首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

18年研究生数模优秀论文

发布时间:

18年研究生数模优秀论文

有一个数学中国的网站, 东西还挺多。或者是各大高校的数学建模的网站,上面的资料都很全的

哇哈哈哈,你真是找对人了,我最近也在玩数模,你到赛才去看看吧,呃,在赛才网首页中间部分有个中国大学生数学建模竞赛的图片,点击进去就有了,好像在数学建模竞赛区(国家级)的“中国大学生数学建模竞赛”那一块,里面有很多东西,都可以下下来看看,貌似最近还在更新……OK啦,回答得好的话记得把悬赏分给我呐,呐………………

《全国大学生数学建模优秀论文》百度网盘免费资源下载

链接:

1992-2013全国大学生数学建模竞赛获奖论文|92-00|10-13|01-08|2002-2005年高教杯获得者论文|08年|07年|06年|05年|04年|03年|02年|01年|C|B

研究生数模优秀论文

已发送···

在百度文库里查,有很多都是免费的。要不就上图书馆借书了》》》》》》

数学是各门科学在高度发展中所达到的最高形式的一门科学,各门自然学科都频繁的求助于它。下文是我为大家搜集整理的关于2017年研究生数学建模优秀论文的内容,欢迎大家阅读参考!

谈谈优化高中数学课堂教学

学生在课堂上获取知识,优质课堂是三维目标的落实。当前,在高中数学课堂教学过程中,改变了照本宣科的教学模式,但是,由于抽象的数学知识给学生学习带来了诸多困难,并且相对文科科目来说比较枯燥,使得学生产出畏难心理。因此,数学教师一定要优化课堂教学,通过多种手段激发学生的学习兴趣,科学正确地传授给学生以知识和能力,让学生建立起学习数学的信心,提高数学课堂教学的有效性。

一、优化高中数学课堂教学的重要性

1、提升高中数学课堂教学效率

在应试教育的影响下,高中数学课堂上教师是主角,一般都是由老师先讲解例题,然后留出时间让学生做练习,教师对学生的评价的主要依据就是学生的考试成绩。其实,教师和学生都有这样的感觉:在高中数学课堂上,不管是教师的教还是学生的学都比较辛苦,感觉自己的付出和收获相差甚远。在实际教学中,还有不少老师依然采用时间战术和题海战术,课堂教学摆脱不了知识的灌输,造成很多学生依赖于教师的指导。有些学生在高考时成绩突出,但是他们步入大学后,当数学教师不再直接告诉他们结论时,就会无所适从、不知所措。

即使课堂上有师生互动,由于教师的启发性不够,或者自身知识水平有限等导致学生合作学习形式化。另外,有的教师不能与时俱进,不去汲取先进的教学理念,在教学中缺少行之有效的教学方法,导致课堂气氛沉闷,学生缺乏内在的数学学习兴趣。还有的教师缺乏课堂调控能力和管理能力,把课堂上宝贵的时间用在维持课堂秩序上,直接影响课堂教学效率的提高。而优化高中数学课堂教学,有效填补了传统教学模式的缺陷,提高学生学习的积极性,更符合新课改对高中数学教学的要求。

2、优化高中数学课堂教学是新课改发展的必然趋势

优化高中数学课堂教学是新课改的要求,也是构建高效课堂的保障。高中数学课堂教学并不是一个独立的个体,有着丰富的内涵。在新课改背景下,需要改革的内容多种多样,除了创新教学内容和教学目标以外,最主要是就是改革课堂教学模式。只有优化改革高中数学课堂教学,才能真正实现教学效率的提升。

二、优化高中数学课堂教学的有效途径

1、创设生活化情境,提高学生的学习兴趣

新课改下的高中数学课堂,要求学生能从数学的角度去发现生活中的数学问题,并能用数学知识去分析和解决实际问题。在高中数学教学中,教师要引导学生从生活中捕捉数学问题,立足于学生实际,贴近学生的生活实际,设计学生感兴趣的生活素材,使抽象的数学问题变得生动、活泼,让学生感受到数学和生活的息息相关,生活中处处有数学。所以,教师要充分了解学生实际,联系学生所熟悉或者感兴趣的社会实际问题,创设多种教学情境,从而激发学生的学习热情。兴趣是最好的老师,兴趣能促进学生主动进行活动。兴趣是构成学习动机的主要成分。因此,教师应激发学生对学习的探究欲望。高中数学知识比较抽象、深奥,教师必须用多种教学手段让学生具有新鲜感,比如设计巧妙的导入,以激发学生的学习兴趣。

2、实施情感教育。在课堂教学中,通过情感教育能起到事半功倍的教学效果。教学是教和学的统一,因此,高效课堂不但体现了教师教的有效性,更体现了学生学的有效性。在教学过程中,构建民主、愉快的师生关系非常重要。教师应加强和学生的互动,通过观察、沟通、课堂反馈及时了解学生对知识的掌握情况,及时和学生沟通,对学生的表现作出具体的评价,使学生体验到尊重和友爱的教育情感,对待后进生更要给予关心和帮助,为他们提供锻炼的机会,让他们体验到成功的喜悦,使他们意识到只要努力,就有希望,同时培养他们的自信心,消除他们的畏难情绪,让他们逐步喜欢上数学学习。只有这样,才能实现教和学的完美结合,才能确保教学效率的提高。

3.合作探究,培养学生自主学习能力

随着素质教育的深入发展,高中数学教学注重学生自主学习能力的培养,以提高学生的学习能力。数学课堂教学不能只局限于课堂,要对课堂教学进行延伸和拓展,核心是坚持学生的主体地位,这也是优化课堂教学的重要方式。因此,数学教学要运用灵活多变的教学措施,不断研究和创新教学方式,增长学生的见识。比如采用合作探究的学习方法,让学生小组合作、课外调查、课前搜集等,转变学生学习数学的观念,给学生自由、广阔的学习空间,让学生以课堂主人的身份参与学习,改变学生被动接受知识模式,提高学生数学学习的兴趣,使数学课堂富有生机和活力。通过合作探究,促进生生、师生之间的交流,培养学生合作精神,提高学生自主学习数学的主动性,学生在探究的过程中,加深对所学生知识的理解,让他们学会了怎样学习,锻炼了实践能力和探究能力,培养了自觉应用的意识。有效提高课堂教学效果。

4.充分发挥多媒体教学手段,提高教学效率

课堂教学是一门学问,也是一门艺术,学问的大小与艺术的高低和教学效果有直接的关系。因此在课堂教学中,一方面要汲取传统教学模式的精华,一方面我们要探索各具特色的教学方式。在以往的数学教学中,不管是数学概念、数学公式、数学定理等主要靠教师的讲解,因此,数学课堂给学生的感觉就是枯燥乏味,没有一点新意,很难激发学生的学习兴趣。而随着科技的发展,现代教学手段进入我们的课堂,实现教学过程的图文并茂、生动形象,使枯燥而抽象的数学知识变得直观而活泼,学生理解起来更加容易。同时,多媒体的运用刺激学生多种感官,获得的知识灵活、扎实,真正促进学生知识与能力的发展。

5.不断反思,优化课堂教学过程

课堂教学的过程是不断探索和完善的过程,因此,教师要注重课堂反思,运用多种教学手段,及时发现课堂教学中的不足之处,并根据实际情况制定相应的措施。教师和学生都要不断反思和创新,进一步完善教和学的过程,使其更具理想,从而提高课堂教学的有效性。同时,课后反思能提高教师的专业素养,形成自己的教学风格,更好地和学生相配合,灵活调整教学方法,推陈出新,探寻更多的有效教学手段。 例如,教师在指导学生学习集合的时候,有的教师就按照传统教学模式开门见山地讲解定义,导致学生无所适从,学习效果很不理想。此时,教师应对课堂教学进行反思,找出问题所在。教师应从学生的学情入手,抓着问题关键所在。学生难于理解集合概念,主要是因为教师不能从学生实际出发。因此,教师要引导学生充分预习,并标出不懂的地方,在课堂教学中,有目的地接受教师的讲解,形成知识结构体系,有效提高课堂教学效率。

6.设置具有创新思维的题型

新课改下的数学课堂应注重学生创新能力的培养,因此教师要鼓励学生大胆质疑,勇于向教师和教材挑战。他们往往对教材和教师讲述的一切不去怀疑和思考,因此,思维能力得不到锻炼。另外,教师提出的问题多数都是陈述性问题,针对知识点进行题海战术,不注重问题和练习的开放性。数学学习对学生创新能力的培养有着得天独厚的作用,因此,题型的设置能启发学生的创新思维,通过学生自主思考,积极探索,寻求新的处理方法,从而优化数学思维品质。

在数学教学过程中,除了讲解和演示例题,应引导学生探究 “变异”的结果,拓宽学生的思路,培养学生的发散性思维。在课本习题的基础上,要不断创新题型,使学生找到新题型和原题之间的联系,达到一把钥匙开多把锁的效果。通过加强训练,开发学生的创造力,培养学生解决问题能力,促进学生思维的发展。学生在回答问题以后,教师可以延迟对学生评价,创设一种畅所欲言的氛围,为学生提供广阔的发展空间,提出更多的创造性设想,提高学生的创造性思维能力。

总之,随着高中数学新课程改革的不断深入,数学教师要讲究教学策略,强化课堂教学管理,在实践中不但探索和创新,发挥数学课堂教学的智慧性,处理好教和学的关系,注重学习方法的指导,运用多样化的教学方法,精选范例,突出重点,巩固知识,拓宽思路,促使学生全面发展,达到课堂教学的最优化,进而推动高中数学教育事业的可持续发展。

<<<下页带来更多的2017年研究生数学建模优秀论文

研究生数学建模大赛优秀论文范文

数学建模论文范文--利用数学建模解数学应用题 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。 加强高中数学建模教学培养学生的创新能力 摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。 关键词:创新能力;数学建模;研究性学习。 《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生: (1)学会提出问题和明确探究方向; (2)体验数学活动的过程; (3)培养创新精神和应用能力。 其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。 数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。 一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。 教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。 如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大? 这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。 这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。

数学建模论文范文一篇,带例题,结构格式要求有摘要、关键词、问题背景、建模过程、模型解释、小结、参考文献点一下就可以进去了,希望你早日完成论文。祝你顺利资料什么的都有,论文相关的。加油!

无忧在线有很多数学建模论文,你去搜一下就行

018年全国研究生数学建模竞赛题目

2018年全国研究生数学建模竞赛题目:链接:

A题:跳台跳水体型校正系数的建模分析

论文1  论文2  论文3  论文4  论文5  论文6

B题: 光传送网建模与价值评估

论文1  论文2  论文3   论文4  论文5  论文6  论文7

C题: 对恐怖袭击事件记录数据的量化分析

论文1  论文2  论文3  论文4  论文5  论文6  论文7

D题: 基于卫星高度计海面高度异常资料获取潮汐调和常数方法及应用

论文1  论文2  论文3  论文4   论文5   论文6  论文7  论文8

E题: 多无人机对组网雷达的协同干扰

论文1  论文2  论文3  论文4  论文5

F题: 增设卫星厅的登机口分配问题

论文1  论文2  论文3  论文4  论文5  论文6

中国研究生数学建模竞赛优秀论文

数学中国啊,注册个账号,里面很多相关的东西都可以下载。有什么疑问可以问我哈

“华为杯”第十七届中国研究生数学建模竞赛成绩公布,我校获得二等奖11项,三等奖42项,综合得分排名全国第28,位列陕西省高校第二,并再次获得优秀组织奖。本届赛事共有14436研究生队提交论文参赛,评选出一等奖188队(获奖比例为1.3%),二等奖1926队,(获奖比例为13.3%),三等奖2896队(获奖比例为20%)。我校经过层层选拔,共有133支队伍参赛,获奖53项,获奖比例为39.8%。

“华为杯”中国研究生建模竞赛由中国学位与研究生教育学会、中国科协青少年科技中心主办,是中国研究生创新实践系列大赛的重要组成。此次竞赛共有全国各省、自治区、直辖市、特别行政区和国外459个研究生培养单位的17692队研究生参赛,经组委会认真严谨阅评,评选出一等奖206队(获奖比例为1.164%),二等奖2175队,(获奖比例为12.293%),三等奖3519队(获奖比例为19.890%)。总获奖队数5900队,总获奖比例33.348%。

1、全国大学生数学建模竞赛网站:、中国大学生在线数学建模频道:

2020年c题数学建模优秀论文

数学应用是数学 教育 的重要内容,呼唤数学应用意识,提高数学应用教学质量,已成为广大数学教育工作者的共识。下面是我为大家推荐的数学建模论文,供大家参考。

数学建模论文 范文 一:建模在高等数学教学中的作用及其具体运用

一、高等数学教学的现状

(一) 教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及 逻辑思维 能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二) 教学 方法 传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的 想象力 、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体 措施

(一) 在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二) 讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三) 组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

参考文献

[1] 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想[J]. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.

[2] 李薇. 在高等数学教学中融入数学建模思想的探索与实践[J]. 教育实践与改革,2012 ( 04) : 177 -178,189.

[3] 杨四香. 浅析高等数学教学中数学建模思想的渗透 [J].长春教育学院学报,2014 ( 30) : 89,95.

[4] 刘合财. 在高等数学教学中融入数学建模思想 [J]. 贵阳学院学报,2013 ( 03) : 63 -65.

数学建模论文范文二:数学建模教学中数学素养和创新意识的培养

前言

创新人才的培养是新的时代对高等教育提出的新要求.培养高质量、高层次人才不仅需要传统意义上的逻辑思维能力、推理演算能力,更需要具备对所涉及的专业问题建立数学模型,进行数学实验,利用先进的计算工具、数学软件进行数值求解和做出定量分析的能力.

因此,如何培养学生的求知欲,如何培养学生的学习积极性,如何培养学生的创新意识和创新能力已成为高等教育迫切需要解决的问题[1].

在数学教学中,传统的数学教学往往注重知识的传授、公式的推导、定理的证明以及应用能力的培养.尽管这种模式并非一无是处,甚至有时还相当成功,但它不能有效地激发广大学生的求知欲,不能有效地培养学生的学习积极性,不能有效地培养学生的创新意识和创新能力.

而如何培养学生的创新意识和创新能力,既没有现成的模式可循,也没有既定的方法可套用,只能靠广大教师不断探索和实践.

近年来,国内几乎所有大学都相继开设了数学建模和数学实验课,在人才培养和学科竞赛上都取得了显着的成效.数学建模是指对特定的现象,为了某一目的作一些必要的简化和假设,运用适当的数学理论得到的一个数学结构,这个数学结构即为数学模型,建立这个数学模型的过程即为数学建模[2].

所谓数学教学中的数学实验,就是从给定的实际问题出发,借助计算机和数学软件,让学生在数字化的实验中去学习和探索,并通过自己设计和动手,去体验问题解决的教学活动过程.数学实验是数学建模的延伸,是数学学科知识在计算机上的实现,从而使高度抽象的数学理论成为生动具体的可视性过程.

因此,数学实验就是一个以学生为主体,以实际问题为载体,以计算机为媒体,以数学软件为工具,以数学建模为过程,以优化数学模型为目标的数学教学活动过程[3-7].

因此,如何把实际问题与所学的数学知识联系起来;如何根据实际问题提炼数学模型;建模的方法和技巧;数学模型所涉及到的各类算法以及这些算法在相应数学软件平台上的实现等问题就成了我们研究的重点.现结合教学实践,谈谈笔者在数学建模和数学实验课的教学中 总结 的几点看法.

1掌握数学语言独有的特点和表达形式

准确使用数学语言模拟现实模型数学语言是表达数学思想的专门语言,它是自然语言发展到高级状态时的特殊形式,是人类基于思维、认知的特殊需要,按照公有思维、认知法则而制造出来的语言及其体系,给人们提供一套完整的并不断精细、完善、完美的思维和认知程序、规则、方法.

用数学语言进行交流和良好的符号意识是重要的数学素质.数学建模教学是以训练学生的思维为核心,而语言和思维又是密不可分的.能否成功地进行数学交流,不仅涉及一个人的数学能力,而且也涉及到一个人的思路是否开阔,头脑是否开放,是否尊重并且愿意考虑各方面的不同意见,是否乐于接受新的思想感情观念和新的行为方式.数学建模是利用数学语言模拟现实的模型,把现实模型抽象、简化为某种数学结构是数学模型的基本特征.

现实问题要通过数学方法获得解决,首先必须将其中的非数学语言数学化,摒弃其中表面的具体叙述,抽象出其中的数学本质,形成数学模型.通过分析现实中的数学现象,对常见的数学现象进行数学语言描述,从而将现实问题转化为数学问题来解决.

2借助数学建模教学使学生学会使用数学语言构建数学模型

根据现阶段普通高校学生年龄特点和知识结构,我们可以通过数学建模对学生加强数学语言能力的培养,让他们熟练掌握数学语言,以期提升学生的形象思维、 抽象思维 、逻辑推理和表达能力,提高学生的数学素质和数学能力.在数学建模教学过程中,教师要力求做到用词准确,叙述精炼,前后连贯,逻辑性强.在问题的重述和分析中揭示数学语言的严谨性;在数学符号说明和模型的建立求解中揭示数学语言的简约性,彰显数学语言的逻辑性、精确性和情境性,突出数学符号语言含义的深刻性;在模型的分析和结果的罗列中,显示图表语言的直观性,展示数学语言的确定意义、语义和语法;在模型的应用和推广中,显示出数学符号语言的推动力的独特魅力.

而在学生的书面作业或论文 报告 中,注意培养学生数学语言表达的规范性.书面表达是数学语言表达能力的一种重要形式.通过教师数学建模教学表述规范的样板和学生严格的书面表达的长期训练来完成.在书面表达上,主要应做到思维清晰、叙述简洁、书写规范.例如在建立模型和求解上,严格要求学生在模型的假设,符号说明、模型的建立和求解,图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.

对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面要及时纠正.

3借助数学实验教学,展示高度抽象

的数学理论成为具体的可视性过程要培养创新人才,上好数学实验课,首先要有创新型的教师,建立起一支"懂实验""会试验""能创新"的教师队伍.由于数学实验课理论联系实际,特点鲜明,内容新颖,方法特别,所以能够上好数学实验课,教师就必须具备扎实的数学理论功底,计算机软件应用操作能力,良好的科研素质与科研能力.

因此,数学与统计学院就需要选取部分教师,主攻数学建模、数学实验、数值分析课程.优先选派数学实验教师定期出去进修深造提高,以便真正形成一支"懂实验""会实验""能创新"的教师队伍.实验课的地位要给予应有的重视.我院现存的一个重要表现就是实验设备不足,实验室开放时间不够.为了确保数学实验有物质条件上的保证,必须建立数学实验与数学建模实验室.

配备足够的高性能计算机,全天候对学生开放,尽快尽早淘汰陈旧的计算机设备.精心设计实验内容,强化典型实验,培养宽厚扎实理论水平;精选实验内容,加强学生之间的互动,培养协作意识和团队精神.在实验教学时数有限的情况下,依据培养目标和教学纲要,对教材中的实验内容进行选择、设计.要最大限度地开发学生的创造性思维,数学实验在项目设计过程中应当遵循适应性、趣味性、灵活性、科学性、渐进性和应用性的基本原则.

选择基础性试验,重点培养宽厚扎实的理论水平,提高对数学理论与方法的深刻理解.熟练各种数学软件的应用与开发,提高计算机应用能力,增强实践应用技能;增加综合性实验和设计性实验,从实际问题出发,培养学生分析问题,解决问题的能力,强化 创新思维 的开发.

教学方法上实行启发参与式教学法:启发-参与-诱导-提高.充分发挥学生主体作用,以学生亲自动脑动手为主.

教师先提出问题,对实验内容,实验目标,进行必要的启发;然后充分发挥学生主体作用,学生动手操作,每个命令、语句学生都要在计算机上操作得到验证;根据学生出现的情况,老师总结学生出现的问题,进行进一步的诱导;再让其理清思路,再次动手实践,从理论与实践的结合上获得能力上提高.数学实验是一门强调实践、强调应用的课程.

数学实验将数学知识、数学建模与计算机应用三者融为一体,可以使学生深入理解数学的基本概念和理论,掌握数值计算方法,培养学生运用所学知识使用计算机解决实际问题的能力,是一门实践性很强的课程.在这一教学活动中,通过数学软件如MAT-LAB、Mathematica、SPSS的教学和综合数学实验,如碎片拼接、罪犯藏匿地点的查找、光伏电池的连接、野外漂流管理、水资源的有效利用、葡萄酒的分类等,通这些实际问题最终的数学化的解决,将高度抽象的数学理论呈现为生动具体的可视性结论,展示数学模型与计算机技术相结合的高度抽象的数学理论成为生动具体的可视性过程.

4突出学生的主体作用,循序渐进培养学生学习、实践到创新

实践教学的目的是要提高学生应用所学知识分析、解决实际问题的综合能力.

在教学中,搭建数学建模与数学实验这个平台,提示学生用计算机解决经过简化的问题,或自己提出实验问题,设计实验步骤,观察实验结果,尤其是将庞大繁杂的数学计算交给计算机完成,摆脱过去害怕数学计算、画函数图像、解方程等任务,避免学生一见到庞大的数学计算公式就会产生畏惧心理,从而丧失信心,让学生体会到在数学面前自己由弱者变成了强者,由失败者变成了胜利者、成功者.

再设计让学生自己动手去解决的各类实际问题,使学生通过对实际问题的仔细分析、作出合理假设、建立模型、求解模型及对结果进行分析、检验、总结等,解决实际问题,逐步培养学生熟练使用计算机和数学软件的能力以及运用数学知识解决实际问题的意识和能力.

同时,给学生提供大量的上机实践的机会,提高学生应用数学软件的能力.一个实际问题构成一个实验内容,通过实践环节加大训练力度,并要求学生通过计算机编程求解、编写实验报告等形式,达到提高学生解决实际问题综合能力的目标.数学建模与数学实验课程通过实际问题---方法与分析---范例---软件---实验---综合练习的教学过程,以实际问题为载体,以大学基本数学知识为基础,采用自学、讲解、讨论、试验、文献阅读等方式,在教师的逐步指导下,学习基本的建模与计算方法.

通过学习查阅文献资料、用所学的数学知识和计算机技术,借助适当的数学软件,学会用数学知识去解决实际问题的一些基本技巧与方法.通过实验过程的学习,加深学生对数学的了解,使同学们应用数学方法的能力和发散性思维的能力得到进一步的培养.实践已证明,数学建模与数学实验课这门课深受学生欢迎,它的教学无论对培养创新型人才还是应用型人才都能发挥其他课程无法替代的作用.

5具体的教学策略和途径

数学建模课程和数学实验课程同时开设,在课程教学中,要尽可能做到如下几个方面:

1)注重背景的阐述

让学生了解问题背景,才能知道解决实际问题需要哪些知识,才能做出贴近实际的假设,而这恰恰是建立一个能够解决实际问题的数学模型的前提.再者,问题背景越是清晰,越能够体现问题的重要性,这样才能激发学生解决实际问题的兴趣.

2)注重模型建立与求解过程中的数学语言的使用

在做好实际问题的简化后,使用精炼的数学符号表示现实含义是数学语言使用的彰显.基于必要的背景知识,建立符合现实的数学模型,通过多个方面对模型进行修正,向学生展示不同的条件相对应的数学模型对于现实问题的解决.在模型的求解上,严格要求学生在模型的假设,符号说明、图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面及时纠正.

3)注重经典算法的数学软件的实现和改进

由于实际问题的特殊性导致数学模型没有固定的模式,这就要求既要熟练掌握一般数学软件和算法的实现,又要善于改进和总结,使得现有的算法和程序能够通过修正来解决实际问题,这对于学生能力的培养不可或缺.只有不断的学习和总结,才有数学素养的培养和创新能力的提高.

参考文献:

[1]叶其孝.把数学建模、数学实验的思想和方法融人高等数学课的教学中去[J].工程数学学报,2003,(8):1-11.

[2]颜荣芳,张贵仓,李永祥.现代信息技术支持的数学建模创新教育[J].电化教育研究,2009,(3)。

[3]郑毓信.数学方法论的理论与实践[M].广西教育出版社,2009.

[4]姜启源.数学实验与数学建模[J].数学的实践与认识,2001,(5):613-617.

[5]姜启源,谢金星,叶俊.数学建模[M].第3版.北京:高等教育出版社,2002.

[6]周家全,陈功平.论数学建模教学活动与数学素质的培养[J].中山大学学报,2002,(4):79-80.

[7]付桐林.数学建模教学与创新能力培养[J].教育导刊,2010,(08):89-90.

数学建模论文题 目 生活中的数学建模问题学 院 专业班级 学生姓名 成 绩 年 月 日摘要 钢铁、煤炭、水电等生活物资从若干供应点运送到一些需求点,怎样安排输送 方案使利润最大?各种类型的货物装箱,由于受体积、重量等的限制,如何相互搭配装载,使获利最高?若干项任务分给一些候选人来完成,因为每个人的专长不同,他们完成任务的效益就不一样,如何分派使获得的总效益最大?本文将通过以下的例子讨论用数学建模解决这些问题的方法。关键词:获利最多,0-1变量一. 自来水输送问题问题 某市有甲、乙、丙、丁四个居民区,自来水由A,B,C三个水库供应。四个区每天必须得到保证的基本生活用水量分别为80,50,10,20千吨,但由于水源紧张,三个水库每天 只能分别供应60,70,40千吨自来水。由于地理位置的差别,自来水公司从各水库向各区送水所需付出的引水管理费用不同(见下表),其他管理费用都是400元每千吨。根据公司规定,各区用户按照统一标准950元每千吨收费。此外,四个区都向公司申请了额外用水量,分别为10,20,30,50千吨。该公司应如何分配供水量,才能获利更多?引水管理费(元每千吨) 甲 乙 丙 丁A 160 130 220 170B 140 130 190 150C 190 200 230 ----问题分析 分配供水两就是安排从三个水库向四个区供水的方案,目标是获利最多,而从题目给出的数据看,A,B,C三个水可的供水量170千吨,不够四个区的基本生活用水量与额外用水量之和270千吨,因而总能全部卖出并获利,于是自来水公司每天的总收入是950*(60+70+40)=161500元,与送水方案无关。同样,公司每天的其他管理费为400*(60+70+40)=68000元也与送水方案无关。所以要是利润最大,只须是引水管理费最小即可。另外,送水方案自然要受三个水可的供水量和四个取得需求量的限制。模型建立决策变量为A、B、C、三个水库(i=1,2,3)分别向甲、乙、丙、丁四个小区(j=1,2,3,4)的供水量。设水库i向j的日供水量为xij。由于C水库鱼定去之间没有输水管道,即X34=0,因此只有11个决策变量。由上分析,问题的目标可以从获利最多转化为引水管理费最少,于是有min=160*x11+130*x12+220*x13+170*x14+140*x21+130*x22+190*x23+150*x24+190*x31+200*x32+230*x33;约束条件有两类:一类是水库的供应量限制,另一类是各区的需求量限制。由于供水量总能卖出并获利,水库的供应量限制可以表示为x11+x12+x13+x14=60;x21+x22+x23+x24=70;x31+x32+x33=40;考虑到歌曲的基本用水量月外用水量,需求量限制可以表示为 80<=x21+x11+x31;50<=x12+x22+x32;10<=x13+x23+x33;20<=x14+x24;x21+x11+x31<=90;x12+x22+x32<=70;x13+x23+x33<=40;x14+x24<=70;模型求解将以上式子,输入LINGO求解,得到如下输出:Optimal solution found at step: 10 Objective value: 25800.00Variable Value Reduced CostX11 0.0000000 20.00000X12 60.00000 0.0000000X13 0.0000000 40.00000X14 0.0000000 20.00000X21 50.00000 0.0000000X22 0.0000000 0.0000000X23 0.0000000 10.00000X24 20.00000 0.0000000X31 30.00000 0.0000000X32 0.0000000 20.00000X33 10.00000 0.0000000 送水方案为:A水库向乙区供水60千吨,B水库甲区、丁区分别供水50,20千吨,C水库向甲、丙分别供水30,10千吨。引水管理费为25800元,利润为161500-68000-25800=67700元。二. 货机装运问题 某架火机油三个货舱:前舱、中舱、后舱。三个货舱所能装载的货物最大量的体积都有限,如下表所示,并且,为了保持飞机的平衡,三个货舱中世纪装在货物的重量必须与其最大容许重量成比例。 前舱 中舱 后舱 重量限制(吨) 15 26 12 体积限制(立方米) 8000 9000 6000 现有四类货物供该伙计本次飞行装运,其有关信息如下表所示,最后一列之装运后所获得的利润。应如何安排装运,使货机本次飞行获利最大? 重量(吨) 空间 利润(元每千吨) 货物1 20 480 3500 货物2 18 650 4000 货物3 35 600 3500 货物4 15 390 3000模型假设 问题中没有对货物装运提出其他要求,我们可以作如下假设:(1) 每种货物可以分割到任意小;(2) 每种货物可以在一个或多个货舱中任意分布;(3) 多种货物可以混装,并保证不留空隙。模型建立决策变量:用Xij表示第i种货物装入第j个货舱的重量(吨),货舱j=1,2,3分别表示前舱、中舱、后舱。决策目标是最大化利润,即max=3500*(x11+x12+x13)+4000*(x21+x22+x23)+3500*(x31+x32+x33)+3000*(x41+x42+x43);约束条件包括以下4个方面: (1)供装载的四种货物的总重量约束,即x11+x12+x13<=20;x21+x22+x23<=18;x31+x32+x33<=35;x41+x42+x43<=15; (2)三个货舱的重量限制,即x11+x21+x31+x41<=15;x12+x22+x32+x42<=26;x13+x23+x33+x43<=12;(3)三个货舱的空间限制,即480*x11+650*x21+600*x31+390*x41<=8000;480*x12+650*x22+600*x32+390*x42<=9000;480*x13+650*x23+600*x33+390*x43<=6000; (4)三个货舱装入重量的平衡约束,即(x11+x21+x31+x41)/15=(x12+x22+x32+x42)/26;(x12+x22+x32+x42)/26=(x13+x23+x33+x43)/12; 模型求解将以上模型输入LINGO求解,可以得到:Optimal solution found at step: 10 Objective value: 155340.1 Variable Value Reduced Cost X11 0.5055147 0.0000000 X12 6.562500 0.0000000 X13 2.286953 0.0000000 X21 11.93439 0.0000000 X22 0.0000000 2526.843 X23 6.065611 0.0000000 X31 0.0000000 0.4547474E-12 X32 0.0000000 1783.654 X33 1.599359 0.0000000 X41 0.0000000 1337.740 X42 15.00000 0.0000000 X43 0.0000000 1337.740 实际上,不妨将所得最优解四舍五入,结果为货物1装入前舱1吨、装入中舱7吨、装入后舱2吨;货物2装入前舱12吨、后舱6吨;货物3装入后舱2吨;货物4装入中舱15吨。最大利润为155340元。三. 混合泳接力队的选拔问题 某班准备从5名游泳队员中选择4人组成接力队,参加学校的4*100m混合泳接力比赛。5名队员4中用字的百米平均成绩如下表所示,问应如何让选拔队员组成接力队? 甲 乙 丙 丁 戊蝶泳 1`06 57``2 1`18 1`10 1`07 仰泳 1`15 1`06 1`07 1`14 1`11 蛙泳 1`27 1`06 1`24 1`09 1`23 自由泳 58``6 53`` 59``4 57``2 1`02问题分析 从5名队员中选出4人组成接力队,没人一种泳姿,且4人的用字各不相同,是接力队的成绩最好。容易想到的一个办法是穷举法,组成接力对的方案共有5!=120中,一一计算并作比较,即可找出最优方案。显然这不是解决这类问题的好办法,随着问题规模的变大,穷举法的计算量将是无法接受的。可以用0-1变量表示以讴歌队员是非入选接力队,从而建立这个问题的0-1规划模型,借助县城的数学软件求解。模型的建立与求解设甲乙丙丁戊分别为队员i=1,2,3,4,5;即蝶泳、仰泳、蛙泳、自由泳分别为泳姿j=1,2,3,4.记队员i的第j中用字的百米最好成绩为Cij(s),既有Cij I=1 I=2 I=3 I=4 I=5 J=1 66 57.2 78 70 67 J=2 75 66 67 74 71 J=3 87 66 84 69 83 J=4 58 53 59 57.2 62 引入0-1变量Xij,若选择队员i参加泳姿j的比赛,记Xij-=1,否则记Xij=0.根据组成接力队的要求,Xij应该满足两个约束条件:第一, 没人最多只能入选4中用字之一,记对于i=1,2,3,4,5,应有∑Xij《=1;第二, 每种泳姿必须有一人而且只能有1人入选,记对于甲,2,3,4,应有∑Xij=1;当队员i入选泳姿j是,CijXij表示他的成绩,否则CijXij=0。于是接力队的成绩可表示为∑∑CijXij,这就是该题的目标函数。将题目所给的数据带入这一模型,并输入LINGO:min=66*x11+75*x12+87*x13+58.6*x14+57.2*x21+66*x22+66*x23+53*x24+78*x31+67*x32+84*x33+59.4*x34+70*x41+74*x42+69*x43+57.2*x44+67*x51+71*x52+83*x53+62*x54;SUBJECT TOx11+x12+x13+x14<=1;x21+x22+x23+x24<=1;x31+x32+x33+x34<=1;x41+x42+x43+x44<=1;x11+x21+x31+x41+x51=1;x12+x22+x32+x42+x52=1;x13+x23+x33+x43+X53=1;x14+x24+x34+x44+X54=1;@bin(X11);@bin(X12);@bin(X13);@bin(X14);@bin(X21);@bin(X22);@bin(X23);@bin(X24);@bin(X31);@bin(X32);@bin(X33);@bin(X34);@bin(X41);@bin(X42);@bin(X43);@bin(X44);@bin(X51);@bin(X52);@bin(X53);@bin(X54); 得到如下结果 Optimal solution found at step: 12 Objective value: 251.8000 Branch count: 0 Variable Value Reduced Cost X11 0.0000000 66.00000 X12 0.0000000 75.00000 X13 0.0000000 87.00000X14 1.000000 58.60000 X21 1.000000 57.20000 X22 0.0000000 66.00000 X23 0.0000000 66.00000 X24 0.0000000 53.00000 X31 0.0000000 78.00000 X32 1.000000 67.00000 X33 0.0000000 84.00000 X34 0.0000000 59.40000 X41 0.0000000 70.00000 X42 0.0000000 74.00000 X43 1.000000 69.00000 X44 0.0000000 57.20000 X51 0.0000000 67.00000 X52 0.0000000 71.00000 X53 0.0000000 83.00000 X54 0.0000000 62.00000即当派选甲乙丙丁4人组陈和积累对,分别参加自由泳、蝶泳、仰泳、蛙泳的比赛。参考文献数学模型(第三版) 姜启源著 高等教育出版社

石头听了,感谢不尽。那僧便念咒书符,大展幻术,将一块大石登时变成一块鲜明莹洁的美玉,且又缩成扇坠大小的可佩可拿。那僧托于掌上,笑道:“形体倒也是个宝物了!还只没有实在的好处,须得再镌上数字,使人一见便知是奇物方妙。然后携你到那昌明隆盛之邦,诗礼簪缨之族,花柳繁华地,温柔富贵乡去安身乐业。”石头听了,喜不能禁,乃问:“不知赐了弟子那几件奇处,又不知携了弟子到何地方?望乞明示,使弟子不惑。”那僧笑道:“你且莫问,日后自然明白的说着,便袖了这石,同那道人飘然而去,竟不知投奔何方何舍。后来,又不知过了几世几劫,因有个空空道人访道求仙,忽从这大荒山无稽崖青埂峰下经过,忽见一大块石上字迹分明,编述历历。空空道人乃从头一看,原来就是无材补天,幻形入世蒙茫茫大士渺渺真人携入红尘,历尽离合悲欢炎凉世态的一段此系身前身后事,倩谁记去作奇传?诗后便是此石坠落之乡投胎之处,亲自经历的一段陈迹故事。其中家庭闺阁琐事,以及闲情诗词倒还全备,或可适趣解闷,然朝代年纪、地舆邦国反空空道人遂向石头说道:“石兄,你这一段故事,据你自己说有些趣味,故编写在此,意欲问世传奇。据我看来,第一件,无朝代年纪可考;第二件,并无大贤大忠理朝廷治风俗的善政,其中只不过几个异样女子,或情或痴,或小才微善,亦无班姑蔡女之德能。我纵抄去,恐世人不爱看呢。”石头笑答道:“我师何太痴耶!若云无朝代可考,今我师竟假借汉唐等年纪添缀,又有何难?但我想,历来野史,皆蹈一辙,莫如我这不此套者,反倒新奇别致,不过只取其事体情理罢了,又何必拘拘于朝代年纪哉!再者,市井俗人喜看理治之书者甚少,爱适趣闲文者特多。历来野史,或讪谤君相,或贬人妻女,奸淫凶恶,不可胜数。更有一种风月笔墨,其淫秽污臭,屠毒笔墨,坏人子弟,又不可胜数。至若佳人才子等书,则又千部共出一套,且其中终不能不涉于淫滥,以致满纸潘安、子建、西子君、不过作者要写出自己的那两首情诗艳赋来,故假拟出男女二人名姓,又必旁出一小人其间拨乱,亦如剧中之小丑然。且鬟婢开口即者也之乎,非文即理。故逐一看去,悉皆自相矛盾,大不近情理之话,竟不如我半世亲睹亲闻的这几个女子,虽不敢说强似前代书中所有之人,但事迹原委,亦可以消愁破闷;也有几首歪诗熟话,可以喷饭供酒。至若离合悲欢,兴衰际遇,则又追踪蹑迹,不敢稍加穿凿,徒为供人之目而反失其真传者。今之人,贫者日为衣食所累,富者又怀不足之心,纵然一时稍闲,又有贪淫恋色,好货寻愁之事,那里去有工夫看那理治之书?所以我这一段故事,也不愿世人称奇道妙,也不定要世人喜悦检读,只愿他们当那醉淫饱卧之时,或避事去愁之际,把此一玩,岂不省了些寿命筋力?就比那谋虚逐妄,却也省了口舌是非之害,腿脚奔忙之苦。再者,亦令世人换新眼目不比那些胡牵乱扯,忽离忽遇,满纸才人淑女、子建文君红娘空空道人听如此说,思忖半晌,将《石头记》再检阅一遍,因见上面虽有些指奸责佞贬恶诛邪之语,亦非伤时骂世之旨;及至君仁臣良父慈子孝,凡伦常所关之处,皆是称功颂德,眷眷无穷,实非别书之可比。虽其中大旨谈情,亦不过实录其事,又非假拟妄称,一味淫邀艳约、私订偷盟之可比。因毫不干涉时世,方从头至尾抄录回来,问世传奇。从此空空道人因空见色,由色生情,传情入色,自色悟空,遂易名为情僧,改《石头记》为《情僧录》。东鲁孔梅溪则题曰《风月宝鉴》。后因曹雪芹于悼红轩中披阅十载,增删五次,纂成目录,分出章回当日地陷东南,这东南一隅有处曰姑苏,有城曰阊门者,最是红尘中一二等富贵风流之地。这阊门外有个十里街,街内有个仁清巷,巷内有个古庙,因地方窄狭,人皆呼作葫芦庙。庙旁住着一家乡宦,姓甄,名费,字士隐。嫡妻封氏,情性贤淑,深明礼义。家中虽不甚富贵,然本地便也推他为望族了。因这

好好看看类型题就可以,下面不是还有人发的

相关百科

热门百科

首页
发表服务