首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

重金属的生物吸附研究论文

发布时间:

重金属的生物吸附研究论文

土壤重金属污染治理的策略与技术论文

在学习、工作生活中,大家都不可避免地会接触到论文吧,论文是学术界进行成果交流的工具。相信许多人会觉得论文很难写吧,以下是我为大家收集的土壤重金属污染治理的策略与技术论文,欢迎大家分享。

摘要:

在我国社会经济快速发展的背景下,土壤污染问题十分严重,严重影响了人民群众的生命健康安全。为此在新时期要高度重视土壤重金属污染的有效治理,避免土壤结构被大量破坏造成土壤中的矿物质流失。通过对土壤重金属污染治理的原因和问题进行分析,制定科学高效的应对措施,保证土壤重金属污染治理的整体水平全面提高,确保土壤重金属污染治理的效率大幅度提高,保护土壤生态,为社会经济可持续发展做出重要贡献。

关键词:

士壤重金属污染;治理问题:对策

引言:

土壤作为社会发展重要基础,必须要高度重视对土壤生态环境的妥善保护与科学处理。重金属作为土壤环境最重要的指标,由于受到工业农业的快速发展,土壤中的重金属物质含量显着超标,对于整个土壤的破坏十分明显,严重影响了土壤安全,在新时期需要重点关注土壤重金属物质,并采取有效的处理措施,减少土壤重金属造成的破坏与损伤,确保土壤重金属得到有效控制。

1、土壤重金属危害

重金属是指通过自然环境难以有效降解的各种物质。包括铅汞等,这些重金属物质如果进入到人体会引发重金属中毒,对人体造成明显损伤,而在土壤和水源中会大量淤积,也会导致水生动物和植物的生长发育受限,不利于生态环境土壤污染的农田,如果种植农作物也会造成大量的重金属进入农作物内部,植物中含有大量重金属就会通过饮食进入人体而导致食品安全问题[1]。土壤重金属污染越来越严重,对人们的生活造成巨大的威胁。为此要有效处理重金属污染,降低土壤中重金属含量。

2、土壤重金属污染主要成因

目前对于土壤重金属污染的成因主要包括自然因素和人为因素两方面,其中自然因素是指在自然环境中发生的火山爆发和土壤自身形成的因素,而人为因素则涉及工业农业交通等多个领域,也是造成土壤重金属污染的关键因素。例如在干旱地区为了提高农作物的产量解决缺水问题,往往会采取大面积灌溉的方式造成土壤养分流失,或者在灌溉中所使用的水资源受到污染,导致金属含量超标等,必然会使土壤出现金属污染问题,此外在工业领域不断发展的背景下,金属冶炼对社会发展具有十分重要的作用,但在冶炼过程中也会产生大量的重金属废水,如果没有对重金属进行妥善无害化处理,而直接排放到自然环境中,会造成土壤的重金属污染[2]。在城市发展中人们的生活水平日益提高,汽车保有量显着增多,而车辆也会生成大量汽车尾气,这些汽车尾气会直接污染大气,经过雨水冲刷会导致重金属污染物渗入到土壤内部。

还有部分有机肥料来自城市建筑垃圾、河道淤泥等,这些原材料本身富含大量重金属元素。在进入到土壤后也会造成土壤重金属含量显着升高,对土壤结构造成破坏。我国地形复杂,面积范围广大,土壤种类丰富,这也使得土壤污染问题存在明显的区域性差异,在农业发达的西北地区具有良好的土壤环境,而在中南地区由于工业密集,所以土壤污染问题严重。在发达地区为了提高农作物,往往会使用大量的化肥农药,这样就会造成农业用地日积月累受到严重的污染,致使蔬菜粮食存在农药残留,而且农业用地污染问题大部分都以有机或无机复合为主,造成土壤无法复原。当土壤受到重金属污染以后,基本无法恢复,土壤之中也会富含大量的胶体致使重金属物质不断富集,长此以往重金属污染也会日益严重,在人类正常的生活与工作中,耕地的酸碱值会发生明显变化,而且化学反应也会使重金属的离子价态和形态会发生明显的变化,而且大多数的土壤重金属污染,无法通过人类的感官进行准确识别,往往需要经过长时间的沉淀以后才能发现,这样也就造成土壤重金属污染难治理难度不断增加。

3、土壤重金属污染的主要治理策略

目前在土壤污染防治中,需要高度重视对土壤环境的妥善监测,通过对土壤中的重金属指标进行快速准确监测,能够判断土壤内部重金属富集的具体情况,为此有关部门要高度重视。建设土壤监测监管机制,采取相应的设备,对土壤的组成成分进行全面分析,提高土壤检测数据的科学性,例如成立土壤监测部门,按照专业的监管机制,安排专业人员对土壤相关数据进行全方面检测,确保土壤环境得到妥善处理,在土壤数据监测完毕后,还要将有关数据上传至监管部门,明确各个地区土壤的重金属含量,确保土壤重金属污染得到有效控制,一旦发现异常超标情况,则需要采取科学的解决,确保土壤重金属物质处理的效率全面提升,满足土壤重金属污染监测的实际需求。由于我国对土壤污染防治工作开展的时间比较晚,为此在新时期要积极加强土壤污染的有效预防,制定高效目标,坚持以预防为主,保护优先,树立完善的风险监管意识,从而确保土壤污染治理的.整体水平全面提升[3]。

要主动采取分级风险管控措施探索土壤重金属污染治理的全新方案,提高控制管理的水平,同时要做好技术调查,在全国范围内对土壤污染的具体状况进行准确的排查,保证土壤污染问题得到清晰有效的控制与解决,建立土壤重金属污染相关信息化平台(表1),实现资源共享,通过设立全国规模的土壤污染监测管理网络,保证对土壤污染监测点覆盖到市县级,做到监管数据实时更新。确保土壤管理的效率全面提升。要逐步建立污染土地目录或者土地使用污染目录,严格控制土壤的实际使用途径。加强监管存量,对源头严格防控,有效提高农业污染的监督管理力度。要坚决从源头加强土壤保护,避免土地随意滥用。

表1基于GIS系统土壤环境风险控制管理体系

4、土壤重金属污染治理的主要技术

4.1、生物治理

当前的土壤生物治理可以通过植物微生物等手段减少土壤重金属含量或降低其毒性。在植物治理中,需要积极培育能够吸附重金属物质的植物,有效去除土壤中的大量重金属物质。这种方案成本低廉,技艺简单,具有大范围推广应用的实际意义。另外可以通过微生物对土壤进行改良,但这种技术对微生物要求比较高,而且治理周期比较长,还会存在一定的风险问题[4]。

4.2、化学防治

化学防治可以通过重金属改良剂,根据不同的金属特点采取相应的化学反应,确保对重金属进行有效抑制,使这些潜藏在土壤中的重金属能够快速凝聚,减轻土壤对重金属吸收,避免造成恶劣影响。还可以直接使用金属拮抗剂,因为金属之间存在许多的相互作用,金属的特性也并不会对人体造成明显的伤害,通过化学防治可以通过有益金属对重金属相互作用产生拮抗性,减轻重金属的活跃度[5]。

4.3、生态修复技术

在农业生态修复中通过农艺修复或生态修复等不同的方法,可以保证土壤中的水分含量,耕作制度得到有效控制,技术人员可以通过对土壤中的水分进行控制,有效改善土壤的pH,而且有部分重金属在氧化还原下会不断迁移发生变化,此外造成土壤氧化还原的主要因素在于水含量增多,所以在修复的过程中要加强对水含量的有效调控,增强氧化还原整体效能,避免重金属的快速迁移,促进土壤修复的整体质量水平全面提高。生态修复能够对土壤的水分肥力进行快速还原,改善当地的环境气候条件,有效控制重金属污染物所处的环境介质。在土壤重金属污染治理时,生态修复技术的效率比较缓慢,在短时间内并不能看到显着的效果。

4.4、工程治理技术

工程治理技术能够通过工程机械理论,加强对污染土地治理。目前常用工程治理技术包括换土法、克土法以及深耕翻土法等,是指被污染的土壤中增加干净土壤,并且快速将被污染土壤与外界隔离,减少土壤中的重金属污染物浓度。换土法则是直接将被污染的土壤快速挖掘,并搬运别处进行妥善处置,换上干净土壤。深耕翻地法是利用机械,使上部重金属污染物迅速向下部翻转,保证表土表面重金属污染浓度降低。在运用工程治理技术中,需要根据不同的技术要求选择科学的治理方法,通常污染程度比较轻的土地可以采用深耕翻土法,污染程度比较重的则需要采用换土法以及克土法,需要注意的是,在采用换土法时对被挖出的污染土壤要及时进行处理,避免对环境造成二次污染。

4.5、联合修复技术

由于土壤重金属污染物的成分多样化,不同地区的污染类型,污染程度也各不相同,凭借单一的技术很难达到预期的修复效果,为此要积极针对土壤重金属污染的具体情况,采取联合修复的方式,通过对植物和微生物联合物理和化学联合等多样化的修复手段,能够促进土壤恢复效果,减轻土壤受污染的程度[6]。

4.6、改良剂改性修复

改良剂改性修复,主要是在重金属污染土壤中加入固定配方的改良剂,使改良剂与重金属之间出现明显的吸附作用、抗结作用以及氧化还原作用,但这样的技术最终造成土壤重金属污染物活性显着下降。石灰石、碳酸钙、硅酸盐等各种改良剂相互作用还能够促进土壤的养分得到显着变化。

5、结束语

我国目前土壤重金属污染问题十分严重,而且防治工作起步晚、技术落后,给土壤重金属污染防控造成严峻挑战。针对污染物有效防治采取相应的措施加以治理,确保土壤重金属污染物的改良效果全面提高,促进我国土壤资源的安全。

参考文献

[1]赵瑞芬,程滨,滑小赞,等忻州市灌区土壤重金属污染评价及分布特征分析[J].北方园艺,2021(6):81-88.

[2]马叶,赵国梁,王晓凤,等添加螯合剂诱导栽培红叶荞菜(Betavulgarisvar.ciclaL.)修复铅和镉污染土壤效果的研究[J].土壤通报,2021(2):416-424.

[3]薄录吉,李冰,张荣全,等.金乡县大蒜产区土壤重金属特征及潜在生态风险评价[J].土壤通报,2021(2):434-442.

[4]张启,吴明洲.某疑似污染农用地地块土壤调查布点及评价方法[J].安徽农业科学,2018(20)117-119.

[5]王海东,方凤满,谢宏芳,等芜湖市区土壤重金属污染评价及来源分析[J]2010(4):36-40.

[6]张仕军土壤中重金属污染治理存在的问题及对策研究[J]资源节约与环保,2020(9):93-94.

论文英文摘要 随着经济的快速发展,工农业废水和城市生活污水的大量排放,土壤和水源中重金属的积累不断加剧,严重污染了自然水体,从而对动植物及环境造成有害的影响,重金属已经成为地下水重要的污染物之一,因此目前国内外学者对重金属排除和回收方面的研究日益受到重视,并进行了大量的研究。目前,去除工业废水中的重金属的方法有化学、物理、物理-化学和生物方法。物理或化学法去除工业废水中的重金属十分有效,但是成本高、能耗大、易造成二次污染。生物法主要是利用了植物和微生物材料对重金属盐离子的吸附、积累作用,其特点主要是二次污染风险小、成本低廉。本论文针对上述问题,采用价格低廉、处理痕量离子时效果好,且易再生等优点的大型真菌为载体或吸附剂,通过对重金属的吸附特性研究,确定用于治理重金属污染的可行性,为治理大规模的环境污染奠定基础。本文利用大型真菌子实体作为生物吸附剂,去除水体中低浓度的Cu2+、Zn2+、Mn2+、Ni2+、Cd2+、Pb2+六种重金属离子,对几种野生菌子实体吸附重金属离子进行比较研究,并对几种食用菌的吸附特性进行研究,探讨了食用菌及野生菌作为吸附剂对Cu2+、Zn2+、Mn2+、Ni2+、Cd2+、Pb2+吸附的影响因子,并确...

废弃茶叶对重金属的吸附研究论文

茶叶中含有的茶多酚能沉淀和还原重金属离子,可降低有毒的重金属离子对人体蛋白质的破坏作用,对人体发生重金属中毒起到解毒作用。另外据研究,茶对于重金属离子有吸附作用。研究论文有:绿茶对金(Ⅲ)、锗(Ⅳ)离子捕集性能的研究( 作者:郑怀礼, 孙秀萍)茶叶对水中重金属离子吸附特性研究( 郝存江)等。

1923 年开始在汽油中加入铅用作抗爆剂以后, 更加速了全球性铅的污染。因此可以说如今世界上已难找到土壤铅含量不受人类活动影响的一片“净土”。Kabata - Pendias 和Rendias[5 ]报道在靠近公路的某一块土壤铅含量高达7000μg/ g。潘如圭等[6 ]研究了汽车尾气中铅对公路两侧蔬菜的污染情况。试验结果表明: 在公路两侧200 m 范围内生长的蔬菜均受到汽车尾气中铅的污染。管建国[7 ]等研究了在金属冶炼厂周围和公路两侧200 m 范围内蔬菜的受污染情况, 发现所调查的普通叶菜的铅含量均超过国家食品卫生标准。彭珊珊等[8 ]对我国一些常用茶中Pb 进行了测定, 结果表明茶叶中的铅超过一般标准, 应引起重视。土壤中的铅大部分形成PbS , 少部分形成PbCO3 、PbSO4 和PbCrO4 等无机化合物, 或与有机物螯合。铅的无机化合物大多难以溶解, 而且因受到下列因素影响, 铅在土壤中的迁移能力也很弱: (1) 土壤有机质对铅的络合作用。土壤有机质的—SH , —NH2 基因能与铅离子形成稳定的络合物。(2) 土壤粘土矿物对铅的吸附作用。粘土矿物的阳离子交换位点可对铅离子进行交换性吸附。另外, 铅离子进入水合氧化物的配位壳, 直接通过共价键或配位键结合于固体表面。由于铅在土壤中迁移能力弱, 而且溶解度低, 因而人为因素造成的铅污染大多停留在土壤表层, 随土壤深度的增加其含量急剧降低, 20 cm 以下趋于自然水平。进入土壤中的铅有可能被植物吸收, 或溶解到地表水中, 通过食物链和饮用水进入动物和人体, 进而影响人类健康。近年来的研究发现, 铅对人类健康的影响具有不可逆性和远期效应[9 ] 。Page[2 ]等研究表明, 人体血铅与土壤铅含量存在一定关系:0112 (Pb - B , μg/ 100mg) = ln (Pb - S ,μg/ g) - 4185这一关系式仅说明了某一地区的特殊情况, 并无广泛适用价值, 但它足以表明土壤铅含量与人体健康有直接关系。2 铅污染土壤的修复技术由于铅对人体具有很强的毒性, 近年来对铅污染土壤的修复引起了人们的普遍关注。铅污染土壤的修复技术可以分为两大类: 物理化学修复技术和生物修复技术。物理化学修复技术又可分为隔离包埋技术、固化稳定技术、Pyrometallurgical Separation 、化学稳定技术和电动修复技术等。生物修复技术又可分为微生物修复技术和植物修复技术等。211 隔离包埋技术(isolation and containment)该法采用物理方法将铅污染土壤与其周围环境隔离开来, 减少铅对周围环境的污染或增加铅的土壤环境容量。具体措施为: 以钢铁、水泥、皂土或灰浆等材料, 在污染土壤四周修建隔离墙, 并防止污染地区的地下水流到周围地区。其中以水泥最为便宜, 应用也最为普遍。为减少地表水的下渗, 还可以在污染土壤上覆盖一层合成膜, 或在污染土壤下面铺一层水泥和石块混合层。212 固化稳定技术(solidification and stabilization)固化稳定技术包括两个方面: 采用化学方法降低铅在土壤中的可溶性和可提取性, 同时采用物理方法将污染土壤包埋在一个坚固基质中。Wheeler 报道[10 ]将水泥、炉渣和石灰混合物加入污染土壤中, 搅拌均匀凝固之后, 形成一个大石块, 将污染土壤包埋在其中。也有人采用电导产热原理给土壤加热升温, 当土壤冷却后, 土壤凝固成玻璃样块状结构, 称之为玻璃化。该方法包括三个具体步骤: (1) 在土壤两端插上电极电流通过土壤形成环路, 土壤温度上升并熔化。(2) 在自然冷却过程中, 土壤凝固形成玻璃样土块。(3) 在土块上覆盖一层干净土壤。这一技术已经实际应用于铅污染土壤的修复。·13 ·广东微量元素科学2001 年 GUANGDONG WEILIANG YUANSU KEXUE 第8 卷第9 期© 1995-2006 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.213 Pyrometallurgical Separation在一定温度下, 金属就会熔解或升华为气态。Pyrometallurgical separation 技术利用这一原理,将铅等重金属从污染土壤中“蒸发”出来以达到净化土壤的目的。“蒸发”出来的金属可以再回收或固定, 同时富含金属的剩余炉渣也可用于进一步提炼[11 ] 。铅污染土壤在高温熔化之前要进行预处理, 以促进铅的熔解。这一技术主要应用于具有较高回收效率的严重污染土壤(5 %~20 %) 。214 化学稳定技术(chemical stabilization)化学稳定技术就是应用化学反应将污染土壤中的重金属氧化或还原, 从而达到降低土壤中重金属的活性[11 ] 。对于铅污染土壤, 可用还原剂(二氧化硫、亚硫酸盐或硫酸亚铁) 将铅离子还原, 以减少土壤中铅的可提取量。这一技术也可作为其他修复技术(如固化稳定技术) 的前处理步骤。但必须注意的是, 还原剂的施用可能会造成二次污染。初步研究表明, 施用石灰调节土壤PH7 可降低铅在土壤中的溶解度, 减少植物对铅的吸收[13 ] 。研究表明, 施用羟基磷灰石[14 ] 、水合氧化锰[15 ] 、磷灰岩[16 ,17 ]也可促进铅的沉淀, 减少土壤中的可溶态和可提取态铅。Vidac 和Pohland[18 ]已将这一技术运用于地下水的修复。215 电动修复技术(electrokinetice technology)在污染土壤两端插上电极, 接通电源后, 土壤中的带电粒子向电性相反的电极移动, 最终积聚或沉淀在电极上, 以达到清除污染土壤中重金属的目的。在欧洲, 这一技术不仅应用于铅污染土壤[19 ] , 同时也应用于铜、锌、铬、镍和镉等污染土壤的修复。216 微生物修复技术(microremediation)微生物修复主要是借助微生物的生化反应来清除或稳定环境中的有害物质。根据原理不同可分为生物还原沉淀、生物甲基化和生物吸附三种。生物还原沉淀是应用硫酸还原菌(SRB) 将硫酸根还原为HS - 再与铅生成不溶性的Pb2S。生物甲基化是利用微生物将土壤中的重金属甲基化,甲基化的金属更容易蒸发, 可做为Pyrometallurgical Separation 的预处理。生物吸附是利用细菌细胞和藻类来吸附地下水或其他污染水体中的有害物质。Leusch 等[20 ]报道一种海藻( S . f luitans )对铅的最大吸附量可达到369 mg/ g。Rahmani 等[21 ]研究了浮萍(Lemna minor) 对污染水体中铅的清除能力。结果表明浮萍在亚致死水平下也能有效清除水体中的铅。217 植物提取修复技术(phytoextration)植物提取修复技术主要是利用超积累植物, 将土壤中各种过量元素或化合物大量转移到植株体内特别是地上部分, 从而修复污染土壤[22 ] 。超积累植物相当于一个太阳能驱动泵将土壤中的过量元素不断泵到植株体内[23 ] 。植物修复技术可分为两种, Salt 等[24 ]把利用超积累植物来吸收土壤重金属的方法称之为持续植物提取(continuous phytoextraction) ; 而把利用螯合剂来促进植物吸收土壤重金属的方法称之为诱导植物提取(inducced phytoextraction) 。21711 持续植物提取(continuous phytoextraction)运用持续植物提取技术来修复铅污染土壤的关键是植物超积累铅的能力。一般认为, 只有铅积累量达到1000μg/ g (干重) 才能称为铅超积累植物[25 ] 。已见报道的铅超积累植物有Brassica .nigua [26 ] , Brassica . pekinensis [27 ] , Brassica . juncea [27 ]和T. rotungifolium [28 ] 。其中T. rotungi2folium 的铅积累量最大, 可达到8200μg/ g (干重) [28 ] 。目前对于植物吸收、运输和积累铅以及耐铅胁迫的机制研究甚少。Liu 等[29 ]研究发现印度芥菜( Brassica juncea) 可在根部积累大量的铅但只有极少部分运输到地上部。原因一方面可能是由于根部细胞内存在高浓度磷酸盐或碳酸盐,在细胞内近中性pH 条件下, 铅主要以磷酸盐或碳酸盐形式沉淀在根细胞壁或细胞内; 另一方面·14 ·广东微量元素科学2001 年 GUANGDONG WEILIANG YUANSU KEXUE 第8 卷第9 期© 1995-2006 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.铅从根部向中柱迁移的过程还会受到内皮层凯氏带的阻拦。Wozny 等[30 ]认为铅进入中柱后随蒸腾流被动运输到地上部分。运输过程中铅可能会与中柱内的阳离子交换位点结合, 从而被固定在茎部中柱内。研究表明, 铅可与多种小分子有机物螯合[31~33 ] 。推测铅也有可能与各种小分子有机酸、植物螯合肽结合, 减少与阳离子交换位点结合的机会, 从而增加进入了叶部的数量。作者在对浙江西部的某一铅锌矿土壤进行调查时, 发现一种可高浓度积累铅和锌的植物, 据初步调查结果, 其地上部分锌和铅的最高积累量分别达到了5000μg/ g 和1182μg/ g。对于这种植物超积累锌和铅的生理生化机制, 正在进一步的研究中。21712 诱导植物提取(inducced phytoextraction)对于在土壤中极难移动的铅元素, 施用螯合剂可促进植物对其的吸收。施用螯合剂诱导植物超富集作用被称为螯合诱导修复技术。Romheld 和Marschner[34 ]认为螯合物与金属结合后, 金属螯合物可以从内皮层裂口处进入根内, 然后被迅速地转移到茎叶。在用14C - EDTA - Pb 作标记的试验中, Blaylock 等[35 ]发现, 在含这种标记物的介质中生长的植物地上部能快速积累铅, 表明铅与螯合物结合有利于植物对铅的吸收。Salt 等[36 ]认为金属与螯合物结合后阻止了金属的沉淀和吸附, 从而提高了金属的可提取性。螯合诱导修复技术既可选用一般植物也可选用超积累植物。在土壤铅浓度为2500μg/ g 的污染土壤上种植玉米和豌豆, 加入EDTA 后, 植物地上部铅的浓度从500μg/ g 提高到10000μg/ g ; 而且EDTA 还能极大的提高铅从根系向地上部的运输能力,每千克土中加入110 g EDTA , 24 h 后, 玉米木质部中铅的浓度是对照的100 倍, 从根系到地上部的运输转化量是对照的120 倍[37 ] 。不同螯合剂促进植物对铅吸收的效应与螯合剂促进铅从土壤解吸的效应相一致: EDTA > HEDTA >DTPA > EGTA > EDDHA。螯合诱导技术对超积累植物吸收金属的强化效应也很明显。印度芥菜是一种可富集多种金属的植物。Blaylock 等[35 ]研究了柠檬酸、苹果酸、乙酸、EDTA、EGTA、CDTA 对印度芥菜( Brassica juncea) 吸收Cd 和Pb 的效应,发现土壤酸化与施加螯合物相结合可显著增加铅的吸收效率。Vassil 等[38 ]报道用铅和EDTA 共同处理印度芥菜, 其地上部分含量高达55 mmol/ kg (干重) , 相当于培养液铅浓度的75 倍。对印度芥菜茎部提取液的直接测定证明, 茎部的大部分铅是与EDTA 结合的形式运输的。由于螯合剂的价格一般较贵, Blaylock 等[35 ]指出螯合剂( EDTA 和乙酸) 将使每吨铅污染土壤修复成本增加715 美元。此外螯合剂在增加土壤中重金属生物有效性的同时, 也增加了重金属离子的移动性。因而对于螯合诱导修复技术的环境风险应加以系统评价。由于已发现的铅超积累植物种类极少, 而且植物生长慢、生物量小, 因而螯合诱导修复技术比持续提取技术更引人注目。但不论哪种植物修复技术都具有其它物理化学方法所没有的优点:(1) 成本低。据估计, 如果某种植物的茎部铅积累量达到1 % , 且每年产量40 t/ hm2 , 那么通过10 年种植将土壤铅含量从114 %下降为014 %所需费用是245000 美元, 而用物理化学修复技术则需要1600000 美元。(2) 植物利用太阳能, 不破坏生态平衡, 同时还能美化环境, 易为公众所接受。(3) 将富铅植物残体用于植物炼矿, 可产生经济效益。相比之下, 虽然植物修复技术所需时间较长, 而且植物的生长要受到环境的影响, 但这些缺点都不成为重要问题。可以预言, 植物修复将成为一种应用广泛、环境良好和经济有效的修复铅污染土壤的方法。参考文献:[3 ] 陈怀满等. 土壤- 植物系统中的重金属污染[M] . 北京: 科学出版社, 1996.[4 ] Nriagu J O , Acyna J M. Quantitative assessment of worldwide contamination of air , water and soil by trace metal[J ] . Nature , 1988 , 333 : 134~139.[5 ] Kabata - Rendias A , Rendias H. Trace elements in the soil and plant [M] . Florida CRC Press , 1994.[6 ] 潘如圭, 宋佩扬. 汽车尾气中铅对蔬菜污染的研究[J ] . 江苏环境科技, 1998 , 11 (3) : 9~11 , 28.[7 ] 管建国, 潘如圭. 蔬菜铅污染状况及其防治对策[J ] . 南京农专学报, 1998 , 14 (3) : 22~27.[8 ] 彭珊珊, 石燕. 茶叶中的铅[J ] . 广东微量元素科学, 1998 , 5 (6) : 32~33.[9 ] 沙拉麦提, 沙达提. 儿童的铅接触及危害[J ] . 新疆环境保护, 1996 , 18 (1) : 36~38.[10 ] Wheeler P. Leach repellent [J ] Ground Engng , 1995 , 28 : 20~22.[11 ] USEPA. Engineering Buttetin : Technology Alternatives for the Remediation of Soils Contaminated with Arsenic ,Cadmium , Mercury and Lead [M] . U S Envionmental Protection Agency. Office of Emergency and RemedialResponse , Cincinnati . OH. 1996.[12 ] Evando C R , Dzombak D A. Remediation of metals - comtaminated soils and groundwater . Technology Evalua2tion Report , TE97 - 01 [ R ] . Pittsburgh P A. Ground - water Remediation Technologies Analysis Center ,1997.[13 ] Hooda P S , Alloway B J . The effect of liming on heavy metal concentrations in wheat , carrots and spinach grownon previously sludge - applied soils [J ] . J Agric Sci , 1996 , 127 : 289~294.[14 ] Ma L Q. Factors influencing the effctiveness and stability of aqueous lead immobolization by hydroxyapatite [J ] .J Environ Gual , 1996 , 25 (6) : 1420~1429.

长期饮用金属铅边削茶叶。会影响到人体的皮肤健康,还有可能会导致中毒,便秘,消化不良等情况。长期饮用重金属超标的茶叶,对人体健康无疑是有危害的。但是,也有专家认为,茶叶中铅含量只要不是过分的超标,基本上都还是安全的。华南农业大学茶叶生物化学教授王汉生认为,铅在自然界分布很广,各种食品、水、空气中均含有微量的铅,而茶树和其他植物一样也含有铅。而研究说明,溶入茶汤中的铅是极少的。广东省茶叶学会副理事长高级农艺师吴子先也认为介绍,按国内的泡茶方法,茶叶的铅很少被溶入茶汤。事实上,茶友在日常泡茶时也可以“化解”铅的危害。专家通过试验证实,铅在中性水中的溶解度是很低的,但在酸性或碱性液体中的溶解量有所增加,故泡茶应选合格的自来水,选合格的天然水或纯水更佳。另外,泡茶时不要长时间煮茶或沸水浸茶。此外,要尽量避免用金属壶泡茶。

1. 关于茶叶上有没有农药。答案是肯定有。为了除去害虫、除草等目的,茶农肯定要喷洒农药,如莠去津、吡虫啉、哒螨灵、腐霉利、乐果、菊酯类、咪鲜胺等[1,2]。我们实验室就有检测茶叶中农药的项目。但是如众位所知,“有农药残留”和“残留量超标”的性质完全不同。农田里使用的农药都会经过毒理学试验、风险评估等方法,对各种农药规定一个足够安全的限量标准。农药量在限量标准之内的,理论上来讲都是足够安全的。另外,为了打压中国茶叶出口,国外尤其是欧盟把茶叶的残留限量规定得没有道理的低,也在一定程度上增强了茶叶的安全性。当然,监管出现问题,农药残留超标的不合格茶叶流入市场,那就是另外一个问题了。 2. 关于残留农药的风险。茶叶中的农药残留水平和茶水中的含量不是一回事。事实上,很多农药都是脂溶性的,吸附在茶叶的组织上,不易迁移到茶水中。目前在茶叶生产中推广使用的农药,多是水溶解度极低的农药品种。推广使用的农药进入茶汤中的含量一般只有1%左右[3]。那么,按一天13克这个世界上平均最高的茶叶消费量来算,即使这些茶叶有一点农残超标,真正随茶汤喝下肚子的也微乎其微。所以,只喝茶水,不嚼茶叶,就进一步大大降低了茶叶农药残留的风险性。 3. 关于重金属残留。主要是铅的问题。铅大多是来自土地中的矿物质。因化肥使土壤酸化,它就游离出来,被茶树吸收。另外,汽车尾气中含铅,随空气飘移,落到茶叶上。一些在风景区的产茶区,特别是汽车来往多的,茶叶含铅量较高。长期引用铅含量超标的茶有造成对人体的危害的风险。但是,同上文提到的脂溶性农药一样,铅在平时冲泡时,是几乎不溶于茶汤中的,而且在两小时内,用普通水冲泡的茶叶,所含的残留成分大部分都泡不出来。 综上所述,为了尽可能降低茶叶中农药、重金属残留带来的风险性,建议(1)从正规渠道购买茶叶; (2)只喝茶水,不嚼茶叶;(3)不要长时间不换水。

土壤吸附重金属毕业论文

土壤是环境中污染物迁移转化的重要场所,土壤的吸附和离子交换能力使它成为重金属类污染物的主要归宿,有利于其迁移转换

meiyou

由于回答限制,很多出处的页面网址不能加上去,见谅。1.中国土壤环境污染问题突出地区的污染现状及成因:据不完全调查,目前全国受污染的耕地约有1.5亿亩,污水灌溉污染耕地3250万亩,固体废弃物堆存占地和毁田200万亩,合计约占耕地总面积的十分之一以上,全国每年因重金属污染的粮食达1200万吨,造成的直接经济损失超过200亿元。其中,一些地区土壤污染已呈严重态势,甚至出现了土壤重污染区和高风险区。1.重金属污染重金属是指密度 4.0以上的约 60种元素或密度在 5.0以上的45种元素。As和 Se是非金属,但是它们的毒性及某些性质与重金属相似,所以将 Se和硒列入重金属污染物范围内。污染土壤环境的重金属主要是指生物毒性显著的Hg、Cd、Pb、Cr以及类金属 As,还包括具有毒性的重金属 En、Cu、Co、Ni、Sn、V等污染物。当前最引起人类关注的是 Hg、Cd、Pb、Cr、As,它们被称为“五毒”(农田土壤重金属污染及防治研究进展)。土壤中重金属的来源是多途径的,首先是成土母质本身含有重金属,不同的母质、成土过程所形成的土壤含有重金属量差异很大。此外,人类工农业生产活动,也造成重金属对大气、水体和土壤的污染(土壤中重金属污染现状与防治方法)。我国 Cd 污染的土地涉及11 个省市的 25 个地区。 如江西省某县多达 44 % 的耕地受污染,形成670hm2 的“镉米”区;沈阳某污灌区农田土壤中 Cd 含量高达 130mg/kg ;成都东郊污灌区内米中含Cd 量高达165mg/kg 。 农业部农业环境监测总站 1996 ~ 1998 年的监测结果表明,污灌区 Cd 污染面积最大,占重金属超标面积的569 % ,而农产品 Cd 超标率达102 % (曹仁林等,2001)。我国各大城市的耕地土壤均存在不同程度的Cd 污染,其中沈阳市郊区和西安污灌区土壤 Cd 污染尤为严重,如沈阳市农田土壤中Cd 含量为088mg/kg ,西安污灌区土壤中Cd 含量为0628mg/kg(土壤镉污染特征及污染土壤的植物修复技术机理)蛐岩县主要的土壤污染物为Mg和B.43%的采样点土壤 Mg含量达重度污染水平,最高超标21.16倍.仅有 211和 238两个采样点达到清洁标准;而 B的污染似乎更为普遍,所用采样点土壤 B浓度超标,50%的样点达到重度污染水平.其原因是 在岫岩县石唐、偏岭、风源等区域.分布有众多的衰 3 蚰岩县土壤捡剥统计值殛帚染指矬国营及乡镇、个体 经营的采矿、冶炼企业,以轻烧 Mg、重烧 Mg为主要工艺的菱镁矿加工业排放 出大量 MgO、SO2等 污染物./vlgO 白色粉末降落地表后,形成 MgCX~、Mg(H0 )2等反应产物,凝聚成大颗粒分散在土壤中,加之该区域土壤 中广泛存在的 MgSO+、MgCl2,形成硬壳覆盖地表,从根本上阻止作物生长.部分地区虽然作物可以生长,但土壤中可溶性 Mg被作物吸收,对人及其他生物的健康形成较大的威胁.而 B污染也是由于B矿点源污染所致(辽宁东部山区土壤污染状况与防治对策研究).稻米对于镉污染的吸附作用明显强于玉米、大豆等其他的作物品种在各种人为因素中,则主要包括工矿业、农业和交通等来源引起的土壤重金属污染(土壤中重金属污染现状与防治方法)。2.污水灌溉污水灌溉等废弃物已造成大面积农田的土壤污染。如沈阳张士灌区用污水灌溉 20 多年后,污染耕地2 500多 hm 2,造成了严重的镉污染,稻田含镉 5~ 7m gökg。天津近郊因污水灌溉导致213 万 hm 2 农田受到污染。广州近郊因为污水灌溉而污染农田2 700hm 2 , 因施用含污染物的底泥造成1 333hm 2 的土壤被污染, 污染面积占郊区耕地面积的 46% 。20 世纪 80 年代中期对北京某污灌区进行的抽样调查表明, 大约 60% 的土壤和 36% 的糙米存在污染问题(我国的土壤污染现状及其防治对策)。早在 30 年代 ,就有抚顺炼油厂污水排入浑河灌溉水稻的记载。到了 50 年代 ,随着农业生产的发展,在北方一些干旱、半干旱地区,由于水资源比较紧张,为了充分利用污水的水肥资源,污水灌溉被大面积采纳、推广,这对促进当地农业的粮食生产曾起到了积极的作用。到了1983 年,污水灌溉面积达到 2 ×106 hm2 。然而,由于长期的污水灌溉 ,土壤 —作物系统的污染逐渐暴露出来,为了解决这一土壤环境问题,污水的土地处理系统得到了应用和发展长三角、珠三角、辽中南城市群3个典型区的土壤污染状况调查;在典型地区启动污染土壤修复与综合治理试点;建立健全基于风险评估的土壤环境质量标准体系;完成《土壤污染防治法》草案。从污染物的种类和类型上看 ,新技术、新产品应用未能有效预防导致我国新型污染物不断出现 ,这些新型污染物影响更持久 ,危害更大 ;从污染物的浓度上看 ,污染物的含量 ,随着经济的发展 ,一些污染物因为无法降解、逐步积累 ,增加还是非常快的。例如 ,有资料表明 ,近年来 ,上海土壤中汞和镉的含量增加了 50% ;浙江南部一些地区土壤中 Cu、Zn等重金属全部超标 ,持久性有机污染物部分检出率达100%。辽河流域据介绍,辽河流域是我国传统的工矿区之一,交通便利、矿产资源丰富,长期以来形成了以煤炭、石油、钢铁等工矿业为主的经济结构,资源利用效率较低,污染强度高;污染源污染治理水平低,化工、冶金、采矿、制药等行业污染严重,部分企业设备陈旧、落后,污染治理设施不完善;加之辽河流域环境监测、预警、应急处置和环境执法能力薄弱,有些地区有法不依,执法不严现象较为突出,环境违法处罚力度不够,污染的现象不能得到有效遏制。有关人士还指出,土壤污染和水污染是相互交替、互相影响的。一方面,部分地区的土壤污染是由于污灌造成的。由于辽河水资源短缺,为解决工农业用水问题而长期进行污水灌溉,使得大量有毒、有害物质进入土壤,积累到一定程度,超过了土壤本身的自净限度。另一方面,辽河流域鞍山、辽阳等地是全国闻名的工矿区,常年的矿产开发造成一些矿区土壤污染非常严重,通过水体的冲刷,土壤中的重金属和有毒物质加速了河流的污染。有专家指出,在资源和重工业为主导的经济结构下,工业生产的污染程度相对会比较高,治污难度大;受经济利益的驱使,部分企业安装、运行污染治理设施不到位,随意排放废水废气废渣的现象时有发生,使人防不胜防;同时,地方政府重地区GDP轻环境保护的意识依然存在,对污染现象听之任之。对于辽河而言,其治污问题面临更多重的考验——在当前经济危机的影响依然持续、东北老工业基地亟待振兴的形势下,一方面辽河流域土壤污染和水污染等问题严重,已经到了非治不可的地步;另一方面,在2008年来的全球性金融危机的席卷之下,地方政府面临着经济增速放缓,失业率增加的巨大压力,一切工作的中心都集中到了保障经济平稳发展上来。环境治理面临着让位于经济发展而被忽视的问题。对于几十年污染“积重”的整个辽河流域,有人表示担心,“有些地方为了发展经济,根本不管所谓的环境污染,这么几十年下来,才造成整个流域污染情况严重。如果这一点不改,只是沿着‘污染——治理——污染’的老路子,最后只能是越治越污,环境越来越坏。”一. 长三角根据中科院南京土壤所2006年在南京郊区蔬菜基地做的定点测试,仅有40%的土壤处于安全等级,而30%的土壤已经受到污染。而浙江省有关部门的调查显示,全省Ⅰ类和Ⅱ类土壤占调查区总面积的82%,其余18%的土壤均受到了不同程度的污染。“区域内工业化、城市化和农业集约化的快速发展,加上疏于防治,大量未经处理的废弃物通过多种渠道向土壤系统转移、残留,是形成土壤污染的主要因素。”近期,浙江省台州市路桥区峰江街道139名村民被查出血铅严重超标,元凶是建在村里的一家被列为重点监控企业的蓄电池企业。在上世纪80年代末期,我国污染面积只有几百万公顷,而现在已经超过一千万公顷。土壤污染类型多样化,其中严重的是重金属污染,根据中科院生态所研究,目前我国受镉、砷、铬、铅等重金属污染的耕地面积近两千万公顷,约占耕地总面积的五分之一,全国每年因重金属污染而减产粮食1000多万吨。此外农药、抗生素、病原菌等也成为土地污染的来源。土壤污染除导致土壤质量下降、农作物产量和品质下降外,更为严重的是土壤对污染物具有富集作用,一些毒性大的污染物,如汞、镉等富集到作物果实中,人或牲畜食用后发生中毒。 如我国辽宁沈阳张士灌区由于长期引用工业废水灌溉,导致土壤和稻米中重金属镉含量超标,人畜不能食用。土壤不能再作为耕地,只能改作他用。 3.固体废弃物堆放 另外,在农田中,由于化肥的不合理施用,农药喷施和 地膜等造成的污染也相当严重。2. 地方土壤环境保护工作面临的问题和对国家土壤环境保护法规、制度、政策等方面的需求目前,我国土壤污染面临着严峻的形势,部分地区土壤污染严重,土壤污染类型多样,呈现新老污染物并存、无机有机复合污染的局面,土壤污染途径多,原因复杂(环保总局在京召开首次全国土壤污染防治工作会议,且污染面积、分布和程度不清,污染防治基础薄弱,地方土壤保护工作防治措施缺乏依据和方向,状况不容乐观,面临诸多挑战。同时,防治土壤污染的法律还非常欠缺,土壤环境标准体系也尚未形成,法律是土壤污染防治的关键,是实现土壤环境保护的最主要途径,它对保护土地质量,维持社会、经济和环境的可持续发展具有重大意义。从法律角度分析,土壤污染现状的原因包括以下三个方面:首先,我国土壤污染防治的相关法律法规空白,缺乏有效的法律制度。在我国现行的法律体系中,已经制定了环境保护、土地管理、水污染防治、大气污染防治等相关的法律法规,但土壤污染防治的法律基本上是一项空白(论我国农业用地土壤污染的法律保障)。虽然若干法律中一些零星规定,对农业生态环境的保护起到了一定的积极效果,但都是分散而不系统的,缺乏可操作性的具体法律制度。随着我国快速的工业化、城市化进程,农业用地土壤污染仍有继续加重的趋势,说明现行立法有限条款的粗略性规定不可能有效防治现代农业技术和不合理的土地利用方式造成的土壤污染问题,满足不了土壤污染防治的现实需要。而法律的“真空”状态则会进一步滋长土地资源的滥用现象,加剧土壤污染问题(浅析我国土壤防治的法律问题)。在长三角地区环保工作中,南京理工大学经济管理学院教授徐光华指出“缺乏相对统一的区域环境准入和污染物排放标准、缺乏相关法律规范,是长三角地区环保工作目前的软肋。”区域经济发展中所遇到的各类环保问题,通常都很难靠一地的政府来解决。要应对日益严重的环境污染形势,两省一市的有关部门必须尽快建立起区域环境信息共享与发布制度,启动区域环境监管与应急联动机制,并在此基础上加快区域环境保护相关法律规范的研究和制定,长三角土壤污染后果堪忧)。因此,在现行法的基础上,有必要对土壤污染防治保护采取一定的法律措施,健全和完善环境相关法律法规。其次,土壤污染防治的行政管理和执法混乱。依据我国现有的法律体制,对于土壤的法律保护,实行管与分管相结合的多部门分层次的管理体制,涉及多个行政部门对土壤污染的行政管理,在这种体制下,管理主体林立,权力和责任分散,不仅不利于集中、统一管理,而且容易造成管理上的混乱(浅析我国土壤污染防治的法律问题)。由于土壤污染的来源多样,情况复杂,所以除了职责最多联系最为紧密的环境保护部门、农业部门有环境行政监管权力外,许多其他的部门如水利部、国土资源行政主管部门等在特定的情况下也有管理权限(我国农村土壤污染防治的法律问题研究)。但是,由于法律并没有赋予环境保护执法部门对其他行政主管部门的环境执法的监督权,同时对于各个执法部门之间在土壤污染处理上应当如何相互配合的重要问题也没有做出规定,这就导致了在具体的土壤保护的执法当中多头执法,交叉执法,执法不到位,甚至部门之间借执法来争夺各自的利益,降低了土壤保护的整体实效,损害了土壤保护的整体利益,有关法律法规对部门之间如何监督协调没有具体规定,并且在实际环境行政执法管理中地方情况差异较大,出现的许多污染问题无法很好的得到解决,从而导致部门与部门之间相互扯皮、争权推责(浅析我国土壤污染防治的法律问题)。可以说,这种多头管理体制,不仅严重影响了治污的效率,也浪费了诸多的行政管理资源。另外,在我国大多数基层地区尤其是贫困的农村地区,由于经济发展落后,摆脱贫困的愿望强烈,大多领导干部以经济的快速发展为首要目标,当经济发展与环境保护发生冲突的时候,就会牺牲环境来图发展(防控农村土壤污染的迭律对策研)。因此,我国在对土壤污染管理及执法上也存在许多的问题。最后,土壤环境保护的司法保障有待加强。目前,虽然我国土壤污染比较严重,污染情况时有发生,但涉及土壤污染诉讼的案例却很少,从仅有的几个案例中,不难发现我国农村土壤司法救济中存在的问题。首先,我国至今没有关于土壤污染修复和赔偿的条例规定,对企业也没有任何约束,即使土壤被污染了,也很难追究他们的责任。2006年8月,甘肃省徽县发生的“铅中毒”事件就是一个典型的案例。当时,这个县水阳乡的两个村庄共有368人查出血铅超标,其中14岁以下的儿童149人。经环保部门调查发现,位于这两个村庄附近的一家铅冶炼厂是重要污染源,造成当地土壤、空气和水体污染。虽然这家工厂后来被勒令关停,但如何给那些遭受污染损害的村民以有效的补偿,如何从根本上转变那种以群众健康甚至生命为代价的粗放型增长方式,却是一个难题。(邱林,中国1/5耕地受污染防治形势严峻,改善土壤环境质量系国家行动。另外,在农村环境诉讼中,一个最现实的问题就是诉讼费用的负担问题。我国农民是社会中最大的弱势群体,他们是城市发展的牺牲品,长期处于经济的困窘之中,他们的收入大多仅能勉强维持生计(防控农村土壤污染的迭律对策研)。与此同时,土壤污染对农民造成的损失是长期的也是巨大的。在我国司法实践中 ,诉讼费用直接与诉讼标的额挂钩 ,且实行诉讼费用预交制度 ,农民很有可能会因为交不起诉讼费用而无法得到司法保障(我国农村土壤污染防治的法律问题研究)。1999年 12月 20 日大庆市红岗区杏树岗镇民吉村十三户农民向大庆市中院起诉 ,要求被告大庆油田有限责任公司赔偿原告土地污染损害赔偿518431. 06元。本案中十三户农民的土地污染发生于1993年 ,但是当年只给付原告青苗补偿款。由于农民对土地是否被污染不懂 ,在 1999年前没有提起诉讼 ,但一直以上访的形式找镇政府、土地局以及被告单位要求解决 ,虽在 1999年 11月 4日达成协议 ,但未实际履行。1999 年 12 月 ,原告向大庆市农业局申请对受污染的农田进行取样化验鉴定。2000年 1月农业局进行了取样 ,并由市农业局送省质量检验检测中心检验。2001 年 5 月农业局根据检验结果又组织五位专家现场勘查 ,做出鉴定意见:已造成受污染农田土坡次生盐渍化 ,对农作物已造成严重危害。《中华人民共和国环境保护法 》第七条:国务院环境保护行政主管部门 ,对全国环境保护工作实施统一监督管理。县级以上地方人民政府环境保护行政主管部门 ,对本辖区的环境保护工作实施统一监督管理。《中华人民共和国水污染防治法实施细则 》第四十三条第二款。该案件从 1999 年 12 月到 2003 年 12 月 ,经两级法院长达四年的审理 ,最终法庭调解结案 ,被告赔偿原告损失 159607. 38元 ,一、二审诉讼费用由被告承担。值得注意的是在案件审理过程中。大庆中院以原告超诉讼时效为由 ,判决驳回原告的诉讼请求。判后原告不服 ,但由于农民多年未耕种土地无收入没有上诉费用 ,为维护原告人合法权益 ,由代理人交上诉费 10196. 00元 ,才使得农民的合法权益能够得到最终的保护(一件土地污染损害赔偿案的艰难诉讼)。因此,为有效防治土壤污染,应在现行有关土壤污染防治立法的基础上,细化、扩展土壤污染防治的制度,或制定专门的法律法规,以加强对土壤污染的监督和管理。从法律上,对污染灌溉、工矿废弃物、城市生活垃圾、化肥农药等土壤污染物及污染行为作出明确规定,通过法律手段有效防治土壤污染。另外,在法律法规中应当理顺土壤污染防治的行政管理体制,建立土壤污染的动态监测评价制度,制定相关土壤污染防治的具体规划制度,确立土壤污染的环境标准,建立土壤污染应急措施制度和法律责任制度等相关的制度。(浅析我国土壤污染防治的法律问题(论文)。3.土壤环境保护工作经验和典型模式、政策建议由于土壤污染的潜伏性、不可逆性、长期性和后果严重性等特点,土壤环境保护应遵循 “防重于治”的基本原则,坚持“预防为主、防治结合、综合治理”。对未被污染的土壤采取预防措施,要控制或消除污染源;对已经污染的土壤则要采取积极治理措施 ,将污染控制在最低限度(我国环境保护科学研究现状与展望)。土壤一旦被污染,治理起来相当困难,相对于污染物在土壤-植物系统中含量、行为、生物地球化学循环、毒理、代谢模式和与重金属有关的流行病等方面的研究,土壤污染的治理与管理研究要薄弱得多,大多数治理方法尚处在试验阶段,再加之考虑到治理费用等问题,能应用的成熟方法目前很少。总结出现的各类土壤污染治理方法,大体上可分以下四类:1.工程措施(包括客土、换土、翻土、去表土、隔离、热处理、电化学方法等)此种方法效果好、稳定,是一种治本措施,适用于大多污染物和多种条件,但一般在小范围内较实用,且代价昂贵,还可能造成地下水或其他介质的潜在污染。近年来,把污水、大气污染治理技术引进土壤治理过程中,开辟了土壤污染治理新的途径,如磁分离技术、阴阳离子代换法等(土壤污染治理方法研究)。2.化学措施施用改良剂、抑制剂等降低土壤污染物的水溶性、扩散性和生物有效性 ,从而降低污染物进入生物链的能力,减轻对土壤生态环境的危害()。例如:在某些重金属污染的土壤中加入石灰、矿渣等碱性物质,使重金属生成氢氧化物沉淀。或添加膨润土、合成沸石等交换容量较大的物质来钝化土壤中的重金属等。3.生物措施生物治理方法有着物理治理方法和化学治理方法无可比拟的优越性,其优点主要表现在以下几个方面:①处理费用低,其处理成本只相当于物化方法的二分之一到三分之一;②处理效果好,对环境的影响低,不会造成二次污染,不破坏植物生长所需要的土壤环境;③处理操作简单,可以就地进行处理。基于这些优点,应用生物修复已成为当今土壤污染治理技术研究的一大热点(土壤污染的生物修复技术研究进展)。生物措施是利用特定的动、植物和微生物吸收或降解土壤中的污染物。与此措施相对应的新兴学科“环境生物技术”方兴未艾。应用现场污染治理的生物措施始于 1989 年 3 月,美国阿拉斯加海岸被石油污染,采用了两组亲脂性微生物后,使其净化过程加快了两倍。早期生物治理采用的主体生物类群多为微生物。最近,植物修复正成为生物治理措施中的一个亮点。植物对污染点的修复有三种方式:植物固定、植物挥发和植物吸收。研究表明,利用适当的植物不但可去除土壤环境中的有机物,还可以去除重金属和放射性核素。超累积植物已成为环境保护工作者追寻、筛选的目标。我国对植物修复和超积累植物的研究已有良好的开端(我国土壤环境保护研究的回顾与展望)。例如,在土壤重金属镉污染的植物修复研究中,通过大量筛选研究发现,十字花科芸苔属植物(Brassica spp.)中的很多种或基因型具有较强的吸收累积 Cd特性。我国广泛种植的油菜(B.campestris)就是该属植物,其中某些品种或基因型在累积 Cd 方面可能很高。筛选并种植可食部位低积累 Cd 作物品种(低吸收或低转移),通过作物互做(间作、轮作)减少作物对Cd 的吸收等植物修复方面的研究也需做进一步研究(土壤镉污染特征及污染土壤的植物修复技术机理)。4.农业措施包括增施有机肥提高环境容量、控制土壤水分、选择适宜形态化肥和选种抗污染农作物品种等。另外,国外发达国家在土壤污染防治方面的工作开展得较早 ,许多国家都已建立了相对完善的污染土地识别、评价和处理体系 ,其中美国、德国和日本的土壤保护实践在世界范围内极具代表意义。在国外,有关土壤污染防治法律保护的立法经验很多。美国于1985年和1990年修订的《农业法》希望实现劳动生产率的提高的同时保护资源与环境,实现“持续农业”的发展。另外,1990年在联邦政府实施了“保护计划”管理。1987年为了控制农业水源水质而制定了《水质法》。欧盟到目前为止还没有明确的土壤保护政策,但现有许多欧盟立法都与土壤保护有关。如《关于环境保护、尤其是污泥农用时保护土壤的86/278/EEC指令》对农用污泥作出了规定;《关于废物的75/442/EEC指令》要求废物在处置时不能污染土壤;2004年底前,提出《关于堆肥和生物废弃物指令》,其目的是为了控制潜在的污染,并鼓励使用被批准的混合肥料,等等。日本已经建立了由预防对策和治理对策构成的土壤环境保全体系。有《农用地土壤污染防止法律》(1970)、《市街地土壤污染暂定对策方针》(1986)、《土壤污染环境标准》(1991)、《土壤污染对策法》(2002),等等。《土壤污染对策法》的实施,使得污染治理由被动向主动转化,以前无法计算的环保社会效益可体现为可以计算的经济效益,此种趋势表明日本的土壤环境保护已经呈现出新的阶段特点[3]。这些国外的立法经验对我国土壤污染防治的法律完善具有非常重要的借鉴意义(浅析我国土壤污染防治的法律问题)。“重视生态补偿机制,是国外土壤污染防治工作中的一大经验,值得我们借鉴。”虞锡君向记者介绍道,生态补偿机制,又称生态系统服务付费,主要原则就是“污染者付费”和“保护者受偿”——由污染事故的责任方治理土壤污染、或者支付土壤污染治理的费用。国外在这方面有过不少成功案例——1972年,美国通过的《纳税人减税法》,目的之一就是以税收方面的优惠措施,来刺激私人资本投资于土壤清洁治理。根据美国政府的报告,其直接结果是吸引了34亿美元的私人投资,8000个受到污染的棕色地块恢复了生产能力。虞锡君表示,在区域联动的基础上确立土壤生态直接补偿制度,或许是我们目前值得努力的方向(长三角土壤污染后果堪忧。)郑进华 彭 强 郑晓琴.浅析我国土壤污染防治的法律问题.[A], 环境法治与建设和谐社会——2007年全国环境资源法学研讨会(2007.8.12~15•兰州)论文集高拯民.我国环境保护科学研究现状与展望lJ1.土壤学报,1989,26 (3):262-272.

2012年1)Ding Wenjuan,Wang Renqing, Yuan Yifu, Liang Xiaoqin, Liu Jian. 2012.Effects of nitrogen deposition on growth and relationship ofRobinia pseudoacaciaandQuercus acutissimaseedlings. Dendrobiology, 67: 3-13.2)Zhang Juan, Dai Jiulan, Du Xiaoming, Li Fasheng, Wang Wenxing,Wang Renqing. 2012. Distribution and sources of petroleum-hydrocarbon in soil profiles in Hunpu wastewater-irrigated area, China’s northeast. Geoderma, 173: 215-2233)Zhang Juan, Dai Jiulan, Haorui Chen, Du Xiaoming, Wang Wenxing, Wang Ning,Wang Renqing. 2012. Petroleum contamination in groundwater/air and their effects on farmland soil at the outskirt of an industrial city, China. Journal of Geochemical Exploration.In press(DOI: 10.1016/j.gexplo.2012.04.002)4)Wang Qiang,Wang Renqing, Tian Chengyu, Yu Yue, Zhang Yongli, Dai Jiulan. 2012. Using microbial community behavior as the complementary environmental condition indicator: a case study of an iron deposit tailing area. European Journal of Soil Biology, 51: 22-29.5)Chen Hua,Wang Renqing, Ge Xiuli, Zhang Juan, Du Ning, Wang Wei, Liu Jian. 2012. Competition and soil fungi affect the physiological and growth traits of an alien and a native tree species. Photosynthetica, 50(1): 77-85.6)Wang Shujun, Liu Jian,Wang Renqing, Ni Zirong, Xu Shipeng, Sun Yueyao. 2012. Impact of socio-economic development on ecosystem services and its conservation strategies: a case study of Shandong Province, China. Environmental Monitoring and Assessment, 184(5): 3213-3229.7)Chen Hua,Liu Jian, Xue Tong,Wang Renqing. 2012. Roads accelerate the invasion process of alien species. Advanced Materials Research, 347-353: 1483-1487.8)Yu Yue, Wang Hui, Liu Jian, Wang Qiang, Shen Tianlin, Guo Weihua,Wang RenQing. 2012. Shifts in microbial community function and structure along the successional gradient of coastal wetlands in Yellow River Estuary. European Journal of Soil Biology,49:12-21.9)Ge Xiuli,Liu Jian,Wang Renqing.2012. The comparison between the historical and current vegetation in Nansi Lake area. Advanced Materials Research, 518-523: 5180-5184.10)Xue Tong, Dai Jiulan, Zhang Mengmeng,Wang Renqing. 2012. FT-IR spectroscopic structural characterization of forest soil and its adsorption and desorption for mercury. Pedosphere. Accepted.11)Zhang Mengmeng, Liu Jia, Tian Chengyu,Wang Renqing, Dai Jiulan. 2012. Effect of pH, temperature and the role of ionic strength on the adsorption of mercury (II) by typical Chinese soils. Communications in Soil Science and Plant Analysis, 43: 1599-1613.12)薛童,陈华,张依然,王仁卿,戴九兰. 2012.腐殖质化学的光谱研究新进展.安徽农业科学, 6: 3833-3836.13)郭微,戴九兰,王仁卿. 2012.溶解性有机质影响土壤吸附重金属的研究进展.土壤通报, 43(3):761-768.2011年14)Ding Wenjuan, Liu Jian, Wu Daqian, Wang Yue, Chang Cheinchi,Wang Renqing. 2011. Salinity stress modulates habitat selection in the clonal plantAeluropus sinensissubjected to crude oil deposition. The Journal of the Torrey Botanical Society, 183(3): 262-271.15)Wang Yutao, Liu Jian, Hansson Lars, Zhang Kai,Wang Renqing.2011. Implementing a relative stricter discharge standard in a regional industry to enhance eco-efficiency and sustainability: a case study of Shandong pulp and paper industry, China. Journal of Cleaner Production, 19(4): 303-310.16)Liu Lei, Liu Jian, Wang Yutao, Wang Nvjie,Wang Renqing.2011. Cost-benefit analysis and ecological compensation of watershed-scale wetland restoration: a case study in Shandong province,China.International Journal of Environmental Research, 5(3): 787-796.17)Chen Hua, Liu Jian, Zhang Yongli, Wang Qiang, Ge Xiuli, Wei Yinghua,Wang Renqing. 2011. Influence of invasive plantCoreopsis grandifloraon functional diversity of soil microbial communities. Journal of Environmental Biology, 32(5): 567-572.18)王仁卿,杜宁,郭卫华,张淑萍,戴九兰,刘建,王玉志,王玉涛.2011.走向国际化的生态学——山东大学生态学的过去、现在和将来.山东大学学报(理学版), 46(10):197-207.19)张孟孟,戴九兰,王仁卿. 2011.溶解性有机质对土壤中汞吸附迁移及生物有效性的影响研究进展.环境污染与防治, 5: 95-99, 110.20)Han Xuemei,Wang Renqing, Guo Weihua, Pang Xugui, Zhou Juan, Wang Qiang, Zhan Jincheng, Dai Jierui. 2011. Soil microbial community response to land use and various soil elements in a city landscape of North China. African Journal of Biotechnology, 10(73): 16554-16565.21)Guo Weihua, Jeong Jihee, Kim Zinsuh,Wang Renqing, Kim Enhye, Kim Sunghwan. 2011. Genetic diversity ofLilium tsingtauensein China and Korea revealed by ISSR markers and morphological characters. Biochemical Systematics and Ecology, 39: 352–360.22)Guo Weihua, Li Bo, Zhang Xinshi,Wang Renqing. 2011. Water balance in SPAC under water stress: a case study of Hippophae rhamnoides and Caragana intermedia. In: Efe R. (Eds). Environment and Ecology in the Mediterranean Region. Cambridge Scholars Publishing.23)Wang Wei, Wang Renqing, Yuan Yifu, Du Ning, Guo Weihua.2011. Effects of salt and water stress on plant biomass and photosynthetic characteristics of Tamarisk (Tamarix chinensisLour.) seedlings. African Journal of Biotechnology, 10(78): 17981-17989.24)Zhou Juan,Wang Renqing, Guo Weihua, Zhou Guangjun, Wang Qiang, Wang Wei, Han Xuemei, Pang Xugui, Zhan Jincheng, Dai Jierui. 2011. Soil microbial community diversity and its relationships with geochemical elements under different farmlands in Shouguang, China. Communications in Soil Science and Plant Analysis, 42: 1008-1026.25)杜宁,张秀茹,王炜,陈华,谭向峰,王仁卿,郭卫华. 2011.荆条叶性状对野外不同光环境的表型可塑性研究.生态学报, 31(20): 6049-6059.2010年26)Liu Jia, Dai Jiulan,Wang Renqing, Li Fasheng, Du Xiaoming, Wang Wenxing. 2010. Adsorption/desorption and fate of mercury (II) by typical black soil and red soil in China. Soil and Sediment Contamination, 19: 587-601.27)Wang Qiang, Dai Jiulan, Yu Yue, Zhang Yongli, Shen Tianlin, Liu Jiangsheng,Wang Renqing. 2010. The changes of soil microbial structural and functional characterizations under the stress of heavy metals in typical agriculture soil. Environmental Monitoring and Assessment. 161: 495-508.28)Du N., Guo W. H., Zhang X. R.,Wang R. Q. 2010. Morphological and physiological responses ofVitex negundoL. var.heterophylla(Franch.) Rehd. to drought stress. Acta Physiol Plant, 32: 839-848.29)Guo W. H., Li B., Zhang X. S.,Wang R. Q. 2010. Effects of water stress on water use efficiency and water balance components ofHippophae rhamnoidesandCaragana intermediain the soil–plant–atmosphere continuum. Agroforestry Systems, 80: 423–435.30)Wu D. Q., Liu J., Wang S. J.,Wang R. Q.2010. Simulating urban expansion by coupling a stochastic cellular automata model and socioeconomic indicators. Stoch Environ Res Risk Assess, 24: 235–245.31)Wu Daqian, Liu Jian, Wang Shujun,Wang Renqing.2010. Simulating urban expansion by coupling a stochastic cellular automata model and socioeconomic indicators. Stochastic Environmental Research and Risk Assessment, 24(2): 235-245.32)徐飞,郭卫华,徐伟红,王仁卿.2010.刺槐幼苗形态、生物量分配和光合特性对水分胁迫的响应.北京林业大学学报, 32 (1): 24-30.33)吴大千,王仁卿,高甡,丁文娟,王炜,葛秀丽,刘建. 2010.黄河三角洲农业用地动态变化模拟与情景分析.农业工程学报, 26(4): 285-290.34)葛秀丽,刘建,王镥权,李卫东,王仁卿.2010.南四湖区域乡土植物生态特性研究.见:第十三届世界湖泊大会论文集(The 13th World Lake Conference).北京:中国农业大学出版社,pp. 2725-2728.35)王强,戴九兰,吴大千,余悦,申天琳,王仁卿. 2010.微生物生态研究中基于BIOLOG方法的数据分析.生态学报, 30(3): 817-823.36)何欢,申天琳,戴九兰,郭微,王强,马丽,王仁卿. 2010.潮土潜在硝化速率对重金属锌镉的响应研究.农业环境科学学报, 29(5): 918-922.37)王强,戴九兰,付合才,申天琳,吴大千,王仁卿. 2010.空间分析方法在微生物生态学研究中的应用.生态学报, 30(2): 439-446.38)王女杰,刘建,吴大千,高甡,王仁卿.2010.基于生态系统服务功能的区域生态补偿研究——以山东省为例.生态学报,30(23): 6646-6653.2009年39)Dai J. L., Zhang M., Hu Q. H., Huang Y. Z.,Wang R.Q., Zhu Y. G. 2009. Adsorption and desorption of iodine by various Chinese soils: II. Iodide and iodate. Geoderma, 153: 130-135.40)Wang S. J., Li Jennifer, Wu D. Q., Zhang K.,Wang R.Q., Liu L.2009. The ecological impact assessment of urban development policies: a case study of Ji’nan city, China. Journal of Environmental Assessment Policy and Management, 4: 427-450.41)Wang S. J., Liu J., Ren L. J., Zhang K.,Wang R.Q.2009. The development and practices of Strategic Environmental Assessment in Shandong Province, China. Environmental Impact Assessment Review, 29: 408-420.42)Wang S. J., Jennifer Li, Wu D. Q. , Liu J., Zhang K.,Wang R.Q.2009. The Strategic Ecological Impact Assessment of urban development policies: a case study of Rizhao City, China.. Stochastic Environmental Research and Risk Assessment, 23: 1169-1180.43)Wu D. Q. , Liu J., Zhang G. S., Ding W. J., Wang W.,Wang R.Q.2009. Incorporating spatial autocorrelation into cellular automata model: an application to the dynamics of Chinese tamarisk (Tamarix chinensis Lour.). Ecological Modelling, 220: 3490-3498.44)Xu F., Guo W. H., Xu W. H., Wei Y. H.,Wang R.Q.2009. Leaf morphology correlates with water and light availability: What consequences for simple and compound leaves. Progress in Natural Science, 19: 1789 -1798.45)Xu F., Guo W. H.,Wang R.Q., Xu W. H., Du N., Wang Y. F. 2009. Leaf movement and photosynthetic plasticity of black locust(Robinia pseudoacacia)allebiate stress under different light and water conditions. Acta Physiologiae Plantarum, 31: 553 - 563.46)Yang J. H., Zhang S. P., Liu J., Zhai W.,Wang R.Q.2009. Genetic diversity of the endangered species Rosa rugosa Thunb. in China and implications for conservation strategies. Journal of Systematics and Evolution,47(6): 515-524.47)Zhang J., Dai J. L.,Wang R.Q., Li S. F., Wang W. X. 2009. Adsorption and desorption of divalent mercury (Hg2+) on humic acids and fulvic acids extracted from typical soils in China. Colloids and Surfaces A: Physicochemical and Engineering Aspects,335: 194-201.48)王玉涛,郭卫华,刘建,王淑军,王琦,王仁卿2009.昆嵛山自然保护区生态系统服务功能价值评估.生态学报,9 (1): 523-531.49)吴大千,刘建,贺同利,王淑军,王仁卿. 2009.基于土地利用变化的黄河三角洲生态服务价值损益分析.农业工程学报, 2009, 25 (8): 256-261.50)吴大千,刘建,王炜,丁文娟,王仁卿. 2009.黄河三角洲植被指数与地形要素的多尺度分析.植物生态学报, 33 (2):237-245.2008年51)Dai J. L., Li S. J., Zhang Y. L.,Wang R.Q. 2008. Distributions, sources and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in topsoil at Ji’nan city, China. Environmental Monitoring and Assessment, 147: 317-326.52)Liang Y., Liu J., Zhang S. P., Wang S. J., Guo W. H. andWang R.Q. 2008. Genetic diversity of the invasive plant Coreopsis grandiflora at different altitudes in Laoshan Mountain, China. Canadian Journal of Plant Science, 88(4):831-83753)Liu J., He W. M., Zhang S. M., Liu F. H., Dong M.,Wang R.Q.2008. Effects of clonal integration on photosynthesis of the invasive clonal plant Alternanthera philoxeroides.Photosynthetica,46(2): 299-302.54)Zhang Y. L., Dai J. L.,Wang R.Q., Zhang J. 2008. Effects of long-term sewage irrigation on agricultural soil microbial structural and functional characterizations in Shandong, China. European Journal of Soil Biology, 44(1): 84-91.55)Zhou J., Guo W. H.,Wang R.Q., Han X. M., Wang Q. 2008. Microbial community diversity in the profile of an agricultural soil in northern China. Journal of Environmental Sciences, 20: 981-988.56)刘江生,王仁卿,张永利,王强,戴九兰. 2008.山东省黄河故道土壤环境背景值研究.环境科学, 29(6):1699-1704.57)徐飞,郭卫华,徐伟红,王仁卿. 2008.短期干旱和复水对麻栎幼苗光合及叶绿素荧光的影响.山东林业科技, 4: 1-5.58)张高生,王仁卿. 2008.现代黄河三角洲生态环境的动态监测.中国环境科学, 28(4): 380-384.59)张高生,王仁卿. 2008.现代黄河三角洲植物群落数量分类研究.北京林业大学学报, 30:31-36.2007年60)Guo W. H., Liu H., Du N., Zhang X. S.,Wang R. Q. 2007. Structure design and establishment of database application system for alien species in Shandong Province. Journal of Forestry Research, 18 (10): 11-16.61)Guo W. H., Li B., Zhang X. S.,Wang R. Q.2007. Architectural plasticity and growth responses of Hippophae rhamnoides and Caragana intermedia seedlings to simulated water stress. Journal of Arid Environments, 69(3): 385-399.62)Han X. M., Guo W. H.,Wang R. Q., Wang M. C. 2007. Microbial communities in microcosm soils treated with battery waste. 17(9): 29-36.63)Han X. M., Guo W. H.,Wang R. Q., Zhou J., Wang M. C.2007. Effects of vegetation type on soil microbial community structure and catabolic diversity in five plant communities in North China assessed by polyphasic methods. Journal of Environmental Sciences, 19(10): 1228-1234.64)Liu C. C.,Wang R. Q.2007. Leaflet movement of Robinia pseudoacacia in response to a Changing light environment. Journal of integrative plant biology, 49(4): 419-424.65)Zhang G. S.,Wang R. Q., BaiminSong. 2007. Plant Community Succession in Modern Yellow River Delta, China. Journal of Zhejiang University Science, 8(8): 540-548.66)Zong M.J., Han X.M., Zhang Z.G.,Wang R.Q.2007. DNA recovery from soil in restoration area and indicated biodiversity. Ekológia (Bratislava), 26: 381-389.67)杜宁,郭卫华,王仁卿. 2007.昆嵛山典型植物群落生态学特征研究.生态学杂志, 26(2): 151-15868)杜宁,郭卫华,王仁卿. 2007.嵛山典型林下灌草层植物种间关系研究.山东大学学报, 42(3): 71-8369)郭卫华,李波,张新时,王仁卿. 2007.水分胁迫对沙棘(Hippophae rhamnoides)和中间锦鸡儿(Caragana intermedia)蒸腾作用影响的比较.生态学报, 27 (10): 4132-4140.70)王瑶,刘建,王仁卿. 2007.阿利效应及其对生物入侵和自然保护中小种群管理的启示.山东大学学报, 42 (1): 76-82.71)徐飞,郭卫华,王炜,徐伟红,王玉芳,王仁卿. 2007.黄河三角洲柽柳与芦苇光合特性比较.山东林业科技, 6: 29-33.72)徐飞,郭卫华,王玉芳,王炜,杜宁,王仁卿. 2007.济南市校园6个绿化树种光合荧光特征比较初探.山东大学学报,42 (5): 86-94.73)吴大千,杜宁,王炜,翟雯,王玉芳,王仁卿,张治国. 2007.昆嵛山森林群落下灌草层结构与多样性研究.山东大学学报, 42(1): 1-7.74)吴大千,徐飞,郭卫华,王仁卿,张治国. 2007.中国北方城市常见绿化植物夏季气孔导度影响因素及模型比较.生态学报, 10: 4141-4148.75)徐伟红,郭卫华,徐飞,王仁卿. 2007.三种枣树叶绿素荧光参数的日变化.山东农业科学, 2: 29-32.76)吴彤,李俊祥,戴洁,王仁卿. 2007.山东省外来植物的区系特征及空间分布.生态学杂志, 26 (4): 489-494.77)张永利,戴九兰,王仁卿,王文兴. 2007.土壤重金属污染的微生物生态效应研究进展.生态科学, 26 (2): 186-190.2006年78)Zhang X. Q., Liu J., Clive V. J. Welham, Liu C. C., Li D. N., Chen L.,Wang R. Q. 2006. The effects of clonal integration on morphological plasticity and placement of daughter ramets in black locust (Robinia pseudoacacia). Flora, 201(7): 547-55479)韩雪梅,郭卫华,周娟,张淑萍,王仁卿.2006.土壤微生物生态学研究中的非培养方法.生态科学,25(1): 87-9080)王嘉,王仁卿,郭卫华. 2006.重金属对土壤微生物影响的研究进展.山东农业科学, 1: 101-105.81)张宪强,郭卫华,杨继红,刘成程,王仁卿. 2006.刺槐(Robinia pseudoacacia)无性系种群结构与生长动态的研究.山东大学学报, 41 (2): 135-139.82)周娟,郭卫华,宗美娟,韩雪梅,王仁卿. 2006.房干村不同植被下可培养细菌多样性研究.山东大学学报, 41 (6): 161-167.83)宋楠,宋亚囝,王仁卿,郭卫华,刘建. 2006.山东省农业外来植物入侵现状及防治对策分析.山东科学, 19 (3): 15-21.2005年84)Liu J., Liang S. C., Liu F. H.,Wang R. Q., Dong M. 2005. Invasive alien plant species in China: regional distribution patterns. Diversity and Distribution, 11(4): 341-347.85)Liu J., Zhu X. W.,Wang R. Q., Dong M. 2005. Effects of grasshoppers on the dominant plants naturally growing in degraded grassland ecosystem in Northern China. Ekologia (Bratislava), 24 (2): 117-124.86)Qi X. S., Zhang S. P., Wang Y. Z.,Wang R. Q.,. 2005. Advantages of the integrated pig-biogas-vegetable greenhouse system in North China. Ecological Engineering, 24(3): 177-185.87)刘建,刘凤红,董鸣,王仁卿. 2005.浑善达克沙地南缘榆树种群的大小结构和邻体格局.中国沙漠, 25 (1): 75~80.88)鲁敏,李英杰,王仁卿. 2005.油松容器育苗基质性质与苗木生长及生理特性关系.林业科学, 41 (4): 86~93. .89)齐鑫山,丁卫建,王仁卿,聂岩,田明英. 2005.果园间种白三叶草对土壤生态及果树生产的影响.农村生态环境. 21(2): 13~1790)宋志文,王仁卿,席俊秀,韩潇源,孙贤风,王玮. 2005.荣成人工湿地净化效果的季节和年际变化.农村生态环境, 21 (4): 43~48.91)宋志文,王仁卿,席俊秀,韩潇源,姚晨. 2005.人工湿地对氮、磷的去除效率与动态特征.生态学杂志, 24(6) : 648-65192)张淑萍,王仁卿,杨继红,张强,魏英华. 2005.胶东海岸野生玫瑰(Rosa rugosa)的濒危现状与保护策略.山东大学学报, 40 (1): 112~118.93)张永利,张宪强,王仁卿. 2005. 鲁中山区植物区系初步研究.山东林业科技, 1: 1~5.

生物质碳吸附氮磷研究本科论文

导读

在人类繁衍至今的地球上,大多数物种正遭受着气候变化的影响 。微生物支持所有高等营 养生 命形式的存在。为了 了解地球上的人类和其他生命形式(包括那些我们尚未发现的)如何能够抵御人为的气候变化--重要的是纳入对微生物的了解。我们不仅应该了解微生物如何影响气候变化(包括温室气体的生产和消耗),还应该

核心作用以及其在全球范围内的重要性。它提醒人们 ,气候变化的影响将在很大程度上取决于微生物的 响应,而微生物的响应对于实现环境可持续发展的未来至关重要。

论文ID

原名: Scientists’ warning to humanity: microorganisms and climate change

译名: 科学家对人类的警告:微生物与气候变化

期刊: Nature Reviews Microbiology

IF: 34.648

DOI:

发表时间: 2019年

通信作者: Ricardo Cavicchioli

通信作者单位: 新南威尔士大学(The University of New South Wales)

文章上线一年就被引186次,可见期重要性和影响力

综述内容

2 海洋生物群

海洋生物占地球表面的70%,从沿海河口,红树林和珊瑚礁到公海(图1)。 温度 上升不仅会影响 生物过程 ,还会降低水的密度,导致分层和环流现象的发生,从而影响生物的扩散以及营养物质的运输。 降水,盐度和风也影响分层 ,混合以及环流。来自空气、河流和河口流动的养分输入同样会对微生物的组成和功能造成影响,而气候变化会影响所有这些物理因素。

海洋环境中除了数量庞大的海洋微生物外,还发挥着重要的生态系统功能。海洋微生物通过碳和氮的固定,使有机物矿化,形成海洋食物网以及全球碳和氮循环的基础。颗粒有机物中碳的沉积以及其固定到海洋沉积物中过程是大气中螯合CO 2 的关键长期机制。因此,通过矿化和海底储藏碳氮的释放之间的平衡决定了气候变化。除了变暖(由于大气中CO 2 浓度的增加,增强了温室效应),海洋环境自工业化前以来酸化了约0.1个pH单位,预计到本世纪末还会进一步减少0.3-0.4个单位。因此有必要了解海洋生物将做出何种响应。 温室气体浓度升高对海洋温度,酸化,分层,混合,温盐环流,养分供应,辐射和极端天气事件的影响会对海洋微生物菌群产生重大环境影响,这些影响包括生产力,海洋食物网,海底碳排放和固定等方面。

2.1 微生物影响气候变化

海洋浮游植物只占全球植物生物量的1%,但却完成了全球一半的光合作用(CO2 的固定以及OO 2 的产生)。与陆生植物相比,海洋浮游植物分布范围更广,受季节变化的影响较小,周转率更快。因此,浮游植物在全球范围内对气候变化反应迅速。太阳辐射、温度和淡水向地表水输入的增加加强了海洋分层,从而减少了营养物质从深水到地表水的输送,降低了初级生产力。相反,CO 2 含量的升高,在营养成分不受限制的情况下,可以增加浮游植物的初级生产力。一些研究表明,在过去的一个世纪里,全球海洋浮游植物的总体密度有所下降,但由于数据获得的有限性、分析方法的差异等多方面原因,这些结论需要进一步考证。也有研究发现全球海洋浮游植物产量增加以及特定区域或特定浮游植物群的变化。全球海水冰面积的下降,导致更高的光渗透率和潜在的更多初级生产;然而,对于可变混合模式、养分供给变化以及极地地区的生产力趋势影响的预测效应相存在矛盾的现象。这强调了收集关于浮游植物生产和微生物群落组成的 长期数据 的必要性。

除了海洋浮游植物对CO 2 固定的贡献外,化学自养古菌和细菌同样可以在深水黑暗条件下以及极地冬季期间在表层进行CO 2 的固定。海底产甲烷菌和甲烷氧化菌是CH 4 的重要生产者和消费者,但它们对这种温室气体大气通量的影响尚不确定。海洋病毒、嗜细菌细菌以及真核食草动物也是微生物食物网的重要组成部分。气候变化对捕食者-被捕食者的相互作用的影响,包括病毒-宿主的相互作用,可以影响全球生物地球化学循环。

气溶胶影响云的形成,从而影响阳光照射和降水,但它们影响气候的程度和方式仍不确定。海洋气溶胶由海盐、非海盐硫酸盐和有机分子的复杂混合物组成,可以作为云凝结的核,影响辐射平衡,从而影响气候。了解海洋浮游植物对气溶胶的贡献方式,可以更好地预测不断变化的海洋环境将如何影响云层和对气候的反馈。此外,大气本身含有大约10 22 个微生物细胞,确定大气微生物生长和形成聚集体的能力对于评估它们对气候的影响具有重要价值。

植物生长的沿海生境对于碳的固定具有十分重要的意义,人类活动,包括人为的气候变化,在过去的50年里使这些栖息地减少了25-50%,海洋捕食者的数量减少了高达90%。基于微生物活动决定了有多少碳被再矿化并释放为CO2 和CHCH 4 ,同时考虑到如此广泛的环境扰动,因此这些扰动对微生物群落的影响同样需要进一步评估。

2.2 气候变化对微生物的影响

气候变化扰乱了物种之间的相互作用,迫使物种适应、迁移或被其他物种取代或灭绝。 海洋变暖、酸化、富营养化和过度使用(例如捕鱼、 旅游 )共同导致珊瑚礁的衰退,并可能导致生态系统的改变 。一般来说,微生物比宏观生物更容易分散。然而,许多微生物物种存在生物地理差异,扩散、生活方式和环境因素强烈影响群落组成和功能。海洋酸化使海洋微生物的pH条件远远超出其 历史 范围,从而影响到其胞内pH水平。不善于调节体内pH值的物种会受到更大的影响,许多环境和生理因素影响微生物在其本土环境中的反应和整体竞争力。例如, 温度 升高会 增加 真核浮游植物的蛋白质合成 ,同时 降低细胞核糖体浓度 。由于真核浮游植物的生物量为~1 Gt C,核糖体富含磷酸盐,气候变化引起的氮磷比的改变将影响全球海洋的资源分配。海洋变暖被认为有利于较小的浮游生物而不是较大的浮游生物,改变了生物地球化学通量。 海洋温度升高、酸化和营养供应减少预计将增加浮游植物细胞外溶解有机质的释放,微生物食物网络的变化可能导致微生物产量增加,而牺牲更高的营养水平 。温度升高还可以缓解铁对固氮蓝藻的限制,对未来变暖海洋的食物网提供的新氮来源具有潜在的深远影响。需要认真注意如何量化和解释环境微生物对生态系统变化和与气候变化相关的压力的响应。因此,关键问题仍然是关于菌群转移的功能后果,例如碳再矿化与碳固存的变化,以及与养分循环之间的关系。

3 陆生生物

陆地生物量是海洋生物量的100倍,其中陆地植物约占全球一半的净初级生产力。土壤储存了约2万亿吨的有机碳,其数量远高于大气和植被中碳的总和。陆地环境中的微生物总数与海洋环境中的总数相似。土壤微生物调节储藏在土壤中以及释放到大气中的有机碳的数量,并通过提供调节生产力的多种营养元素间接地影响植物和土壤中的碳储存。

植物通过光合作用吸收大气中的CO 2 ,并产生有机质;相反,植物的自养呼吸和微生物的异养呼吸将CO 2 释放回大气中。温度影响这些过程之间的动态平衡,从而影响陆地生物圈捕获、储存人为碳排放的能力(图1)。而气候变暖可能加速碳的排放。森林覆盖陆地面积的30%,占陆地初级生产力的50%,对人为排放的CO 2 的固存率高达25%。永久冻土中的有机物质中碳的积累远超过呼吸所损失的,创造了最大的陆地碳汇。但由于气候变暖预计将使永久冻土减少28-53%,从而使大型碳库可用于微生物呼吸以及温室气体排放。

通过对表层土壤(10cm)和以及深层土壤(100cm)剖面进行对比评估发现,气候变暖会增加碳向大气中的排放。有关不同土壤地点之间碳损失的差异的进一步解释需要更多的预测变量。然而,来自全球对变暖反应的评估的预测表明,气候变暖条件下,陆地碳损失产生了积极的反馈,加速了气候变化的速度,特别是在寒冷和温带地区(这些地区储存全球大部分土壤碳)。

3.1 微生物对气候变化的影响

CO 2 含量的升高,提高了初级生产力,增加了植物凋落物含量,促进了微生物对凋落物的分解从而导致更高的碳排放。温度的影响不仅是微生物反应速率的动力学效应,也是植物输入刺激微生物生长的结果。一些固有的环境因素(如微生物群落组成、枯木密度、氮素可获得性和水分)影响微生物活动,这就需要通过地球系统模型对气候变暖所造成的土壤碳损失进行预测,以纳入对生态系统过程的控制。在这方面,植物养分的可获得性影响森林的净碳平衡,营养贫乏的森林比营养丰富的森林释放更多的碳。植物将约50%的固定的碳释放到土壤中,供微生物生长。分泌物除了被微生物利用作为能源外,还可以破坏矿物-有机体的结合,从微生物呼吸利用的矿物中释放出有机化合物,增加碳排放。这些植物-矿物质相互作用的相关性说明了在评估气候变化的影响时,除了生物相互作用(植物-微生物)之外,生物-非生物相互作用的重要性。

土壤有机质用于微生物降解还是长期储存取决于许多环境因素,包括土壤矿物特征、酸度、氧化还原状态、水的有效性、气候等方面。有机物的性质,特别是基质的复杂性,同样会影响微生物的分解。此外,不同土壤类型中微生物获取有机质的能力具有差异性。如果将可获得性考虑在内,预计大气中CO 2 含量的增加将促进微生物的分解能力,这会使得土壤中有机碳的留存量降低。升高的CO 2 浓度增强了植物和微生物之间对氮的竞争。食草动物会影响土壤中的有机质含量,从而影响微生物的生物量和活性。气候变化可以减少食草动物,导致全球氮和碳循环的总体变化,从而减少陆地碳的固定。有害动物(例如蚯蚓)通过间接影响植物(例如,增加土壤肥力)和土壤微生物来影响温室气体排放。蚯蚓肠道中的厌氧环境含有执行反硝化并产生NO2 的微生物。蚯蚓提高了土壤肥力,它们的存在可以导致温室气体净排放,尽管温度升高和降雨量减少对有害生物摄食和微生物呼吸的综合影响可能会减少排放。

在泥炭地,抗腐烂的枯枝落叶等会抑制微生物分解,同时水饱和度限制了氧的交换,促进了厌氧菌的生长以及CO2 和CHCH 4 的释放。植物凋落物组成和相关微生物过程的变化(例如,减少对氮的固定化和增强的异养呼吸)正在将泥炭地从碳汇转变为碳源。永久冻土的融化使得微生物可以分解先前冻结的碳,释放CO2 和CHCH 4 。永久冻土的融化导致了水饱和土壤的增加,这促进了产甲烷菌和一系列微生物产生CH 4 和CO 2 。据预测,到本世纪末,缺氧环境的碳排放将比好氧环境的排放在更大程度上驱动气候变化。

3.2 气候变化对微生物的影响

气候的改变可以直接(例如季节性和温度)或间接(例如植物组成、植物凋落物和根系分泌物)影响微生物群落的结构和多样性。土壤微生物多样性影响植物多样性,对包括碳循环在内的生态系统功能很重要。短期实验室模拟变暖以及长期(50多年)自然地热变暖最初都促进了土壤微生物的生长和呼吸,导致CO 2 净释放,随着基质的耗尽,导致生物量减少,微生物活性降低。这意味着微生物群落不容易适应高温,由此产生的对反应速率和底物损耗的影响减少了碳的整体损耗。相比之下,一项长达10年的研究发现,土壤群落能够通过改变基质使用的模式以适应升高的温度,从而减少碳的损失。在年平均温度范围超过20 C的森林土壤中也发现了细菌和真菌群落的实质性变化。

微生物生长对温度的响应是复杂多变的。微生物生长效率是衡量微生物如何有效地将有机物转化为生物量的指标,效率较低意味着更多的碳被释放到大气中。一项为期一周的实验室研究发现,温度升高导致微生物周转率增加,但微生物生长效率没有变化,同时该研究预测,气候变暖将促进土壤中的碳积累。一项长达18年的实地研究发现,土壤温度越高,微生物的效率就会降低,在这段时间结束时,不易分解的底物的分解会增加,同时土壤碳的净损失也会增加。

气候变化通过温度、降水、土壤性质和植物输入等几个相互关联的因素直接或间接地影响微生物群落及其功能。由于沙漠中的土壤微生物受到碳的限制,植物增加的碳输入促进了含氮化合物的转化,微生物生物量,多样性,酶活性以及对复杂有机物的利用。虽然这些变化可能会增强呼吸作用和土壤中碳的净损失,但干旱和半干旱地区具有的特点可能意味着它们可以起到碳汇的作用。为了更好地了解地上植物生物量对CO 2 水平和季节性降水的响应,我们仍需增加对微生物群落响应以及功能的了解。

气候变化同样也使湖泊、海水等环境中富营养化的频率、强度和持续时间增加。水华蓝藻能够产生各种神经毒素、肝毒素和皮毒素,危害鸟类和哺乳动物的 健康 。有毒蓝藻目前已造成了包括中国太湖在内的全世界多个地区严重的水质问题。气候变化直接和间接地有利于蓝藻的生长,许多形成水华的蓝藻可以在相对较高的温度下生长。与此同时,湖泊和水库热分层的增加使浮力蓝藻能够向上漂浮并形成密集的表面水华,这使它们能够更好地获得光,更加具有选择性优势。目前实验室和原位实验都证明了有害的蓝藻 Microcystis 属具有适应高CO 2 的能力。因此,气候变化和CO 2 含量的增加预计会影响蓝藻水华的菌株组成。

4 农业

根据世界银行表明(世界银行关于农业用地的数据),近40%的陆地环境专门用于农业。这一比例在未来预计有可能增加,这将导致土壤中碳、氮和磷以及其他养分的循环发生重大变化。此外,这些变化与生物多样性的丧失息息相关。增加对使用植物和动物相关的微生物的了解,以提高农业可持续性发展,减轻气候变化对粮食生产的影响,但这样做需要更好地了解微生物对气候变化的响应。

4.1 微生物对气候变化的影响

甲烷菌在自然和人工厌氧环境中产生甲烷,此外还有与化石燃料相关的人为甲烷的排放(图2)。近年来(2014-2017)大气CH 4 水平显著升高,但其背后的原因尚不清楚。尽管 水稻 仅覆盖了10%的可用耕地,但却养活了全球一半的人口,同样,稻田也贡献了农业20%的CH 4 排放的。据预测,到本世纪末,人为气候变化将使水稻生产产生的CH 4 排放量翻一番。 反刍动物 是人为CH 4 排放的最大单一来源,反刍动物肉类生产所产生的碳排放比植物高蛋白食物生产的碳排放高19-48倍;即使是非反刍动物肉类生产所产生的CH 4 也比植物高蛋白食物生产的碳排放高出3-10倍。 化石燃料 的燃烧和化肥的使用大大增加了环境中可利用氮含量,扰乱了全球生物地球化学过程,威胁到生态系统的可持续发展。农业是温室气体NO2 的最大排放者,NO2 通过微生物氧化和氮的还原而释放。气候变化扰乱了微生物氮转化(分解、矿化、硝化、反硝化和固定)和N 2 O的释放速率。迫切需要了解气候变化和其他人类活动对氮化合物微生物转化的影响。

4.2 气候变化对微生物的影响

升温和干旱强烈地影响着作物的生长。以真菌为基础的土壤食物网在广泛管理的农业(例如牧场)中很常见,而以细菌为基础的食物网通常出现在集约化系统中,但与后者相比,前者更能适应干旱环境。对全球范围内的表层土进行评估发现, 土壤真菌和细菌占据了特定的生态位,并且对降水和土壤pH的响应不同,这表明气候变化将对它们的丰度、多样性和功能产生不同的影响 。预计由于气候变化而增加的干旱会导致全球旱地中细菌和真菌的多样性和丰度的减少,这种减少将进一步降低微生物群落的整体功能,从而限制了它们支持植物生长的能力。

气候变化和富营养化(由于化肥的施用)对微生物竞争力的综合影响存在不可预测的影响。例如,营养丰富通常有利于有害的藻类繁殖,但在相对较深的Zurich湖中观察到了不同的结果。

5 感染性疾病

气候变化影响着海洋和陆地生物群中疾病的发生和传播(图3),这取决于不同的 社会 经济、环境和宿主病原体特有的因素。了解疾病的传播和设计有效的控制策略需要充分了解病原体、及其传播媒介和宿主的生态学,以及扩散和环境因素(表1)。例如,海洋酸化还可能直接导致鱼类等有机体的组织损伤,潜在地导致免疫系统减弱,从而创造细菌入侵的机会。对于农作物来说,当人们考虑对病原体的响应时,包括CO 2 水平、气候变化、植物与病原体的相互作用在内的不同相互作用的因素都是重要的。不同的的微生物能够引起不同的植物疾病,进而影响作物生产,导致饥荒,并威胁粮食安全。病原体的传播和疾病的出现是通过物种的运输和引进来促进的,并受天气对扩散的影响和生长环境条件的影响。

表1 病原体对气候和环境因素的传播响应。

气候变化可以通过改变宿主和寄生虫的适应来增加疾病风险。对于外温动物(如两栖动物),温度可以通过扰乱免疫反应,从而增加感染的易感性。每月和每天不可预测的环境温度波动增加了古巴树蛙对病原菊苣真菌 Batrachochytrium dendrobatidis 的敏感性。温度升高对感染的影响与真菌在纯培养中生长能力下降形成对比,说明在评估气候变化的相关性时,更应该注重于评估宿主-病原体的反应(而不是从分离微生物的生长速率研究中推断)。气候变化预计会增加一些人类病原体对抗生素的耐药率。2013-2015年的数据表明,日最低温度提高10 C,将导致 Escherichia coli , Klebsiella pneumoniae 以及 Staphylococcus aureus 的抗生素耐药率增加2-4%。潜在的潜在机制包括:高温促进抗药性可遗传因子的水平基因转移,以及提高病原体生长率,促进环境的持久性、携带和传播等。

食源性、气源性、水源性和其他环境病原体可能易受气候变化的影响(表1)。对于媒介传播的疾病,气候变化将影响媒介的分布,从而影响疾病传播的范围,以及媒介传播病原体的效率。许多传染病,包括几种媒介传播疾病和水传播疾病,都受到大规模气候现象(如ENSO)造成的气候变化的强烈影响,这种现象每隔几年就会破坏全球约三分之二地区的正常降雨模式和温度变化。据报道,与ENSO有关的疾病有疟疾、登革热、齐卡病毒病、霍乱、鼠疫、非洲马病和许多其他重要的人类和动物性疾病。

尽管已经在自然和实验室条件下,微生物种群的适应机制已有研究,但与动物(包括人类)和植物相比,微生物物种适应当地环境的研究较少。与植物和动物相关的病毒、细菌和真菌病原体以影响生态系统功能、影响人类 健康 和粮食安全的方式适应非生物和生物因素。病原农业真菌的适应模式很好地说明了微生物活动与人类活动之间的循环反馈。“农业适应”病原体引起流行病的可能性比自然产生的菌株更高,这会对作物生产构成更大的威胁。真菌病原体通过进化以适应更高的温度来增强它们入侵新的栖息地的能力,这使真菌病原体对自然和农业生态系统构成的威胁更加复杂。

6 微生物减缓气候变化

增加对微生物相互作用的了解将有助于设计缓解和控制气候变化及其影响的措施。例如,了解蚊子如何对Wolbachia细菌(节肢动物的一种常见共生体)作出反应,通过将Wolbachia引入埃及伊蚊种群并将其释放到环境中,从而减少了寨卡病毒、登革热和基孔肯雅病毒的传播。在农业方面,了解将NO2 还原为无害N 2 的微生物的生态生理学的进展为减少排放提供了选择。生物炭是广泛和间接减轻气候变化微生物影响的农业解决方案的一个例子。生物炭是通过限制氧条件下生物质的热化学转化而产生的,其可以通过减少微生物矿化和减少根系分泌物对矿物释放有机物的影响,从而促进植物的生长,减少碳的释放,从而改善有机质的存留。

微生物生物技术可以为可持续发展提供解决方案,微生物技术同样为实现联合国17个可持续发展目标中的许多目标提供了实用的解决方案(化学品、材料、能源和补救措施),解决贫困、饥饿、 健康 、清洁水、清洁能源、经济增长、产业创新、可持续发展等问题。毫无疑问,通过提高公众对全球变暖中微生物的主要作用的认识,即通过实现 社会 的微生物学素养,无疑会促进对此类行动的支持。

7 总结

微生物对固碳做出了重大贡献,特别是海洋浮游植物,它们固定的净CO 2 与陆地植物一样多。因此,影响海洋微生物光合作用和随后在深水中储存固定碳的环境变化对全球碳循环具有重要意义。微生物还通过异养呼吸(CO 2 )、产甲烷(CH 4 )和反硝化(N 2 O)等作用对温室气体排放做出重大贡献。许多因素影响微生物温室气体捕获与排放的平衡,包括生物群落、当地环境、食物网的相互作用和反应,特别是人为气候变化和其他人类活动。 直接影响微生物的人类活动包括温室气体排放、污染、农业活动以及人口增长,这些活动促进了气候变化、污染、农业活动以及疾病传播 。人类活动改变了碳固定与释放的比率,将加速气候变化的速度。相比之下,微生物也提供了重要的机会,可以通过改善农业、生产生物燃料和修复污染来补救人为问题。

为了理解可控范围内小规模相互作用的微生物多样性和活动如何转化为大系统通量,重要的是将研究结果从个体扩展到群落,再到整个生态系统。为了了解世界各地不同地点的生物地球化学循环和气候变化反馈,我们需要关于推动物质循环的生物(包括人类、植物和微生物)以及调节这些生物活动的环境条件(包括气候、土壤理化特性、地形、海洋温度、光和混合)的定量信息。

现存的生命经过了数十亿年的进化,产生了巨大的生物多样性,而微生物多样性与宏观生命相比实际上是无限的。 由于人类活动的影响,宏观生物的生物多样性正在迅速下降 ,这表明动植物物种的宿主特异性微生物的生物多样性也将减少。然而,与宏观生物相比,人类 对微生物与人为气候变化之间的联系所知甚少 。我们可以认识到微生物对气候变化的影响,以及气候变化对微生物的影响,但我们对生态系统的了解并不全面,因此,在解释人为气候变化对生物系统造成的影响方面仍存在挑战。由于人类的活动,正导致气候变化,这对全球生态系统的正常行驶功能造成影响。在海洋和陆地生物群落中,微生物驱动的温室气体排放的增加,并积极地反馈给气候变化。忽视微生物群落对气候变化的作用、影响和反馈反应可能导致会导致对人类的发展造成威胁。目前迫切需要立即、持续和协调一致的努力,明确将微生物纳入研究、技术开发以及政策和管理决策当中。

10000+:菌群分析 宝宝与猫狗 梅毒狂想曲 提DNA发Nature Cell专刊 肠道指挥大脑

系列教程:微生物组入门 Biostar 微生物组 宏基因组

专业技能:学术图表 高分文章 生信宝典 不可或缺的人

生物技术作为一门高新技术学科,必须经过长期培养才能在实际应用中显示出一定的效果,生物技术研究的范围也很广。生物技术专业的论文怎么写呢?下面我给大家带来生物技术专业论文选题题目_生物专业论文题目参考,希望能帮助到大家!

生物论文题目

[1]不同温度下制备的生物炭对水相Cu~(2+)的吸附表现

[2]新型冠状病毒肺炎疫情下治疗药物监测实验室的感染防控策略

[3]脱毒地黄试管苗的微扦插快繁技术研究

[4]水产蛋白源生物活性肽的研究进展

[5]杉木ClSAUR25基因5’侧翼序列的克隆与生物信息学分析

[6]芒果MiTFL1-4基因启动子克隆与生物信息学分析

[7]乳酸菌调控骨骼肌线粒体生物发生的机制研究进展

[8]基于模拟胃肠道消化的云南民族乳制品蛋白肽研究

[9]肠道派氏结M细胞在淋巴传递中的生物功能及靶向载体研究进展

[10]家禽肠道健康的生物标志物研究进展

[11]生物素对动物毛发生长的影响及其应用

[12]Bacillus asahii OM18菌剂载体筛选及其对玉米的促生效果

[13]江苏省湖泊水生植物优势种对氮、磷去除效果比较研究

[14]三维荧光分析评价腐殖酸高级氧化前处理效果的研究

[15]生物炭对铜污染土壤的修复及水稻Cu累积的影响

[16]基于鱼类需求的淮河上游息县枢纽工程闸下河段环境流量研究

[17]基于高通量测序探讨大宁河不同水华期真核浮游生物群落组成

[18]裂解温度对不同原材料生物炭理化特性的影响

[19]山楂鲨烯合酶CpSQS1,CpSQS2的基因克隆及原核表达分析

[20]甜菜素合成相关基因BvDDC1的克隆与表达分析

[21]“伞形集团”典型国家LULUCF林业碳评估模型比较研究

[22]小麦和苜蓿套作 种植 对土壤水分及作物水分利用效率的影响

[23]黄土高原刺槐人工林根际和非根际土壤磷酸酶活性对模拟降水变化的响应

[24]重庆都市区生态系统服务价值时空演变及其驱动力

[25]黄土高原降雨梯度对刺槐不同器官内源激素分布格局及生长的影响

[26]基于改进参数的长三角城市生态足迹分析及其可持续性评价

[27]黄土丘陵区退耕草地群落盖度与地上生物量关系

[28]模拟降雨量变化与CO_2浓度升高对小麦光合特性和碳氮特征的影响

[29]黑色地膜覆盖土壤水热效应及对玉米产量的影响

[30]生物土壤结皮生态修复功能研究及对石漠化治理的启示

[31]__核电厂邻近海域大型底栖动物群落变化和污染指数评价

[32]鸡和鸭对山苍子果渣养分和能量利用率的研究

[33]多级AO+潜流湿地对生活污水中的EDCs及常规污染物的去除试验研究

[34]人类生物医学干预是合法的政策监管手段吗?

[35]Rev-erbα在心血管疾病中的研究进展

[36]医用生物胶体分散剂在1064 nm Nd:YAG激光治疗婴幼儿血管瘤术后的应用

[37]茶黄素双没食子酸酯的生物活性及其作用机制

[38]化学动力学疗法:芬顿化学与生物医学的融合

[39]金银花和蒲公英对肉源性假单胞菌生物被膜的清除作用

[40]5.5亿年前动物“临终遗迹”的发现将分节动物的祖先推前了一千万年

[41]趋磁细菌磁小体合成的相关操纵子和基因

[42]霉菌毒素的生物脱除 方法 及机理研究进展

[43]内蒙古巴彦淖尔市畜禽寄生虫病调查

[44]基于O_2/Ar比值估算海洋混合层群落净生产力的研究进展

[45]海岸线的溢油环境敏感性评价研究进展

[46]海洋中挥发性卤代烃的研究进展

[47]海水养殖生境中硫化物污染及控制技术研究进展

[48]紫檀芪改善睡眠限制小鼠运动耐力的作用及其机制

[49]华癸中慢生根瘤菌多铜氧化酶基因mco的功能研究

[50]中南民族大学教师团队在自然指数期刊《Analytical Chemistry》发表研究成果

生物专业 毕业 论文题目

1、基于多元相场理论的细菌生物膜生长动力学建模及其数值模拟

2、血管紧张素II经酸性鞘磷脂酶/神经酰胺通路致动脉内皮功能障碍的作用

3、盐胁迫对鹅耳枥生长及生理生化特性的影响

4、2种应激诱导大鼠迷走复合体神经元的Fos表达

5、重组大肠杆菌SAHN和Lu_S蛋白表达及群感效应分析

6、基于线粒体控制区Dloop序列的长臀(鱼危)种群遗传结构分析

7、喉功能保留外科的喉功能解剖

8、褪黑素通过减轻内质网应激抗心肌缺血/再灌注损伤的作用及机制

9、生长分化因子-11促进小鼠诱导性多能干细胞向心肌细胞定向分化的研究

10、脂肪因子CTRP3的认识及研究现状

11、治疗性血管化策略研究进展

12、SD大鼠绝经后骨质疏松疾病动物模型的构建

13、牛血清在百日咳毒素CHO细胞簇聚试验中的影响

14、番茄黄化曲叶病毒的鉴定与群体进化分析

15、B细胞受体核心岩藻糖基化调节成熟B细胞的信号转导

16、NaHS对慢性间歇性低氧大鼠胸主动脉血管张力的影响

17、利用果蝇模型探讨SCA3/MJD与PD发病机制的相关性

18、纳米金属氧化物对耐药基因水平转移的影响

19、果胶酶液体发酵条件优化与酶学特性研究

20、丛枝菌根真菌根外菌丝形成时间及对牧草的促生长效应

21、左心耳形态和功能影像学评估的研究进展

22、金胺O荧光染色在结核病病理诊断中的应用价值

23、上海常绿树种固碳释氧和降温增湿效益研究

24、我国生态文明建设试点的问题与对策研究

25、城镇化对物流业碳排放变动影响研究

26、干扰素γ增强脂肪间充质干细胞对淋巴细胞的免疫调节作用

27、血脑屏障的研究进展

28、南北贸易、产权维护不对称与发展中国家生态资源贫瘠化

29、朱溪流域植被覆盖变化与居民点的空间关系

30、布氏田鼠秋季家群数量与捕食风险的关系

31、圆蟾舌蛙鸣声特征分析

32、大渡河流域黄石爬鮡的年龄与生长

33、雅砻江短须裂腹鱼胚胎和卵黄囊仔鱼的形态发育

34、基因序列的搜索与相似性比对

35、阿尔茨海默病早期生物标记物及其检测方法的研究进展

36、促红细胞生成素衍生肽抑制细胞自噬减轻小鼠心肌缺血/再灌注损伤

37、类风湿关节炎并发心血管损害的临床特点与相关因素

38、华卟啉钠的光漂白性质研究

39、采用蚕豆根尖细胞微核技术检测核设施周围水域的遗传毒性

40、鲤鱼墩遗址史前人类行为模式的骨骼生物力学分析

41、稳定微环境微流控细胞培养芯片的设计与制备

42、国产与进口心脏单腔起搏器临床应用比较

43、心房电极导线脱位到心室致反复心室安全起搏一例

44、谷氨酸受体在实验性青光眼视网膜细胞损伤中的作用

45、基于恢复动力学生态系统恢复建设的研究

46、Sabin株脊髓灰质炎灭活疫苗毒种的遗传稳定性

47、一株鸡源乳酸菌FCL67的鉴定及其生物学特性

48、人凝血/抗凝血因子类产品蛋白含量快速检测方法的建立及验证

49、肺孢子菌肺炎相关细胞因子的研究进展

50、气象因素与发热伴血小板减少综合征关联研究

生物技术毕业论文选题

[1]生物技术本科拔尖创新型人才培养模式的探索与实践

[2]禽源HSP70、HSP40和RPL4基因的克隆和表达

[3]中间锦鸡儿CiNAC038启动子的克隆及对激素响应分析

[4]H9和H10亚型禽流感病毒二重RT-PCR检测方法的建立

[5]单细胞测序相关技术及其在生物医学研究中的应用

[6]动物细胞工程在动物生物技术中的应用

[7]现代生物化工中酶工程技术研究与应用

[8]GIS在生物技术方面的应用概述

[9]现代生物技术中酶工程技术的研究与应用

[10]两种非洲猪瘟病毒检测试剂盒获批

[11]基因工程技术在生物燃料领域的应用进展

[12]基于CRISPR的生物分析化学技术

[13]生物信息技术在微生物研究中的应用

[14]高等工科院校创新型生物科技人才培养的探索与实践

[15]生物技术与信息技术的融合发展

[16]生物技术启发下的信息技术革新

[17]日本生物技术研究开发推进管理

[18]中国基因技术领域战略规划框架与研发现状分析及建议

[19]鸡细小病毒与H_9亚型禽流感病毒三重PCR检测方法的建立

[20]基于化学衍生-质谱技术的生物与临床样本中核酸修饰分析

[21]合成生物/技术的复杂性与相关伦理 政策法规 研究的科学性探析

[22]合成生物学技术发展带来的机遇与挑战

[23]应用型本科高校生物技术专业课程设置改革的思考

[24]知识可以改变对转基因食品的态度吗?——探究科技争议下的极化态度

[25]基因工程在石油微生物学中的研究进展

[26]干细胞技术或能延缓人类衰老速度

[27]生物技术复合应用型人才培养模式的探索与实践

[28]动物转基因高效表达策略研究进展

[29]合成生物学与专利微生物菌种保藏

[30]加强我国战略生物资源有效保护与可持续利用

[31]微生物与细胞资源的保存与发掘利用

[32]颠覆性农业生物技术的负责任创新

[33]生物技术推进蓝色经济——NOAA组学战略介绍

[34]人工智能与生物工程的应用及展望

[35]中国合成生物学发展回顾与展望

[36]桓聪聪.浅谈各学科领域中生物化学的发展与应用

[37]转基因成分功能核酸生物传感检测技术

[38]现代化技术在农业种植中的应用研究

[39]生物技术综合实验及其考核方式的改革

[40]生物技术处理船舶舱底含油污水

[41]校企合作以产学研为平台分析生物技术类人才培养

[42]生物技术专业“三位一体”深化创新创业 教育 改革

[43]基于环介导等温扩增技术的生物传感器研究进展

[44]分子生物学技术在环境工程中的应用

[45]生物有机化学课程的优化与改革

[46]地方农业高校生物技术专业“生物信息学”课程的教学模式探索

[47]不同育种技术在乙醇及丁醇高产菌株选育中的应用

[48]探秘生命的第三种形式——我国古菌研究之回顾与展望

[49]适应地方经济发展的生物技术专业应用型人才培养模式探索

[50]我国科研人员实现超高密度微藻异养培养

生物技术专业论文选题题目相关 文章 :

生物技术论文范文

★ 我们身边的生物技术论文(2)

★ 初中生物科技论文范文(2)

★ 生物类学术论文(2)

★ 生物制造技术论文范文(2)

★ 生物制药技术论文范文两篇(2)

★ 浅谈现代生物技术论文(2)

★ 生物制药技术论文两篇

★ 关于生物科技论文范文2000字(2)

★ 生物工程技术论文(2)

花生壳对染料的吸附研究论文

以废治废。花生壳在我国是一种量大的农业废弃生物质,其吸附重金属,成本低廉、无二次污染、且能达到以废治废的目的。经过分析研究和实验验证,改性花生壳对吸附废水中的Cr(VI)是可行有效的。

花生壳含有丰富的脂肪、淀粉、纤维素、矿物质。维生素等多种营养物质。过去对花生壳的利用不够重视,常常用作燃料或当作废物抛弃。近年来,许多科研部门和技术人员对花生壳进行综合利用研究,变废为宝,提高了花生壳的利用价值,经济效益显著。首先花生壳是一种饲料来源。花生壳进行粉碎以后与15%的米糠,30%的麸皮混合制成颗粒饲料,可用于喂猪,喂鸡,喂鱼,是营养丰富的理想饲料。把粉碎的花生粉添加到粗蛋自含量较高的牛饲料中。可使牛增膘添肥。由于花生壳含纤维素和丰富的营养物质,因此可用作栽培食用菌的培养基和生产酱油的原料。试验证明,用花生壳培养蘑菇成本低,菇质好,菇体比用稻草等培育出来的大,产量可增加20%左右。一、用花生壳培育蘑菇将花生壳直接浸入20%的石灰水中,消毒24小时,捞出后在清水中洗净,然后在菇床内铺平,插入菌种即可。也可用沸水煮20分钟左右,捞起后稍加冷却,待温度降至30℃左右即可铺平于菇床,播上茵种进行培养。二、花主壳制酱油先将花生壳粉碎后按50公斤原料加温水30-35公斤浸泡,然后将浸泡过的花生壳蒸1-1.5小时,蒸后推开使温度降至30℃再拌曲药。每公斤花生壳拌入0.25公斤曲药,搅拌均匀后放在细眼筛上,堆成三厘米厚放入养坯房。第一天养坯房温度保持在37-38℃,第二天35℃逐降至32℃,第三、四天降到30℃,原料结成块状,并布满菌丝时翻焙,将其上下翻动,第五天取出捣碎。最后进行发酵处理,每50公斤厚料的焙料用沸水90公斤使其发酵,当其温度冷却60℃时搅匀装入大缸,放进烤温房。第一天房温保持80℃,第二天保持在60℃,第三天出焙榨油。发酵的焙料按原料计算,每50公斤用波美18度的冷盐水125公斤浸泡24小时,然后进行压榨出酱汁,将榨出的酱汁熬至沸腾,达波美20度时,即为食用酱油。用花生壳制酱油的剩渣还可以喂猪。经试验证实,每50公斤花生壳可产乙级酱油150公斤。三、花生壳在工业上的应用据报道,每100公斤的花生壳可制渣油3公斤。该种油是制造肥皂的好原料,并且还可生产酒精、醛、活性炭。将花生壳磨成粉作化学处理后,即成为优质的人造木材,可用作制造各种精致型的家具和用具,最近中国林业科学院南京林化所成功地从花生壳中制取一种胶粘剂,己用于人制板工业生产。据试验,每50公斤花生壳可生产15公斤胶。该种胶粘剂性能稳定,质量较高,用它生产的胶合板质量超过林业部颁发的胶合板一级质量标准。花生壳胶粘剂还能代替部分酚醛树脂,用于建材和油漆行业。

现在还没有去除偶氮染料的方法,但经过长时间的穿着和洗涤相对会逐渐减少染料中的芳香胺,但是不能去除。现在国家已强制了纺织品中的禁用偶氮染料,你参考下面的方法,看能否帮到你。用低值的花生壳粉作为生物吸附剂对苋菜红、日落黄两种偶氮染料进行了吸附研究,目的是寻求经济的染料废水处理方法.考察了pH、染料浓度、吸附剂量、吸附剂粒径、离子强度和吸附时间等因素对染料吸附的影响,确定了最佳吸附条件.结果显示,初始pH2,两种偶氮染料的去除率较高.吸附等温线符合Langmuir和Freandlich模式,吸附过程符合准一级反应动力学方程.研究结果表明,花生壳是一种很有前途的偶氮染料废水处理生物材料

生活小窍门,花生壳有什么用,花生壳可以做肥料吗,花生壳做花肥,花生壳的功效与作用,养花

相关百科

热门百科

首页
发表服务