首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

论文研究假设不成立怎么解释一下

发布时间:

论文研究假设不成立怎么解释一下

假设是未经实践充分证实的理论,它是科学研究中广泛应用的一种方法。研究假设又称理论假设,是根据已知的科学理论和事实,对调查对象的特征及有关现象之间的相互关系所做的推测性判断或设想,是对问题所做出的一种尝试性的解释。

假设不成立;重新分析,提出新的假设并验证之。以实证结果为准。仔细检查下模型数据,确定结果是不是正确的。数据选取是不是准确,且有代表性。若真的有错误,就重新弄吧。若分析过程没有问题,数据也没有问题,看看能不能解释实证结果和假设为什么相反,合理不合理。若足够的数据证明假设不成立,那就得出结论:假设不成立;重新分析,提出新的假设并验证之。也许你的研究结果就是一个新发现。

进行科研,少不了做实验。得到实验原始数据后,要进行分析处理,来判断所得结果是否具有统计学意义上的显著相关性,是否支持研究设想,然后对数据结果进行解释,最后得出结论。 无论是期刊论文还是学位论文,在引言或前言(Introduction)中提出本研究的目的(aim/purpose),和研究假设(hypothesis),完成一系列的实验后,在报告方法(Materials and Methods)一节中,要进行数据分析。 通过数据分析,发现得出的结论具有相关性,从而验证了你的研究设想,实现了你的研究目的。 但也有可能实验结果的相关性不显著,得出的结果和研究设想不一致,甚至相反。你的第一反应也许是不理会那些数据,甚至想到要剔除掉它们。这是错误的做法。 一个科研人员应具备科研素质,尊重科学,严谨治学。其实相关性不显著,就是你实验的科学结论,只不过不支持你的研究设想罢了。你的实验结果证明你的设想不成立,从而否定了这一假设,这本身就是一结论。 一般情况下,如得出实验结果相关性不显著时,作者还要分析一下其原因,如样本不够大、变量不易控制、人为因素等。 下面以一篇SCI文章为例,来看看如果处理“不完美”的数据。 ❶We met with mixed success in our objectives. ❷We had believed that our results would indicate that trust was best described as a concept with two distinct dimensions. ❸Instead, we found an overall trust dimension that best characterized the data. ❹At least two plausible reasons may explain this difference, each providing rich areas for further research. ❺In part, some of the inconsistency may exist because of cross cultural variations. ❻In addition, some dissimilarity in results may exist because of methodological differences. 第一句话直接指出了部分结果与设想不一样,第二句和第三句分别阐述了原来的设想和实际得到的实验结果。第四句写出有两个原因,第五、六句具体分析了两个原因。

硕士毕业论文研究假设不成立

当然可以啊,如果不能否定,那就是说你的假设都必须是正确的,那么请问你是神么 ,谁能保证一开始的假设是正确的。。。这就是现在很多学生写论文的误区,总觉得推翻了自己的假设,论文就没法写了,但这是完全错误的,就问一句“你凭什么认为你的假设就一定是正确的”假设假设,自然就是提前不清楚,而预先假想的,这就是科学研究的过程啊,如果你的假设每次都正确,那不需要论证了,警察破案也只要假设一下就好了。。。假设推翻了 也可以讨论一下,然后以后的研究再做新的假设,这就是研究的过程

硕士论文中结构方程模型假设不需要都成立,他只需要成立一部分,其他的需要通过计算的方式来进行计算成立,不然就没有实验的。理论呢,他这个论文就是需要通过自己的话术来进行成立,所以不需要都成立。

论文的研究假设一定要全部成立吗

当然不是啦,论文有多种写法,有的议论是针对特定的现象展开的,这种就不需要提出什么假设,有些是需要针对一些假设展开讨论的,就需要提出一个假设了。

3个。小论文写法:1、建议同学们从模仿开始,尝试小论文的写作和发表,可以用会议论文练手,熟悉写作方法后尝试投稿期刊论文。2、 重视文章逻辑。论文写作一定要注重逻辑,一般从引言开始,论述本领域的前人研究成果,介绍自己的研究概况,详述研究的材料与方法,而后进行分析、总结,最后揭示原因或机理,给出建议。这样会给读者一个明晰的思路,便于阅读和参考学习。3、写好摘要和关键词。摘要是论文中心思想的凝练,应该能够独立成段,好的摘要能够让读者读后马上明白论文的研究方向以及所作出的研究成果和现实意义。关键词一般应选取3个以上,能够反映出本研究的学科、门类、研究方法、研究特点等信息。4、 细致分析,让数据说话。论文的写作注重分析的过程,好的文章应该有详实的数据和细致的分析,是用事实说话。因此,应该将能够说明问题的必要数据逐一列出,推导和演算的过程也必不可少,要有一环扣一环的严密逻辑性。5、慎写讨论,凝练结论。讨论部分一般是对数据分析的初步结果进行深入的探讨。写好讨论,需要较多的文献阅读积累和较高的科学分析素养。好的讨论能使文章增色不少,但初入校门的研究生写起来往往词不达意,不透彻也不深入,建议要慎写。结论一般在文章的结尾,要把全部的研究分析进行凝练,用简洁的语言描述出来。

硕士论文中结构方程模型假设不需要都成立,他只需要成立一部分,其他的需要通过计算的方式来进行计算成立,不然就没有实验的。理论呢,他这个论文就是需要通过自己的话术来进行成立,所以不需要都成立。

论文的几要素,就是论点,论据,论证,必须要提出论点,就是提出一个假设,然后进行论证,论证必须要有充足的论据!

论文假设和研究结果不符怎么办

进行科研,少不了做实验。得到实验原始数据后,要进行分析处理,来判断所得结果是否具有统计学意义上的显著相关性,是否支持研究设想,然后对数据结果进行解释,最后得出结论。 无论是期刊论文还是学位论文,在引言或前言(Introduction)中提出本研究的目的(aim/purpose),和研究假设(hypothesis),完成一系列的实验后,在报告方法(Materials and Methods)一节中,要进行数据分析。 通过数据分析,发现得出的结论具有相关性,从而验证了你的研究设想,实现了你的研究目的。 但也有可能实验结果的相关性不显著,得出的结果和研究设想不一致,甚至相反。你的第一反应也许是不理会那些数据,甚至想到要剔除掉它们。这是错误的做法。 一个科研人员应具备科研素质,尊重科学,严谨治学。其实相关性不显著,就是你实验的科学结论,只不过不支持你的研究设想罢了。你的实验结果证明你的设想不成立,从而否定了这一假设,这本身就是一结论。 一般情况下,如得出实验结果相关性不显著时,作者还要分析一下其原因,如样本不够大、变量不易控制、人为因素等。 下面以一篇SCI文章为例,来看看如果处理“不完美”的数据。 ❶We met with mixed success in our objectives. ❷We had believed that our results would indicate that trust was best described as a concept with two distinct dimensions. ❸Instead, we found an overall trust dimension that best characterized the data. ❹At least two plausible reasons may explain this difference, each providing rich areas for further research. ❺In part, some of the inconsistency may exist because of cross cultural variations. ❻In addition, some dissimilarity in results may exist because of methodological differences. 第一句话直接指出了部分结果与设想不一样,第二句和第三句分别阐述了原来的设想和实际得到的实验结果。第四句写出有两个原因,第五、六句具体分析了两个原因。

我写论文 诸葛写 文库出 帮你来实证结果和开始提的假设结果是相反的,我该怎么办啊?

论文研究假设怎么建模

数学建模文章格式模版

题目:明确题目意思

一、摘要:500个字左右,包括模型的主要特点、建模方法和主要结果

二、关键字:3-5个

三、问题重述。

四、模型假设

根据全国组委会确定的评阅原则,基本假设的合理性很重要。

(1)根据题目中条件作出假设。

(2)根据题目中要求作出假设。

建模过程

了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。

根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。

以上内容参考:百度百科-数学建模

问题一:数学建模怎么做啊? 刚参加完九月份的全国大学生数学建模竞赛。一份基本的的数学建模论文要包含以下几个方面: 摘要,问题的背景与提出,问题的分析,模型的假设,符号说明,模型的建立与求解,模型的评价与推广,参考文献。 正规的数学建模论文篇幅一般在20页以上。考虑到你读初三,老师的要求不会这么高,而且你的能力应该还有所欠缺。我的建议为你按照自己实际情况选择一个有一定挑战性的题目,题目的性质类似于应用题,但又和普通的应用题不同,可以没有确定答案,针对问题本身做一些分析和探讨,最好能和实际相结合。 要注意的是假设要合理,要有数学模型(包括一些方程,不等式等),要有分析思路,并且要对自己建立的模型进行优缺点评价,最好能做相应推广。 问题二:1.什么是数学模型?数学建模的一般步骤是什么? 2.数学建模需要具备哪些能力和知识? 答的好悬赏加 100分 数学建模是利用数学方法解决实际问题的一种实践.即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解. 数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一. 数学建模的一般方法和步骤 建立数学模型的方法和步骤并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性.建模的一般方法: 机理分析:根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义. 测试分析方法:将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型.测试分析方法也叫做系统辩识. 将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法. 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致如下: 1、 实际问题通过抽象、简化、假设,确定变量、参数; 2、 建立数学模型并数学、数值地求解、确定参数; 3、 用实际问题的实测数据等来检验该数学模型; 4、 符合实际,交付使用,从而可产生经济、社会效益;不符合实际,重新建模. 数学模型的分类: 1、 按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、统计模型等. 2、 按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等. 数学建模需要丰富的数学知识,涉及到高等数学,离散数学,线性代数,概率统计,复变函数等等基本的数学知识.同时,还要有广泛的兴趣,较强的逻辑思维能力,以及语言表达能力等等. 参加数学建模竞赛需知道的内容 一、全国大学生数学建模竞赛 二、数学建模的方法及一般步骤 三、重要的数学模型及相应案例分析 1、线性规划模型及经济模型案例分析 2、层次分析模型及管理模型案例分析 3、统计回归模型及案例分析 4、图论模型及案例分析 5、微分方程模型及案例分析 四、相关软件 1、Matlab软件及编程;2、Lingo软件;3、Lindo软件。 五、数模十大常用算法 1. 蒙特卡罗算法。2. 数据拟合、参数估计、插值等数据处理算法。3. 线性规划、整数规划、多元规划、二次规划等规划类算法。4. 图论算法。5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。6. 最优化理论的三大非经典算法。7. 网格算法和穷举法。8. 一些连续数据离散化方法。9. 数值分析算法。10. 图象处理算法。 六、如何查阅资料 七、如何写作论文 八、如何组织队伍:团队精神,配合良好,不断的提出问题和解决问题。 九、如何才能获奖:比较完整,有几处创新点。 十、如何信息处理:WORD、LaTeX,飞秋、QQ。 其实主要看下例子就可以了,知道一些基本的模型,我这里也有很多例子,各个学校的讲座都有要的话直接向我要...>> 问题三:怎么建立一个好的数学模型? 一个好的数学模型,首先应该是可以把所提问题解决的,只有能解决问题的模型才是好的模型。其次,就在于模型的创造性,创造性并不是说你非得自己找出个新的方法或者算法来,而是即使你用的是久的算法,但是你用在一个新的领域,并且很好的解决了问题,具有很好的适应性,那样就是一个好的数学模型。注意,数学模型可能是公式,也可能是某种算法,当然也可能是图表类的东西。 问题四:数学建模的一般步骤是什么?? 模型准备 了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。 模型假设 根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。 模型建立 在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。 模型求解 利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。 模型分析 对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。 模型检验 将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。 模型应用与推广 应用方式因问题的性质和建模的目的而异。而模型的推广就是在现有模型的基础上对模型有有一个更加全面,考虑更符合现实情况都适用的模型。 问题五:支北是什么? 5分 福州话里是脏话也.. 形容女人的.... 问题六:常见的建立数学模型的方法有哪几种 ―般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义

论文的理论模型写法:

模型准备一般需要写你的论文用到的边缘方法的理论,例如,图论用到Dijkstra或者Floyd算法,统计使用遗传算法、灰度预测等。类似这些方法的理论基础,因为不便在模型建立与求解中大篇幅展开,可以在模型准备中做简要说明。

模型准备这一部分的作用是使论文层次分明,起到由浅入深的效果。类似于模型假设和符号说明,对正文起铺垫作用。

数学建模简介:数学建模,就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题。

当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。

模型准备一般需要写你的论文用到的边缘方法的理论,例如,图论用到Dijkstra或者Floyd算法,统计使用遗传算法、灰度预测等。类似这些方法的理论基础,因为不便在模型建立与求解中大篇幅展开,可以在模型准备中做简要说明。

相关百科

热门百科

首页
发表服务