冯其红 石洪福 张先敏
(中国石油大学(华东)石油工程学院,山东青岛266555)
摘 要:当前制约我国煤层气发展的瓶颈是单井产量低、经济效益差,因此提高煤层气单井产量是我国 煤层气开发亟须解决的问题。注气增产法是一种提高煤层气采收率的增产技术,其原理是通过向煤层中注入 其他气体(CO2、N2或混合气体),与甲烷竞争吸附或降低甲烷有效分压,促进煤层甲烷的解吸。该技术可 以保证煤层的能量,有利于甲烷产出,可大幅度提高煤层气单井产量和采收率,延长煤层气田的开采期。本 文主要对注气开采煤层气增产机理、室内现场实验以及数值模拟等方面的国内外研究现状进行了综述,总结 了该领域目前面临的主要难点,展望了进一步深入研究的方向。
关键词:煤层气;注气;解吸;数值模拟
注气驱替煤层气具有减少温室气体排放和提高煤层气采收率的双赢效果。相比传统的储层压力衰竭法 开采,注入气体可以保持地层能量,延长煤层气井寿命,提高采收率[1],该技术还适用于开发深部低渗透 性松软煤层的煤层气。因此,气体驱替煤层气技术的相关研究受到世界主要发达国家的广泛重视。
1 注气驱替煤层气的机理
煤是一种孔隙高度发育的有机固体物质。气体在煤表面的吸附本质上是一种物理吸附,范德华力起 主要作用,不同气体在煤表面的吸附能力差异主要是分子间作用力的不同。Cunningham[2]和Parkash[3] 认为这种作用力与相同压力下各种吸附质的沸点有关,沸点越高,被吸附的能力越强,因此煤对气体的 吸附能力表现为:CO2 >CH4 >N2。降文萍等[4]则从量子化学的角度计算发现煤表面CO2的吸附势阱要 大于CH4,因此CO2的吸附能力强于CH4。Marco Mazzotti[5]研究发现吸附气体会导致煤岩膨胀且膨胀 量为CO2 >CH4 >N2,因此注入CO2驱替煤层气会导致渗透率明显降低。
后来,杨涛等[6]建议采用注入超临界CO2来开采煤层气,超临界CO2能以气体的身份与CH4进行 竞争吸附,同时还能以液相的性质在渗流通道内萃取出极性较低的碳氢化合物和类脂有机化合物,从而 增加了其孔隙度和渗透性。
N2的吸附能力比CH4弱[7],因此N2驱替煤层气的机理与CO2驱替不同(图1)。注入N2后可以 降低CH4的分压从而促进CH4的解吸,N2置换CH4后煤岩会收缩引起渗透率的上升,加拿大艾伯特省 Felm Big Vaney[8]试验区的单井注入试验已经证明了这一点。
图1 注CO2和N2驱替煤层气的原理示意图
总之,CO2驱替煤层气技术比较适合于高渗透、不可开采煤层,对于我国低渗透、可开采煤层有一 定的局限性。另外N2的成本比较低,提纯容易。因此,建议采用富含N2的混合气体驱替开采我国的 低渗透煤层气,一方面发挥了CO2的高驱替能力,另外一方面发挥了N2的增渗作用。
2 注气开采煤层气的试验
国内外开展了大量注气开采煤层气的室内以及现场试验。室内试验主要以气体的吸附/解吸、形变 和渗透率的测量为主,现场主要进行了CO2煤层埋存以及混合气体驱替煤层气的试验。
2.1 室内试验
煤对气体的吸附性大小主要取决于煤的岩石学组成、物理化学结构、煤阶、水分含量等自身因素,另外温度、压力也对煤岩的吸附性有较大的影响。针对煤对单组分气体的吸附,国内外的学者开展了大 量的深入研究[9~24]。
关于煤对多元混合气体的吸附,国内外专家学者[25~39]普遍认为多元气体吸附时,每种气体不 是独立吸附的,而是不同气体间存在着竞争吸附。二元气体的吸附等温线总是介于吸附能力强和吸 附能力弱的纯组分气体吸附等温线之间,混合体系中每一组分的吸附量都小于其单独在相同分压下 的吸附量。
室内的注气驱替实验的一般程序是:煤岩充分吸附CH4,然后注入其它气体,可以边注边抽,也可 以注入后待其它气体与甲烷充分竞争吸附后再抽,然后测试产出气体量和成分以及它们与注气压力、注 气速率等的关系。研究表明CO2/CH4的置换比高达1:7,N2/CH4可以达到1:4,产出气体中初期甲烷含 量几乎为100%,待注入气体突破后,甲烷含量明显降低[40,41]。
2.2 现场注气试验
美国、加拿大、日本、欧盟等先后进行了不同规模的注气驱替煤层气现场试验。1993年,美国的 BP Amoco公司在圣胡安盆地进行了世界上第一次注气(83%的N2和12%的CO2)提高采收率的相关 试验[42]。1995年,美国又在圣胡安盆地向Allison和Tiffany煤层进行纯CO2和纯N2注入试验[43]。为 了测试不同地质条件下ECBM技术的适用性,加拿大在Alberta[44]盆地进行了小规模的CO2-ECBM工 程,采收率得到明显提高。中国和加拿大也联合在沁水盆地南部的TL-003井也进行了CO2-ECBM的 微型先导性试验,测试数据显示注气后产气量明显上升,产水量有所下降[45,46]。除此之外,在日本在 北海道,欧盟在波兰也进行过类似的现场试验。
目前看来,几个国家的现场测试结果都比较令人满意,注入CO2后气井产量均有大幅增长,但是近 井周围的渗透率在注气后有所降低,随着排采过程又有一定程度的恢复。一方面是因为CO2的扩散趋 于均匀,不再像注入初期那样聚集在井筒附近,另一方面是排采过程中储层压力降低,煤基质收缩导致 渗透率有所增大。
3 注气开采煤层气的数值模拟
注入气体和煤层甲烷在煤层中赋存运移规律是注气开采煤层气的理论基础。注气开采煤层气的 实质是一个注入气体与甲烷在煤层中竞争吸附、解吸,扩散,以及水、气多相渗流的过程。ECBM 过程中煤层气的运移是一个非常复杂的过程,包括煤层气及注入气体的竞争吸附、解吸、扩散以及 达西流动等。气体的吸附、解吸会使煤岩产生膨胀、收缩变形,从而引起煤岩的孔隙结构变化,进 而引起煤岩渗透系数的变化。煤岩的孔隙结构和渗透系数变化反过来又影响气体在煤岩中的赋存与 流动。因此,ECBM过程是一个多组分气相-水相-煤岩固相耦合的过程。由于该过程非常复杂,即使建立了完整的数学模型,其求解也相当困难,因此,目前国内外学者Ekrem Ozdemir[47~50],Julio Manik,Seto,吴嗣跃,孙可明[50~52]等在建立ECBM过程模型的时候一般都作了一些假设,忽 略某些因素,使求解变得简单。
常规煤层气模拟器一般可以模拟:(1)双重孔隙系统;(2)单组分气体在孔隙系统的吸附和扩散; (3)裂隙系统达西渗流;(4)吸附气体解吸产生的煤岩收缩。模拟ECBM过程还必须考虑:(1)CO2吸附引 起的煤岩膨胀;(2)混合气体吸附;(3)混合气体扩散;(4)由于注入气体和煤层和之间的温差造成的非等 温吸附等。
针对ECBM过程的这些特点,目前,国内外广泛使用的ECBM模拟器主要包括商业的模拟器,如: GEM、ECLIPSE、SIMED11、COMET2,METSIM2和非商业的模拟器,如:GCOMP、TOUGH2、CBM - SIM、IPARS-CO2等。David H.-S.Law[53]对注气驱替煤层气数值模拟做了深入的研究,详细比较了上 述几种模拟器的模拟效果,各自的功能特点见表1。
表1 目前主要的ECBM软件的功能特点
4 总结
总结国内外的研究成果,注气提高煤层气采收率的可行性和原理已经得到了充分的论证,然而,前人的研究工作多处于纯理论研究阶段,缺乏理论和实践的结合,而且存在如下可进一步研究的 问题:
(1)深入研究多组分气体在煤样中的竞争吸附/解吸效应,确定相对吸附(解吸)速率、置换速率 与吸附平衡压力、各组分气体分压、时间的关系。
(2)通过注气驱替渗流实验,研究煤层气采收率与注气方式、注气成分、注气周期、注气压力之 间的关系。
(3)研究煤变质程度及煤岩组分对注气效果的影响。
(4)开展高温、高压下的煤岩储层注气效果评价。
(5)采用格子Boltzmann方法[54]和分子动力学方法(MD)[55]进行注气开发的微观模拟。
参考文献
[1]Puri R.,Yee D.Enhanced coalbed methane recovery[C].SPE20732 presented at the 65th Annual Technical Conference of the Society of Petroleum Engineers,New Orleans,1990:193-202.
[2]Cunningham R.E.Diffuse in gas and porous media[M].New York:Plenum Press,1980:153-154.
[3]Parksh S.,Chanrabarrtly S.K.Porosity of coal from Alberta Planes[J].International Journal of Coal Geology,1986,6: 55-70
[4]降文萍,崔永君,张群.煤表面CH4,CO2相互作用的量子化学研究[J].煤炭学报,2006,31(2):237~240.
[5]Mazzotti M.,Puri R.,Storti G.Enhanced coalbed methane recovery[J].The Journal of Supercritical Fluids,2009,47: 619-627.
[6]杨涛.超临界CO2抽提对煤的改性实验研究[D].太原理工大学,2010:38~41.
[7]方志明.混合气体驱替煤层气技术的机理及试验研究[D].中国科学院武汉岩土所,2010,20~30.
[8]Wong S,Law D,Deng X,etal.Enhanced coalbed methane and CO2 storage in an thracitic coals-Micro-pilot test at South Qinshui Shanxi China[J].International Journal of Greenhouse Gas Control,2007,1(2):215-222.
[9]Levy J.H.,Day S.J.,Killingley J.S.Methane capacities of Bowen Basin coals related to coal properties[J].Fuel,1997,74:1-7.
[10]Bustin R.M.,Clarkson C.Geological controls on coalbed methane reservoir capacity and gas Content[J].Int.J.of Coal Geol.,1998,38(1-2):3-26.
[11]Lamberson M.N.,Bustin R.M.Coalbed methane characteristics of gates formation coals,Northeastern British Columbia: effect of mineral composition[J].AAPG,1993,77:2062-2076.
[12]Clark C.R.,Busti B.M..Binary gas adsorption/ desorption isotherms:effects of moisture and coal composition upon carbon dioxide selectivity over methane[J].Int.J.of Coal Geol.,2000,42:241-271.
[13]Jouber t J.I.,Grein C.T.Sorption of methane in moist coal[J].Fuel,1973,52:181-185.
[14]Levine J.R.,Johnson P.High pressure microbalance sorption studies[J].International coalbed methane symposium,1993:187-195.
[15]Castello D.L.Advances in the study of methane storage in a porous carbonaceous materials[J].Fuel,2002,81:1777- 1803.
[16]张群,杨锡禄.平衡水分条件下煤对甲烷的等温吸附特性研究[J].煤炭学报,1999,24(6):566~570.
[17]崔永君,张群,张庆玲等.不同煤级煤对CH4、N2和CO2单组分气体的吸附[J].煤田地质与勘探,2005,25(1):61~65.
[18]于洪观,范维唐,孙茂远等.煤对CH4/CO2二元气体等温吸附特性及其预测[J].煤炭学报,2005,30(5):618~622.
[19]郭立稳,王月红,张九零.煤的变质程度与煤层吸附CO影响的实验研究[J].辽宁工程技术大学学报,2007,26(2):165~168.
[20]郭立稳,肖藏岩,刘永新.煤孔隙结构对煤层中CO扩散的影响[J].中国矿业大学学报,2007,36(5):636~640.
[21]牛国庆,颜爱华,刘明举.煤吸附和解吸瓦斯过程中温度变化研究[J].煤炭科学技术,2003,31(4):47~49.
[22]钟玲文,郑玉柱等.煤在温度和压力综合影响下的吸附性能及气含量预测[J].中国矿业大学学报,2002,27(6):581~585.
[23]张晓东,桑树勋,秦勇等.不同粒度的煤样等温吸附研究[J].中国矿业大学学报2005,34(4):427~432.
[24]马东民,张遂安等.煤层气解吸的温度效应[J].煤田地质与勘探,2011,3(1):20~23.
[25]于洪观,范维唐,孙茂远等.煤对CH4/CO2二元气体等温吸附特性及其预测[J].煤炭学报,2005,30(5):618~622.
[26]于洪观,范维唐,孙茂远等.高压下煤对CH4/CO2二元气体吸附等温线的研究[J].煤炭转化,2005,28(1): 43~47.
[27]崔永君,张群,张庆玲等.不同煤级煤对CH4、N2和CO2单组分气体的吸附[J].煤田地质与勘探,2005,25(1):61~65.
[28]唐书恒,马彩霞,叶建平等.注二氧化碳提高煤层甲烷采收率的实验模拟[J].中国矿业大学学报,2006,35(5):607~616.
[29]张庆玲,张群,崔永君等.煤对多组分气体吸附特性研究[J].煤田地质与勘探,2005,25(1):57~60.
[30]蔺金太,郭勇义,吴世跃.煤层气注气开采中煤对不同气体的吸附作用[J].太原理工大学学报,2001,32(1): 18~20.
[31]Bush,B.M.,Krooss Y.,Gensterblum F.,et al.High-Pressure adsorption of methane,carbon dioxide and their mixtures on coals with a special focus on the preferential sorption behavior.[J].Journal of Geochemical Exploration,2003,(78- 79):671-674.
[32]Mazumder S.,Hemert P.V.,Busch A.,et al.Flue gas and pure CO2 sorption properties of coal:A comparative study[J].International Journal of Coal Geology,2006,67:267-279.
[33]Fitzgerald J.E.,Pan Z.,Sudibandriyo M.,et al.Adsorption of methane,nitrogen carbon dioxide and their mixtures on wet Tiffany coal[J].Fuel,2005,84:2351-2363.
[34]Hasan Shojaei,Kristian Jessen.Application of potential theory to modeling of ECBM recovery[C].SPE144612 prepsented at the SPE Western North American Regional Meeting,Alaska,USA,2011:7-11.
[35]Gruszkiewiez M.S.,Naney M.T.,Blencoe J.G.,et al.Adsorption kinetics of CO2,CH4,and their equimolar mixture on coal from the Black Warrior Basin,West-Central Alabama.[J].International Journal of Coal Geology,2009,77:23-33.
[36]Chaback,J.J.,Morgan,et al.Sorption irreversibilities and mixture compositional behavior during enhanced coalbed methane recovery processes[C].SPE 35622-MS,SPE Gas Technology Symposium,28 April-1 May 1996,Calgary,Alberta,Canada.
[37]Harpalani.Methane/CO2 Sorption Modeling for Coalbed Methane Production and CO2 Sequestration[J].Energy Fuels,2006,20(4):1591-1599.
[38]Ekrem Ozdemir,Badie I.Morsi,Karl Schroeder.CO2 adsorption capacity of Argonne premium coals[J].Fuel,2004,83:1085-1094.
[39]J-S.BAE,S.BHATIA,P.MASSAROTTO et al.Open hysteresis phenomena in high-pressure sorption of methane and carbon dioxide on coal[C].Proceedings of the 2008 Asia Pacific CBM Symposium,Brisbane,Australia,2008.
[40]杨宏民.井下注气驱替煤层甲烷的机理及规律研究.[D]河南理工大学.2010,85~100.
[41]吴迪.CO2驱替煤层瓦斯的机理与实验研究.[D]太原理工大学2010,50-54.
[42]W.Lin,G.-Q.Tang,A.R.Kovseck.Sorption-induced Permeability change of coal during Gas -injection processes[J].SPE Reservoir Evaluation &Engineering.2008,11(4):792-802.
[43]Tom Tang,Wenjuan Lin,Tanmay Chaturvedi,et al.A laboratory investigation of CO2 injection for enhanced methane recovery from coalbeds[C].Presentations from the 5th International Forum on Geologic Sequestration of CO2:in Deep,Unmineable Coalbeds,2006.
[44]White C M,Smith D H,Jones K L,et al.Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery: a review energy fuels[J].Energy&Fuels,2005,19(3):659-724.
[45]Reeves,S.R.The Coal-Seq Project:Key Results From Field,Laboratory,and Modeling Studies[C]The 7th International Conference on Greenhouse Gas Control Technologies(GHGT-7),Vancouver,BC,Canada,September 5-9,2004.
[46]Gunter W.D.,Mayor M.J.,Robinson J.R.CO2 storage and enhanced methane production:field testing at the Fenn Big Valley,Alberta,Canada[C].The 7th International Conference on Greenhouse Gas Control Technologies(GHGT-7).September 5-9,2004.
[47]叶建平,冯三利,范志强等.沁水盆地南部注二氧化碳提高煤层气采收率微型先导性试验研究[J].石油学报,2007,28(4):77-80.
[48]Ekrem Ozdemir.Chemistry of the adsorption of carbon dioxide by Argonne premium coals and a model to simulate CO2 sequestration in coal seams[D].University of Pittsburg,2004.
[49]Ekrem Ozdemir.Modeling of coalbed methane(CBM)production and CO2 sequestration in coal seams[J].International Journal of Coal Geology,2009,77:145-152.
[50]Julio Manik.Compositional modeling of enhanced coalbed methane recovery[D].The Pennsylvania State University,1999.
[51]C.J.Seto.,K.Jessen.F.M.Orr Jr.A four-component,two-phase flow model for CO2 Storage and enhanced coalbed methane recovery[J].SPEJ,2009,14(1):30-40.
[52]吴嗣跃,郑爱玲.注气驱替煤层气的三维多组分流动模型[J].天然气地球科学,2007,18(4):580~583.
[53]孙可明.低渗透煤层气开采与注气增产流固耦合理论及其应用[D].辽宁工程技术大学博士学位论文,2004.
[54]Law D.H.-S.,Vander Meer,L.G.H.,Gunter,W.D.Comparison of numerical simulators for greenhouse gas sequestration in coalbeds,part Ⅰ:pure carbon dioxide injection[C].paper SPE 75669 presented at the SPE gas technology symposium,Calgary,Alberta,Canada,2002.
[55]Akshay Gunde,Tayfun Babadagli,Sushanta K.Lattice-Boltzmann method to estimate relative permeabilities for matrix- fracture interaction in naturally fractured reservoirs[C].SPE138255 presented at the SPE Eastern Regional Meeting,Morgantown,West Virginia,USA,2010.
[56]Haixiang Hu,Xiaochun Li,Ning Wei.Small-molecule gas sorption and diffusion in coal:Molecular simulation[J].Energy,2010,35:2939-2944.
翟雨阳1 胡爱梅1 王芝银2 段品佳2 张冬玲3
(1.中联煤层气国家工程研究中心有限责任公司 北京 100095 2.中国石油大学城市油气输配技术北京市重点实验室 北京 102249 3.中石油煤层气有限责任公司 北京 100028)
摘要:韩城地区煤层属低渗透率煤层气藏,且地质条件复杂,煤岩结构及力学性能差。在煤层气开采初期,井筒内的液柱重力在井底流压中占很大的比例,而井底流压与井周煤岩的应力状态变化规律密切相关。排采降压过程中,过小的动液面高度使煤层处于进一步压密状态,并导致渗透率降低,而过大的动液面高度使井底压力过大进而引起井周岩石产生较大软化破碎区,形成煤粉堵塞渗流通道。因此,研究煤层气动液面高度的合理区间及降低速率对开采过程中有效保持井周应力的合理分布,维持或提高储层渗透率,具有十分重要的意义。本文以韩城示范区为例,利用韩城3#,5#煤层的岩石力学试验,分析了煤岩应力状态与渗透率的关系,通过井周弹塑性应力分析,建立了不同应力状态下保持或提高绝对渗透性的合理动液面高度区间和降低速率。利用所建立的模型对韩城地区WL1,WL2井组进行计算分析,获得了韩城煤层气井开采过程中动液面高度的合理变化区间和排采速率的合理值。本论文研究成果为韩城煤层气井排采强度定量化控制提供了重要的指导意义和借鉴方法。
关键词:煤岩 应力 动液面 渗透率 排采速率
基金项目: “十一五”国家科技重大专项项目 38———煤层气排采工艺及数值模拟技术 ( 2009ZX05038) 资助。
作者简介: 翟雨阳,男,1973 年生,博士,主要从事常规油气、煤层气排采及数值模拟研究工作,通讯地址:北京市海淀区地锦路 5 号中关村环保科技示范园 7 号楼,E mail: zhaiyy@ nccbm. com. cn
Discussion on Control Method to Reasonable Height of Dynamic Liquid Level for CBM Well
ZHAI Yuyang1,HU Aimei1,WANG Zhiyin2,DUAN Pinjia2,ZHANG Dongling3
( 1. China United Coalbed Methane National Engineering Research Center Co. Ltd. ;2. Beijing KeyLaboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum,Beijing 102249,China;3. PetroChina CBM Company Limited,Beijing,100028,China)
Abstract: In China,Coal is of low permeability,complex geological conditions,and weak petrographical structure and mechanical performance. In the initial stage of the recovery,the gravity of the liquid column takes a large proportion in bottom-hole pressure ( BHP) ,and the stress state of surrounding rock are closely related with BHP. Thus,in the process of recovery,too small height of the dynamic liquid level makes coal seam be further compacted and leads to permeability reducing; reversely,too much height of dynamic liquid level easily causes BHP too large and induces the surrounding rock breaking in soften,and produces the coal powder and blocks the seepage channels. Therefore,the study on the rational range of dynamic liquid level and the reducing rate have the vital significance to effectively maintain the reasonable distribution of stress state of surrounding rock and increase reservoir permeability. Based on the 3#,5#coal rock mechanical experiments in Han-cheng,this paper analyses the relationship of the stress state and permeability of coal rock. Through the elastic-plastic stress analysis to the surrounding rock of well,the mathematical model is established,which is about the reasonable range and depres- surization rate of dynamic liquid level to maintain and improve the absolutely permeability. The established models are applied to calculate and analyze the field data of WL1 and WL2 Wells in Han-Cheng. Finally,the reasonable variations of dynamic liquid level are obtained. The researching results provide important instructions and refer- ences to the reasonable recovery control of the coal bed methane in Han-cheng.
Keywords: coal rock; stress; dynamic liquid level; permeability; depressurization rate
引言
煤层气作为非常规能源,对其有效的开采不但可以缓解我国能源短缺的问题,还可以提高煤炭资源的开采效益,并且能够减少对环境(温室效应)的影响。煤层气的有效开采受多种因素的影响,如地质构造特征、煤岩结构、煤阶、渗透率、含气量、解吸吸附特征和开采工艺等[1~5]。因此,煤层气的开采与常规油气开采相比既有相似之处,同时又存在着较大的差异。其中,应力敏感性问题在煤层气工程中表现的尤为显著[6~7]。煤岩储层的渗流能力受孔隙压力变化、煤层气解吸引起的基质收缩作用和滑脱效应的综合影响[8~10]。加载速率和加载方式的不同对煤岩的力学特性和破坏特征有较大的影响,如果加载速率较快,煤岩将呈脆性粉碎性破坏,抗压强度略有提高;相反若加载速率较低,则煤岩抗压强度偏低,延性增大。在煤层气工程实际中,煤岩结构复杂,裂隙(面割理和端割理)十分发育,随着排采的进行煤岩的应力状态将不断发生变化,导致煤岩的裂隙开始发生闭合,然后产生开裂,最终会发生破碎的过程,进而引起储层的渗流系统发生改变,而排采过程中渗透率的变化规律决定着煤层气是否能够高效的开采[11~12]。目前国内外煤层气行业在制定排采工作制度方面主要依靠经验及井筒液面变化来定性确定,这往往导致排采制度不合理,对储层造成伤害,影响开发效益。本文探讨如何通过排采过程中控制煤层气井的合理动液面高度变化规律提高煤层气效益,为煤层气排采强度定量控制提供了科学的理论依据。
1 韩城地区煤岩物理力学特性
1.1 试验测试
煤岩力学特性是反映和研究储层力学行为和应力敏感性的基础数据。利用RW2000岩石三轴压缩试验机对高径比为2∶1的煤岩心试件进行实验,测定了韩城3#,5#和11#煤岩的抗压强度和抗拉强度等参数。其中,抗压强度、弹性模量、泊松比由单轴压缩试验测得;抗拉强度由劈裂试验测得;内摩擦角、粘聚力、残余粘聚力和残余内摩擦角通过三轴压缩强度试验获得,试验结果见表1和表2。
表1 韩城煤岩单轴抗压抗拉强度及变形参数
表2 韩城煤岩三轴抗压强度试验结果
由表1和表2中的实验测试资料可见,韩城煤岩力学特性较差,抗压强度均在10MPa以下。三类煤岩比较而言,3#和5#煤的物理力学特性要比11#煤强,11#煤的残余强度非常低。因此,在煤层气工程中必须注意煤岩力学特性对排采强度控制的影响。
1.2 煤岩应力状态影响渗透率变化机理
基于对韩城主力产气煤层煤岩(3#,5#和11#煤)进行的室内试验和应力应变全曲线下煤岩应力状态对渗流能力影响关系研究表明,煤岩的绝对渗透率在初始弹性变形阶段是随有效应力的增加而减小,但减小的幅度并不大;当有效应力接近煤岩的峰值强度时,由于原有裂隙的开裂和新裂隙的出现导致渗透率缓慢增加当超过峰值强度后,渗透率迅速增大;但当有效应力接近煤岩的残余强度时,渗透率逐渐趋于稳定。
其中,煤岩弹性极限点为原生裂隙开裂、新裂纹开始萌生的临界点。
2 合理动液面高度的确定
在煤层气开采过程中,随着动液面的降低,储层煤岩应力状态不断发生变化,导致煤岩的结构特征和孔隙率等物理力学特性发生改变,因而影响了储层的渗流能力。在此过程中,储层渗透率的变化规律与煤岩的力学特性和煤岩的应力状态变化规律密切相关。根据煤岩应力状态对绝对渗透率的影响关系,考虑煤层气井井周具有破碎区的弹塑性应力状态,则可以通过对井周围岩进行应力状态变化规律分析,另由煤层气生产不同阶段井周应力分布与井底流压及套压和液柱高度之间的关系,忽略气柱摩擦阻力,推导得出保持储层处于塑性裂隙发育阶段的液柱高度合理区间为
中国煤层气技术进展: 2011 年煤层气学术研讨会论文集
则,动液面高度为h'w=H-hw
另由工程实际分析可知,井底流压的上限值不超过储层原始压力pe。式中:H为储层埋深;pe,pc,p0分别表示为储层压力,套管压力和原岩平均水平应力;c,φ,cr,φr,St分别表示煤岩的粘聚力,内摩擦角,残余粘聚力,残余摩擦角和抗拉强度;ρg表示液柱重度。
因此,要想提高渗透率,应控制合理的动液面高度变化范围,以保持井周应力状态为弹塑性状态,以在井周形成割理或裂隙贯通的流体运移通道,且随着开采过程中塑性区的发展,在井周出现塑性软化区或破碎区,但需防止井周出现过大塑性软化区。
合理的动液面高度变化范围与煤岩的力学性质、储层埋深密切相关,尤其是受内摩擦角影响较大。由于储层的软化区受煤粉的影响会使渗透率受到抑制,因此,在煤层气开采过程中需根据储层的力学特性及埋深来合理控制动液面高度,尽量避免软化区大范围产生,以免造成储层伤害而影响煤层气的进一步开采。
3 动液面合理降低速率
由煤岩的加载速率效应可知,加载速率对煤岩的强度呈正相关影响,同时煤岩脆性亦增强。对于各向异性的煤岩介质,过快的加载速率不利于煤岩中的原始裂隙裂缝的稳定扩展和煤层气的渗透的提高。同理,对于煤层气工程排采过程中的动液面降低速率对井周储层煤岩具有类似的影响机理,如果动液面降低速率过快,将会使储层煤岩有效应力快速增大,最终不合理的动液面降低速率导致煤岩出现脆性破碎并有大量煤粉产生,对储层造成巨大的伤害。所以,煤层气开采不同阶段需控制动液面降低速率在合理值域内。
当储层煤岩处于初始弹性应力状态下时,
中国煤层气技术进展: 2011 年煤层气学术研讨会论文集
当储层煤岩处于裂隙扩展的塑性阶段,即动液面高度满足(1)式时,
中国煤层气技术进展: 2011 年煤层气学术研讨会论文集
式中:h'w表示动液面降低速率;ωcr、ωce为塑性软化阶段和弹性阶段的动液面降压速率上限值,可通过试验和现场数据综合分析确定。
4 韩城地区工程应用
韩城地区煤层气为多煤层储层联合排采,煤岩力学特性较差,合理的动液面变化规律对煤层气的高效排采具有很大的意义。根据韩城煤岩的试验力学参数和合理动液面高度变化规律的确定方法(见式1~3),对韩城地区WL1和WL2的3#和5#煤联合开采的典型煤层气井排采数据进行了统计计算分析,结果见表3。
表3 合理动液面高度降低速率上限值
通过拟合分析可得:
在开采初期的弹性阶段,3#、5#煤联合开采井的动液面近似合理降低速率上限值h'w(m/d)随储层埋深h(m)的变化规律分别为:h'w≤0.022h~5.188;当井周煤岩处于塑性阶段,3#,5#煤联合开采井的动液面合理降低速率上限值h'w(m/d)随储层埋深h(m)的变化规律为:h'w≤0.006h~1.234。
开采过程中无论是初始弹性阶段或塑性破坏阶段,动液面降低速率上限值与储层埋深均近似呈线性递增的规律。煤岩力学特性对开采过程中降液速率影响较大,因此对于力学特性较差的储层,需控制好降液速率才能维持较高的排采能力。初始弹性阶段的降液速率比中期塑性阶段的降液速率一般高4~5倍,这也恰好与室内强度实验曲线峰值前后稳定加载的速率值相同。考虑到工程实际中的安全因素,建议取1.2的安全系数。
5 结论
(1)本文基于煤岩试验揭示了煤层气开采过程中井周煤岩应力状态对渗透率影响的力学机理;储层有效应力随着压降漏斗不断扩展而不断增大,煤岩从原岩区到井壁处,由原始的弹性状态进入塑性状态,在井壁处出现张拉破坏区,此时裂隙开裂积累,日产能达到最大。
(2)以韩城地区煤层气工程数据为依托,探讨提出了生产过程中为提高储层的渗流能力,合理动液面高度变化规律的控制范围及降低速率上限值,对煤层气井的合理排采具有借鉴意义。
(3)煤层气开采受多种因素的综合影响,还需考虑表皮效应(储层伤害)和压裂效果的影响,有待进一步考虑研究。
参考文献
[1]张新民,张遂安.1991.中国的煤层甲烷[M].西安:陕西科学技术出版社
[2] SCHAFERPS. H V. 1992. Aguide to coalbedmethane operations [M] . Chicago: US Gas Research Institute SAULSBERRY JL, SCHAFERPS, SCHRAUFNAGELRA. 1996. Aguide to coalbed methane reservoir engineering [M]. Chicago: US Gas Research Institute
[3] 傅雪海等 . 2003. 多相介质煤层气储层渗透率预测理论与方法 [M] . 北京: 中国矿业大学出版社
[4] 郝琦 . 1987. 煤的显微孔隙形态特征及其成因探讨 [J] . 煤炭学报 . ( 4) : 51 ~ 54
[5] 唐巨鹏,潘一山,李成全等 . 2006. 有效应力对煤层气解吸渗流影响试验研究 [J] . 岩石力学与工程学报,25 ( 8) : 1563 ~ 1568
[6] 秦跃平,王丽,李贝贝,崔丽洁 . 2010. 压缩实验煤岩孔隙率变化规律研究 [J] . 矿业工程研究 . 25 ( 1) : 1~ 3
[7] Jüntgen H. 1987. Research for future in situ conversion of coal [J] . Fue,l,66: 272
[8] Gan H,Nandi S P,Walker P L. 1972. Nature of porosity in A-merican coals [J] . Fue,l ( 51) : 272 ~ 277
[10] 苏现波,陈江峰,孙俊民等 . 2001. 煤层气地质学与探勘开发 [M] . 北京: 科学出版社
[11] 李相臣,康毅力,罗平亚 . 2009. 应力对煤岩裂缝宽度及渗透率的影响 [J] . 煤田地质与勘察学报,37( 1) : 29 ~ 32
[12] Palmer I,Mansoori J. 1996. How permeability depends on stress and pore pressure in coalbeds: a new model. Annual Technical Conference and Exhibition. Denver,Colorado. SPE 36737. 557 ~ 564
正规出版物,看看上面的刊号,如果是正常的刊号,就是正常出版的,如果上面有增刊字样,那就是增刊。《煤炭学报》是由中国煤炭学会主办,北大核心期刊、综合影响因子2.125。煤炭学报主要刊载与煤炭科学技术相关的基础理论和重大工程研究的理论成果,为传播煤炭科学技术起到了重要的作用。《煤炭学报》在包括10名中国科学院、中国工程院院士的编委会领导下,每年都制定了明确的报道重点,使刊物能紧紧围绕煤炭重大科技攻关项目发表相关的基础理论论文。本刊发表的论文反映了煤炭科学技术的最新研究成果,起到了促进煤炭科学技术交流和发展的龙头作用,为繁荣煤炭科学技术事业作出了重要贡献。
多。煤炭学报创刊于1964年,是由中国科学技术协会主管、中国煤炭学会主办的综合性学术期刊。据2018年5月煤炭学报编辑部官网显示,中文信息学报编辑委员会拥有编辑67人。煤炭学报主要刊载煤田地质与勘探、矿井建设、煤矿开采、煤矿机电工程、矿山测量、煤矿安全、煤炭加工利用、煤矿环境保护、煤炭经济研究等方面的学术论文。
河南理工大学直线电机与现代驱动研究所主要从事特种电机及其驱动系统的理论、应用和控制方面的研究。包括直驱电机技术,高效节能电机开发,多相电机设计及先进驱动技术等。侧重于永磁直线电机(PMLSM)电磁场理论、电磁参数及以永磁直线电机为动力源的机电一体化新型直线驱动系统的拓扑结构、运行特性、控制策略、优化设计、最佳性能等方面的研究,其成果可广泛应用于交通运输、油田、矿山、建筑等领域。研究所成立于八十年代中期,是国内最早开展直线电机专题研究的单位之一。从九十年代开始永磁直线电机垂直运输系统方面的研究。在国家、省部基金、攻关项目的资助和支持下,完成“直线电机提升系统理论与控制”等国家、省部级项目30项。获国家科技进步二等奖1项,省部级科技进步一等奖2项、三等奖8项,获国家专利30余项。在国内外期刊和国际会议上发表论文300余篇,其中SCI、EI收录70余篇。出版专著(译著)14部、教材11部。培养博士6名,硕士生80余名。研究组在长期的项目研究过程中自然形成了研究团队,2008年被评为河南省创新型科技团队。在直线电机垂直提升系统的理论及控制、直线驱动系统设计与分析、高效节能电机等方面做了创新性工作。荣誉所长:袁世鹰 所 长:汪旭东 副所长:上官璇峰历史沿革 1986年,焦作矿业学院(现河南理工大学前身)成立了矿用电机及应用研究所,开始矿用电机和直线感应电动机理论和应用研究。 1987年袁世鹰、焦留成教授与陕西直线电机设备公司和铜川矿务局合作率先在国内开展矿用直线感应电动机研究,开发了矿用推车器等煤矿产品,被列为煤炭部“100推项目”之一。 1988年,获《中小型矿井10KV直接下井供电》国家“七五”攻关重大项目资助,团队创始人袁世鹰课题组与煤科总院上海分院、焦作矿务局合作开展矿井10KV供电技术、10KV防爆电机、电器研究(该项目1990年完成,1992年和1993年分别获能源部科技进步一等奖和国家科技进步二等奖) 。 1989年获煤炭部煤炭科学基金“提高矿用直线感应电机效率和功率因数研究(9010809)”资助,以该项目为题,袁世鹰、焦留成合作培养了全国较早、河南省第一个直线电机硕士(1991年获硕士学位)。 上世纪90年代初,国外提出了“直线同步电机驱动垂直运输系统”的构想。但是,面临重大理论和技术问题的挑战,成为直线电机研究领域的前沿课题。如果理论上和技术上的许多问题得到解决,则传统的提升系统将会发生巨大变革。无绳提升机将是直线电机和运输技术发展史上又一个重大突破,成为21世纪可与磁悬浮列车媲美的一种理想运输工具。国外主要研究的重点放在高层建筑的电梯方面。 1992年,研究所正式将直线电机驱动的矿井提升系统立项研究。 1993年获得煤炭部攻关项目“矿井直线电动机提升系统的理论与试验研究(编号:9410817)”。 1995年获国家自然科学基金“直线同步电动机提升系统的理论与控制研究(编号:69674021)和河南省攻关项目等多项资助,也是目前国内唯一开展此项专题研究的单位。 1998年建成了3m高、载荷50kg“永磁直线同步电动机(PMLSM)矿井提升试验系统装置”。实现了“五无”新型提升模式,“在永磁直线电机提升系统方面做了开创性的研究工作”(引自1998年全国直线电机年会纪要)。袁世鹰教授以该项研究挂靠中国矿业大学培养了第一名博士—焦留成(1998年获博士学位)。 2002年和2003年,获国家自然科学基金“分段式永磁直线电机交流伺服系统建模研究(编号:60374034)”、河南省重点攻关项目“PMLSM无绳电梯工业应用试验研究(编号:0223025300)”等多项国家、省部项目,依托这些项目,建成了PMLSM驱动的水平运输实验系统和三层楼高、载荷1300kg、接近工业实际的PMLSM驱动的第二代直线电机矿井提升试验装置,促进了大型提升系统从有绳到无绳的重大变革。袁世鹰教授以该项研究挂靠西安交通大学培养了第二名博士—汪旭东(2002年获博士学位)。 2003年,获河南省杰出青年科学基金项目 “直线电机非正弦工程电磁场的整体预测研究(编号:412002200)”资助,开展直线电机1D-3D电磁场统一解析理论研究。 2003年,与英国谢菲尔德大学电机及驱动研究所开展永磁电机合作研究。 2004年,团队与南非斯特兰堡大学合作,开展特种电机气隙磁链定向矢量控制策略研究。成果发表在《IEEE Transactions》上。 2004年,获得国家自然科学基金资助“永磁直线电机整体建模与性能控制研究(编号:60474043)”。 2005年,获河南省高等学校创新人才培养工程重大项目:“高效直线电磁抽油机技术及应用研究”资助,开始高效直线电磁抽油机技术与应用研究。 2006年与ASM国际一流芯片装备自动化公司开展合作研究,设计开发了多种直线(旋转)侍服电机。 2008年,获得“直线电机与现代驱动”河南省创新型科技团队称号。 2008年,获教育部留学回国人员科研基金“新型电磁泵电机的理论及应用研究”资助,开始高效节能电机的研究开发。 2009年,获河南省重点攻关项目“数控机床直线电机伺服系统的关键技术及应用研究(92102210359)”,开始数控机床直线电机伺服系统的研究开发。 2009年,获河南省杰出人才支持计划重大项目“无绳提升系统的关键技术及应用研究,开始开发PMLSM驱动的第三代直驱电梯产品化样机。 2010年,开发出了高效异步电机、自起动永磁电机、永磁发电机等20个系列的高效节能电机产品。 2010年,建成了具有完全自主知识产权的PMLSM驱动的额定载荷150kg国内首台家用直驱电梯产品化样机。 2010年,建成了具有完全自主知识产权、PMLSM驱动的五层楼高、载荷3000kg第三代直线电机高速电梯产品化样机。 2010年,获国家自然科学基金项目“永磁直线电机多轿厢无绳提升系统动态性能分析及其控制(61074095)” 资助,开始多轿厢垂直运输系统的理论与试验研究。 2010年,获教育部博士学科点专项科研基金“多自由度直线弧形电机基础理论研究”资助,开始多自由度直线弧形电机理论与试验研究。 研究队伍:河南理工大学直线电机与现代驱动研究所现有研究人员23人,其中教授8人,副教授7人,博导2人,博士11人。汪旭东 博士、教授、博导袁世鹰 教授、博导上官璇峰 博士、教授、硕导许宝玉 博士王福忠 博士、教授、硕导艾永乐 博士、教授、硕导付子义 教授、硕导康润生 教授、硕导荆双喜 教授、硕导吴尧辉 高工、硕导王海星 博士、副教授、硕导司纪凯 博士、副教授、硕导许孝卓 硕士、讲师封海潮 硕士、讲师张宏伟 硕士、讲师朱军 博士、副教授朱艺峰 博士、讲师王少华 副教授李 辉 副教授王素玲 博士、副教授王国东 博士、副教授高彩霞 硕士、讲师张 展 硕士、讲师 过程控制研究室建设与发展电气工程与自动化学院过程控制研究室成立于1993年。主要针对复杂工业过程对象,利用计算机技术,将人工智能、模糊控制、神经网络等理论和方法应用于工业过程控制系统中。优化工艺过程,研发过程控制系统与装置。过程控制研究室,是河南省“控制工程”重点学科开放实验室的重要组成部分;是河南省控制理论与控制工程重点学科的主要研究方向;研究室历史悠久,特色鲜明,研究成果突出。经过十几年的努力,在工业锅炉集散控制、玻璃配料生产线、黄磷配料生产线、水泥配料生产线、智能执行装置、电力系统监测监控等复杂系统的建模与控制方面做出了不懈的努力,解决了多项控制难题和关键技术,为工业过程自动化、矿山生产自动化与信息化作出了较大贡献。形成了和凝聚了一支具有硕士、博士学位的博士生导师、教授、副教授、讲师组成的老中青相结合的创新研究团队。每年在工业过程控制研究方向招收博士、硕士研究生115人。主要研究方向工业过程控制系统建模;智能控制与优化;被控对象特性分析;复杂系统控制理论与控制策略;智能控制系统与装置等。科研环境及试验平台拥有过程控制实验室、集散控制系统、先进控制技术试验系统等一批先进的科研设备,可满足日常科学研究及研究生培养工作。主要研究成果自成立以来,研究室成员主持和参与完成了国家自然科学基金、河南省自然科学基金、河南省重点攻关等项目15项,企业委托项目50项,教改项目20多项。完成项目成果鉴定30项,部分成果达到国内领先水平。学术论文与专著研究室成员在《中国系统仿真学报》、《煤炭学报》、《电工技术学报》等省级以上刊物发表论文200余篇,其中SCI、EI、ISTP收录论文50余篇。主编出版了《单片机原理与应用技术》、《自动控制系统》、《煤矿电工手册》、《实用电工材料手册》、《建筑电气工程师手册》等国家规划教材和专著8部。 河南省高等学校控制工程重点学科开放实验室是在原有省级重点学科实验室基础上进行建设,2007年由河南省教育厅批准成立。本实验室涵盖控制理论与控制工程、电机与电器、检测技术与自动化装置三个省级重点学科。实验室瞄准控制科学和技术的发展前沿,开展控制工程领域的基础理论和技术前沿的探索性、创新性研究,努力推广控制理论和技术在社会各领域的应用,获取控制工程领域的原始创新成果和自主知识产权,将本实验室建设成为控制工程领域的学术研究、交流以及高科技人才培养的重要基地,为河南省和煤炭行业控制科学与技术的快速与可持续发展提供理论及技术支撑。实验室始终坚持以“瞄准基础研究前沿方向,突出原创性研究;面向工程,实现技术和集成创新”的指导思想。经过多年建设,在理论研究和工程应用方面取得了一大批成果,已形成控制理论、工业过程控制、直线驱动系统及控制技术、检测技术与自动化仪表、图像处理与模式识别等五个稳定的研究方向,在省内外具有一定特色和较大的影响力。目实验室总面积2000㎡,设备总价值1200余万元。拥有DCS集散控制系统、直线电机无绳提升系统、自主移动机器人、先进运动控制系统、工业机器人、平面三级倒立摆控制系统、PXI虚拟仪器、记录示波器、DL7480/TDS7254B高精度数字存储示波器等一批先进的仪器设备。实验室现有研究人员27名,其中教授12名,博士后3名,博士13名,在读博士4名,硕士11名,形成了结构合理的研究团队。先后承担了国家自然科学基金、河南省重大攻关项目、河南省杰出青年科学基金、河南省创新人才基金、河南省自然科学基金等不同层次的纵向研究课题26项,企业工程项目25项,科研经费累计2000多万元,获省部级以上科研奖励13项,发表核心刊物以上论文500余篇,其中SCI、EI、ISTP检索论文200余篇。实验室实行相对独立的运行机制,设立负责学术指导的学术委员会,清华大学吴澄院士担任学术委员会主任,学术委员会每年召开1~2次会议,确定实验室年度开放资助项目,研究开放实验室的长远发展规划、年度研究与开发计划等重大事项。实验室实行开放流动机制,设立开放基金。广泛开展校企合作,联合攻关解决企业生产中的重大技术问题。同时加强与国内外有关高校、研究院所和实验室的合作研究和交流,开展控制领域深层次的合作研究。河南省高等学校控制工程重点学科开放实验室获奖情况:近三年代表成果项 目 名 称 鉴定及获奖 主持人 时间 WJPL微机配料控制系统 河南省科技进步二等奖 余发山 2008年 矿区综合节能技术研究与应用 河南省科技进步三等奖 王福忠 2006年 煤矿供电网络安全保障系统研究 中国煤炭协会科技进步二等奖 余发山 2009年 “三电”基础课程实践教学体系改革研究与实践 河南省教学成果特等奖 余发山 2009年 PMLSM无绳电梯的工业应用试验 河南省教育厅科技进步一等奖 汪旭东 2009年 基于小波理论的农网TBL_0TBL_0KV线路故障诊断系统研究 河南省教育厅科技进步二等奖 王福忠 2008年 总线型智能电动执行器的研究 河南省教育厅科技进步二等奖 余发山 2009年 永磁直线电机整体建模与性能控制研究 国家自然科学基金项目(结题) 袁世鹰 2008年 分段式永磁直线电机交流伺服系统建模研究 国家自然科学基金项目(结题) 王福忠 2006年 电机非正弦工程电磁场的整体预测研究 省科技厅鉴定,获国际先进评价 汪旭东 2007年 近三年专利成果 专 利 名 称 专利类型 设计人 专利号或申请号 交流电压表测量单相负载功率因数的方法 发 明 董爱华 2007TBL_00054TBL_007.4 一种磁阻式磁力悬浮装置 发 明 汪旭东 2009TBL_00064742.X 一种带有磁力平衡机构的无绳电梯 发 明 汪旭东 2009TBL_00064740.0 一种无绳循环多轿厢电梯及其循环系统 发 明 汪旭东 2009TBL_00064738.3 带增力机构的钳式制动器 发 明 汪旭东 2009TBL_00203TBL_077.0 一种磁悬浮车 发 明 汪旭东 2009TBL_0006474TBL_0.5 一种直驱式刮板输送装置 发 明 汪旭东 2009TBL_00064739.8 大气压下介质阻挡类辉光放电反应器 发 明 孙岩洲 2008TBL_00TBL_04TBL_0588.7 煤矿安全生产监控仿真教学系统 实用新型 雷乃清 有轨电动伸缩门用弧形直线电机驱动机构 实用新型 汪旭东 200920088TBL_090.TBL_0 一种煤矿井下供电系统连锁保护智能控制装置 实用新型 王福忠 直驱式多罐车斜井运输装置 实用新型 汪旭东 遥控调度指挥装置 实用新型 雷乃清 同轴线管结构介质阻挡电晕放电反应器 实用新型 孙岩洲 200720089995. 一种道路减速带发电储能装置 实用新型 许孝卓 200920090082.8
中国煤炭工业、中国煤炭医学杂志、煤炭技术、煤矿安全、山西煤炭期刊等
英文名是International Journal of Coal Science & Technology这个是以前 煤炭学报 的英文版,中文版是核心里面不错的。英文版貌似还没有被SCI收录吧(请以最新的收录为准)
中文核心期刊要目总览2011年版 (第六版)TD82 煤矿开采类核心期刊表1煤炭学报5煤炭工程9煤矿机械2煤炭科学技术6煤矿开采10工矿自动化3煤矿安全7煤炭技术4煤田地质与勘探8中国煤炭若需要完整目录给个邮箱传给你,楼上不知哪个版本,out了
1. 求是2. VOGUE服饰与美容3. 人民文学4. 人民画报5. 人民音乐6. 人民教育7. 儿童漫画8. 八小时以外9. 十月10. 三联生活周刊11. 大众电影12. 女友13. 小学生之友14. 小朋友15. 小说月报16. 山东画报17. 山海经18. 中共党史研究19. 中国人民大学学报20. 中国妇女21. 中国国家地理22. 中国青年23. 中国摄影24. 中国新闻周刊25. 中学生26. 中篇小说选刊27. 今古传奇28. 历史研究29. 少年文艺30. 文史知识31. 文史哲32. 文学评论33. 文物34. 父母必读35. 世界时装之苑36. 世界知识37. 北京大学学报(哲学社会科学版)38. 北京周报39. 半月谈40. 幼儿画报41. 龙门阵42. 共产党员43. 农民文摘44. 妇女生活45. 当代46. 当代贵州47. 收获48. 收藏49. 江海学刊50. 百科知识51. 老人世界52. 考古53. 西藏研究54. 时尚芭莎55. 译林56. 足球俱乐部57. 连环画报58. 学术月刊59. 知音60. 经济研究61. 英语世界62. 诗刊63. 青年文摘64. 前线65. 南方66. 南风窗67. 南京大学学报(哲学·人文科学·社会科学)68. 咬文嚼字69. 复旦学报(社会科学版)70. 故事会71. 神州学人72. 科幻世界73. 美术74. 草原75. 荣宝斋76. 党员文摘77. 党建78. 党建研究79. 家庭80. 海峡通讯81. 朔方82. 格言83. 特别关注84. 读书85. 读者86. 商界87. 理论动态88. 章恰尔(藏文)89. 萌芽90. 散文91. 编辑之友92. 装饰93. 销售与市场94. 新华文摘95. 新华月报96. 新体育97. 瑞丽98. 解放军文艺99. 解放军画报100. 演讲与口才101. 瞭望 1. 奥秘2. Cell Research3. 人民军医4. 大众医学5. 工业建筑6. 工程塑料应用7. 中华外科杂志8. 中华医学杂志9. 中华医学杂志(英文版)10. 中医杂志11. 中国农业科学12. 中国有色金属学报13. 中国机械工程14. 中国物理快报(英文版)15. 中国科学16. 中国药学杂志17. 中国药理学报(英文版)18. 中草药19. 分析化学20. 少年科学画报21. 水利学报22. 北京大学学报(自然科学版)23. 北京师范大学学报(自然科学版)24. 生态学报25. 生理学报26. 电力系统自动化27. 电子技术应用28. 石油地球物理勘探29. 石油炼制与化工30. 农村百事通31. 地质学报(英文版)32. 地球物理学报33. 地球科学—中国地质大学学报34. 机械工程学报35. 自动化学报36. 作物学报37. 兵器知识38. 园艺学报39. 材料保护40. 汽车与驾驶维修41. 林业科学42. 物理学报43. 环境科学44. 现代化工45. 知识就是力量46. 金属学报47. 科学48. 科学画报49. 科学通报50. 家庭医生51. 海洋与湖沼52. 特种铸造及有色合金53. 航空知识54. 舰船知识55. 高等学校化学学报56. 清华大学学报(自然科学版)57. 第四军医大学学报58. 植物学报(英文版)59. 数学学报(英文版)60. 煤炭学报
报北京矿大王家臣老师、杨宝贵老师的吧 现在他们在搞绿色开采,是个前沿课题,也是个采矿一个趋势。王家臣,中国矿业大学(北京)教授、博士生导师,资源与安全工程学院院长、安全技术培训中心主任、采矿与岩石开挖工程研究所所长,被评为全国优秀教师,北京市高等学校教学名师,享受国务院政府特殊津贴,煤炭行业专业技术拔尖人材,中国煤炭学会煤矿系统工程专业委员会常务副主任委员,《采矿与安全工程学报》杂志编委。获教育部第四届高校青年教师奖、中国科技发展基金第八届孙越崎博士后奖、中国煤炭青年科技奖和煤炭工业技术创新优秀人才。姓名:杨宝贵 性别:男 出生年月:1967年9月 民族:汉 职称:副教授电话: 通讯地址:北京学院路中国矿业大学(北京)资源与安全工程学院 电子邮件: 个人简历 副教授,生于1967年9月,1998年12月毕业于中国矿业大学(北京校区),获博士学位;采矿工程专业,从事充填采矿、矿山压力、矿山环境等方面的研究工作。 主要论文及著作 1、 论文 (1)煤矿采空区胶结充填控制采动损害的可行性探讨,《煤炭学报》,2000 (2)配置钢筋对高水固结充填体的影响,《北京科技大学学报》, 1999 (3) Creep property of the solidifying backfill body of High-water Material,《Journal of China University of Mining & Technology》, 1999 2、 著作 (1)《高水固结充填采矿》,机械工业出版社,1998 (2)《当代胶结充填技术》,冶金工业出版社,2002 获得荣誉 1999年北京市科学技术进步一等奖
杨晓杰 杨晓杰 教授编辑本段中国矿业大学教授、博士生导师男,1968年9月生,山西万荣人,中共党员,博士。 教授、博士生导师。 1993年7月和1996年7月分别在中国矿业大学北京研究生部获工学硕士和工学博士学位,毕业后留校任教。 在中国矿业大学(北京)岩土工程研究所从事科研和教学工作至今。 现任国家重点学科岩土工程研究中心书记,国家973项目(No.2006CB2022)子课题负责人,兼任中国岩石力学与工程学会软岩工程专业委员会副主任委员、国际岩石力学学会会员、中国建筑业协会技术施工专委会副秘书长、中国涂料工业协会专家委员会委员和中国塑料加工工业学会常务理事。 主要从事深部岩体力学及其工程灾害控制、软岩工程粘土矿物学、滑坡灾害成灾机理及其监测预报技术等方面的教学和科研工作。 相关研究成果获得国家科技进步二等奖1项、省部级科技进步奖3项,出版专著《中国煤矿软岩黏土矿物特征》一部,在科学通报、煤炭学报、岩石力学与工程学报、地球学报、中国矿业大学学报等国内一级期刊上发表学术论文50余篇。荣获第十七届孙越崎青年科技奖,入选教育部新世纪人才支持计划。
1964 年创刊(季刊),“文革”中曾一度停刊, 1979 年随着中国煤炭学会首届代表大会的召开而复刊(季刊); 1993 年改为双月刊, 2007 年改为月刊。
刊名:煤炭学报Journal of China Coal Society主办:中国煤炭学会周期:月刊出版地:北京市语种:中文;开本:大16开ISSN:0253-9993CN:11-2190/TD历史沿革:现用刊名:煤炭学报创刊时间:1964该刊被以下数据库收录:CA化学文摘(美)(2011)CBST科学技术文献速报(日)(2009)EI 工程索引(美)(2011)中国科学引文数据库(CSCD—2008)核心期刊:中文核心期刊(2008)中文核心期刊(2004)中文核心期刊(2000)中文核心期刊(1996)中文核心期刊(1992)