系统,但都只能算是一些过渡性解决方案,唯一能够根本上彻底解决这一瓶颈问题的长远技术手段是光接入网.接入网中采用光接入网的主要目的是:减少维护管理费用和故障率;开发新设备,增加新收入;配合本地网络结构的调整,减少节点,扩大覆盖;充分利用光纤化所带来的一系列好处;建设透明光网络,迎接多媒体时代. 所谓光接入网从广义上可以包括光数字环路载波系统(ODLC)和无源光网络(PON)两类.数字环路载波系统DLC不是一种新技术,但结合了开放接口VS.1/V5.2,并在光纤上传输综合的DLC(IDLC),显示了很大的生命力,以美国为例,目前的1.3亿用户线中,DLC/IDLC已占据3600万线,其中IDLC占2700万线.特别是新增用户线中50%为IDLC,每年约500万线.至于无源光网络技术主要是在德国和日本受到重视.德国在1996年底前共敷设了约230万线光接入网系统,其中PON约占100万线.日本更是把PON作为其网络光纤化的主要技术,坚持不懈攻关十多年,采取一系列技术和工艺措施,将无源光网络成本降至与铜缆绞线成本相当的水平,并已在1998年全面启动光接入网建设,将于2010年达到6000万线,基本普及光纤通信网,以此作为振兴21世纪经济的对策.近来又计划再争取提前到2005年实现光纤通信网.光纤接入|光纤传输在无源光网络的发展进程中,近来又出现了一种以ATM为基础的宽带无源光网络(APON),这种技术将ATM和PON的优势相互结合,传输速率可达622/155Mbps,可以提供一个经济高效的多媒体业务传送平台并有效地利用网络资源,代表了多媒体时代接入网发展的一个重要战略方向.目前国际电联已经基本完成了标准化工作,预计1999年就会有商用设备问世.可以相信,在未来的无源光网络技术中,APON将会占据越来越大的份额,成为面向21世纪的宽带投入技术的主要发展方向.7 结束语从上述涉及光纤通信的几个方面的发展现状与趋势来看,完全有理由认为光纤通信进入了又一次蓬勃发展的新高潮.而这一次发展高潮涉及的范围更广,技术更新更难,影响力和影响面也更宽,势必对整个电信网和信息业产生更加深远的影响.它的演变和发展结果将在很大程度上决定电信网和信息业的未来大格局,也将对下一世纪的社会经济发展产生巨大影响.

码分多址蜂窝移动通信系统CDMA技术的优点及问题及越区切换由于CDMA技术本身所固有的许多特点,使它非常适合于数字蜂窝移动通信系统。它的优点主要表现在如下10个方面。1.语音激活技术 统计结果表明,人们在通话过程中,只有35%的时间在讲话,另外65%的时间处于听对方讲话、话句间停顿或其他等待状态。在CDMA数字蜂窝移动通信系统中,所有用户共享同一个无线频道,当某一用户没有讲话时,该用户的发射机不发射或少发射功率,其他用户所受到的干扰都相应地减少。为此,在CDMA系统中,采用相应的编码技术,使用户的发射机所发射的功率随着用户语音编码的需求来作调整。当用户讲话时语音编码器输出速率高,发射机所发射的平均功率大;当用户不讲话时语音编码器输出速率很低,发射机所发射的平均功率很小,这就是语音激活技术。在蜂窝移动通信系统中,采用语音激活技术可以使各用户之间的干扰平均减少65%。也就是当系统容量较大时,采用语音激活技术可以使系统容量增加约3倍,但当系统容量较小时,系统容量的增加值要降低。在频分多址、时分多址和码分多址三种制式中,唯有码分多址可以方便而充分地利用语音激活技术。如果在频分多址和时分多址制式中采用语音激活技术,其系统容量将有不同程度的提高,但二者都必须增加比较复杂的功率控制系统,而且还要实现信道的动态分配,其结果必然带来时间延迟和系统复杂性的增加,而在CDMA系统中实现这种功能就相对简单得多。 2.扇区划分技术 扇区划分技术是位于蜂窝小区中心的基站利用天线的定向特性把蜂窝小区分成不同的扇面,如下图所示。常用的方式有利用120°圆形覆盖的定向天线组成的三叶草形无线区(图(a));利用60°扇形覆盖的定向天线组成的三角形无线蜂窝区(图(b));利用120°扇形覆盖的定向天线组成的120°扇形无线蜂窝区(图(c))。 在频分多址和时分多址制式中,在每个蜂窝小区中采用分扇区天线通常只能起到减少干扰的作用,不能增加系统容量。而在码分多址制式蜂窝移动通信系统中,利用120°扇形覆盖的定向天线把一个蜂窝小区划分成三个扇区(如图(c)所示)时,平均处于每个扇区中的移动用户是该蜂窝的三分之一,相应的各用户之间的多址干扰分量也减少为原来的三分之一左右,从而系统的容量将增加约3倍(实际上,由于相邻扇区之间有重叠,一般只能提高到2.55倍)。3.高系统容量 由于码分数字蜂窝移动通信系统可以通过采用上述两种方法以及其他技术直接地或间接地提高系统容量,使码分系统的容量比模拟FDMA系统及数字GSM系统都要高出若干倍。理论分析表明,在相同的频率带宽下,对于宽带码分系统,每个蜂窝小区所能提供的信道数是模拟FDMA系统的20倍左右,是数字GSM系统的10倍左右;对于窄带码分系统来说,其系统容量的优势有所降低,但也是模拟FDMA系统的10倍以上,是数字GSM系统的3倍以上。由此可以看出,在移动通信事业迅猛发展的今天,移动用户量日益猛增,而频率资源日趋紧张,采用码分数字蜂窝移动通信系统是势在必行。4.软容量 在模拟频分系统和数字时分系统中,通信信道是以频带或时隙的不同来划分的,每个蜂窝小区提供的信道数一旦固定,很难改变。当没有空闲信道时,系统会出现忙音,移动用户不可能再呼叫其他用户或接收其他 用户的呼叫。当移动用户在越区切换时,也很容易出现通话中断现象。在码分系统中,信道划分是靠不同的码型来划分的,其标准的信道数是以一定的输入、输出信噪比为条件的,当系统中增加一个通话用户时,所有用户输入、输出信噪比都有所下降,但不会出现因没有信道而不能通话的现象。例如对一个标准信道数为40的扇区来说,当第41个用户呼叫时,对所有移动用户的影响是接收机的输入信噪比下降10lg(41/40)=0.1dB,即使再增加两个用户通信,比标准多三个,其影响是所有接收机的输入信噪比下降10lg[(40+3)/40]=2.3dB,这使该扇区内的移动用户信息数据的误码率有所升高,通话质量有所下降,但增加的三个用户都不会发生因无信道而出现忙音的现象。这对于解决通信高峰期时的通信阻塞问题和提高用户越区切换的成功率无疑是非常有益的。5.软切换 当移动用户从一个小区(或扇区)移动到另一个小区(或扇区)时,移动用户从一个基站的管辖范围移动到另一个基站的管辖范围,通信网的控制系统为了不中断用户的通信就要做一系列的调整,包括通信链路的转换,位置更新等,这个过程就叫越区切换。越区切换实现了小区(或扇区)间的信道转换,是保证一个正在处理或进行中的呼叫的不中断运行。 在模拟FDMA系统和数字TDMA系统中,移动用户在越区切换时,需要在另一个小区(或扇区)寻找空闲信道,当该区有空闲信道时才能切换。这时移动台的收、发频率等都要作相应的调整,称之为硬切换。这种切换过程是首先切断原通话通路,然后与新的基站接通新的通话链路。这种先断后通的切换方式势必引起通信的短暂间断。另外由于通信环境的影响,在两小区的交叠区域内,移动台接收到的两个基站发来的信号的强度有时会出现大小交替变化,从而导致越区切换的“乒乓”效应,用户会听到“咔嗒”声,对通信产生不利的影响。此外切换时间也较长。 在CDMA系统中,由于所有的小区(或扇区)都可以使用相同的频率,小区(或扇区)之间是以码型的不同来区分的。当移动用户从一个小区(或扇区)移动到另一个小区(或扇区)时,不需要移动台的收、发频率切换,只需在码序列上作相应地调整,称之为软切换。软切换的优点在于首先与新的基站接通新的通话,然后切断原通话链路。这种先通后断的切换方式不会出现“乒乓”效应,并且切换时间也很短。另外由于CDMA系统有“软容量”的优点,越区切换的成功率要远大于模拟FDMA系统和数字TDMA系统,尤其是在通信的高峰期。6.特有的分集形式 在CDMA系统中,由于采用了宽带传输,使它具有了特有的频率分集特性,即当信道具有选频特性时,对CDMA系统中信息传输影响较小。 CDMA系统有分离多径信号的能力,可以实现路径分集。由于移动通信环境的复杂和移动台的不断运动,接收到的信号往往是多个反射波的叠加,形成多径衰落。在模拟FDMA系统和数字TDMA系统中,为了解决多径衰落对通信带来的不利影响,采取了包括增加发射功率等一系列措施。在CDMA系统中,可以采用它特有的技术(如瑞克(RAKE)接收技术),将多径信号分离出来, 分别接收,这样不但克服了多径衰落对通信带来的不利影响,还等效增加了接收有用信号的功率(或者说等效增加了发射信号的功率)。由于这种特有的分集形式以及其他措施,使CDMA系统的发射功率相对很低。 除了这种特有的分集形式外,CDMA系统还采用其他分集技术,如空间分集、时间分集等,使CDMA系统的性能更加提高。7.与窄带系统(模拟系统)共存 当码分系统与窄带系统(例如模拟FDMA系统)工作于同一频段时,由于在CDMA系统中采用了宽带传输方式,并且发射功率较低,平均落到每个窄带系统中的带宽内的干扰信号功率很小。尤其是宽带CDMA系统,其对窄带系统的影响可以忽略不计,窄带系统对CDMA系统的影响可以等效为“人为干扰”,由于CDMA系统特有的抗干扰能力,把这个干扰降低到了最低限度。 这个干扰的存在只使得CDMA系统的容量降低,但不妨碍CDMA系统的正常工作。CDMA系统的带宽越宽,两个系统共存时相互间的影响越小,反之则越大。这给CDMA系统与模拟窄带系统双模式共存以及由模拟移动通信系统向数字移动通信系统平滑过渡提供了可能性。8.良好的保密能力 码分数字移动通信系统的体制本身就决定了它具有良好的保密能力。首先在CDMA数字移动通信系统中必须采用扩频技术,使它所发射的信号频谱被扩展的很宽,从而使发射的信号完全隐蔽在噪声、干扰之中,不易被发现和接收,因此也就实现了保密通信。其次在通信过程中,各移动用户所使用的地址码各不相同,在接收端只有完全相同(包括码型和相位)的用户才能接收到相应的发送数据,对非相关的用户来说是一种背景噪声,所以CDMA系统可以防止有意或无意的窃取,具有很好的保密性能。9.发射功率低、移动台的电池使用寿命长 由于在码分数字移动通信系统中,可以采用许多特有的技术来提高系统的性能,所要求的发射功率大大降低,从而对电池的体积减小和使用寿命增长都是非常有益的,对移动台整机的体积减小和成本的降低也是有利的。10.频率分配和管理简单 在模拟频分多址和数字时分多址移动通信制式中,频率分配和管理是一项比较复杂的技术,而动态频率分配就更加复杂。在码分数字移动通信体制中,所有移动用户可以只用一个频率,不需要动态分配,其频率分配和管理都很简单。 以上是码分数字移动通信系统的主要优点,但同时它也存在需要人们攻克的难点。在CDMA数字移动通信系统中,突出的问题是远近效应。所谓远近效应是指距接收机近的用户对距离远的用户的干扰。 在CDMA数字移动通信系统中,由于在同一蜂窝的各用户使用的是同一频率,共享一个无线频道。由于路途衰耗的原因,距基站近的移动台所发射信号有可能完全淹没距离远(例如处于蜂窝区边缘)移动台所发送来的信号,如果不采取有力的措施,这将使基站无法正常接收远距离移动台所发送来的信号。而在模拟频分多址和数字时分多址移动通信系统中,由于各信道使用不同频率或时隙,且各信道之间有相应的保护带宽或保护时间,故远近效应问题不太突出。 当前,在CDMA系统中为解决这个问题所采取的措施主要有两种:第一种是信号处理方法,在接收端用信号处理的方法,依次逐个抵消掉较强信号,直到能解调出所需信号为止,但由于这种方法运算量很大及当前器件的运算速度等问题,还不能实际使用;当移动台距基站近时,其发射功率减小,当距离远时,发射功率增大,从而保证在基站所收到的每个移动台的信号功率相等,消除远近效应的影响,使系统处于最佳运行状态。功率控制技术已在实际当中采用,它是CDMA数字移动通信系统中的最关键技术之一。功率控制技术很复杂,其所控制的范围和精度直接影响到整个系统的性能,如偏差过大,不仅系统容量迅速下降,而且通信质量也将急剧下降。码分数字蜂窝移动通信网的网路结构如下图所示。 它是一个抽象的平面图,其实现将随着功能实体在各个物理单元中的分布情况不同而有所改变。各部分的作用和功能如下:1.移动台(MS) 其包括手机和车台等,是用户端终接无线信道的设备;通过空中无线接口Um,给用户提供接入网路业务的能力。2.基站(BS) 其设于某一地点,是服务于一个或几个蜂窝小区的全部无线设备的总称。它是在一定无线覆盖区域内,由移动交换中心(MSC)控制,与移动台通信的设备。3.移动交换中心(MSC) 是完成对位于它所服务的区域中的移动台进行控制、交换的功能实体,也是与其他MSC或其他公用交换网之间的用户业务的自动接续设备。4.归属位置寄存器(HLR) 是为了记录的目的而指定用户身份给它的一种位置登记器。登记的内容是用户的信息(例如ESN、DN、IMSI(MSI)、服务项目信息、当前位置、批准有效的时间段等)。5.拜访位置寄存器(VLR) 是MSC检索信息用的位置寄存器。例如处理发至或来自一个拜访用户的呼叫信息——用户号码、向用户提供本地用户的服务等参数。6.设备识别寄存器(EIR) 是为了记录的目的而分配用户设备身份给它的寄存器;用于对移动设备的识别、监视、闭锁等。7.鉴权中心(AC) 是一个管理与移动台相关的鉴权信息的功能实体。8.消息中心(MC) 是一个存储和转送短消息的实体。9.短消息实体(SME) 是合成和分解短消息的实体。有时HLR、VLR、EIR及AC位于MSC之中,SMC位于MSC、HLR或MC之中。 码分数字蜂窝移动通信网不是公共交换电话网(PSTN)的简单延伸,它是与PSTN、PSPDN、ISDN等并行的业务网。由于移动用户大范围的移动,该网在管理上应相对的独立。 通信系统的通信容量可以用不同的表征方法进行度量。对于点对点的通信系统而言,系统的通信容量可以用信道效率来度量,即用在给定的频率带宽中所能提供的最大信道数目进行衡量。一般地说,在给定的频率带宽中所能提供的信道数目越大,系统的通信容量也越大。在蜂窝移动通信系统中,系统的容量有多种衡量方法,如用每小区可用信道数(ch/cell)、每小区每兆赫兹可用 信道数(ch/cell/MHz)、每小区爱尔兰数(Erl/cell)、每平方公里用户数(用户数/km)以及每平方公里每小时通话次数(通话次数h/km)等进行度量。这些表征方法从不同的角度对系统的容量进行衡量,它们之间是有联系的,在一定的条件下可以互相转换。考虑到信道的分配涉及到频率复用和由此而产生的同频干扰问题,一般认为用每小区可用信道数(ch/cell)或每小区每兆赫兹限制CDMA数字蜂窝移动通信系统容量的原因是由于系统中存在多址干扰,即同时通信的移动用户之间的相互干扰。在某个蜂窝小区内,如果有N个用户同时通信,系统必须能提供N个或N个以上的(逻辑)信道。同时通信的用户数N越大,多址干扰越强。N的最大值就是系统容量,即在保证接收所需信号功率与干扰功率的比值大于或等于某一门限值的条件下,该小区同时通信的最大用户数。 首先考虑一般码分通信系统(即暂不考虑蜂窝移动通信系统的特点)的容量。若N个用户同时通信,每个用户的信号都受到其他N-1个用户信号的干扰。假定系统的功率控制是理想的,即到达接收机的所有N个信号强度都一样,则理论分析表明,此时系统容量为式中W是CDMA系统所占的有效频谱宽度;Rb是信息数据的速率;Eb是信息数据的一比特能量;N0是干扰(噪声)的功率谱密度(单位赫兹的干扰功率);W/Rb是CDMA系统的扩频增益。当CDMA系统所占的频谱宽度W一定时,它随着信息速率Rb的降低而增大。Eb/N0是比特能量与噪声密度比,其比值取决于系统对误码率或话音质量的要求,并与系统的调制方式和编码方案有关。 例如:N-CDMA系统所占的有效频谱宽度W=1.2288MHz,话音编码速率Rb=8.6kbit/s,若比特能量与噪声密度比Eb/N0=7dB,则N=29.5;若Eb/N0=6dB,则N=37。 结果说明:在满足一定通信要求的前提下,比特能量与噪声密度比Eb/N0越小,系统的容量越大。但在上面的结果中,没有考虑CDMA蜂窝系统的特点,还应该根据其特点对系统容量公式进行修正。1.采用语音激活技术提高系统容量 统计结果表明,对话的激活期(占空比)d=0.35。也就是,人们在通话过程中平均只有35%的时间在讲话, 另外65%的时间处于听对方讲话、话句间停顿或其他等待状态。在CDMA数字蜂窝移动通信系统中,所有用户共享同一个无线频道,如果采用语音激活技术,使通信中的用户有语音时才发射信号,没有讲话时,该用户的发射机就停止发射功率,那么任一用户话音发生停顿时,其他用户所受到的干扰都会相应地平均减少65%,从而系统容量可以提高到1/d=2.86倍。为此,CDMA数字蜂窝移动通信系统的计算公式变成式中d是语音占空比(d=0.35)。2.利用扇区划分提高系统容量 在码分多址制式蜂窝移动通信系统中,利用120°扇形覆盖的定向天线把一个蜂窝小区划分成3个扇区时,处于每个扇区中的移动用户是该蜂窝的三分之一,相应的各用户之间的多址 干扰分量也减少为原来的约三分之一,从而系统的容量将增加约3倍(实际上,由于相邻天线覆盖区之间有重叠,一般能提高到G=2.55倍左右)。为此,CDMA数字蜂窝移动通信系统的计算公式变为式中G是扇形分区系数(G=2.55)。3.邻近蜂窝小区的干扰对系统容量的影响 根据码分多址蜂窝移动通信系统的特点,在CDMA蜂窝移动通信系统中,所有用户共享同一个无线频道,即若干个小区内的基站和移动台都工作在相同的频率上。因此,任一小区的移动台都会受到相邻小区基站的干扰,任一小区的基站也都会受到相邻小区移动台的干扰。这些干扰的存在必然会影响系统的容量。其中任一小区的移动台对 相邻小区基站(反向信道)的总干扰量和任一小区的基站对相邻小区移动台(正向信道)的总干扰量是不同的,对系统容量的影响也有所差别,下面分别加以简要说明。(1)正向信道(由基站到移动台) 在一个蜂窝小区内,基站不断地向所有通信中的移动台发送信号,移动台在接收它自己所需的信号同时,也接收到基站发给所有其他移动台的信号,而这些信号对它所需的信号将形成干扰。当系统采用正向功率 控制技术时,由于路径传播损耗的原因,位于靠近基站的移动台,受到本小区基站所发射的信号干扰比距离远的移动台要大,但受到相邻小区基站的干扰较小;位于小区边缘的移动台,受到本小区基站所发射的信号干扰比距离近的移动台要小,但受到相邻小区基站的干扰较大。移动台最不利的位置是处于3个小区交界的地方,如下图中的X点。 假设各小区中同时通信的用户数都是N,即各小区的基站同时向N个用户发送信号, 当移动用户从一个小区(或扇区)移动到另一个小区(或扇区)时,移动用户从一个基站的管辖范围移动到另一个基站的管辖范围,通信网的控制系统为了不中断通信就要做一系列的调整,包括位置更新、转换通信链路等,这个过程就叫越区切换。 越区切换实现了小区(或扇区)间和频道间的信道转换,保证了一个正在处理或进行中的呼叫的不中断运行。切换是由于无线转播、业务分配、操作和维护激活、设备故障等原因而产生的。例如:(1)移动台移动至小区的边界,信号强度低到一定程度;(2)移动台在小区中进入信号强度缝隙中(阴影区),信号恶化到一定程度;(3)移动交换中心发现一些小区太拥挤,而另一些小区很闲时,可命令拥挤的小区的一些移动台提前切换,以调整各小区的负荷量等等。对越区切换的基本要求是:(1)高的切换成功率;(2)减少系统中不必要的切换;(3)使用优化的越区切换算法来控制各小区的业务量;(4)切换速度快,切换经历的时间短;(5)对话音质量的影响小等。 在CDMA系统中的越区切换有两类,即硬切换(Hard Handoff)和软切换(Soft Handoff)。 硬切换是指移动台在不同频道之间的切换, 这些切换需要移动台变更收发频率,即先切断原来的收发频率,再搜索、使用新的频道。 硬切换会造成通话暂短中断,切换时间较长时(大于200ms),将影响用户通话。 软切换是指移动台在相同的CDMA频道中的切换。软切换不需要移动台变更收发频率,只需要在伪随机码的相位上作一调整。CDMA系统的移动台中有多个RAKE (瑞克)接收机,可以同时接收几个基站发来的信号。当需要切换时,移动台除了与原服 务基站保持通话链路外,还与新的基站建立了通话链路。直到移动台接收到的原基站发来的信号低于一门限时才切断与原基站的通话链路。这种先通后断的软切换保证了通话不会中断。通常所说的软切换中还包含一种更软切换(Softer Handoff)。更软切换是指同一蜂窝小区内不同扇区之间的切换。在两扇区边界,基站和移动台通过分集技术可以同时在两个扇区传输信号。 在软切换过程中,由于移动台中有多个RAKE接收机,移动台开始与目标基站建立通信时,不中断与原服务基站的通信,此时移动台同时与两个基站建立了通话链路。当原服务基站的信号强度低到一门限值时,再切断与原服务基站的通信联系。由于移动台在软切换中不变更收发频率,所以软切换只能在具有相同CDMA频道的小区(或扇区)之间进行切换。 软切换是CDMA系统中特有的一个重要概念。在CDMA蜂窝移动通信系统中,具有相同CDMA频道的各小区使用同一频率,移动台在小区之间移动时不需要像频分或时分系统那样重新分配频率或时隙,这使得软切换成为可能。 在CDMA系统中,一般情况下每个移动台拥有三个以上RAKE接收机,即每个移动台中有多个解调器,这允许移动台同时与两个或多个小区保持通信。 移动台在与基站A通信时,连续监视相邻小区的导频信号强度,任何一个导频信号(如基站B)的强度超过一预定的门限时,立即报告系统。系统则命令基站B建立与移动台的通信,开始软切换。此时移动台同时接收到来自两个基站的通信信号,两路信号密切结合,彼此加强。在反向链路上,移动交换中心根据基站接收的信号强度确定哪个基站的接收信号更强,从而选择它。参考文献[1] 樊昌信,等.通信原理.北京:国防工业出版社[2] 郭梯云,邬国扬,李建东. 移动通信. 西安:西安电子科技大学出版社 [3] 啜钢 等.移动原理通信与系统[M].北京邮电大学出版社 [4] 段丽.移动通信技术.人民邮电出版社[5] 韦惠民.蜂窝移动通信技术》.西安电子科技大学出版社 [6] 曹志刚,钱亚生. 现代通信原理. 北京:清华大学出版社[7] 邓华MATLAB通信仿真及应用实例详解. 北京: 人民邮电大学出版社[8] 姚东等MATLAB命令大全.北京人民邮电出版

相关百科

热门百科

首页
发表服务