首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

健美论文题目及答案模板

发布时间:

健美论文题目及答案模板

发了你看看题 目:“奢华”的健美操摘 要:健美操是我国全民健身运动的一个重要组成部分,随着我国人民生活水平的迅速提高,纷繁杂物的物质世界已经不能满足人们的各种需求,健身、休闲、娱乐正逐渐成为人们的日常需要如火如荼的发展着。健美操做为一项新兴的体育运动,以其独特的魅力在众多的传统体育项目中脱颖而出,受到越来越多的人的青睐。它具有所有有氧运动的健身功能,除此以外,健美操不同于其他有氧运动项目之处在于它是一项轻松、优美的体育运动,在健身的同时,带给人们艺术享受,使人心情愉快,陶醉于锻炼的乐趣中,减轻了心理压力,促进身心健康发展,从而达到了健身的效果,因此说健美操练习是一卓有成效的锻炼身体的方法。其前景更是无限光明的。关键字:全民健身 减压 娱乐 动作 修身养性 意义 和谐 发展 健美操正文:经过一个学期的学习,我对健美操有了进一步的认识。认识到健美操不单是女生为了减肥而从事的简单运动,它适用于所有人群,其运动量也是相当可观的。他作为一个有氧运动,既有健身作用,又有缓解压力、修身养性的功能。我发现现在自己已经喜欢上了这一运动,尽管自己协调性跟柔韧性都有待提高,但是它高雅,婀娜多姿,韵味十足,拥有贵运动的形象,让我如获至宝。不论有多么疲乏,心情有多遭,只要上一节健美操课,我就好像恢复了元气一样。另外我还意识到了,健美操对我们的作用,我开始倾心健美操。健美操的起源健美操起源于两千多年前的古希腊,当时人当奉为典范,他们崇尚将各种体育项目用于人体美的锻炼。现代健美操运动起源于70年代末、80年代初的美国,它的英文原名是“Aerobics”,意思为“有氧操”,“健美操”这个名称只是在它刚传入我国时,我们根据它的运动特征所起的中文名称。健美操运动在我国的发展历史可追溯到20世纪30年代,那时就出现了追求人体健与美的健美操雏形,如康健书局出版的《女子健身体操集》、《男子健美操集》,同时还有康氏发明的“消肿舞”,三国时期名医华佗创编的“五禽戏”,这些民族形式的健身运动,为现代健美操的发展奠定了基础。经过后代人们的精心锻炼和改良,拥有了现代我们经常见到的健美操运动。可见,健美操是经过历史见证的,适合大众的高品位的健身运动。要正确全面的认识健美操我曾对健美操有一些错误的认识:起初认为健美操只是女人的锻炼方法之一。而且还把健美操误认为以各关节活动为主的操化练习,在加上长时间的跳跃运动来增加运动量,现在看来这种认识仅仅局限于健美操健与美的外在表现,而没有抓住其内在的实质和精髓。现在终于知道了,各关节的活动只是健美操练习热身(准备)的一部分,而长时间的跳跃练习由于对人体的膝踝关节损伤很大应尽量避免,必要的运动量是通过大量的走动,既步伐和适量的低强度跳跃,配合简单的上肢动作取得的,有氧练习部分是健美操影响人体的最主要部分。另一错误的认识是关于力量练习。由于东西方观念的差异,许多女性认为过大的肌肉块影响美观,因此以前我国多数的健美操课是以复杂的上下肢配合动作为主;以提高身体的协调性为主要目的,尤其是上肢力量练习较缺乏。其实力量练习同样也是有氧运动,适量的力量练习不仅可增加肌肉的弹性、塑造体型,而且可延缓衰老,是健美操练习的重要组成部分。只要掌握正确的方法,肌肉只能变得更美观,使人显得更年轻、更有活力。健美操是一项有氧运动,然而它不同于其他有氧运动项目之处在于它是一项轻松、优美的体育运动,在健身的同时,带给人们艺术享受,使人心情愉快,陶醉于锻炼的乐趣中,减轻了心理压力,促进身心健康发展,从而达到了健身的效果,因此说健美操练习是一卓有成效的锻炼身体的方法。其前景更是无限光明的。 1 健美操运动的意义:健美操练习是一种卓有成效的锻炼身体的方法健美操,具有所有有氧运动的健身功能,如全面提高身体素质,提高心肺功能、肌肉耐力,促进肌体各组织器官的协调运作。能够使人体发挥最佳技能状态,具有良好的健身效果。除此以外,健美操不同于其他有氧运动项目之处在于它是一项轻松、优美的体育运动,在健身的同时,带给人们艺术享受,使人心情愉快,陶醉于锻炼的乐趣中,减轻了心理压力,促进身心健康发展,从而更增强了健身的效果,因此说健美操练习是一卓有成效的锻炼身体的方法。缓解压力,娱乐身心健美操同样也具有纾缓精神压力、身体和心理的功能,当代社会人们在享受科技所带来的生活舒适和方便的同时,更要面对精神、压力还有来自各方面的利益需求。研究表明,长期的精神压力,不仅会导致各种心理障碍,而且许多躯体疾病和精神压力有关,如高血压,癌症等等。运动可以纾缓心理压力,预防疾病,这已经被科学的研究证实。健美操,其优美的动作,协调,全面的身体活动,同时有节奏强烈的音乐伴奏而著称,是缓解精神压力的一剂良方。在轻松优美的健美操锻炼中,我们的注意力从烦恼的事情上转移开,忘掉失意与压抑,尽情享、受健美操运动所带来的欢乐,得到内心的安宁,从而缓解精神压力,使人具有更强的活力和最佳的心态。所以,以纾缓精神压力,人们有更强的生命力和最好的态度。随着时代的发展和社会的进步,健美操锻炼增强了人们的社会交往。目前,无论是国外还是国内,人们参加健美操锻炼,在健美操老师的带领和指导下集体练习,而参与健美操锻炼的人来自社会的各阶层。因此,这种形式扩大了人们的社会交往面,把人们从工作和家庭的单一环境中解脱出来,可接触和认识更多的人,开阔眼界,从而为生活开辟了另一个天地,大家一起跳、一起锻炼,共同欢乐、互相鼓励,有些人因此成为终身的朋友。因此,健美操锻炼不仅能强身健体,同时还具有娱乐功能,可使人在锻炼中得到一种精神享受,满足人们的心理需要。平时学习累了跳上一段会让我重新有了充沛的精力去学习!大家高兴时一块跳,这也让我们的感情更加的融洽!健美操锻炼具有增强体质、增进健康美的功能健美操是一种有氧代谢运动,通过较大密度和强度的身体练习,对身体各关节、韧带、各主要肌群和内脏器官施加合理的运动负荷,从而有效地改变体重、体脂等身体成份,提高心血管、呼吸系统等内脏器官的机能,发展力量、耐力、速度、灵敏、柔韧等运动素质,增强体质,促进大学生身体生长发育日臻完美。使生命健康、强壮,充满活力和创造力而呈现出美的魅力。开展课外健美操锻炼,不但与学校体育教育相辅相成,全面增强大学生体质。而且引导大学生追求健康美,使人积极向上、朝气蓬勃,抵制了消极颓废思潮对校园文化的侵蚀。健美操塑造健美形体的功能追求形体美是人们们选择健美操的直接动机。形体美主要指人体外形的匀称、和谐、健美。遗传因素生成了人的基本体型,但后天塑造却是完全可能的。健美操是在生理学、解剖学、人体造型学、体育美学等多学科的理论指导下进行创编的。其动作和程序具有明确的对整体和局部目标的针对性。实践证明它是塑造形体的有效手段之一。因其实效,而受到人们重视。大学生正处于生长发育期,是塑造形体的最佳阶段。促进健康的功能健美操还具有医疗保健功能,其特点是强度低、密度大,运动量可大可小,容易控制,因此除对健康的人具有良好的健身效果外,对一些病人、残疾人和老年人也是一种医疗保健的理想手段。例如对下肢瘫痪的病人来说;可做地上健美操和水中健美操;以保持上体的功能;促进下肢功能的恢复。总之只要控制好运动范围和运动量,健美操练习就能在预防损伤的基础上,达到医疗保健的目的。随着经济发展和社会进步,现代健康不仅生理意义上说“健康”,而心理和行为也讲究健康。健康除了自我感觉良好,可以轻松应付日常工作和生活,有充沛的精力参加在各种社会活动,娱乐和休闲活动,也将涉及自发的爆发压力。 健康人应该有体质是一个很好的心肺耐力,肌力,平衡,灵敏度,灵活性和协调。一项研究指出,有氧运动最能发展人体心脏和肺功能,以及健美操不仅影响有氧运动,体能的发展,既灵活和敏感的角色。健美操可以说是制订一项全面的机构,一个更好的高质量的运动。所以说健美操是有利于人们的全面健康的。总之,经过一学期的学习,我收获很多。以后在空闲之余,我也会努力跳操的!尽管有时动作不优美,也不协调,但我会想努力去做好。参考文献[1]顾培亮,系统分析与协调。天津,天津大学出版社,1998[2]浅析如何发展健美操练习者的身体素质.井冈山医专学报.2003.02[3]马慧娣,21世纪与休闲经济、休闲产业和休闲文化,自然辩证法研究,2001

街舞论文题目及答案模板

论文都是某某某研究

学术堂整理了十五个舞蹈论文题目,供你进行选择:1、 大众传媒时代中国民族舞艺术传播效果探析2、 民族舞与现代舞的天作之合3、 西方体育舞蹈与中国民族舞动作特点的比较研究——以恰恰舞和古典舞为例4、 当民族舞遇到健身操5、 幼儿学习民族舞的重要性6、 浅谈中国舞、民族舞、现代舞对力的运用7、 我国民族舞的艺术成就8、 民族舞教材剖析及教学方法之我见9、 略谈少儿民族舞教学的基本规律10、 探讨舞蹈美学与我国民族舞表演艺术11、 西城区总工会办免费民族舞培训班12、 节奏训练——民族舞如歌的行板13、 浅谈民族舞及其动作分析体系对舞蹈教学的意义14、 民族舞和民间舞教学中的动作规格与风格15、 浅谈舞蹈美学与中国民族舞表演艺术

你好,我认为论文最好不要抄袭!第一,这是一种侵犯知识产权的行为;第二,论文的主要目的是检测你这几年的学习成果,千万不要把它看做一种负担。这是检验自身能力的一个很好的机会。 你要写的是编导方面的文章。我认为不管是写那方面,你最好是把编导与音乐的关系综合起来写,首先这是你的优势,因为你自身学习的就是编导,又学过音乐教育,我想在编导技法与音乐的合理应用这方面你应该会有自己独到的理解。而且这是一可塑型比较强的题材,首先前人对探讨音乐与编导技法这方面的文章并不多,抄袭嫌疑减小。二来你可以通过用一些音乐应用比较合理比较具有代表性地位的经典剧目做为举例来论证你所要阐述的观点。再多做一些比较。例如有些剧目的音乐形式为A,B,A1。而且动作是由一组鲜明的主题动作串联而成,那么你就可以分析一下,在音乐为A的时候,编导使用了一组怎么样的主题动作,当音乐发展到B后,主题动作随着音乐产生了怎么样的变化,当音乐再回到A1的时候,主题动作又是如何归还到A,并如果产生了A1的变化。等等等等。总之千万不要抄袭,要体现你自生的优势,勇于发表自身的观点,万事开头难,只要你下笔写了,并且写了自己所熟悉所了解的比较多的东西,其实你会发现你越写越停不了笔,能写的东西真是太多了! 以上说的这些希望对你有帮助,靠自己的能力为自己交上一份满意的答卷吧。相信你一定可以做到的。加油朋友。

【简介】街舞(英文名字Hip Hop)最早起源于美国纽约,是爵士舞发展到90年代的产物,它的动作是由各种走、跑、跳组合而成,极富变化。并通过头、颈、肩、上肢、躯干等关节的屈伸、转动、绕环、摆振、波浪形扭动等连贯组合而成的,各个动作都有其特定的健身效果,既注意了上肢与下肢、腹部与背部、头部与躯干动作的协调,又注意了组成各环节各部分独立运动。因此街舞不仅具有一般有氧运动改善心肺功能、减少脂肪、增强肌肉弹性、增强韧带柔韧性的功效,还具有协调人体各部位肌肉群,塑造优美体态,提高人体协调能力,陶冶美感的功能。街舞是美国黑人由一种发泄情绪的运动演绎成的街边文化,特色是爆发力强,在舞动时,肢体所做的动作亦较其他舞蹈夸张。最吸引人之处,是以全身的活力带来热情澎湃的感觉。跳街舞使人注意力集中,兴趣浓厚,动作优美、随意。同时,跳街舞还有瘦身功效,因为街舞是一种中低强度的有氧运动,在一个小时的运动中,消耗全身脂肪的作用是相当强的。此外,街舞是一种小肌肉运动,经常练习能增加你全身的协调性,让你的身材比例更趋标准。【分类】以动作为标准,街舞分两大类:Hip-Hop和Breaking。街舞一般可以分为两种,一种是个人的技巧街舞。个人技巧街舞是最早流行的一种街舞,因为它能体现年轻人精力旺盛的一面,他们的很多地面动作,譬如说翻滚、倒立、弹跳都是比较高技巧的个人街舞表演。另外一种就是集体街舞,是目前比较流行的街舞形式。它反映了大众的需要,跳起来比较简单,节奏感比较强,它既有舞蹈的感觉又有健身的作用。所以目前比较普遍的就是集体街舞。Breaking:技巧型街舞,要求舞者具有较高的力量、柔韧性和协调性,属于技巧性较高的体育舞蹈,所以最先为国内青少年所喜爱。跳这种类型舞蹈的青少年叫做B-Boy/B-Girl。20世纪80年代,被称为“Hip-Hop之父”的DJ Kool Herc创造了B-Boy的概念,也就是Breaking Boy。每年,全世界的许多国家都有一些为B-Boy们举办的比赛,较有名的是每年一度的BOTY(Battle of The Year)和在英国举办的B-BoyChampion,超过10个国家的百名参赛选手会参加这样的盛事。比赛的优胜者很快就会声名远播,成为青少年的明星。Hip-Hop:Hip-Hop这个词中文译作嘻哈,诞生于1974年美国纽约,发明者是著名的DJ和MC爱虫斯塔尔斯基(Love Bug Starski)。在20世纪60年代末70年代初,以纽约为首的美国东海岸城市,兴起了一系列黑人文化艺术形式,它们包括:涂鸦(Graffiti或Writing)、比波舞或霹雳舞(B-Boying)、打碟(DJing或Deejay,DJ是指Disk Jockey,意为唱片骑师,即驾驭唱片的人)、说唱(MCing或Emcee,MC是指Master of Ceremony,意为司仪)。Hip-Hop这个词最初是爱虫斯塔尔斯基在说唱中用来押韵的, Hip的意思是屁股,Hop的意思是跳动,连起来可以解释为跳动的屁股。20世纪80年代初,“嘻哈教父”阿弗里卡·班巴塔(Afrika Bambaataa)借用嘻哈这个词来统称以上述四种文化形式为代表的黑人城市文化运动,很快被广泛接纳,而上面四种文化就成为我们通常所说的嘻哈四大元素了。Hip-Hop翻译过来是嘻哈,RAP翻译过来是饶舌,这两个概念不同。Hip-Hop实际上不是音乐名词而是文化名词,包括说唱、涂鸦、街舞和DJ打碟四部分;RAP起源于60年代,而作为音乐理解的Hip-Hop则起源于70年代初,它的前身是RAP(有时候会加一点R(B)。Hip-Hop从字面上来看,Hip是臀部,Hop是单脚跳,加在一起就是轻扭摆臀,原先指的是雏形阶段的街舞(也就是我们以前说的霹雳舞),后来才逐渐发展成一种巨大的概念——我们现在说的Hip-Hop文化还包括了那些宽大的衣服、沉甸甸的纯金饰品、平时说起话来就“YoYo�what’s up?”的口语习惯——总之就是那种美国贫民街区里黑人的生活方式以及他们的“范儿”。舞蹈型街舞,有Poping、Locking、Electric、Turbo、House等多种风格。它们都不如Breaking那样需要较高的技巧,但更要求舞者的动作协调性和舞感,以及肢体灵活性和控制力。好的Hip-Hop舞者同样需要艰苦的练习。由于Hip-Hop Dance不如Breaking那样技巧性强,也缺乏竞赛性,以前没有受到街舞爱好者足够的重视,现在随着舞蹈观念的增强,这种情况得到了改变,甚至B-Boy也开始练习并出现了许多全能型的街舞好手。Hip-Hop是人们最常接触的一种舞蹈,它有着幅度大而简单的舞步,能够表现出复杂的舞感。因为容易学习,跳起来也相当好看,所以很受大众喜爱POPING:机械舞,运用身体各部位的肌肉和关节,随着音乐的节拍,加上自己丰富的想像力,创造出令人惊讶的舞步。属于难度较高的街舞类型FREESTYLE:这是一种出神入化的舞步,它将各种类型的舞蹈混合在一起,随心所欲地表现,没有舞蹈风格的限定,脱离一般舞蹈的规范,可以说是一种个性化的街舞HOUSE:随着house音乐,运用复杂而神奇的步伐表现的一种舞步,它可以加上拉丁舞的扭腰、武术的空翻、踢踏舞的基本步以及芭蕾的转圈,跳起来既可以十分优雅,也可以相当狂野。NEW JAZZ(女生专属):这是一种由JAZZ爵士发展而来的舞,专由女生跳的,很讲究柔美和瞬间爆发.以手臂的动作为主,腰的扭动和臀部的动作为辅.对身材要求很高,在欧美和韩国非常流行。配乐是节奏化过后的爵士乐。RAGREA(雷鬼,女生专属):这个舞据说起源于法国,也有人说起源于美国。是非常性感的一种舞蹈,演绎的舞者穿着也很暴露,以下半身的动作为主,主要用到臀部,腰部,腿部,还会有一些简单的倒立,同时在空中摇晃大腿的诱惑动作。在色情业发达的日本发展非常好。而正常的演绎亦非常性感。

数学建模论文问题及答案模板

随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。

大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。

一、数学建模的含义及特点

数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。

1.准备阶段

主要分析问题背景,已知条件,建模目的等问题。

2.假设阶段

做出科学合理的假设,既能简化问题,又能抓住问题的本质。

3.建立阶段

从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。

4.求解阶段

对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。

5.验证阶段

用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。

二、加强数学建模教育的作用和意义

(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质

数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。

(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力

数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。

(三)加强数学建模教育有助于培养学生的创造性思维和创新能力

所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。

很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].

(四)加强数学建模教育有助于提高学生科技论文的撰写能力

数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。

(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].

三、开展数学建模教育及活动的具体途径和有效方法

(一)开展数学建模课堂教学

即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:

案例的选取和课堂教学的组织。

教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。

1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。

2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。

3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。

案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].

(二)开展数模竞赛的专题培训指导工作

建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。

(三)建立数学建模网络课程

以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]

(四)开展校内数学建模竞赛活动

完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。

如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。

(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛

全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。

四、结束语

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。

参考文献:

[1]辞海[M].上海辞书出版社,2002,1:237.

[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.

[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.

[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.

[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.

[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.

大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。

对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。

一、数学建模的概念

想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。

二、在小学数学教学中运用数学建模的策略

1.根据事物之间的共性进行数学建模

想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。

教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。

2.认识建模思想的本质

建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。

建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。

3.发挥教材在数学建模上的作用

教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。

数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。

1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。

2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。

3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。

4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。

Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。

5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。

7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。

8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司A.K.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。

9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。

10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈(H.W.Kuhn) 和托克 (A.W.Tucker) 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。

数学建模全国优秀论文相关 文章 :

★ 数学建模全国优秀论文范文

★ 2017年全国数学建模大赛获奖优秀论文

★ 数学建模竞赛获奖论文范文

★ 小学数学建模的优秀论文范文

★ 初中数学建模论文范文

★ 学习数学建模心得体会3篇

★ 数学建模论文优秀范文

★ 大学生数学建模论文范文(2)

★ 数学建模获奖论文模板范文

★ 大学生数学建模论文范文

数学建模论文格式模板以及要求

导语:伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,成为人们生活中非常重要的一门学科。下面是我分享的数学建模论文格式模板及要求,欢迎阅读!

(一)论文形式:科学论文

科学论文是对某一课题进行探讨、研究,表述新的科学研究成果或创见的文章。

注意:它不是感想,也不是调查报告。

(二)论文选题:新颖,有意义,力所能及。

要求:

有背景.

应用问题要来源于学生生活及其周围世界的真实问题,要有具体的对象和真实的数据。理论问题要了解问题的研究现状及其理论价值。要做必要的学术调研和研究特色。

有价值

有一定的应用价值,或理论价值,或教育价值,学生通过课题的研究可以掌握必须的科学概念,提升科学研究的能力。

有基础

对所研究问题的背景有一定了解,掌握一定量的参考文献,积累了一些解决问题的方法,所研究问题的数据资料是能够获得的。

有特色

思路创新,有别于传统研究的新思路;

方法创新,针对具体问题的特点,对传统方法的改进和创新;

结果创新,要有新的,更深层次的结果。

问题可行

适合学生自己探究并能够完成,要有学生的特色,所用知识应该不超过初中生(高中生)的能力范围。

(三)(数学应用问题)数据资料:来源可靠,引用合理,目标明确

要求:

数据真实可靠,不是编的数学题目;

数据分析合理,采用分析方法得当。

(四)(数学应用问题)数学模型:通过抽象和化简,使用数学语言对实际问题的一个近似描述,以便于人们更深刻地认识所研究的对象。

要求:

抽象化简适中,太强,太弱都不好;

抽象出的数学问题,参数选择源于实际,变量意义明确;

数学推理严格,计算准确无误,得出结论;

将所得结论回归到实际中,进行分析和检验,最终解决问题,或者提出建设性意见;

问题和方法的进一步推广和展望。

(五)(数学理论问题)问题的研究现状和研究意义:了解透彻

要求:

对问题了解足够清楚,其中指导教师的作用不容忽视;

问题解答推理严禁,计算无误;

突出研究的特色和价值。

(六)论文格式:符合规范,内容齐全,排版美观

1. 标题:是以最恰当、最简明的词语反映论文中主要内容的逻辑组合。

要求:反映内容准确得体,外延内涵恰如其分,用语凝练醒目。

2. 摘要:全文主要内容的简短陈述。

要求:

1)摘要必须指明研究的主要内容,使用的主要方法,得到的主要结论和成果;

2)摘要用语必须十分简练,内容亦须充分概括。文字不能太长,6字以内的文章摘要一般不超过3字;

3)不要举例,不要讲过程,不用图表,不做自我评价。

3. 关键词:文章中心内容所涉及的重要的单词,以便于信息检索。

要求:数量不要多,以3-5各为宜,不要过于生僻。

(七). 正文

1)前言:

问题的背景:问题的来源;

提出问题:需要研究的内容及其意义;

文献综述:国内外有关研究现状的回顾和存在的问题;

概括介绍论文的内容,问题的结论和所使用的方法。

2)主体:

(数学应用问题)数学模型的组建、分析、检验和应用等。

(数学理论问题)推理论证,得出结论等。

3)讨论:

解释研究的结果,揭示研究的价值, 指出应用前景, 提出研究的不足。

要求:

1)背景介绍清楚,问题提出自然;

2)思路清晰,涉及到得数据真是可靠,推理严密,计算无误;

3)突出所研究问题的难点和意义。

5. 参考文献:

是在文章最后所列出的文献目录。他们是在论文研究过程中所参考引用的主要文献资料,是为了说明文中所引用的的论点、公式、数据的来源以表示对前人成果的尊重和提供进一步检索的线索。

要求:

1)文献目录必须规范标注;

2)文末所引的文献都应是论文中使用过的文献,并且必须在正文中标明。

(七)数学建模论文模板

1. 论文标题

摘要

摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。

一般说来,摘要应包含以下五个方面的内容:

①研究的主要问题;

②建立的什么模型;

③用的什么求解方法;

④主要结果(简单、主要的);

⑤自我评价和推广。

摘要中不要有关键字和数学表达式。

数学建模竞赛章程规定,对竞赛论文的评价应以:

①假设的合理性

②建模的创造性

③结果的正确性

④文字表述的清晰性 为主要标准。

所以论文中应努力反映出这些特点。

注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。

一、 问题的重述

数学建模竞赛要求解决给定的问题,所以一般应以“问题的重述”开始。

此部分的目的是要吸引读者读下去,所以文字不可冗长,内容选择不要过于分散、琐碎,措辞要精练。

这部分的内容是将原问题进行整理,将已知和问题明确化即可。

注意:在写这部分的内容时,绝对不可照抄原题!

应为:在仔细理解了问题的基础上,用自己的语言重新将问题描述一篇。应尽量简短,没有必要像原题一样面面俱到。

二、 模型假设

作假设时需要注意的问题:

①为问题有帮助的所有假设都应该在此出现,包括题目中给出的假设!

②重述不能代替假设! 也就是说,虽然你可能在你的问题重述中已经叙述了某个假设,但在这里仍然要再次叙述!

③与题目无关的假设,就不必在此写出了。

三、 变量说明

为了使读者能更充分的理解你所做的工作,

对你的模型中所用到的变量,应一一加以说明,变量的输入必须使用公式编辑器。 注意:

①变量说明要全 即是说,在后面模型建立模型求解过程中使用到的所有变量,都应该在此加以说明。

②要与数学中的习惯相符,不要使用程序中变量的写法

比如:一般表示圆周率;cba,, 一般表示常量、已知量;zyx,, 一般表示变量、未知量

再比如:变量21,aa等,就不要写成:a[0],a[1]或a(1),a(2)

四、模型的建立与求解

这一部分是文章的重点,要特别突出你的创造性的工作。在这部分写作需要注意的事项有:

①一定要有分析,而且分析应在所建立模型的前面;

②一定要有明确的模型,不要让别人在你的文章 中去找你的模型;

③关系式一定要明确;思路要清晰,易读易懂。

④建模与求解一定要截然分开;

⑤结果不能代替求解过程:必须要有必要的求解过程和步骤!最好能像写算法一样,一步一步的.写出其步骤;

⑥结果必须放在这一部分的结果中,不能放在附录里。

⑦结果一定要全,题目中涉及到的所有问题必须都有详细的结果和必须的中间结果!

⑧程序不能代替求解过程和结果!

⑨非常明显、显而易见的结果也必须明确、清晰的写在你的结果中!

⑩每个问题和问题之间以及5个小点之间都必须空一行。

问题一:

1.建模思路:

①对问题的详尽分析;

②对模型中参数的现实解释;这有助于我们抓住问题的本质特征,同时也会使数学公式充满生气,不再枯燥无味

③完成内容阐述所必需的公式推导、图表等

2.模型建立:

建立模型并对模型作出必要的解释

对于你所建立的模型,最好能对其中的每个式子都给出文字解释。

3.求解方法:

给出你的求解思路,最好能想写算法一样,写出你的算法。

4.求解结果:

你的求解结果必须精心设计(最好使用表格的形式),使人一目了然。

结果必须要全,对于你求解的一些必须的中间结果,也必须在这里反映出来。

5.模型的分析与检验

在计算出相应的结果之后,你必须对你的结果做出相应的解释。 因为你的结果往往是数学的结果,一般人无法理解。 你必须归纳出你的结论和建议。 这里主要应包括:

①这个结果说明了什么问题?

②是否达到了建模目的?

③模型的适用范围怎样?

④模型的稳定性与可靠性如何?

问题二:

问题三:

问题四:

问题五:

五、模型的评价与推广

这一部分应包括:

①你的模型完成了什么工作?达到了什么目的?得出了什么规律?

②你的建模方法是否有创造性?为今后的工作提供了什么思路?结果有什么理论或实际用途?

③模型中有何不足之处?有何改进建议?

④模型中有何遗留未解决的问题?以及解决这些问题可能的关键点和方向。

这一部分一定要有!

六、参考文献

引用别人的成果或其他公开的资料(包括网上查到的资料)必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中

书籍的表述方式为:

[编号] 作者,书名,出版地:出版社,出版年。

参考文献中期刊杂志论文的表述方式为:

[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。

参考文献中网上资源的表述方式为:

[编号] 作者,资源标题,网址,访问时间(年月日)。

七、附录

不便于编入正文的资料都收集在这里。 应包括:

①某一问题的详细证明或求解过程; ②流程图;

③计算机源程序及结果;

④较繁杂的图表或计算结果(一般结果只要不超过A4一页,尽量都放在正文中)。

免责声明:本站文章信息来源于网络转载是出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。不保证信息的合理性、准确性和完整性,且不对因信息的不合理、不准确或遗漏导致的任何损失或损害承担责任。本网站所有信息仅供参考,不做交易和服务的根据,如自行使用本网资料发生偏差,本站概不负责,亦不负任何法律责任,并保证最终解释权。

数学建模论文范文--利用数学建模解数学应用题数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。一、数学应用题的特点我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。二、数学应用题如何建模建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:第一层次:直接建模。根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:将题材设条件翻译成数学表示形式应用题 审题 题设条件代入数学模型 求解选定可直接运用的数学模型第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。三、建立数学模型应具备的能力从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。3.1提高分析、理解、阅读能力。阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。3.2强化将文字语言叙述转译成数学符号语言的能力。将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题一次函数 成本、利润、销售收入等二次函数 优化问题、用料最省问题、造价最低、利润最大等幂函数、指数函数、对数函数 细胞分裂、生物繁殖等三角函数 测量、交流量、力学问题等3.4加强数学运算能力。数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。加强高中数学建模教学培养学生的创新能力摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。关键词:创新能力;数学建模;研究性学习。《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生:(1)学会提出问题和明确探究方向;(2)体验数学活动的过程;(3)培养创新精神和应用能力。其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大?这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程:现实原型问题数学模型数学抽象简化原则演算推理现实原型问题的解数学模型的解反映性原则返回解释列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。时间(年份) 人中数(百万) 39 50 63 76 92 106 123 132 145分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。四、培养学生的其他能力,完善数学建模思想。由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想:(1)理解实际问题的能力;(2)洞察能力,即关于抓住系统要点的能力;(3)抽象分析问题的能力;(4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力;(5)运用数学知识的能力;(6)通过实际加以检验的能力。只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。例2:解方程组x+y+z=1 (1)x2+y2+z2=1/3 (2)x3+y3+z3=1/9 (3)分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根t3-t2+1/3t-1/27=0 (4)函数模型:由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3)平面解析模型方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。一、数学应用题的特点我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。二、数学应用题如何建模建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:第一层次:直接建模。根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:将题材设条件翻译成数学表示形式应用题 审题 题设条件代入数学模型 求解选定可直接运用的数学模型第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。三、建立数学模型应具备的能力从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。3.1提高分析、理解、阅读能力。阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。3.2强化将文字语言叙述转译成数学符号语言的能力。将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题一次函数 成本、利润、销售收入等二次函数 优化问题、用料最省问题、造价最低、利润最大等幂函数、指数函数、对数函数 细胞分裂、生物繁殖等三角函数 测量、交流量、力学问题等3.4加强数学运算能力。数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

并购论文答辩问题及答案模板

毕业论文答辩常见问题:你选择这个论文题材的原因是什么?论文的研究背景是什么?论文的核心观点是什么?本篇论文采用了哪些研究方法?你所研究问题是采用什么方法解决的,使用了什么解决方案?论文在哪些方面有哪些创新?等。可以结合个人的实际情况以及论文写作两个方面来进行表述。因为学校不同,老师不同,所以论文答辩老师一般会提的问题也会不同,以下问题和回答仅供参考:毕业论文答辩常见问题一:你选择这个论文题材的原因是什么?我们可以结合个人的实际情况以及论文写作两个方面来进行表述,保证语言清晰,逻辑合理。例如这样回答:“因为平常自身比较喜欢这方面的内容、时常关注该研究领域的相关事宜,结合了当前政治新闻和发展趋势,受导师课题影响,参与相关研究课题等。这一部分容易加分但是也容易减分,为了表现出自身的特点和优势,所以我们应该将这一部分内容表述清楚到位。毕业答辩常见问题二:论文的研究背景是什么?这个问题与第一个问题有异曲同工之妙,同学们也可以按照第一个问题的答案来进行回答。毕业答辩常见问题三:论文的核心观点是什么?或者这么问:论文的主题是什么?这是答辩听审老师最常见的问的问题,而且答案很简单。用自己的话高度概括论文的核心,尽可能全面、准确、简洁的表达出来,不少于3句,不超过5句。毕业答辩常见问题四:本篇论文采用了哪些研究方法?首先明确指出所用的研究方法,然后结合具体内容进行讲述,也就是举例说明。毕业答辩常见问题五:你所研究问题是采用什么方法解决的,使用了什么解决方案?这个问题应该结合实际情况来进行说明,如果有具体的结论或方法的学生,可以分点解释说明。毕业答辩常见问题六:论文在哪些方面有哪些创新?这时,老师们想知道你的论文和别人的有什么不同,有什么亮点,建议同学们举例说明,分点作答,这样显得逻辑清晰、调理清楚,而且这个问题答辩老师一般都会问到,所以同学们要做好准备。最后学术堂总结:在答辩的时候一定要迅速回应。如果是你不知道问题,你可以向老师请教,千万不要出现冷场的情况,那样你的导师会很尴尬的。答辩时一定要谦虚,虽然你的论文完成得十分出色,但是这些成果暂时的、是没有获得认可结论。

本人于2020.4.25顺利通过线上答辩,以下是我的答辩陈述稿模板,分享给大家。尊敬的各位老师、同学上午好:我是……,我的论文题目是……,本篇论文是在xxx教授的指导下完成的。在此,我十分感谢某老师长期以来对我的精心指导,同时也感谢各位评审老师从百忙之中抽出宝贵的时间,参与论文的审阅与答辩。下面,我就把论文的基本思路向各位答辩老师作如下简要陈述:一、选题目的与意义(在你的开题报告里有,可以截取一些。)二、论文内容与框架本论文立足于………………………………,致力于分析……………,并揭示了………………………,探讨了………………的问题。(参考你的论文摘要)具体来说,我的论文分为以下三个部分:第一部分是引言,第一部分是引言,主要概述了选题背景、意义及研究的主要内容与方向。第二部分是正文,正文包括几部分(把各个部分的内容简要阐述一下就可以了)第三部分是结论,结论内容。三、论文的创新之处论文的精髓就在这里,但是大部分论文还是没什么创新点的(大家看看自己的论文就知道了,反正我是没有创新的,中规中矩^_^)所以这一块就把你认为的创新点写上去就可以了,当老师质疑时,你可以说自己的创新还不够,回去会跟指导老师讨论,完善。(避重就轻)四、结束语本篇论文已经完成,还有许多的地方需要更全面的改进,但总的来说,在撰写的过程中,我真实地学到了许多东西,也积累了不少经验,更进一步丰富了自己的知识。但由于个人能力不足,加之时间和精力有限,在许多内容表述、论证上存在着不当之处,与老师的期望还有差距,许多问题还有待进行一步思考和探究,借此答辩机会,希望各位老师能够提出宝贵的意见,指出我的错误和不足之处,我将虚心接受,从而进一步深入学习,使该论文得到完善和提高。我的答辩自述完毕,谢谢各位老师!

毕业论文啊。难道还要借鉴别人的嘛,自己根据自己的实际情况写就好。

1、自己为什么会选择这个课题?

这个问题需要从自身专业回答,比如这和自己专业相关,自己可以有很多想法去解决这个问题等,关键点需要结合自己的专业。

2、为什么要研究这个课题?

这实际上就是问这个课题的研究意义,自己需要提前做好准备,搜集相关资料,了解这个课题背后所能带来的社会价值,做到游刃有余。

3、这篇论文的基本框架和结构是什么样的?

这个问题需要自己对论文内容有着深刻的理解,需要了解论文各章节的内容,大致就是围绕为什么研究、怎样研究、研究结果怎样来展开叙述。

4、在研究该课题的过程中遇到过哪些问题?是怎么解决的?

这个问题就需要实话实说了,当然并不需要把所有的问题都说出来,说出其中一两个,而且被自己解决的就可以了。

5、论文中没有提到但是和该研究课题十分密切的问题还有哪些?

这个就需要拓宽自己的思维了,想一个和研究课题相关但是论文中没有提到的问题,自圆其说即可。

6、还有哪些问题自己到现在也没搞清楚的?

这个问题也需要从实际出发,实话实说,但是问题不能太基础,也不能说太多问题,否则老师会认为你基础知识不扎实。

数学论文答辩问题及答案模板

论文答辩的时间是在你的论文通过学校论文检测的一个月后进行的,一般是在每年的五月份左右,具体的时间是要看你所学的专业和你的论文的字数来决定的,如果是你所学的专业比较热门的话,答辩的人数就比较多,答辩时间也会相应的延长;如果是你所学的专业比较冷门的话,答辩的人数就比较少,答辩的时间也会相应的缩短;如果是你的字数比较多,答辩时间就会相应的延长;如果你的字数比较少。

本科毕业论文答辩模板和问题 [篇1]

一、毕业论文答辩应注意的几个问题

(一)答辩步骤

1、在毕业论文答辩时,答辩老师首先要求你简要叙述你的毕业论文的内容。叙述中要表述清楚你写这篇论文的构思(提纲),论点、论据,论述方式(方法)。一般约5分钟左右。答辩老师通过你的叙述,了解你对所写论文的思考过程,考察你的分析和综合归纳能力。

2、第二步,进行现场答辩。答辩老师向你提出2—3个问题后,做即兴答辩。其中一个问题一般针对你的论文中涉及的基本概念、基本原理提出问题,考察学生对引用的基本概念基本原理的理解是否准确。第二个问题,一般针对你的论文中所涉及的某一方面的论点,要求结合工作实际或专业实务进行讲(论)述。考察你学习的专业基础知识对你实务(实际)工作的联系及帮助,即理论联系实际的能力。第三个问题,根据学生有一定工作经验,提出专业理论或实务中的问题,引导学生以工作实践中遇到的案例和实务,研讨理论依据或当前所学专业发展中的诸多问题及热点问题。考察学生专业方面的潜在能力

(二)注意问题

1、自己为什么选择这个课题?

2、研究这个课题的意义和目的是什么?

3、全文的基本框架、基本结构是如何安排的?

4、全文的各部分之间逻辑关系如何?

5、在研究本课题的过程中,发现了那些不同见解?对这些不同的意见,自己是怎样逐步认识的?

6、论文虽未论及,但与其较密切相关的问题还有哪些?

7、还有哪些问题自己还没有搞清楚,在论文中论述得不够透彻?

8、写作论文时立论的主要依据是什么?

二、答辩技巧

学生首先要介绍一下论文的概要,这就是所谓“自述报告”,须强调一点的是“自述”而不是“自读”。这里重要的技巧是必须注意不能照本宣读,把报告变成了“读书”。“照本宣读”是第一大忌。这一部分的内容可包括写作动机、缘由、研究方向、选题比较、研究范围、围绕这一论题的最新研究成果、自己在论文中的新见解、新的理解或新的突破。做到概括简要,言简意赅。不能占用过多时间,一般以十分钟为限。所谓“削繁去冗留清被,画到无时是熟时”,就是说,尽量做到词约旨丰,一语中的。要突出重点,把自己的最大收获、最深体会、最精华与最富特色的部分表述出来。这里要注意一忌主题不明;二忌内容空泛,东拉西扯;三忌平平淡淡,没有重点。

在答辩时,学生要注意仪态与风度,这是进入人们感受渠道的第一信号。如果答辩者能在最初的两分种内以良好的仪态和风度体现出良好的形象,就有了一个良好的开端。

在回答问题时所要掌握的技巧是构思时要求每个问题所要答的“中心”“症结”“关健”在哪里?从哪一个角度去回答问题最好?应举什么例子来证明?回答问题的内容实质上是一段有组织的“口头作文”。这就要一、文章应有论点、论据。二、有开头主体与结尾。三、有条理、有层次。四、应用词确当,语言流畅。五、应口齿清楚、语速适度。开头要简洁:单刀直入,是最好的开头,开门见山地表述观点,在答辩中是最好的办法。主体部份的表述可条分缕析,即把所要回答的内容逐条归纳分析,实际上是对自己掌握的材料由此及彼,由表及里地做整理。这样的表述就不会流于表面,而能深入本质。条分缕析可以把自己掌握的一些实际例子合并,整理成若干条目,列成几个小标题:分成几点,一点一点,一条一条地说出。满碗的饭必须一口一口吃,满肚子的道理也必须一条一条讲出来,环环相扣,条条相连,令人听完后有清楚的印象。假如在准备的时候已经准备了一个较完整的提纲,那么沿着回答问题的主线,再穿上一些玉珠(举例子)就可以做到中心明确,条理清楚,有理有例了。

此外还应注意:图表穿插、语流适中、目光移动、体态语辅助、时间控制、紧扣主题、人称使用

二、大学毕业论文答辩自述稿模板

尊敬的各位评委老师:

大家好!我是来自的学生**。我的论文题目是《》。我当时之所以选择研究是因为,主要表现在:

在着手准备论文写作的时候,我针对这个命题,大量阅读相关方面的各种资料。对的概况有了大致了解,缕清思路的基础上确定研究方向,然后与老师商讨,确定论文大致思路和研究方向。然后,为了完成论文,本人收集了大量的文献资料,其中主要来自网上的论文期刊、图书馆的书目、学习教材的理论资料。在导师的耐心指导和帮助下,经过阅读主要参考资料,拟定提纲,写开题报告初稿,毕业论文初稿,修改等一系列程序,于****年*月*日正式定稿。

具体来说,我的论文分为以下四个部分:

第一部分,主要概述了,

第二部分,是在对进行了详细论述的基础上,运用法对的深入挖掘。

第三部分,运用法对的深入挖掘。

第四部分,经过本次论文写作,我学到了许多有用的东西,也积累了不少经验,但由于学生能力不足,加之时间和精力有限,在许多内容表述上存在着不当之处,与老师的期望相差甚远,许多问题还有待于进一步思考和探索,借此答辩机会,万分恳切的希望各位老师能够提出宝贵的意见,多指出本篇论文的错误和不足之处,学生将虚心接受,从而进一步深入学习研究,使该论文得到完善和提高。在论文的准备和写作过程中,我阅读了大量的关于的相关书籍和学术期刊,这得益于我们学校图书馆丰富的参考书籍和学术期刊数据库的专业论文。本文经过一二三稿并最终定稿,在这期间,我的论文指导老师教

授对我的论文进行了详细的修改和指正,并给予我许多宝贵的建议和意见。在这里,我对他表示我最真挚的感谢和敬意!

以上就是我的答辩自述,希望各评委老师认真阅读论文并给予评价和指正。谢谢!

本科毕业论文答辩模板和问题 [篇2]

一、毕业论文答辩应注意的几个问题

(一)答辩步骤

1、在毕业论文答辩时,答辩老师首先要求你简要叙述你的毕业论文的内容。叙述中要表述清楚你写这篇论文的构思(提纲),论点、论据,论述方式(方法)。一般约5分钟左右。答辩老师通过你的叙述,了解你对所写论文的思考过程,考察你的分析和综合归纳能力。

2、第二步,进行现场答辩。答辩老师向你提出2—3个问题后,做即兴答辩。其中一个问题一般针对你的论文中涉及的基本概念、基本原理提出问题,考察学生对引用的基本概念基本原理的理解是否准确。第二个问题,一般针对你的论文中所涉及的某一方面的论点,要求结合工作实际或专业实务进行讲(论)述。考察你学习的专业基础知识对你实务(实际)工作的`联系及帮助,即理论联系实际的能力。第三个问题,根据学生有一定工作经验,提出专业理论或实务中的问题,引导学生以工作实践中遇到的案例和实务,研讨理论依据或当前所学专业发展中的诸多问题及热点问题。考察学生专业方面的潜在能力

(二)注意问题

1、自己为什么选择这个课题?

2、研究这个课题的意义和目的是什么?

3、全文的基本框架、基本结构是如何安排的?

4、全文的各部分之间逻辑关系如何?

5、在研究本课题的过程中,发现了那些不同见解?对这些不同的意见,自己是怎样逐步认识的?

6、论文虽未论及,但与其较密切相关的问题还有哪些?

7、还有哪些问题自己还没有搞清楚,在论文中论述得不够透彻?

8、写作论文时立论的主要依据是什么?

二、答辩技巧

学生首先要介绍一下论文的概要,这就是所谓“自述报告”,须强调一点的是“自述”而不是“自读”。这里重要的技巧是必须注意不能照本宣读,把报告变成了“读书”。“照本宣读”是第一大忌。这一部分的内容可包括写作动机、缘由、研究方向、选题比较、研究范围、围绕这一论题的最新研究成果、自己在论文中的新见解、新的理解或新的突破。做到概括简要,言简意赅。不能占用过多时间,一般以十分钟为限。所谓“削繁去冗留清被,画到无时是熟时”,就是说,尽量做到词约旨丰,一语中的。要突出重点,把自己的最大收获、最深体会、最精华与最富特色的部分表述出来。这里要注意一忌主题不明;二忌内容空泛,东拉西扯;三忌平平淡淡,没有重点。

在答辩时,学生要注意仪态与风度,这是进入人们感受渠道的第一信号。如果答辩者能在最初的两分种内以良好的仪态和风度体现出良好的形象,就有了一个良好的开端。

在回答问题时所要掌握的技巧是构思时要求每个问题所要答的“中心”“症结”“关健”在哪里?从哪一个角度去回答问题最好?应举什么例子来证明?回答问题的内容实质上是一段有组织的“口头作文”。这就要一、文章应有论点、论据。二、有开头主体与结尾。三、有条理、有层次。四、应用词确当,语言流畅。五、应口齿清楚、语速适度。开头要简洁:单刀直入,是最好的开头,开门见山地表述观点,在答辩中是最好的办法。主体部份的表述可条分缕析,即把所要回答的内容逐条归纳分析,实际上是对自己掌握的材料由此及彼,由表及里地做整理。这样的表述就不会流于表面,而能深入本质。条分缕析可以把自己掌握的一些实际例子合并,整理成若干条目,列成几个小标题:分成几点,一点一点,一条一条地说出。满碗的饭必须一口一口吃,满肚子的道理也必须一条一条讲出来,环环相扣,条条相连,令人听完后有清楚的印象。假如在准备的时候已经准备了一个较完整的提纲,那么沿着回答问题的主线,再穿上一些玉珠(举例子)就可以做到中心明确,条理清楚,有理有例了。

此外还应注意:图表穿插、语流适中、目光移动、体态语辅助、时间控制、紧扣主题、人称使用

二、大学毕业论文答辩自述稿模板

尊敬的各位评委老师:

大家好!我是来自的学生**。我的论文题目是《》。我当时之所以选择研究是因为,主要表现在:

在着手准备论文写作的时候,我针对这个命题,大量阅读相关方面的各种资料。对的概况有了大致了解,缕清思路的基础上确定研究方向,然后与老师商讨,确定论文大致思路和研究方向。然后,为了完成论文,本人收集了大量的文献资料,其中主要来自网上的论文期刊、图书馆的书目、学习教材的理论资料。在导师的耐心指导和帮助下,经过阅读主要参考资料,拟定提纲,写开题报告初稿,毕业论文初稿,修改等一系列程序,于****年*月*日正式定稿。

具体来说,我的论文分为以下四个部分:

第一部分,主要概述了,

第二部分,是在对进行了详细论述的基础上,运用法对的深入挖掘。

第三部分,运用法对的深入挖掘。

第四部分,经过本次论文写作,我学到了许多有用的东西,也积累了不少经验,但由于学生能力不足,加之时间和精力有限,在许多内容表述上存在着不当之处,与老师的期望相差甚远,许多问题还有待于进一步思考和探索,借此答辩机会,万分恳切的希望各位老师能够提出宝贵的意见,多指出本篇论文的错误和不足之处,学生将虚心接受,从而进一步深入学习研究,使该论文得到完善和提高。在论文的准备和写作过程中,我阅读了大量的关于的相关书籍和学术期刊,这得益于我们学校图书馆丰富的参考书籍和学术期刊数据库的专业论文。本文经过一二三稿并最终定稿,在这期间,我的论文指导老师教授对我的论文进行了详细的修改和指正,并给予我许多宝贵的建议和意见。在这里,我对他表示我最真挚的感谢和敬意!

以上就是我的答辩自述,希望各评委老师认真阅读论文并给予评价和指正。谢谢!

本科毕业论文答辩模板和问题 [篇3]

根据教务处“关于做好201届学生毕业论文(设计)答辩工作的通知”要求,经学院研究决定,于2015年5月10日-11日(周六、周日)上午8:30开始进行2015届学生毕业论文答辩。现将有关事项通知如下:

一、 成立答辩委员会及答辩小组

按照学院相关规定成立答辩委员会及答辩小组。

(一) 答辩委员会

主席:

委员:

(二) 答辩小组

答辩小组:

组 长:成 员(答辩分组情况表附后)

二、 答辩相关事宜

(1)每位学生仔细查阅“论文答辩分组表”确认本人所在的组别,在指定的教室答辩。

(2)要求每位学生采用多媒体演示,报告5-8分钟,答辩5-8分钟,答辩时。

(3)每位学生按照分组的排名顺序进行答辩,不得缺席。出现缺席者,我院不再组织答辩,无毕业论文成绩,后果自负。

(4)每位学生需按照答辩组教师数准备论文份数。

(5)答辩结束后,每位学生根据评委老师提出的存在问题进行修改。修改正稿打印3份,与电子版一并交教学秘书(以班级为单位收齐)。电子版文件名要注明学号,如2000010094001某某。

(6)指导教师没有签名同意答辩的论文,该学生不能参加答辩,答辩委员会审核不通过的答辩论文,该学生不能参加答辩。被小组评定为不合格的毕业论文,将再次参加答辩。具体时间另行通知。

(7)秘书负责收集整理资料和成绩登录工作,老师负责整理收齐资料工作,老师负责成绩登录工作,老师负责答辩教室安排工作。学生答辩秘书负责记录教师和学生的答辩情况。学生小组长负责收齐学生论文稿件和相关表格交教师组长,教师组长交教研室主任。

(8)各小组的答辩成绩汇总表及其他相关材料在5月 14日前交教学秘书处。论文指导教师完成指导教师评分表填写工作、院里组织教师完成评阅教师评分表填写工作、各答辩小组组长安排学生完成答辩记录表的填写工作、各答辩小组组长完成答辩小组评分表的填写工作。

(9)论文指导教师于5月10日前完成指导教师评分表填写及评分工作,5月14日前把已完成评分和填写的指导教师评分表、指导学生的答辩论文终稿及学院本科生毕业论文(设计)评阅教师评分表”各一份交教研室主任老师处。

教育学院

2015年4月26日

本科毕业论文答辩模板和问题 [篇4]

一、答辩自述

数学解题是数学教学与数学学习的重要组成部分。通过数学解题,可以深化对数学基础知识、基本技能的认识,逐渐体会数学知识的精髓——数学思想方法,培养严谨的逻辑思维能力、运算能力、空间想象能力、实践能力和创新意识,提高灵活运用数学知识去分析问题、解决问题的能力。研究中学数学解题的教与学,使学生认识中学数学解题在中学数学教学中的地位与作用,认识数学解题在培养思维与能力方面的意义,提高学生分析与解决数学问题的能力,充分发挥数学解题在数学教学中的积极作用。

二、毕业论文答辩的一些问题

1、自己为什么选择这个课题?

由于自己对数学解题思想方面比较感兴趣,也因为将来最有可能的工作是教师,所以希望在毕业论文的研究中能对今后有所帮助。加之数学解题技巧是初等数学中的一个非常重要的组成部分,所以选择了这个论问题。

2、研究这个课题的意义和目的是什么?

答:数学解题是数学教学与学习的重要组成部分。通过数学解题,可以深化对数学基础知识、基本技能的认识,逐渐体会数学知识的精髓——数学思想方法,培养严谨的逻辑思维能力、运算能力、空间想象能力、实践能力和创新意识,提高灵活运用数学知识去分析问题、解决问题的能力。为了学生以后走上工作岗位不出现瘸腿现象,加强数学教育中的文化素质显得比较重要和具有现实意义。

3、全文的基本框架、基本结构是如何安排的?

答:第一部分:几种常见的数学解题思想;第二部分:数学解题技巧的培养; 第三部分:如何将数学解题思想贯穿于解题技巧中;第四部分:解题技巧的误区; 第五部分:解题思想与解题技巧的体会;第六部分:结束语

4、你这篇论文的侧重点在哪方面?为什么?

答:我这篇论文的侧重点在如何将数学解题思想融入到数学解题技巧当中。

因为我觉得在所有掌握了各种解题思想后最重要的是懂得何用将这些思想运用到实际问题当中,只有这些才算真正理解了解题思想它的应用。

5、你觉得数学解题技巧在解决数学问题有什么优势?

答:数学问题的解决方法有很多种,但是万变不离其中,这就要求我们掌握一些常用的数学解题技巧,在解题中不用为了用哪种方式合适而浪费时间,在解数学题时可以做到条件反身,从而为你整个解题过程节省很多时间。

6、论文虽未论及,但与其较密切相关的问题还有哪些?

答:本文在撰写有关解题技巧的误区这一方面只是列举了两个技巧的误区,但我觉得这方面很重要,这一点与如何培养学生的解题能力密切相关,应该罗列出哪些问题最容易产生惯性思维,避免走入技巧的误区。

7、哪些问题自己还没搞清楚,在论文中论述得不够透彻?

答:有些数学题看起来哪种方法都可以用,但是实际上我们并不能直接反应出哪种方法最合适,这篇论文在有关哪些题型用哪些方法方面没有去罗列出来。

8、写作论文时立论的主要依据是什么?

答:主要依据是数学解题思想的技巧,根据你所掌握的各种数学解题思想,然后将这些思想融入到实际问题当中,也即将这些思想融入到解题技巧当中。

相关百科

热门百科

首页
发表服务