首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

神经生物学研究生论文

发布时间:

神经生物学研究生论文

中文数据库有很多,中国期刊网,万方数据库,中国期刊网优秀博硕论文数据库,重庆维普系列数据库,超星图书馆等等都可以下到文献;英文的推荐Elsevier Science,个人觉得很好用,不过都要收费。医学期刊的据我所知只有一个数据库是免费的,但是可能神经生物学的文章不多。如果你只需要少量文献的话可以检索完以后用站内消息发给我,我帮你下载~

浅谈基础医学专业神经生物学教学体会

无论是在学校还是在社会中,大家都经常看到论文的身影吧,论文是指进行各个学术领域的研究和描述学术研究成果的文章。怎么写论文才能避免踩雷呢?下面是我为大家整理的浅谈基础医学专业神经生物学教学体会论文,仅供参考,欢迎大家阅读。

论文摘要: 基础医学专业是首都医科大学的新设专业,目的在于培养具有从事基础医学教育和科学研究能力的高级专门人才。神经生物学是一门新兴的交叉学科,是基础医学专业学生的必修课程。本文总结了近年来在基础医学专业神经生物学教学中的体会和经验。旨在进一步提高教学效果。

论文关键词: 基础医学专业;神经生物学;教学效果

神经生物学是一门涉及解剖学、生理学、病理学、心理学等知识的交叉学科,以研究人体大脑奥秘为主,在20世纪后期得到迅速发展,已成为引领当代生命科学革命的学科之一。我国在《国家中长期科学和技术发展规划纲要(2006~2020年)》中将“脑科学与认知科学”列入重点发展项目之中。2013年美国公布了推进创新神经技术脑研究计划,简称“脑计划”,神经科学进入了前所未有的快速发展时期。

首都医科大学于1997年开始神经生物学教学工作,主要面向临床医学七年制本科生和五年制本科生。2007年,首都医科大学开设了基础医学专业,神经生物学是该专业学生的必修课程。本文总结了近年来在基础医学专业神经生物学教学中的经验,现介绍如下。

1.精选课程内容

我校基础医学专业的定位是培养具有从事基础医学教育和科学研究能力的高级专门人才。由于该专业和临床医学专业的培养目标不同,因此课程内容也需相应调整。在教学内容上,应选择最新出版、且涵盖最新研究成果的教材,确保基础医学专业学生能够接受到最新的知识信息。我校基础医学专业学生所用的教材是第三版的(

我校神经生物学学科属于国家重点学科,研究领域涉及神经变性病、抑郁症、脑卒中和神经损伤与修复等。鉴于基础医学专业学生将来主要从事科研工作,因此教学时应注重研究方法的讲述。如在讲授“精神系统疾病”章节时涉及抑郁症,就要向学生介绍抑郁症动物模型的制备方法及评判标准,使学生对抑郁症的研究方法有初步了解,对将来从事精神疾病方面的研究有所帮助;同样,在讲授“运动的调控机制”章节时,涉及一种常见的神经变性病-- 帕金森病,教师需要向学生讲解该疾病动物模型的制备方法及研究方法。通过上述教学,使学生在潜移默化中掌握神经科学研究方法,为将来的研究工作奠定基础。

2.培养学生科研思维

神经生物学是一门实践性很强的学科。教师在教学中,要对推动神经生物学发展的经典实验进行系统讲解,详细回顾当年的知识背景和技术水平,科学家在当时的条件下如何发现科学问题。采用哪种研究方法和技术手段解决这些科学问题。这样有助于激发学生对科学研究的兴趣,培养学生发现问题和解决问题的能力,使其初步形成科研思维。

神经生物学是一门与实验密切相关的学科。培养学生动手能力,分析、解决问题能力是培养基础医学专业科研思维的重要组成部分。传统实验教学完全忽视了对学生科研创新能力的培养。因此,我院针对基础医学专业学生开设了实验神经科学课程,另外安排l2学时让学生充分参与我院各课题组科学实验,自由选择小课题,每人完成一个小实验。通过上述方法,加强了学生对神经科学研究方法的理解,提高了学生的'科研思维能力及动手能力。

3.精选教学方法

传统的课堂教学方法是按照先行教学计划和规定时间,由一名教师对众多学生面对面讲授某学科知识,而这不利于发挥学生主动性和自觉性,影响了教学效果。

教学是一种以问题为导向的教学方法。PBL医学教学以问题为基础,以医学生为主体,以小组讨论为形式,在指导教师参与下,围绕某一医学专题或具体病例的诊治进行讨论研究。1969年,美国神经病学教授Barrows在加拿大麦克马斯特大学首先将PBL教学法引入医学教育领域 .PBL教学法逐渐受到各国关注,已成为我国医学教育改革的热点。

在基础医学专业神经生物学教学中使用PBL教学法,如在讲授帕金森病时,概念以常规方法进行教授,发病机理和治疗方法以PBL教学法进行教授。首先指导学生针对这一疾病进行相关资料查询,安排学生汇总帕金森病的流行病学、发病机理、临床症状和治疗等资料,然后分组讨论,教师最后进行总结和提炼。分析近年来学生期末考试成绩,笔者发现PBL教学法极大地提高了课堂教学效果和学生考试成绩。

4.注重双语教学

在基础医学专业神经生物学教学中采用规范的双语教学,可为学生打下扎实的专业外语基础。调查显示,多数学生及教师认为双语教学有助于提高其专业英语能力,也有利于提高整体外语水平Ⅲ。由于基础医学专业学生将来主要从事教学和科研工作,查阅文献和参加国际交流需要良好的外语能力,双语教学已是大势所趋。

神经生物学涉及大量学科知识,内容繁杂。因此,神经生物学双语教学对教师和学生都是极大的挑战。教师不仅要掌握大量的专业词汇,而且还要发音正确,只有这样才能保证双语教学的准确性。双语教学不是一蹴而就的,要循序渐进。在教学中,中英文教学比例要适当,开始授课时,可先学习关键名词的专业英语,再学普通名词,让学生慢慢适应双语教学。对于重点内容,采取英文讲解、中文总结的方式,强化学生记忆,巩固学生对知识的掌握。

5.提高课件制作质量

多媒体课件是现代化教育技术的重要组成部分,可使抽象难懂的医学知识直观而形象。针对基础医学专业学生,课件中新的概念和名词后要加注英文,通过中英文对照,增加学生专业英语词汇量。课件文字尽量做到言简意赅,避免教学内容枯燥空洞。在 片的选择上,遵循直观易懂和动漫通俗的原则,努力将复杂问题简单化、抽象问题直观化、整体问题分解化和静止知识动态化在课件中插入ffj关视频,展示文、图、声、像并茂的特点,多层次、多角度地呈现教学内容问。在讲解突触传递时,可利用动画演示突触茸膜释放神经递质,从而引起突触后电位的过程,使枯燥的知识变得生动有趣;在讲解帕金森病时,通过视频播放帕金森病人和帕金森动物模型大鼠发病时的行为表现,使学生对该疾病有直观认识;在讲解大脑中枢神经系统脑室分布图时,可通过多媒体课件展示大脑不同断面图片以及三维立体脑旋转图,将抽象难懂的知识形象化,便于学生理解和掌握

6.结语

目前,我校针对基础医学专业神经生物学教学才刚开始,教学内容还需进一步规范,教学重难点还需进一步统一,还需在实践中慢慢摸索。加强基础医学专业神经生物学的教学研究,不仅有利于提高教学效果,也有助于提高学生科研素质,从而提升我校神经生物学学科的竞争力。

参考文献:

雪妍。三结合课堂教学方法研究叨。中国大学教学,2011(7):

惠雪枫,李小记,杨玲,等。PBL教学法在神经解剖学教学中的应用实践[J】_中国高等医学教育,2008(3):

【3】唐亚平,刘燕平,杨宏宝。当前医学教育中PBL教学法的不足与对策。时珍国医国药,2008,19(5):

【4】许继德,李建华,卢佳怡,等。临床医学本科生理学双语教学的实践与思考叨。山西医科大学学报,2005,7(1):

林丽,任安,袁文俊。八年制医学生生理学双语教学初探[J】I西北医学教育,2007,15(5):

【6】李玉子。浅谈多媒体技术在内科学教学中的应用[J】_中国高等医学教育,2006,27(12):

突触传递机制研究新进展 摘要:最近的几年里,科研人员一直致力于突触传递机制的研究,他们对有关的各种生物现象中寻找突触传递在其中的机制。本文将从对突出传递机制的新进展做一个小小的综述。 关键词:突触可塑性;视网膜;调控机制;tau蛋白;伏隔核谷氨酸能;可卡因;大鼠VTA区DA神经元;脑胶质瘤致癫病;长时程增强(LTP);膜片钳;GluR2 缺失的AMPARs 视网膜突触可塑性调控机制研究进展#突触可塑性的变化影响着中枢神经系统的发育,损伤和修复等多种功能。研究发现,在视网膜发育、损伤修复过程中可出现突触可塑性改变,而自发性眼波、光线刺激、视觉经验、神经营养因子和胶质细胞等因素均参与了视网膜突触可塑性的调节。突触连接的改变是经验依赖性脑神经回路重排的基础,突触可塑性的变化影响着神经系统的发育,神经的损伤和修复等多种脑功能,目前突触可塑性的调节机制还未完全阐明。近30 多年来,对于视觉系统发育和可塑性的研究取得了很大的发展,尤其是对于视神经突触水平的变化有了较清晰的认识,但还有很多问题尚待深入研究:各种神经生长因子参与视觉发育可塑性的确切机制;在基因水平上还需进一步通过对多种相关基因的反应时程和强度进行分析, 研究其对视网膜突触可塑性的影响;视网膜突触可塑性中胶质细胞增殖、分裂、分泌生物活性物质等功能的调控。随着脑科学、发育生物学及神经生物学等边缘学科的迅猛发展,相信不远的将来,人类一定会在该领域取得突破性进展,并给治疗相关视网膜疾病及视网膜损伤后的修复治疗研究提供新思路和理论依据。兴奋性突触传递对tau蛋白表达和省略响及其在阿尔茨海默病发病中的作用兴奋性突触传递是神经元最基本的功能,NMDA受体(N-Methyl-D-aspartate receptor, NMDAR)是神经系统中最主要的兴奋性离子型受体之一,其在学习记忆,突触可塑性,神经发育等方面具有重要作用,但NMDA受体过度激活导致谷氨酸聚集于突触间隙所诱导的神经毒性作用也是许多神经退行性疾病的共同发病机制。阿尔茨海默病(Alzheimer’s disease, AD)是成人痴呆症最主要的病因,其中tau蛋白过度磷酸化和聚集是AD脑内的主要病理特征之一。兴奋性突触传递与tau病变之间的联系目前少见报道。本研究探讨了谷氨酸能兴奋性突触传递增强对tau蛋白表达和磷酸化的影响及其在AD样神经退行性变中的作用。本文第一部分探讨了短时间突触传递增强对tau蛋白磷酸化的影响和内在机制。成人脑内约有一半的谷氨酸能神经元是谷氨酸-锌能神经元,即突触兴奋时锌离子与谷氨酸一起释放至突触间隙。本研究阐明了谷氨酸-锌能神经元兴奋时突触释放的锌离子通过抑制蛋白磷酸酯酶2A (Proteinphosphatase2A, PP2A)的活性导致tau蛋白过度磷酸化。 慢性吗啡处理对伏隔核谷氨酸能突触传递的影响药物成瘾和自然的奖赏效应(食物、性等)共享同样的神经基础——中脑边缘多巴胺系统,该系统主要涉及杏仁核、弓状核、蓝斑、中脑导水管周围灰质、腹侧被盖区(ventraltegmental area, VTA)、伏隔核(nucleus accumbens,NAc)等脑区,其外延包括额叶皮层、海马等与情绪、学习和记忆密切相关的结构。目前的观点认为奖赏性刺激是通过对脑内奖赏系统发挥作用,最终引起NAc区多巴胺(dopamine,DA)释放量增多,从而产生奖赏效应。NAc在成瘾中起着至关重要的作用。NAc中神经元因在吗啡成瘾及戒断的过程中产生适应性变化而备受关注。前额叶皮质(prelimbicprefrontal cortex,PFC)的功能之一是对有利刺激的重要性进行评估,并抑制在当前环境中不适当的行为,该脑区在成瘾药物的精神依赖中发挥着对觅药动机进行评估和抑制的重要作用。Mark EJackson等研究发现,利用接近生理条件下的刺激频率来刺激PFC后抑制了NAc中多巴胺的释放,提示了前额叶中存在着对NAc中的多巴胺的释放的抑制性调节 单次可卡因注射对大鼠VTA区DA神经元兴奋性突触传递和内在兴奋性的影响中脑皮质边缘多巴胺系统(mesocorticolimbicdopamine system)与奖赏和药物成瘾有十分密切的关系。该系统包括腹侧被盖区(ventraltegmental area, VTA)多巴胺能神经元的两条主要投射通路:一条由腹侧被盖区投射到伏隔核(nucleusaccumbens, NAc)和纹状体,称为中脑边缘多巴胺系统(mesolimbicdopamine system);另外一条由腹侧被盖区投射到前额叶皮质(prefrontal cortex),称为中脑皮质多巴胺系统(mesocortical dopamine system)。这两条通路合称为中脑皮质边缘多巴胺系统。药物成瘾的解剖基础是奖赏系统,中脑边缘多巴胺系统是其关键,中脑腹侧被盖区(VTA)及其投射区伏隔核(NAc)是主要的神经基础,多巴胺(DA)是非常重要的神经递质。除了参与天然和成瘾性药物的奖赏刺激,当今更多的研究发现中脑边缘多巴胺系统还与成瘾的渴求和复发有关。在VTA区域微量注射吗啡、可卡因等都能诱导产生条件性位置偏爱(CPP)。VTA区注射吗啡还可点燃海洛因、可卡因等的自给药行为。 LTP 的分子机制研究进展LTP机制的研究热点由单一兴奋性递质机制过渡到兴奋性递质与抑制性递质联160 合机制。目前,已证明突触可塑性的改变与多种疾病相关,如阿尔茨海默病、癫痫、慢性痛、药物成瘾性和精神分裂症等。常用在体LTP技术和膜片钳脑片LTP技术两种检测方法。在体海马LTP的优势在于能较真实地反映生理状态下神经突触活动的情况,在整体条件下观察神经突触活动的变化,利于从宏观角度研究和探讨相关机理。其进展体现在:CaM-CaMKII,Ca2+作为胞浆第二信使,与钙调蛋白(Calmodulin, CaM)结合形成Ca2+-CaM复合物,进一步激活CaMKⅡ。CaMKⅡ被认为是一个分子开关,在静息状态时,自身抑制区封闭催化部位而处于非活化状态。但当神经元受刺激时,Ca2+-CaM复合物与CaMKⅡ的自身抑制区结合,改变此酶的构象,从而具有活性。MEK-ERK,细胞外信号调节激酶(extracellularsignal-regulated kinase,ERK)是丝裂原活化蛋白激酶(micogen activated procein kinases,MAPKs)家族中的重要成员,和细胞的生长、发育、分化有关。最近研究表明,ERK通过影响相关核转录因子在LTP和学习记忆过程发挥着调节作用。PKA-CREB,长时记忆(Long term memory,LTM)需要新蛋白质的合成,PKA-CREB信号通路被认为在新蛋白质的合成过程中起重要作用。PKA的激活可以引发CREB的转录,并促使ERK向细胞核发生移位,表达参与到晚期LTP(Late-LTP, L-LTP)和LTM的发生机制。BDNF(脑源性神经营养因子),FanM等发现,BDNF与蛋白激酶Mδ(PKMδ)相关,两者相互影响。在蛋白质合成及强直性刺激的参与下,BDNF能够在一定程度上提高PKMδ的水平,从而影响 L-LTP的维持过程。但是在抑制神经元及突触活性后,BDNF则对PKMδ的稳态水平没有影响。PKMδ对BDNF介导的L-LTP是必不可少的。TrkB作为BDNF的受体,需要通过新蛋白质的合成被激活,从而参与到L-LTP的表达过程中。Munc13Munc13系列蛋白是一种基因调控蛋白,在突触囊泡胞吐和神经递质释放中发挥重要作用,对于目前Munc13与LTP相关性的研究成为热点。 脑胶质瘤致癫病的化学突触机制研究进展脑胶质瘤致病是由于胶质瘤对瘤周组织产生的一系列影响所引起的。然而这其中的病理生理学机制还有待于进步研究和探讨,主要涉及继发于胶质瘤后的结构学、生物化学及组织病理学方面的改变。而胶质瘤致病在临床治疗过程中属于难治型癫病,主要是由于抗癫病药物对胶质瘤致病的病理生理过程干预较少甚至是不干预,因此,揭示胶质瘤致病的病理生理过程可能为临床上肿瘤致桶的药物干预和治疗提供分子靶点和治疗依据。 GluR2 缺失的AMPARs在突触可塑性机制中的研究进展与活性依赖的突触的AMPARs 数目改变不同,活性依赖的AMPARs 亚基的修饰引起Ca2+信号转导的改变,通道传导和动力学的改变,使突触产生了不仅量而且是质的改变。这些重要的问题仍然需要进一步研究,如为何抑制性中间神经元和元棘突神经元中AMPARs 的GluR2 亚基低表达;GluR2亚基在活性依赖的细胞特异的改变的是什么机制;除了受体受到调节运输外,另→个重要的未解决的问题是AMPARs 介导的Ca2+内流有什么特殊功能,有力的证据的表明Ca2+内流可以激发LTP ,然而关于Ca竹在突触后的靶向目标却很少了解。因此关于GluR2 缺失的AMPARs 与突触可塑性的相关特异机制仍有待进一步研究。 [参考文献][1] Wahlin KJ, Moreira EF, Huang H, et al. Molecular dynamicsof photoreceptor synapse formation in thedeveloping chick retina. J CompNeurol[J]. 2008, 506(5): 822-837[2] Justin Elstrott, Anastasia Anishchenko, MartinGreschneretal.Direction selectivity in the retina is establishedindependentofvisual experience and early cholinergic retinal waves. Neuron[J]. 2008,58(4): 499-506[3] 罗佳,王慧,黄菊芳,陈旦;《视网膜突触可塑性调控机制研究进展#》;Q422[4] Bliss TV, Lomo T. Long-lasting potentiation of synaptictransmission in the dentate area of the anaesthetized rabbit followingstimulation of the perforant path. J Physiol[J]. 1973,232;331-356 [5] Whitlock JR, HeynenAJ, Shuler MG, Bear MF. Learning induces long-term potentiation in thehippocampus. Science[J]. 2006,313:1093-1097.[6]魏显招,王雪琪,《GluR2 缺失的AMPARs 在突触可塑性机制中的研究进展》,DOI: 10. 3724/SP. J. 1008. 2009. 00437

首先,我想问你,你想清楚了吗?我就是学神经的。我不大清楚你可不可以考研,因为你这专业跟生物实在是差别太大。你没有生物基础,想要在研究生阶段补上会很累。神经是生物学的一个分支,基本上大学专业个生物有关的就可以考。大学生物科学会学很多化学,比如无机化学、分析化学、有机化学、物理化学、胶体化学、生物化学。。。各种化学,还得学物理。专业基础呢、需要学分子生物学、细胞生物学、等等这两门是必须要掌握的,因为现在生物学主要是在分子细胞水平,学神经也要用到各种生化分子技术,当然还有电生理技术,膜片钳、MEA之类的。因此没有基础很难上手。考研专业课的话,一般会考生理学 和 生物化学及分子生物学,不同的单位可能不一样,也有考细胞生物学的,这个需要你确定靠哪个单位之后才知道。就业前景的话、一般的学校我觉得就不要考了、没什么太好的前途,你可以选择 中科院、清华、北大、复旦、交大这几个地方不错。一般的话、毕业会选择出国博后或者直接进公司但是前者占绝大多数、几年之后回国,可以进公司、高校、研究所、、、这就要看你自己的成就了。文章发得好的话就有好前途。谢谢,请采纳

神经生物学研究生论文范文

21世纪生命科学的研究进展和发展趋势 20世纪后半叶生命科学各领域所取得的巨大进展,特别是分子生物学的突破性成就,使生命科学在自然科学中的位置起了革命性的变化。很多科学家认为,在未来的自然科学中,生命科学将要成为带头学科,甚至预言21世纪是生物学世纪,虽然目前对这些论断还有不同看法,但勿庸置疑,在21世纪生命科学将继续蓬勃发展,生命科学对自然科学所起的巨大推动作用,决不亚于19世纪与20世纪上半叶的物理学。假如过去生命科学曾得益于引入物理学、化学和数学等学科的概念、方法与技术而得到长足的发展,那么,未来生命科学将以特有的方式向自然科学的其他学科进行积极的反馈与回报。当21世纪来临的时候,一些有远见的科学家、思想家与政治家将日益严重的诸多人类社会问题,如人口、地球环境、食物、资源与健康等重大问题的解决,莫不寄希望于生命科学与生物技术的进步。 2· 08·生命科学将成为21世纪自然科学的带头学科 20世纪50年代DNA双螺旋结构模型的发现,随后遗传信息传递“中心法则”的确立与DNA重组技术的建立使生命科学的面貌起了根本性的变化。分子生物学与遗传学的结合将用10一15年测定出人类基因组30亿个碱基对(遗传密码)的全序列,人体细胞约有10万个基因。人类基因组的“工作草图”迄今20%的测序已达99.99%的准确率和完成率,今后将要继续发现与阐明大量新的重要基因,诸如控制记忆与行为的基因,控制细胞衰老与程序性死亡的基因,新的癌基因与抑癌基因,以及与大量疾病有关的基因。将利用这些成果去为人类健康服务。 70年代后,分子生物学的发展,以基因工程为代表的生物工程的出现,生物技术通过对DNA链的精确切割与有目的地重组,使有目的地改良生物的性状与品质成为可能。迄今生物工程所取得的成就已在生产上显示出诱人的前景,尽管还存在有不少争议的问题,但很有可能成为21世纪的新兴产业。 发育生物学将要快速地兴起,它将要回答无数科学家100多年来孜孜以求而未解决的重大课题,一个受精卵通过细胞分裂与分化如何发育成为结构与功能无比复杂的个体,阐明在个体发育中时空上有条不紊的程序控制机理,从而为人类彻底控制动植物生长、发育创造条件。 RNA分子既有遗传信息功能又有酶功能的发现,为数十年踏步不前的难题“生命如何起源”的解决提供了新的契机。在21世纪,人们还要试图在实验室人工合成生命体。人们己有可能利用生物技术将保存在特殊环境中的古生物或冻干的尸体的DNA扩增,揭示其遗传密码,建立已绝灭生物的基因库,研究生物的进化与分类问题。 神经科学的崛起,预示着生命科学又一个高峰的来临。脑是含有1011细胞的无比复杂的高级结构体系,21世纪初从分子到行为水平的各个层次对脑功能的研究都将有重大突破,在阐明学习。记忆。思维。行为与感情机理等方面也将有重大进展。脑机能在理论上的进展将会促进新一代智能计算机的研制,这可能成为未来生命科学对自然科学与技术科学回报的最好例子。 生态学可能是最直接为人类生存环境服务并对国民经济持续与协调发展起重要作用的科学。生态学的理论与实践为中国三峡水库建设提供的决策依据就是一个例证。保护生物的多样性是当前生命科学最紧迫的任务之一。据可靠的数据说明每天约有100多种生物在地球上绝灭,很多生物在没有被人类认识以前就已消亡,这对人类无疑是一种灾难。生态学与生物多样性保护与利用的研究成果将指导人类遵循自然规律积极保护自己生存环境,否则人类的物质文明与精神文明都要受到灾难性影响。 顺应生命科学迅速发展的形势,发达国家政府及一些国际组织先后提出了《国际地圈及生物圈计划》、《人类基因组作图与测序计划》、《人类前沿科学计划》、《脑的十年》及《生物多样性利用与保护研究》等投资巨大的生命科学研究计划。其中仅《人类基因组作图与测序计划》,一项预算就高达30亿美元。 由于生命科学的发展,人才的需求量激增,近年除越来越多的物理学家,化学家与技术科学家被吸引到生物学研究领域外,以美国为例,近年统计48万博士学位获得者中从事生命科学的占51%。优秀青年科学家流向生命科学前沿,这是21世纪生命科学欣欣向荣的动力与源泉。 2. 08. 2 21世纪初生命科学的重大分支学科和发展趋势 80年代有远见的生物学家把分子生物学(包括分子遗传学)、细胞生物学、神经生物学与生态学列为当前生物科学的四大基础学科,无疑是正确地反映了现代生命科学的总趋势。遗传学(主要是分子遗传学)不仅当前是生物科学的带头学科,在今后多年还将保持其在生命科学中的核心作用。 有些科学家早就预测到,由于分子生物学、细胞生物学与遗传学的结合,必然促进发育生物学的蓬勃发展,从而提出发育生物学将成为21世纪生命科学的“新主人”,这种预测已逐渐变为现实。 分子生物学(包括分子遗传学)在生命科学中的主流地位,以及它在推动整个生命科学发展中所起的巨大作用是无可争辩的。细胞是生命活动基本的结构与功能单位,细胞生物学作为生物科学的基础学科地位必须给予重视。 很多生物科学家认为神经科学或脑科学的崛起将代表着生命科学发展的下一个高峰,然后将促进认知科学与行为科学的兴起。 生态学可能是最直接为人类生存环境服务,井对国民经济持续与协调发展起重要作用的学科。 A.分子生物学 分子生物学是在分子水平上研究生命现象本质与规律的学科。核酸与蛋白质(有人认为还有糖)是生命的最基本物质,因此核酸与蛋白质结构与功能的研究今后仍然是分子生物学研究的主要内容。蛋白质是生命活动的主要承担者,几乎一切生命活动都要依靠蛋白质(包括酶)来进行。蛋白质分子结构与功能的研究除了要阐明由氨基酸形成的并有一定顺序的肽链结构外,今后将特别重视肽链拆叠成的特定的三维空间结构,因为蛋白质生物功能与它的空间构型关系极为密切,核酸是遗传信息的携带者与传递者,遗传信息由DNA~RNA一蛋白质的传递过程,称为遗传信息传递的“中心法则”,是分子生物学(分子遗传学)研究的核心。其基本问题己比较清楚,当前研究的重点是: ①约经10一15年,人类基因组30亿个碱基对全序列(遗传密码)可以测出,这是具有里程碑意义的工作; ②真核生物基因表达过程在各层次上调节的研究仍然是今后相当长一段时间的任务。 分子生物学的概念、方法与技术和各学科的渗透,正在形成很多新的学科,诸如分子遗传学、细胞分子生物学、神经分子生物学、分子分类学、分子药理学与分子病理学等等。因此分子生物学在生命科学中的主导作用还将要持续下去。 B.遗传学 遗传学比分子生物学更具有自己独立的学科体系。但现代遗传学与分子生物学是不可分割、相互交叉的两个学科,且很难截然分开。 有些著名的遗传学家把遗传学概括称为基因学,因为现代遗传学主要是研究生物体遗传信息传递与表达的学科。基因携带的信息是由基因的结构所决定,信息的表达是由基因的功能实现的,因此遗传学研究的是基因的结构与功能。从遗传学的角度看,所有生命现象的机制,追根究底都会与基因的结构与功能相关。因此遗传学在今后较长时间仍然是生命科学的核心学科和推动力。 有人估计人体细胞内约有10万个基因,迄今弄清楚的不到5%,所以与重要生命活动有关与疾病有关的新基因的发现与阐明将是今后几十年的重要任务。 C.细胞生物学 著名生物学家威尔逊(Wilson)早在20世纪20年代就提出一句名言“一切生物学关键问题必须在细胞中找寻”,至今还有着很深的内涵。魏斯曼与摩尔根都曾先后试图在细胞研究的基础上建立遗传、发育与进化统一的理论,虽然当时没有找到具体解决的途径,但关于细胞的知识在生物科学中的重要性是显而易见的。细胞是一切生命活动结构与功能的基本单位,细胞生物学是研究细胞生命活动基本规律的科学,细胞的结构。细胞代谢、细胞遗传、细胞的增殖与分化,细胞信息的传递与细胞的通讯等是细胞生物学主要研究内容。虽然今后细胞生物学研究的内容是全方位的,但概括起来可能是两个基本点: 一是基因与基因产物如何控制细胞的重要生命活动,如生长、增殖、分化与衰老等,在此要涉及到一个全新的问题,细胞内外信号如何传递;二是基因产物一一蛋白质分子与其他生物分子如何构建与装配成细胞的结构,并行使细胞的有序的生命活动。 今后20多年,以下一些问题可望取得重要进展与突破: ①遗传信息的储存、复制与表达的主要执行者——染色体的结构与功能可能在不同的结构层次上得到阐明。 ②细胞骨架(包括核骨架与染色体骨架)的研究将得到全方位的进展。 ③细胞生物学与分子生物学、遗传学的结合,将在细胞分化机理研究方面有重要突破,为发育生物学快速发展奠定基础。 ④细胞衰老与细胞程序化死亡的机理将在更深层次上阐明。 ⑤以细胞分子生物学为骨干学科与其他学科结合,人工装配生命体的理想可能逐步 实现。 D.发育生物学 从一个受精卵通过细胞分裂与分化如何发育成为一个结构与功能复杂的个体,是至今未能解决的生命科学的重大课题,也是发育生物学的主课题。由于近几十年分子生物学、遗传学与细胞生物学所取得一一系歹(突破性成果与知识的积累,已为解决这一重大课题创造了条件,这也就是今后发育生物学应运而飞速发展的原因。 发育生物学当今要解决的基本问题是细胞的基因如何按一定的时空关系选择性地表达专一性的蛋白质,从而控制细胞的分化与个体发育。阐明基因在多层次水平上控制胚胎的发育就不仅是涉及到个别基因的问题,而是一系列调节基因在时空上的联系与配合,从而支配发育的程序。虽然这是难度极大的课题,但近年已初见端倪并有所突破。估计今后发育生物学将沿着这条道路深入下去,并可望取得丰硕的成果。 E.神经科学(或脑科学) 神经科学是研究人与动物神经系统(主要是脑)的结构与功能,在分子水平、神经网络水平、整体水平乃至行为水平阐明神经系统特别是脑的活动规律的学科群。脑的结构与功能是无比复杂的高级体系,含有10 11细胞。它是感觉、运动、学习、记忆、感情、行为与思维的活动基础。大脑细胞,口何指导人与动物的行为是未来生物学中最富潜力与最吸引人的领域;神经科学的崛起,预示着生命科学又有一个高峰的来临。神经科学或脑科学必然在下世纪促进认知科学与行为科学的兴起。因此各国政府投入巨资支持这一课题,包括美国总统签署的“命名1990年1月1日为脑的10年”不是没有道理的。 在今后几十年内可以预示到的神经科学突破性的进展可能包括: ①在分子到行为的各层次上阐明学习、记忆与认知等活动的基础; ②很快会发现与阐明一系列与记忆、行为有关的基因与基因产物; ③神经细胞的分化与神经系统的发育研究会有重大进展; ④脑机能在理论上的进展与突破(如模式识别、联想记忆、思维逻辑机理的阐明)会 促进新一代智能计算机与智能机器人的研制; ⑤一系列神经性疾病与精神病的病因可望在神经生物学研究中得到解释。 F.主态学(包括物种多样性保护研究) 生态学是研究有机体与周围环境——包括非生物环境与生物环境相互关系的科学。 由于生态学理论与应用是与世界环境保护。资源合理开发与保护,以至人类本身在地球上继续生存紧密相关的,尤其是地球环境日益恶化的情况下,生态学的重要性就变得十分突出。未来生态学的主要任务是协调人类活动与环境的关系。所以生态学经典学科的概念与研究内容必然要适应人类生存环境的保护与社会经济持续发展的要求而不断改变。 今后生态学研究的重点可能表现在以下方面: ①生态群落的多样性、稳定性与演变规律与人类活动的关系; ②全球气候变化对生态系统结构与功能的影响; ③生物多样性的保护和永续利用也是保护人类自身生存环境尤其是拯救濒临绝灭的 生物种类更加具有紧迫性; ④城市生态学与经济生态学将迅速发展; ⑤生态工程与生态技术将在国民经济建设中发挥作用。 G.空间生命科学 空间环境向生命科学提出了新的挑战,也为生命科学的发展提供了机遇。 21世纪人类的空间活动将要离开地球附近,探索月球及其他太阳系的大体。这就要求人在地球外各种环境中能长期地生活和工作,首先是在,长期空间飞行器中航行,月球站以及火星或火卫站等,空间医学必须有重大突破,解决长期在地外空间所遇到的宇航员骨质疏松,肌肉萎缩和兔疫功能变化等生理学难题,同时,与开拓大疆相关联的是受控生态系统,创造一个不需要外界补给,而使人们能在其中长期生活的环境。这些问题有希望在21世纪20一30年代解决,其中空间生理学问题有可能利用中医和中药的方法取得某些重大突破。 地球外层空间为研究重力生物学提供了理想的条件,重力条件对各种层次结构生物的影响仍然是21世纪重力生物学的主题,今后的研究重点将集中于细胞,绿色植物,一些微生物和小动物。特别是重力环境对哺乳动物细胞形态、结构、变异和基因表达的影响将是一个热点。重力生物学的学术意义在于揭示重力效应在生物进化过程中的作用,是自然科学的基本问题;另一方面,重力生物学的成果将是空间制药及空间生态系统等应用领域的基础,重力生物学的学术和应用都是下个世纪的重要课题,可望在21世纪20-30年代取得突破性的进展。 地外生物探索是生命起源的重大课题,其中地球以外的智能生物探索是一个长期的 课题。地球上的人类正在向外层空间发射电波和接收讯号。外星人与地球人之间可能存在的学术和技术差距不仅是一种危险,也是自然科学的重大前沿问题,将被持续地研究下去。 2. 08. 5 21世纪初生命科学最有可能突破的领域 ①人类基因组的全序列(遗传密码)将在10一15年测定完毕,为全部遗传信息的破译奠定基础。 ②与生命活动有关的重要基因与重要疾病有关的基因将被陆续发现,其中特别引人注目的是控制记忆与行为的基因、控制衰老与细胞程序性死亡的基因、控制细胞增殖的系列基因、胚胎发育多层次网络调节基因。新的癌基因与抑癌基因的发现与其生物学功能的释明将大大提高对生命本质的了解。 ③人与动物的高级生命活动:感知、思维、记忆、行为与感情的发生与活动机制在脑科学研究突破的基础上,有更深的认识。 ④癌症的治疗将有全面的突破,爱滋病的防治得到控制。 ⑤在阐明地球上原始生命起源的基础上,人类还可能在实验室合成生命体,这种生命体应具有原始细胞的基本特征。 回答者: monkeynobd - 高级经理 六级 5-22 18:16给楼主论文: 分子细胞基因组的研究 随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。 发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。 蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。 遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。 基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。 蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。 高等植物的性状主要由核基因控制,其遗传遵循孟德尔规律。1900年Coorence和Baut等人就已发现影响质体表型的一些突变不符合孟德尔遗传规律;1962年里斯(Ris)和Plont证明植物叶绿体中存在遗传物质DNA。现已证明,植物细胞质中的叶绿体和线粒体都含有自己的DNA及整套的转录和翻译系统,能够合成蛋白质。高等植物的叶绿体和线粒体基因组,多数在有性杂交过程中表现为母性遗传。其机制有两种解释:一是认为雄配子不含有细胞质,因而没有胞质基因;另一种观点是雄配子含有少量的细胞质,其细胞器在受精前即已解体,失去功能。胞质基因组的母性遗传,大大限制了胞质基因的遗传研究,利用有性杂交方法难以知晓当胞质基因处于杂合状态时的遗传和生理效应及其对表型的影响。近年来发展起来的体细胞杂交技术为胞质基因的研究开辟了一条新途径。本文拟对植物体细胞杂交后代胞质基因重组的多样性,创制胞质杂种的可能途径及胞质基因组的传递等问题加以说明。 1 植物体细胞杂交后代胞质基因组重组的多样性 体细胞杂交时,核基因组、线粒体基因组和叶绿体基因组三者均既可以单亲传递又可以双亲传递,因而可以产生许多有性杂交难以产生的核-质基因组的新组合类型。Kumar等人根据已有的实验结果结合理论推导提出,植物体细胞杂交一代理论上可以产生48种类型,而相应的有性杂交一代只能产生两种类型。48种类型可分为亲型、核杂种和胞质杂种3类。胞质杂种即是具有一个亲本的细胞核和双亲细胞质的植株或愈伤组织,它是研究胞质基因组的好材料。 2 创制胞质杂种的方法 2.1 “供体-受体”原生质体融合技术 这是目前最为可行的方法,由Zelcer等(1987)提出。其原理基于生理代谢互补,利用高于致死剂量的电离辐射处理供体原生质体使其核解或完全失活,细胞质完整无损;再用碘乙酸或碘乙酚胺处理受体原生质体以使其受到暂时抑制而不分裂,这样双亲原生质体融合后,只有融合体能够实现代谢上的补偿,进行持续分裂,形成愈伤组织或再生植株,这些融合体就是各种各样的胞质杂种。此技术的优点是双亲不需任何选择标记,适用范围广,可行性强,缺点是适宜的辐射剂量难以掌握。 2.2 “胞质体-原生质体”融合法 所谓胞质体是指去核后的原生质体。该法由Maliga提出。优点是避免了电离辐射可能产生的不利影响,缺点是制备胞质体尚存在一些技术性的困难。最近Lesney等人提出了一种能够从悬浮系原生质体制备大量胞质体的方法。 2.3 其它的可能途径 (1)根据双亲原生质体形态上的差异或通过荧光染料标记来机械分离融合体,然后进行微培养。(2)利用分别由核基因组和质基因组编码的抗药性状,通过双重抗性选择获得胞质杂种。(3)原生质体直接摄取外缘细胞器。(4)通过显微注射或电激法实现细胞器转移。 3 胞质杂种中双亲胞质基因的传递遗传学 3.1 叶绿体基因组 胞质杂种中,叶绿体基因组的传递分为单亲传递和双亲传递两种。单亲传递是指胞质杂种愈伤组织及由之再生的植株只含有亲本之一的叶绿体基因组。这种分离机制目前尚不清楚。关于叶绿体基因组的分离是否随机的问题,由于研究者们采用的试验材料不同得出两种结论:一种是叶绿体基因组的随机分离,这在品种间、种间及属间原生质体融合中都被观察到;另一种是叶绿体基因组的非随机分离(即亲本之一的叶绿体基因组优先保留),如弗利克(Flick)和埃文(Evens,1982)在烟草的研究中表明,所有的N.nesophila和N.tabacum体细胞杂种都只具有N.nesophila叶绿体基因组,类似的例子很多。双亲传递是指胞质杂种中,同时含有双亲的叶绿体基因组,其在体细胞杂种以后的有性繁殖过程中能够保持稳定,既然双亲叶绿体能够共存,理论上二者就有可能发生重组。事实上,叶绿体基因组重组现象已被观察到,但频率很低。 3.2 线粒体基因组 胞质杂种中,线粒体基因组的传递方式是双亲传递,且发生活跃的重组,产生丰富的新类型。然而在分析线粒体基因组重组类型时不可忽视由于离体培养而诱发的线粒体基因组分子内重组(突变)的可能性,因为离体培养过程中不仅使核基因组产生大量变异,而且对于某些植物,也可诱发线粒体基因组发生变异。 4 植物胞质基因组控制的重要性状 目前已基本阐明的由叶绿体基因组编码的性状主要是一些抗药性状。如:链霉素抗性、林肯霉素抗性等。在与线粒体基因组有关的性状中,研究最多的是胞质型雄性不育性状。许多学者在不同植物上研究发现,雄性不育系与其同型保持系之间在线粒体DNA内切图谱或其编码的蛋白上存在明显差异。如在玉米上已发现T型雄性不育植株的线粒体基因组发生了多至7次重组,且主要发生于26s rRAN基因附近,产生一个嵌合基因,因此导致转录时阅读框架发生了改变,如果这个嵌合基因发生了缺失或小段插入,则阅读框架恢复正常,育性也随之恢复。 总之,植物体细胞杂交是胞质基因组及其所控制性状研究的有效途径,关于胞质性状的研究对于某些植物已从分子水平上深入到了与雄性不育相关的特异线粒体DNA片段及相应的特殊蛋白,但仍有许多问题有待深入研究。这些问题的阐明将会使得从分子水平上改良雄性不育性状成为可能。是真的哦

你们学校没有CNKI吗??那里面你要的文章用卡车装。

21世纪生命科学的研究进展和发展趋势 20世纪后半叶生命科学各领域所取得的巨大进展,特别是分子生物学的突破性成就,使生命科学在自然科学中的位置起了革命性的变化。很多科学家认为,在未来的自然科学中,生命科学将要成为带头学科,甚至预言21世纪是生物学世纪,虽然目前对这些论断还有不同看法,但勿庸置疑,在21世纪生命科学将继续蓬勃发展,生命科学对自然科学所起的巨大推动作用,决不亚于19世纪与20世纪上半叶的物理学。假如过去生命科学曾得益于引入物理学、化学和数学等学科的概念、方法与技术而得到长足的发展,那么,未来生命科学将以特有的方式向自然科学的其他学科进行积极的反馈与回报。当21世纪来临的时候,一些有远见的科学家、思想家与政治家将日益严重的诸多人类社会问题,如人口、地球环境、食物、资源与健康等重大问题的解决,莫不寄希望于生命科学与生物技术的进步。 2· 08·生命科学将成为21世纪自然科学的带头学科 20世纪50年代DNA双螺旋结构模型的发现,随后遗传信息传递“中心法则”的确立与DNA重组技术的建立使生命科学的面貌起了根本性的变化。分子生物学与遗传学的结合将用10一15年测定出人类基因组30亿个碱基对(遗传密码)的全序列,人体细胞约有10万个基因。人类基因组的“工作草图”迄今20%的测序已达99.99%的准确率和完成率,今后将要继续发现与阐明大量新的重要基因,诸如控制记忆与行为的基因,控制细胞衰老与程序性死亡的基因,新的癌基因与抑癌基因,以及与大量疾病有关的基因。将利用这些成果去为人类健康服务。 70年代后,分子生物学的发展,以基因工程为代表的生物工程的出现,生物技术通过对DNA链的精确切割与有目的地重组,使有目的地改良生物的性状与品质成为可能。迄今生物工程所取得的成就已在生产上显示出诱人的前景,尽管还存在有不少争议的问题,但很有可能成为21世纪的新兴产业。 发育生物学将要快速地兴起,它将要回答无数科学家100多年来孜孜以求而未解决的重大课题,一个受精卵通过细胞分裂与分化如何发育成为结构与功能无比复杂的个体,阐明在个体发育中时空上有条不紊的程序控制机理,从而为人类彻底控制动植物生长、发育创造条件。 RNA分子既有遗传信息功能又有酶功能的发现,为数十年踏步不前的难题“生命如何起源”的解决提供了新的契机。在21世纪,人们还要试图在实验室人工合成生命体。人们己有可能利用生物技术将保存在特殊环境中的古生物或冻干的尸体的DNA扩增,揭示其遗传密码,建立已绝灭生物的基因库,研究生物的进化与分类问题。 神经科学的崛起,预示着生命科学又一个高峰的来临。脑是含有1011细胞的无比复杂的高级结构体系,21世纪初从分子到行为水平的各个层次对脑功能的研究都将有重大突破,在阐明学习。记忆。思维。行为与感情机理等方面也将有重大进展。脑机能在理论上的进展将会促进新一代智能计算机的研制,这可能成为未来生命科学对自然科学与技术科学回报的最好例子。 生态学可能是最直接为人类生存环境服务并对国民经济持续与协调发展起重要作用的科学。生态学的理论与实践为中国三峡水库建设提供的决策依据就是一个例证。保护生物的多样性是当前生命科学最紧迫的任务之一。据可靠的数据说明每天约有100多种生物在地球上绝灭,很多生物在没有被人类认识以前就已消亡,这对人类无疑是一种灾难。生态学与生物多样性保护与利用的研究成果将指导人类遵循自然规律积极保护自己生存环境,否则人类的物质文明与精神文明都要受到灾难性影响。 顺应生命科学迅速发展的形势,发达国家政府及一些国际组织先后提出了《国际地圈及生物圈计划》、《人类基因组作图与测序计划》、《人类前沿科学计划》、《脑的十年》及《生物多样性利用与保护研究》等投资巨大的生命科学研究计划。其中仅《人类基因组作图与测序计划》,一项预算就高达30亿美元。 由于生命科学的发展,人才的需求量激增,近年除越来越多的物理学家,化学家与技术科学家被吸引到生物学研究领域外,以美国为例,近年统计48万博士学位获得者中从事生命科学的占51%。优秀青年科学家流向生命科学前沿,这是21世纪生命科学欣欣向荣的动力与源泉。 2. 08. 2 21世纪初生命科学的重大分支学科和发展趋势 80年代有远见的生物学家把分子生物学(包括分子遗传学)、细胞生物学、神经生物学与生态学列为当前生物科学的四大基础学科,无疑是正确地反映了现代生命科学的总趋势。遗传学(主要是分子遗传学)不仅当前是生物科学的带头学科,在今后多年还将保持其在生命科学中的核心作用。 有些科学家早就预测到,由于分子生物学、细胞生物学与遗传学的结合,必然促进发育生物学的蓬勃发展,从而提出发育生物学将成为21世纪生命科学的“新主人”,这种预测已逐渐变为现实。 分子生物学(包括分子遗传学)在生命科学中的主流地位,以及它在推动整个生命科学发展中所起的巨大作用是无可争辩的。细胞是生命活动基本的结构与功能单位,细胞生物学作为生物科学的基础学科地位必须给予重视。 很多生物科学家认为神经科学或脑科学的崛起将代表着生命科学发展的下一个高峰,然后将促进认知科学与行为科学的兴起。 生态学可能是最直接为人类生存环境服务,井对国民经济持续与协调发展起重要作用的学科。 A.分子生物学 分子生物学是在分子水平上研究生命现象本质与规律的学科。核酸与蛋白质(有人认为还有糖)是生命的最基本物质,因此核酸与蛋白质结构与功能的研究今后仍然是分子生物学研究的主要内容。蛋白质是生命活动的主要承担者,几乎一切生命活动都要依靠蛋白质(包括酶)来进行。蛋白质分子结构与功能的研究除了要阐明由氨基酸形成的并有一定顺序的肽链结构外,今后将特别重视肽链拆叠成的特定的三维空间结构,因为蛋白质生物功能与它的空间构型关系极为密切,核酸是遗传信息的携带者与传递者,遗传信息由DNA~RNA一蛋白质的传递过程,称为遗传信息传递的“中心法则”,是分子生物学(分子遗传学)研究的核心。其基本问题己比较清楚,当前研究的重点是: ①约经10一15年,人类基因组30亿个碱基对全序列(遗传密码)可以测出,这是具有里程碑意义的工作; ②真核生物基因表达过程在各层次上调节的研究仍然是今后相当长一段时间的任务。 分子生物学的概念、方法与技术和各学科的渗透,正在形成很多新的学科,诸如分子遗传学、细胞分子生物学、神经分子生物学、分子分类学、分子药理学与分子病理学等等。因此分子生物学在生命科学中的主导作用还将要持续下去。 B.遗传学 遗传学比分子生物学更具有自己独立的学科体系。但现代遗传学与分子生物学是不可分割、相互交叉的两个学科,且很难截然分开。 有些著名的遗传学家把遗传学概括称为基因学,因为现代遗传学主要是研究生物体遗传信息传递与表达的学科。基因携带的信息是由基因的结构所决定,信息的表达是由基因的功能实现的,因此遗传学研究的是基因的结构与功能。从遗传学的角度看,所有生命现象的机制,追根究底都会与基因的结构与功能相关。因此遗传学在今后较长时间仍然是生命科学的核心学科和推动力。 有人估计人体细胞内约有10万个基因,迄今弄清楚的不到5%,所以与重要生命活动有关与疾病有关的新基因的发现与阐明将是今后几十年的重要任务。 C.细胞生物学 著名生物学家威尔逊(Wilson)早在20世纪20年代就提出一句名言“一切生物学关键问题必须在细胞中找寻”,至今还有着很深的内涵。魏斯曼与摩尔根都曾先后试图在细胞研究的基础上建立遗传、发育与进化统一的理论,虽然当时没有找到具体解决的途径,但关于细胞的知识在生物科学中的重要性是显而易见的。细胞是一切生命活动结构与功能的基本单位,细胞生物学是研究细胞生命活动基本规律的科学,细胞的结构。细胞代谢、细胞遗传、细胞的增殖与分化,细胞信息的传递与细胞的通讯等是细胞生物学主要研究内容。虽然今后细胞生物学研究的内容是全方位的,但概括起来可能是两个基本点: 一是基因与基因产物如何控制细胞的重要生命活动,如生长、增殖、分化与衰老等,在此要涉及到一个全新的问题,细胞内外信号如何传递;二是基因产物一一蛋白质分子与其他生物分子如何构建与装配成细胞的结构,并行使细胞的有序的生命活动。 今后20多年,以下一些问题可望取得重要进展与突破: ①遗传信息的储存、复制与表达的主要执行者——染色体的结构与功能可能在不同的结构层次上得到阐明。 ②细胞骨架(包括核骨架与染色体骨架)的研究将得到全方位的进展。 ③细胞生物学与分子生物学、遗传学的结合,将在细胞分化机理研究方面有重要突破,为发育生物学快速发展奠定基础。 ④细胞衰老与细胞程序化死亡的机理将在更深层次上阐明。 ⑤以细胞分子生物学为骨干学科与其他学科结合,人工装配生命体的理想可能逐步 实现。 D.发育生物学 从一个受精卵通过细胞分裂与分化如何发育成为一个结构与功能复杂的个体,是至今未能解决的生命科学的重大课题,也是发育生物学的主课题。由于近几十年分子生物学、遗传学与细胞生物学所取得一一系歹(突破性成果与知识的积累,已为解决这一重大课题创造了条件,这也就是今后发育生物学应运而飞速发展的原因。 发育生物学当今要解决的基本问题是细胞的基因如何按一定的时空关系选择性地表达专一性的蛋白质,从而控制细胞的分化与个体发育。阐明基因在多层次水平上控制胚胎的发育就不仅是涉及到个别基因的问题,而是一系列调节基因在时空上的联系与配合,从而支配发育的程序。虽然这是难度极大的课题,但近年已初见端倪并有所突破。估计今后发育生物学将沿着这条道路深入下去,并可望取得丰硕的成果。 E.神经科学(或脑科学) 神经科学是研究人与动物神经系统(主要是脑)的结构与功能,在分子水平、神经网络水平、整体水平乃至行为水平阐明神经系统特别是脑的活动规律的学科群。脑的结构与功能是无比复杂的高级体系,含有10 11细胞。它是感觉、运动、学习、记忆、感情、行为与思维的活动基础。大脑细胞,口何指导人与动物的行为是未来生物学中最富潜力与最吸引人的领域;神经科学的崛起,预示着生命科学又有一个高峰的来临。神经科学或脑科学必然在下世纪促进认知科学与行为科学的兴起。因此各国政府投入巨资支持这一课题,包括美国总统签署的“命名1990年1月1日为脑的10年”不是没有道理的。 在今后几十年内可以预示到的神经科学突破性的进展可能包括: ①在分子到行为的各层次上阐明学习、记忆与认知等活动的基础; ②很快会发现与阐明一系列与记忆、行为有关的基因与基因产物; ③神经细胞的分化与神经系统的发育研究会有重大进展; ④脑机能在理论上的进展与突破(如模式识别、联想记忆、思维逻辑机理的阐明)会 促进新一代智能计算机与智能机器人的研制; ⑤一系列神经性疾病与精神病的病因可望在神经生物学研究中得到解释。 F.主态学(包括物种多样性保护研究) 生态学是研究有机体与周围环境——包括非生物环境与生物环境相互关系的科学。 由于生态学理论与应用是与世界环境保护。资源合理开发与保护,以至人类本身在地球上继续生存紧密相关的,尤其是地球环境日益恶化的情况下,生态学的重要性就变得十分突出。未来生态学的主要任务是协调人类活动与环境的关系。所以生态学经典学科的概念与研究内容必然要适应人类生存环境的保护与社会经济持续发展的要求而不断改变。 今后生态学研究的重点可能表现在以下方面: ①生态群落的多样性、稳定性与演变规律与人类活动的关系; ②全球气候变化对生态系统结构与功能的影响; ③生物多样性的保护和永续利用也是保护人类自身生存环境尤其是拯救濒临绝灭的 生物种类更加具有紧迫性; ④城市生态学与经济生态学将迅速发展; ⑤生态工程与生态技术将在国民经济建设中发挥作用。 G.空间生命科学 空间环境向生命科学提出了新的挑战,也为生命科学的发展提供了机遇。 21世纪人类的空间活动将要离开地球附近,探索月球及其他太阳系的大体。这就要求人在地球外各种环境中能长期地生活和工作,首先是在,长期空间飞行器中航行,月球站以及火星或火卫站等,空间医学必须有重大突破,解决长期在地外空间所遇到的宇航员骨质疏松,肌肉萎缩和兔疫功能变化等生理学难题,同时,与开拓大疆相关联的是受控生态系统,创造一个不需要外界补给,而使人们能在其中长期生活的环境。这些问题有希望在21世纪20一30年代解决,其中空间生理学问题有可能利用中医和中药的方法取得某些重大突破。 地球外层空间为研究重力生物学提供了理想的条件,重力条件对各种层次结构生物的影响仍然是21世纪重力生物学的主题,今后的研究重点将集中于细胞,绿色植物,一些微生物和小动物。特别是重力环境对哺乳动物细胞形态、结构、变异和基因表达的影响将是一个热点。重力生物学的学术意义在于揭示重力效应在生物进化过程中的作用,是自然科学的基本问题;另一方面,重力生物学的成果将是空间制药及空间生态系统等应用领域的基础,重力生物学的学术和应用都是下个世纪的重要课题,可望在21世纪20-30年代取得突破性的进展。 地外生物探索是生命起源的重大课题,其中地球以外的智能生物探索是一个长期的 课题。地球上的人类正在向外层空间发射电波和接收讯号。外星人与地球人之间可能存在的学术和技术差距不仅是一种危险,也是自然科学的重大前沿问题,将被持续地研究下去。 2. 08. 5 21世纪初生命科学最有可能突破的领域 ①人类基因组的全序列(遗传密码)将在10一15年测定完毕,为全部遗传信息的破译奠定基础。 ②与生命活动有关的重要基因与重要疾病有关的基因将被陆续发现,其中特别引人注目的是控制记忆与行为的基因、控制衰老与细胞程序性死亡的基因、控制细胞增殖的系列基因、胚胎发育多层次网络调节基因。新的癌基因与抑癌基因的发现与其生物学功能的释明将大大提高对生命本质的了解。 ③人与动物的高级生命活动:感知、思维、记忆、行为与感情的发生与活动机制在脑科学研究突破的基础上,有更深的认识。 ④癌症的治疗将有全面的突破,爱滋病的防治得到控制。 ⑤在阐明地球上原始生命起源的基础上,人类还可能在实验室合成生命体,这种生命体应具有原始细胞的基本特征。

浅谈基础医学专业神经生物学教学体会

无论是在学校还是在社会中,大家都经常看到论文的身影吧,论文是指进行各个学术领域的研究和描述学术研究成果的文章。怎么写论文才能避免踩雷呢?下面是我为大家整理的浅谈基础医学专业神经生物学教学体会论文,仅供参考,欢迎大家阅读。

论文摘要: 基础医学专业是首都医科大学的新设专业,目的在于培养具有从事基础医学教育和科学研究能力的高级专门人才。神经生物学是一门新兴的交叉学科,是基础医学专业学生的必修课程。本文总结了近年来在基础医学专业神经生物学教学中的体会和经验。旨在进一步提高教学效果。

论文关键词: 基础医学专业;神经生物学;教学效果

神经生物学是一门涉及解剖学、生理学、病理学、心理学等知识的交叉学科,以研究人体大脑奥秘为主,在20世纪后期得到迅速发展,已成为引领当代生命科学革命的学科之一。我国在《国家中长期科学和技术发展规划纲要(2006~2020年)》中将“脑科学与认知科学”列入重点发展项目之中。2013年美国公布了推进创新神经技术脑研究计划,简称“脑计划”,神经科学进入了前所未有的快速发展时期。

首都医科大学于1997年开始神经生物学教学工作,主要面向临床医学七年制本科生和五年制本科生。2007年,首都医科大学开设了基础医学专业,神经生物学是该专业学生的必修课程。本文总结了近年来在基础医学专业神经生物学教学中的经验,现介绍如下。

1.精选课程内容

我校基础医学专业的定位是培养具有从事基础医学教育和科学研究能力的高级专门人才。由于该专业和临床医学专业的培养目标不同,因此课程内容也需相应调整。在教学内容上,应选择最新出版、且涵盖最新研究成果的教材,确保基础医学专业学生能够接受到最新的知识信息。我校基础医学专业学生所用的教材是第三版的(

我校神经生物学学科属于国家重点学科,研究领域涉及神经变性病、抑郁症、脑卒中和神经损伤与修复等。鉴于基础医学专业学生将来主要从事科研工作,因此教学时应注重研究方法的讲述。如在讲授“精神系统疾病”章节时涉及抑郁症,就要向学生介绍抑郁症动物模型的制备方法及评判标准,使学生对抑郁症的研究方法有初步了解,对将来从事精神疾病方面的研究有所帮助;同样,在讲授“运动的调控机制”章节时,涉及一种常见的神经变性病-- 帕金森病,教师需要向学生讲解该疾病动物模型的制备方法及研究方法。通过上述教学,使学生在潜移默化中掌握神经科学研究方法,为将来的研究工作奠定基础。

2.培养学生科研思维

神经生物学是一门实践性很强的学科。教师在教学中,要对推动神经生物学发展的经典实验进行系统讲解,详细回顾当年的知识背景和技术水平,科学家在当时的条件下如何发现科学问题。采用哪种研究方法和技术手段解决这些科学问题。这样有助于激发学生对科学研究的兴趣,培养学生发现问题和解决问题的能力,使其初步形成科研思维。

神经生物学是一门与实验密切相关的学科。培养学生动手能力,分析、解决问题能力是培养基础医学专业科研思维的重要组成部分。传统实验教学完全忽视了对学生科研创新能力的培养。因此,我院针对基础医学专业学生开设了实验神经科学课程,另外安排l2学时让学生充分参与我院各课题组科学实验,自由选择小课题,每人完成一个小实验。通过上述方法,加强了学生对神经科学研究方法的理解,提高了学生的'科研思维能力及动手能力。

3.精选教学方法

传统的课堂教学方法是按照先行教学计划和规定时间,由一名教师对众多学生面对面讲授某学科知识,而这不利于发挥学生主动性和自觉性,影响了教学效果。

教学是一种以问题为导向的教学方法。PBL医学教学以问题为基础,以医学生为主体,以小组讨论为形式,在指导教师参与下,围绕某一医学专题或具体病例的诊治进行讨论研究。1969年,美国神经病学教授Barrows在加拿大麦克马斯特大学首先将PBL教学法引入医学教育领域 .PBL教学法逐渐受到各国关注,已成为我国医学教育改革的热点。

在基础医学专业神经生物学教学中使用PBL教学法,如在讲授帕金森病时,概念以常规方法进行教授,发病机理和治疗方法以PBL教学法进行教授。首先指导学生针对这一疾病进行相关资料查询,安排学生汇总帕金森病的流行病学、发病机理、临床症状和治疗等资料,然后分组讨论,教师最后进行总结和提炼。分析近年来学生期末考试成绩,笔者发现PBL教学法极大地提高了课堂教学效果和学生考试成绩。

4.注重双语教学

在基础医学专业神经生物学教学中采用规范的双语教学,可为学生打下扎实的专业外语基础。调查显示,多数学生及教师认为双语教学有助于提高其专业英语能力,也有利于提高整体外语水平Ⅲ。由于基础医学专业学生将来主要从事教学和科研工作,查阅文献和参加国际交流需要良好的外语能力,双语教学已是大势所趋。

神经生物学涉及大量学科知识,内容繁杂。因此,神经生物学双语教学对教师和学生都是极大的挑战。教师不仅要掌握大量的专业词汇,而且还要发音正确,只有这样才能保证双语教学的准确性。双语教学不是一蹴而就的,要循序渐进。在教学中,中英文教学比例要适当,开始授课时,可先学习关键名词的专业英语,再学普通名词,让学生慢慢适应双语教学。对于重点内容,采取英文讲解、中文总结的方式,强化学生记忆,巩固学生对知识的掌握。

5.提高课件制作质量

多媒体课件是现代化教育技术的重要组成部分,可使抽象难懂的医学知识直观而形象。针对基础医学专业学生,课件中新的概念和名词后要加注英文,通过中英文对照,增加学生专业英语词汇量。课件文字尽量做到言简意赅,避免教学内容枯燥空洞。在 片的选择上,遵循直观易懂和动漫通俗的原则,努力将复杂问题简单化、抽象问题直观化、整体问题分解化和静止知识动态化在课件中插入ffj关视频,展示文、图、声、像并茂的特点,多层次、多角度地呈现教学内容问。在讲解突触传递时,可利用动画演示突触茸膜释放神经递质,从而引起突触后电位的过程,使枯燥的知识变得生动有趣;在讲解帕金森病时,通过视频播放帕金森病人和帕金森动物模型大鼠发病时的行为表现,使学生对该疾病有直观认识;在讲解大脑中枢神经系统脑室分布图时,可通过多媒体课件展示大脑不同断面图片以及三维立体脑旋转图,将抽象难懂的知识形象化,便于学生理解和掌握

6.结语

目前,我校针对基础医学专业神经生物学教学才刚开始,教学内容还需进一步规范,教学重难点还需进一步统一,还需在实践中慢慢摸索。加强基础医学专业神经生物学的教学研究,不仅有利于提高教学效果,也有助于提高学生科研素质,从而提升我校神经生物学学科的竞争力。

参考文献:

雪妍。三结合课堂教学方法研究叨。中国大学教学,2011(7):

惠雪枫,李小记,杨玲,等。PBL教学法在神经解剖学教学中的应用实践[J】_中国高等医学教育,2008(3):

【3】唐亚平,刘燕平,杨宏宝。当前医学教育中PBL教学法的不足与对策。时珍国医国药,2008,19(5):

【4】许继德,李建华,卢佳怡,等。临床医学本科生理学双语教学的实践与思考叨。山西医科大学学报,2005,7(1):

林丽,任安,袁文俊。八年制医学生生理学双语教学初探[J】I西北医学教育,2007,15(5):

【6】李玉子。浅谈多媒体技术在内科学教学中的应用[J】_中国高等医学教育,2006,27(12):

神经生物学报

神经生物学在学科分类上属于生物学,但是生物学和医学本来就是结合非常紧密的学科,所以不少医学院校开设神经生物学也是很正常的。

国内大学生物学强的院校参考国家重点学科入选高校,如下表:

注意,一级学科生物学包含了二级学科神经生物学,也就是获得一级学科重点学科的代表生物学所有方向都是重点

可以。临床医学是统称,里面包括好多科目,是可以报神经生物学的。临床医学是研究疾病的病因、诊断、治疗和预后,提高临床治疗水平,促进人体健康的科学,临床即“亲临病床”之意,它根据病人的临床表现,从整体出发结合研究疾病的病因、发病机理和病理过程,进而确定诊断。

神经生物学研究论文题目

查英文的去NCBI。查中文的去万方 中国知网

神经科学的形态学研究方法可以将大量的神经信息用特定的形式来表述,从而帮助我们理解大脑中的不同部分之间的联系。它的优点在于能够有效地标注神经形态,从而更好地理解神经结构及其功能。然而它也因受到技术限制而存在一些缺点,例如对复杂的神经系统尚未能够得到很好的描述和理解。

研究大脑的方法和技术有很多,想要在一篇专栏里全部囊括进来是不现实的。有专业需要的还是需要翻翻书。韩济生所编的《神经科学(第三版)》开头就是七个章节的方法介绍:形态学方法、生理药理学方法、电生理学方法、光学成像方法、脑功能成像方法、遗传学方法和行为学方法。 虽然内容不是很新,仍有可取之处。这篇文章仅浅显地做一次梳理,重点讲述成像技术。笔者也还是懵懂的学生,写这篇文章参考了老师的授课讲义、许多网络资料和书籍,但可能还是有错误的。如果发现有错,请指正。一、概述行为是大脑活动的外显,但我们无法仅从行为的衡量推测出大脑的活动规律。这不是在否定行为学研究,相反,行为学研究为脑机制研究提供了背景和指导。那么,当今我们有哪些手段能够将行为与脑关联起来?大体上可以分为三类:1. 观察(暂时性)损伤的影响a. 脑损伤b. 基因修饰c. 失活钝化作用(inactivation)2. 观察(干扰性)刺激的影响a. 药物b. TMS,tDCS,DBSc. 训练(training)3. 在行为过程中衡量脑部活动a. 电生理学b. EEG/MEGc. PET/MRIi. 结构性ii. 功能性这些技术手段要解决的问题主要有三个:第一,我们如何同时测量多个区域的活动?有些任务可能同时涉及多个脑区,比如空间知觉、记忆和计划。第二,如何衡量单一运动模式或感觉成分的影响?第三,如何找出脑区之间存在连接的证据?二、脑与认知的关联1. 脑损伤探究认知的神经基础,其主要目标之一,是建立不同脑区与神经活动和认知功能(或认知加工)之间的联系。回答这个问题的方法有很多,其中之一是对脑损伤(brain lesion)病人进行研究,找出脑区与认知加工的关联性(association)和无关联性(dissociation)。Purve's, Cognitive Neuroscience, Chapter 3假设有一组病人的脑区1(图中Region 1)受损,其在进行任务A(Task A,红色柱)时表现出明显缺陷,但在进行任务B(Task B,蓝色柱)时与常人无异,那么说明脑区1与任务A的神经活动之间有关联性,而脑区1与任务B的神经活动之间无关联性。如果能找到另一组脑区2(图中Region 2)受损的病人,他们的任务A表现与常人无异,而任务B明显有缺陷,那么从以上两个结果就可以作为以下结论的强证据:这两个脑区与这两个任务之间存在双重无关联性(double dissociation)。双重无关联性比单一的关联性和无关联性更能说明特定脑区与特定任务神经活动之间的关系,因为单一的无关联性可能是由某个一般因素(general factor)引起的,比如说任务的难度。但是,如果另一种损伤能够提供正好相反的结果,那么就更能说明两个脑区的功能独立性。不过,一般来说,被检验的脑区通常是部分无关联的,但这也能给我们提供很多信息了。这种关联性和无关联性也能从功能性核磁共振成像(fMRI)实验中得到(右图),但不限于脑损伤病人被试,也可以用健康人做被试。后面再讲fMRI的细节。另外,某些脑区损伤、脑部肿瘤或疾病也会导致行为异常,从而揭示该脑区的功能。比较著名的例子是两种失语症(Aphasia),即言语障碍。其一,是因威尔尼克区(Wernicke's area,顶枕颞联合处)受损而出现的言语理解障碍(fluent aphasia)。患者的听力没有问题,但是他们无法理解别人所说的话,自己说的话语法正确但同样欠缺意义。如果你问他们,hey bro,你刚才拿着iPad干嘛呢?他们可能会微笑着“回答”说,“现在他们没有在织什么(right at the moment they don't show a darn thing)。”有兴趣的可以看看这个视频:b站无字幕版:失语症Wernicke's Area受损 YouTube有字幕版:失语症Wernicke‘s area)。某一瞬间,你可能觉得你们处于两个平行时空,正在平行游戏(just kidding)。另一种,是因布洛卡区(Broca‘s area,左脑半球额叶下回)受损而导致的言语表达障碍(expressive aphasia)。患者能够理解你跟他们说的话,但是他们自己没有办法连贯地说一句话,就像牙牙学语的宝宝一样。比如,在解释自己去医院看牙医时,他们会说:“是...阿...星期一...阿...父亲和Peter H(他的姓名)..., 及父亲....阿...医院...及阿...星期三...星期三九点...以及 ,喔...星期二...十点, 阿,医生...两个...医生...及阿...牙齿...对的。”言语障碍还有很多,我记得高中生物书也提到过的,有兴趣的可以查阅一下相关资料。最近在英剧《慈悲街》里也看到有医生提及Paul Broca其人。故事背景刚好发生在Broca的时代吧,挺有意思的(但我还是弃剧了_(:3∠)_)。2. 药物毕竟,脑内涉及相当多的神经化学物质,使用药物进行研究也是一种手段。以人为被试的实验,我了解得不多,只听过用多巴胺做实验的。曾经有段时间(可能现在也仍旧在进行),北师大脑与认知研究所(现在并入心理学部啦)在研究多巴胺对学习的影响(不过这可能只是cover story,谁知道搞心理的心里在想什么,嗯?),给的钱还挺多(见下图招募广告)。药物对行为影响的研究被试招募广告不过,大多数此类实验还是在动物身上进行的。下图是蜘蛛被给予某种药物前后所结的网。猜猜是什么药物?提示:基本上是科研人员、程序员每日必备。答案在评论。蜘蛛被给予某种药物前后所结的网3. 脑深部电刺激术(Deep Brain Stimulation, DBS)目前,脑深部电刺激术已经应用于临床了。它发展于上世纪80年代,是治疗运动性神经系统疾病的新方法,主要运用于帕金森病(Parkinson's Disease,PD)等。它由体内刺激脉冲发放器和体外控制器组成。你可以把它看作脑起搏器,跟心起搏器的不同在于,你可以控制它的开关(心脏不行啊,停了就完蛋了)。以帕金森病的治疗为例,立体定位手术将脉冲发放器植入锁骨皮下,发放刺激的微电极定位于黑质(Substantia Nigra)。患者打开开关,就能给予黑质额外刺激,使其产生多巴胺,从而改善震颤症状。当然,微电极的植入部位视病情而定,也有放在苍白球内核的(关于帕金森病的致病机制此不赘述)。DBS治疗仪器原理示意图我看过患者自录的视频,效果还是很明显的。当开启脑起搏器后,患者的各种动作都很正常,拿东西、做手势都很平稳,然而一旦关闭开关,马上就出现双手震颤等症状了。4. 经颅磁刺激(Transcranial Magnetic Stimulation, TMS)脑功能成像的一般逻辑是:特定任务引发特定脑区激活。EEG和fMRI就是基于这条逻辑。不过,一个命题如果成立,那么它的逆否命题也成立。因此,上述逻辑的逆否命题也是成立的:当我们抑制某个脑区的活动性时,某种任务无法完成。损伤或捣毁某个脑区、给药、利用基因编辑技术抑制或消除特定脑区的活动性,再看行为认知表现,就是基于这一点。不过以人为被试的话,这三种手段是无法通过伦理审查的。而经颅磁刺激(TMS)技术为研究者们提供了一种适用于人的、无创的、干扰特定脑区活动的方法。在特定时刻,特定皮层对应的头皮位置,施加具有一定强度和持续时间的单个或多个磁脉冲,在脑内产生反向感应电流就能暂时地干扰该皮层的功能活动,就能检验该脑区的活动对某个实验任务的完成是否必要。经颅磁刺激有单脉冲(single-pulse)和多脉冲(repetitive)两种模式。由于脉冲作用时间段,一般是不会给被试带来伤害的。我在一次workshop中“玩”过一下TMS,脉冲发放器有点像小樱的魔法棒,拿起来挺重的。这玩意你说不危险吧,其实也有风险的。发放脉冲的时候手一定要拿稳了,不然,万一手一滑,结果抑制了脑干的活动性,出人命了是要赔光经费的。这也是TMS较少用于小脑功能研究的一个原因。TMS的缺点是很明显的。第一,它精度不高。其空间分辨率为厘米量级,不如fMRI;时间分辨率为几十毫秒,不如EEG/MEG。第二,它刺激的部位不够深,只能作用于皮层。虽然大部分神经元位于皮层灰质,但脑中还是有一些深部核团的,而TMS无法影响到它们。第三,运用于小脑研究时有局限。这一点我比较在意,因为我是搞小脑的。小脑的蚓体部分你不敢用TMS抑制啊,人家就在脑干之上。当然,我们基本也不用TMS研究小脑。5. 经颅直流电刺激(Transcranial Direct Current Stimulation, tDCS)tDCS 由阳极和阴极两个表面电极组成(不会插进脑子里的),可以用外部软件控制刺激输出类型,以微弱极化的直流电作用于大脑皮层。tDCS不是通过阈上刺激引起神经元放电,而是通过调节神经网络的活性而发挥作用。它改变的是影响神经元去极化和超极化的膜静息电位,从而改变神经元的兴奋性。阳极刺激引起膜静息电位去极化,从而提高神经元兴奋性,也使它们更容易发生同步放电;阴极刺激引起膜静息电位超极化,降低神经元兴奋性,减少同步放电。这个技术最初是用于治疗抑郁症和其他脑损伤疾病的,后来也用于帕金森病、阿尔茨海默病和精神分裂等。现在,研究发现,tDCS能通过表观遗传学(epigenetic)机制影响海马内脑源性神经营养因子(BDNF)的表达,改变细胞水平的突触可塑性,从而改善了学习和记忆(Podda, 2016)。不过这研究很新,还是在小鼠上做的,还需要更多论证,能不能适用于人的情况也不好说,就算能那啥时候能开发出保健性产品就更难说了,我劝读者淡定。关于涉及脑刺激的实验,研究者应该设置三种实验条件:1)实验刺激条件;2)控制刺激条件;3)无刺激条件(sham condition)。而实际上,许多研究中都缺少了第二或第三种条件。像我这么勇于探索的人,自然也是体验过这个技术的。我参加的那个实验是研究平衡觉的,详细内容就不说了,毕竟人家还没把文章写出来。实验中,他们需要在耳后乳突处安放电极,刺激前庭,使被试产生旋转或平移的感觉。这种流电前庭刺激(Galvanic vastibular stimulation)属于tDCS的一种变式。我参加的时候还不知道啊,做完这个实验后还跟主试小姐姐说,好好玩哦和你呆了一下午真开心呐。第二天小姐姐的师妹来问我要不要参加tDCS的一个实验呀,我查了查翻译,说“哎呀那个听起来太刺激了呀我就不去了”……感觉伤害了小姐姐的师妹。好了,回到主题上来,主试施加电流的时候,我听得见“哒”的一声“电的声音”,然后口腔内有些难以言说的奇妙感觉,然后就感觉到自己在旋转或平移——但实际上并没有,因为我的身体被固定住了。由于涉及前庭,有些人会觉得很难受,有恶心、呕吐等情况,但我觉得一切OK。三、衡量脑部活动性1. 直接的电生理记录 (Direct electrophysiological recording)电生理手段记录的是单个神经元的放电活动,可以进行胞外或胞内记录。膜片钳是一种很重要的电生理记录方式,具体的原理和方法可以写出一本书来。活体(in vivo)记录只在动物身上进行,体外(in vitro)是可以用人类的脑组织碎片的。在脑部肿瘤相关研究中,研究者们可以与医院神经外科合作,让医生们在切除脑部肿瘤的时候通知他们去取新鲜的肿瘤组织,然后尽快用人造脑脊液(artificial cerebrospinal fluid, ACSF)在适宜条件下培养,并进行电生理记录。这些切除下来的肿瘤组织往往还带有一些周边的健康脑组织,后者就成了肿瘤组织的“健康”对照。有些神经元很好记录,比如浦肯野细胞,还有些神经元的记录难于上青天,分分钟令研究者怀疑人生。最近,我的督导在进行小脑深部核团神经元的patching,一整个下午patch不到一个细胞的情况也是有的。刚来实验室的时候,我去观摩他patching,观摩了两小时。督导等到下午五点,仿佛大赦,慈眉善目地催我赶紧回家看书预习第二天功课。出门后,师兄跟我说,你督导为了顾及男人的面子,实在不想让你看他重复失败了,其实他等你一走,就会骂屎摔桌关仪器走人了,毕竟我也这样。但后来我发现,我督导真的很拼命,有时挣命patching到午夜。2. 脑电图(Electro-encephalography, EEG)脑电技术可以写若干本书出来。在此只是蜻蜓点水,拣我知道的说一说。脑电图应该是比较常见的脑部成像技术了。记录脑电信号的时候,要在头皮上安放多个电极,以收集该电极位置下随时间变化的多个皮层神经元同步放电的信号。毕竟电极那么大,只有当它底下的神经元同步放电时才能收集到电信号,不然,单个神经元的电信号就相互抵消掉了。这也得感谢我们的皮层神经元是按照同向柱状结构排列的,不然横七竖八什么也记录不到的。电极的数量有单导、8导、32导、64导,甚至还有256导。这么常用的脑研究手段,我当然也体验过啦。五年前的被试价格大概是每小时50~60元,一般一次俩小时。要洗头,去掉影响导电性的头皮屑,然后戴帽子打电极膏(edible)降电阻。期间可以出现各种各样的情况(帽子坏啦软件崩啦电阻降不下来啦),十分磨练研究者的耐心和意志。做被试的时候,打电极这一步是非常好的睡觉的时机,戏精一点的人可能会觉得自己在做头部SPA(I‘m kidding)。记录时可选择耳后电极作为参考,也可以选择用平均参考电极作为参考。眼睛上下方的电极用于记录眨眼,以消除伪迹。一般来说,主试一般都会要求被试在静息时不要想任何事情,尽量放空。说实话,有时候这对被试来说很难。因为有些被试闭上眼睛就想睡觉,比如我,所以后来我基本也不去当脑电被试了,以免干扰人家的数据,阻碍了人家发paper赢奖金走上人生巅峰的路。这也勉强还好,说想睡觉其实也不会睡着的。但有一天,我听一个朋友倾诉,他那天去做脑电被试赚零嘴钱,一进门就被主试小哥帅气的脸深深吸引,静息的时候脑子里全都是乱七八糟不堪入目的画面,完全没法克制。为小哥的数据点蜡,同时提醒各位,选主试要慎重。言归正传(我跑题了吗?挠头)。EEG的电极所记录到的信号包含了多种频率的脑电波,进行功率谱密度(Power Spectral Density, PSD)分析,可得到不通频率的波的能量分布。这是一种传统的频域分析方法。某些脑区可能低频波更大更多,某些脑区可能主要是高频波。低频波往往意味着缺乏意识(比如睡眠阶段),高频波一般意味着高活动性。功率谱密度分析利用小波分析(wavelet decomposition)或滤波器(filter)可以获得EEG节律波,可粗略将其划分为五个波段(wave bands):活动或唤醒时候出现的Gamma波,频率于30Hz,比如说,现在正在看这篇文章的你,脑子里应该是这样的波;当然了,如果没有那么高的活动性,或者比较冷静,那么应该是Beta波,频率在16~30Hz之间;放松状态下为alpha波,频率在8~15Hz之间;困倦状态下为theta波,频率在4~7Hz之间,比如,上课听不懂的时候,满脑子都是这种波;深度睡眠(非快速眼动阶段)的时候为Delta波,频率小于4Hz,本科的形政课上,我脑内基本都是这种波。我在高三期间接受过心理放松疗法,当时咨询师会在念指导语时播放所谓的alpha波音乐,来帮助我达到一种放松的状态。至于究竟有没有效果,我说不好,因为……当时没有戴EEG的帽子哈哈哈哈。另外,有研究报告说,在冥想时,与普通人相比,佛教和尚更容易出现高度清醒的Gamma波(Davidson et al., 2008)。可以说很有意思了。大概冥想是真的有用吧,但是需要坚持练习才有效果。经过包括滤波、矫正、平均叠加在内的大概10个步骤,最后可以得到不同刺激条件对应的事件相关电位(Event-related potential, ERP),从而建立刺激与应答之间的关联(stimulus response association)。一个ERP波形由一系列峰谷组成,这些电压波动反映的是若干基础或潜在独立的成分之和。如何设计ERP实验,使这些潜在独立成分能够被测量出来,是实验成功的关键。一般,在呈现视觉刺激后,首先会出现早期视觉成分C1;其次出现P1族,它具有注意效应,但受到刺激对比度的影响,而N180成分一般与错误加工有关;后面出现的P3族成分最为关键,它是内源性成分,受注意的影响。对有需要的读者,推荐几本入门读物,这里不展开了:研究及实验逻辑、基础:Steven J. Luck写的《事件相关电位基础》,目前华东师大出版社已经出版了范思陆、丁玉珑、曲折和傅世敏合译的译本;入门:赵仑写的《ERPs实验教程》;数据分析方面:魏景汉和罗跃嘉写的《事件相关电位原理与技术》。如果把每个电极/线圈随位置上的波形信息综合到一起就可以绘制出头皮表面电/磁场强度随时间变化的地形图。那我们能不能根据这些信号计算出它们的“源”空间分布?这就是脑电的“逆向问题(Inverse problem)”。很难,它的解其实有无穷多个。根据"源"分析中事先所设定的边界条件多少,我们通常可以在研究论文中看到“偶极子定位(dipole localization)”和“电流密度分布(current density distribution)”两种“源”分析模型。后者更适合研究大脑高级认知加工过程。但这种源分析得到的空间分布精度很低,远比不上fMRI。EEG厉害的地方在于时间精度,为毫秒量级。3. 核磁共振成像(Magnetic Rsonance Imaging, MRI)-原理- (以下部分译自Principles of neural science, 5th edition, chapter 20)我们知道,原子核有自旋(spin)运动,而自旋在外加磁场中会发生磁化(nuclear magnetic resonance)。1949年,Erwin Hahn发现,核磁共振的消退随该物体的化学组成而变化,这是fMRI的原理基础。MRI扫描仪由几个部分组成:1)能产生巨大磁场的超导磁体。身体里的每一个水质子都会绕轴旋转,就像一个小小的条形磁铁一样。一般来说,水质子的旋转方向都是散乱无规律的,所以身体组织的净磁场为零。但是,如果施加一个磁场,那么质子的自旋方向就对齐了。2)高频线圈(radio frequency coil,RF coil),一种设计独特的线圈,环绕着被试。根据安培定律(Ampere's law)RF线圈中短暂、快速变化的电流信号会产生一个快速变化的磁场。这第二个磁场与扫描仪中的主磁场叠加。RF线圈发出的电流称RF脉冲(RF pulse)。由RF脉冲产生的磁场使质子发生进动(precession)运动,即其自旋轴也在绕另一个轴旋转。将个体体内所有水质子活动叠加,其进动运动会产生一个随时间而变化的旋转磁场。依据法拉第定律(Faraday's law),这会在RF线圈内产生一个变化的电流。而MRI测量的就是这个电流。3)磁梯度线圈(magnetic gradient coils)。这个线圈是为了3D成像而加的。具体不赘述了。-fMRI-功能性核磁共振(functional Magnetic Resonance Imaging, fMRI)主要衡量的是每个体素(voxel)内脱氧血红蛋白(deoxyhemoglobin)的相对含量。当神经元处于激活状态时,该区域的含氧血供应增加。由于某种未知原因,供应的含氧血红蛋白量比局域耗氧量要多,因而导致该区域的含氧血红蛋白与脱氧血红蛋白的比值升高。含氧血红蛋白和脱氧血红蛋白有着不通的磁特性。当氧分子从血红蛋白上脱落时,血红蛋白中的铁离子暴露出来。因此,脱氧血红蛋白会在周围产生一个不均匀的磁场。所以靠近这些脱氧血红蛋白的水分子所处的磁场就与别个不同了。而,磁场越不均匀,质子的横向磁化强度衰减时间(T2)越短。如果某个脑区的血氧含量较高,那么该处磁场更均匀,T2更长,成像的光点更亮。写累了,扯一扯闲话。话说,一台核磁共振仪价值几百上千万人民币,占用场地的钱还得另算。平时看到医院的大烟囱冒出白雾,就是在冷却核磁共振仪。2013年那会儿,使用两小时fMRI就得花掉2000元经费,被试费的价格是300元俩小时。实验要求被试身上不得含有金属仪器,什么镶金牙、起搏器等等的就不要想了,会出事的。毕竟磁场那么大。到了实验室之后,由主试带着一条一条询问、签署知情同意书,然后去试衣间脱下所有衣服(内裤大概是不用脱的),换上他们给的实验服(大概是病号服)。进入仪器房间前还要再用金属探测仪再检查一遍身体。呆在核磁共振仪里面,空间非常狭小,无法翻身,所以有幽闭恐惧症的也不能参加这种实验。实验中,机器的声音非常非常大,主试要给被试戴耳塞的。有一次,我的主试忘记给我耳塞了。我在实验开始前呼叫,但是主试好像并没有听到,于是我带着巨大的担忧和恐惧在进行各种认知任务。我每一秒都在担心下一秒是不是就聋了_(:3∠)_。在进行实验时,研究者至少要设计两个间隔进行条件(矩形设计),任务条件和控制条件,后者可以为静息态。然后将任务条件下的信号平均叠加,选择兴趣区(Region of interest, ROI)进行分析。另外,在呈现多种刺激时,可以使用事件相关设计,但是事件与事件之间的间隔应不少于5秒。因为fMRI的冲击响应方程提示我们,刺激之后的4~6秒,fMRI信号才达到峰值。-structural MRI-结构性核磁共振(Structural MRI)一般有两种应用。一种是基于体素的形态学分析(Voxel based morphometry, VBM),另一种是衡量连接性的弥散张量成像(diffusion tensor imaging, DTI)。VBM是一种以体素为单位的形态测量学方法,可以定量检测出脑组织各组分的密度和体积,从而能够检测出局部脑区的特征和脑组织成分的差异。它也可以得出某脑区体积与行为之间的关联性。我们可以举个论文题目当例子:《大脑局部灰质体积与戒烟结果的关系——基于体素的形态学分析》(钱微等,2014)。还有人研究了自由派和保守派的前扣带回和右侧杏仁核体积的对比(Kanai et al., 2011),还有显著呢,发在Cell子刊Current Biology(IF:4.99)上,大家自己批判性看待结果吧。Kanai et al., 2011也有研究表明,网络成瘾越久,背外侧前额叶、腹侧前扣带回和辅助运动区皮层灰质体积就越小(Yuan et al., 2011)。Yuan et al., 2011几十年前,人们就发现MRI能够测量谁扩散程度上的差异。DTI就是在此基础上发展起来的,它能够描述脑内白质纤维束每一点的局域方向。这是因为白质由许多轴突组成,而水分子沿白质纤维束反向扩散的速度是垂直方向速度的3~6倍。4. 正电子发射断层成像(postron emission tomography, PET)PET是基于对放射性示踪原子核进行检测的成像技术。被试需要被给予一些能发射正电子的原子核标记物,也就是C、O、N等原子的同位素,比如C11葡萄糖溶液。放射出来的正电子与周围粒子碰撞失去动能之后将与物质中的自由电子结合发生堙灭过程,从而释放出一对反向的光子(gamma 射线) 。 这样的光子能够被周围含有闪烁晶体( scintillator ) 的 gamma射线探头所检测到。因为每个正电子堙灭产生两个光子 ,所以 PET 扫描仪中只采用两个同时探测到的gamma射线以确保只有同时产生的反向光子才被检测。相关的两个探头的连线确定了正电子所在的直线,以便用数学的方法来重构出断层图(韩济生,2006)。右图是PET成像图。基本上,PET的实验设计和fMRI的矩形设计是一样的。但是和MRI相比,它的时间分辨率比fMRI还要糟糕(最好的是EEG),空间分辨率比MRI差一点,但也还行了。而PET技术所需的放射活性标记物也带来了一些优缺点。优点是它能够标记不通的化合物,比如葡萄糖,或者氧分子。缺点在于它有放射活性。而且非常耗时,不能重复多个任务,或者说多个任务之间所需的间隔时间很长。四、结语下图是不同脑研究技术的时间精度和空间精度大致分布图。其实还有好些研究大脑的手段还没有提到。比如在动物身上做的各种免疫组化示踪等,透明脑成像图是非常酷炫的(发文章的话会很好看)。以后有机会可以再说。每种研究手段都有它的优缺点,至少目前还没有十全十美的技术手段。在解释用这些技术得到的结果时,要谨慎、批判地去看待那些数据。

新乡医学院硕士学位论文撰写要求 学位论文是为申请学位而撰写的学术论文,是评判学位申请者学术水平的主要依据,也是学位申请者获得学位的必要条件之一。为规范和统一我院研究生学位论文的写作,根据《中华人民共和国学位条例暂行实施办法》的有关规定,提出以下要求: 1硕士学位论文基本要求 硕士学位论文要注意在基础学科或应用学科中选择有价值的课题,对所研究的课题有新的见解或新成果,并能反映作者在本门学科上掌握了坚实的基础理论和系统的专门知识,具有从事科学研究工作或临床诊治等工作的能力。 学位论文必须是一篇(或由一组论文组成的一篇)系统的、完整的学术论文。学位论文应是学位申请者本人在导师的指导下独立完成的研究成果,不得抄袭和剽窃他人成果。学位论文的学术观点必须明确,且逻辑严谨,文字通畅。 硕士学位论文工作一般在硕士生完成培养计划所规定的课程学习后开始,应包括文献阅读、开题报告、拟定并实施工作计划、科研调查、实验研究、理论分析和文字总结等工作环节。硕士学位论文必须有一定的工作量。在论文题目确定后,用于论文工作的时间一般不得少于一年。申请硕士科学学位其学位论文字数不少于2万字。 2学位论文的组成部分和排列顺序 学位论文一般由以下几个部分组成:封面、扉页、原创性声明、目录、论文摘要、正文、参考文献、综述、附录、发表文章情况、致谢、个人简历。编排顺序如下: 2.1封面 根据原国家标准局《科学技术报告、学位论文和学术论文的编写格式》(国家标准GB7713-87)的封面要求,特规定新乡医学院研究生学位论文的封面格式,并提出以下具体要求: 2.1.1论文题目学位论文题目应当简明扼要地概括和反映出论文的核心内容,一般不宜超过20个字,必要时可加副标题。英文题目的首字母及各个实词的首字母应大写。 2.1.2指导教师指导教师必须是被批准上岗的指导教师。 2.1.3学科、专业名称按国家颁布的学科、专业目录中的名称填写。 2.1.4论文提交日期  按实际提交日期填写。应采用大写形式标明完成时间:如二○○六年三月,不要写成2006年3月。 2.1.5学校代码10472. 2.1.6中图分类号中图分类号参照《中国图书资料分类法》(第四版)。 2.1.7密级论文必须按国家规定的保密条例在右上角注明密级(如系公开型论文可不注明密级)。 封面样式见后。 2.2论文目录 论文目录是论文的提纲,也是论文各章节组成部分的小标题。每项内容的末尾应注明页码。目录的文字部分左对齐,页码右对齐,文字与页码之间加点线连接。 2.3论文摘要 论文摘要应概括地反映出本论文的主要内容,要突出本论文的创造性成果或新见解,不要与引言相混淆。采用结构式摘要,包括目的(Objective)、方法(Method)、结果(Result)、结论(Conclusion),中英文摘要内容要一致。中文摘要力求语言精炼准确,字数在800-1000字左右。中文摘要前加摘要作为标志,英文摘要前加Abstract作为标志。 无论中英文摘要都须另起一行注明本文的关键词(Key words)3——5个,关键词后空一格,不用标点符号。关键词之间用分号(;)隔开。中文关键词尽可能用《汉语主题词表》等词表提到的规范词。 另外,还需准备中英文大摘要一份,字数在2000字左右,不和学位论文装订在一起,单独装订。 2.4正文 正文是学位论文的主体和核心部分,不同学科专业和不同的选题可以有不同的写作方式。正文一般包括以下几个方面: 2.4.1引言引言是学位论文主体部分的开端,要求言简意赅,不要与摘要雷同或成为摘要的注解。除了说明研究目的、方法、结果等外,还应评述国内外研究现状和相关领域中已有的研究成果;介绍本项研究工作前提和任务,理论依据和实验基础,涉及范围和预期结果以及该论文在已有的基础上所解决的问题。 2.4.2各具体章节 2.4.3结论结论是学位论文最终和总体的结论,是整篇论文的归宿。应精炼、准确、完整。着重阐述作者研究的创造性成果或新见解及其在本研究领域中的意义,还可进一步提出需要讨论的问题和建议。 2.4.4图应有“自明性”,即只看图、图题和图例,不阅读正文,就可理解图意。每一图应有简短确切的题名,连同图号置于图下。 曲线图的纵横坐标必须标注“量、标准规定符号、单位”.坐标上标注的量的符号和缩略词必须与正文中一致。 照片图均应是原版照片粘贴,或黑白、彩色打印,不得采用复印方式。照片,应主题突出、层次分明、清晰整洁、反差适中。照片采用光面相纸,不宜用布纹相纸。对显微组织照片必须注明放大倍数。 2.4.5表表的编排一般是内容和测试项目由左至右横读,数据依序竖排,表应有自明性。每一表应有简短确切的题名,连同表号置于表上。表的各栏均应标明“量或测试项目、标准规定符号、单位”.表中缩略词和符号必须与正文中一致。如数据已绘成曲线图,可不再列表。 2.4.6文中所用单位一律采用国务院发布的《中华人民共和国法定计量单位》,单位名称和符号的书写方式,应采用国际通用符号。 2.4.7文中数字一律使用阿拉伯数字。 2.4.8统计学符号按GB3358-82《统计学名词符号》的有关规定,统计学符号均用斜体。 2.4.9外文缩写:使用外文缩写时,要在首次出现处括号内给出含义说明。 2.5参考文献 学位论文的撰写应本着严谨求实的科学态度,凡有引用他人成果之处,均应按论文中所引用的顺序列于文末。参考文献的著录格式采用顺序编码制,按照参考文献在正文中出现的先后顺序用阿拉伯数字和方括号在相应处右上角依次标注(如[1])。参考文献中作者不超过3位者全部引出,超过3位者只引出前3位并加等(中文)或et al(英文)。 我院学位论文参考文献著录方法依据GB/T 7714—2005《文后参考文献著录规则》。 2.5.1文献是期刊时,书写格式为: [序号]作者。文章题目[J].期刊名(外文可缩写),年,卷(期):起止页码。 2.5.2文献是专(译)著时,书写格式为: [序号]作者。书名(译者)[M].版次。,出版地:出版单位,出版年:起止页码。 2.5.3文献是学位论文时,书写格式为: [序号]姓名。文题[D].授予单位所在地:授予单位,授予年。 2.5.4文献是专利时,书写格式为: [序号]申请者。专利名[P].国名,专利文献种类,专利号[P],出版日期。 2.5.5文献是技术标准时,书写格式为: [序号]发布单位。技术标准代号。技术标准名称[S].出版地:出版者,出版日期。 2.5.6参考文献应加文献标识码,根据GB3469-83《文献类型与文献载体代码》规定,以单字母方式标识如下: 参考文献类型 专著 论文集 报纸文章 期刊文章 学位论文 报告 标准 专利 参考文献类型 M C N J D R S P 2.5.7对于数据库(database)、计算机程序(computer program)及电子公告(electronic bulletin board)等电子文献类型的参考文献,建议以下列双字母作为标志: 电子参考文献类型 数据库 计算机程序 电子公告 电子文献类型标志 DB CP EB 2.5.8电子文献的载体类型及其标志对于非纸张型载体的电子文献,当被引用为参考文献时需在参考文献类型标志中同时标明其载体类型。建议采用双字母表示电子文献载体类型:磁带—MT,磁盘—DK,光盘—CD,联机网络—OL,并以[文献类型标志/载体类型标志]表示包括了文献载体类型的参考文献类型标志。 如: [M/CD]——光盘图书(monograph on CD-ROM); [DB/MT]——磁带数据库(database on magnetic tape); [CP/DK]——磁盘软件(computer program on disk); [DB/OL]——网上数据库(database online); [EB/OL]——网上电子公告(electronic bulletin board online)。 以纸张为载体的传统文献在引做参考文献时不必注明其载体类型。 举例见附件。 2.6文献综述 为申请学位人员阅读过某一主题的文献后,经过理解、整理、融会贯通、综合分析和评价而形成的一种不同于研究论文的文体。综述的目的是反映某一课题的新水平、新动态、新技术和新发现。从其历史到现状,存在问题以及发展趋势等,都要进行全面的介绍和评论,可使阅读者不用查阅大量文献,就可迅速而全面地了解有关情况。 文献综述内容应与学位论文研究课题相关,采用指示性摘要,关键词3——5个。文献综述涉及的参考文献可单独列于“文献综述”之后,要求同上。 2.7附录包括放在正文内过分冗长的公式推导、以便他人阅读方便所需的辅助性数学工具、重复性的`数据图表、论文使用的符号意义、单位缩写、程序全文及有关说明等。不属于必需部分。 2.8发表文章目录指学位申请者在学期间在各类正式刊物上发表或已被接受的学术论文,只写明题目,所发表的刊物及年、卷、期、页码。格式见附件。 2.9致谢表达作者对完成论文和学业提供帮助的老师、同学、领导、同事及亲属的感激之情。 2.10个人简历包括个人基本信息、工作学习经历等。 3论文排版、印刷及装订要求 学位论文必须在计算机上输入,使用word 文档排版。 3.1页面设置:纸张A4,页边距:上—3.5厘米,下—3.5厘米,左—3.0厘米,右—2.5厘米。页眉距边界:2.2厘米,页脚距边界:2.2厘米。页眉键入“新乡医学院硕士学位论文”,5号字体,文字居中,置于页面上部;论文页码居中,置于页脚。 3.2文字大小:论文题目用三号黑体,标题用四号黑体。论文引言、正文、结论部分为宋体四号字,行间距为1.5倍;文中表格为宋体五号字。英文标题为三号Times New Roman,英文摘要为四号Times New Roman,参考文献中文为小四宋体,英文为小四Times New Roman.页码用5号字体。 3.3论文中图表、附注、参考文献、公式一律采用阿拉伯数字连续(或分章)编号。图序及图名置于图的下方;表序及表名置于表的上方。论文中的公式编号用括弧括起来写在右边行末,其间不加虚线。 3.4标题层次:采用1,1.1,1.2,……等表示标题层次,一律左顶格。一级标题后不接排任何内容,二级标题下如不再分出三级标题,可接排。标题层次不得超过4级。各级标题序号后及标题后空一格,不用标点符号。 3.5打印和装订:A4纸张双面打印;封面使用统一格式;论文左侧装订,要求装订、剪切整齐,便于使用;论文装订后的尺寸为 210mm×290mm. 3.6学位论文封面采用全院统一印制的论文封面,统招研究生、同等学力人员申请硕士学位的论文封面用不同颜色加以区分。 3.7学位论文应打印或复印的册数 3.7.1硕士学位论文,应按照导师、学术评阅人、答辩委员会成员每人一本,报送研究生处和院、系(所、中心)留存的册数,及其他有关人员的要求,确定打印和复印的册数。 3.7.2申请学位者应同时提交硕士学位论文电子版,电子版论文内容应与印刷本一致。 新乡医学院研究生处 单位代码:10472                                   中图分类号: 学    号:                                        密      级: 新乡医学院 硕士学位论文 中文题目(黑体,三号字) Title in English (Time New Roman, 三号字,加粗) 研究生姓名 指导教师 学科、专业 年级 论文提交日期 同等学力人员申请硕士学位论文 单位代码:10472                                   中图分类号: 申请号:                                        密      级: 新乡医学院 硕士学位论文 中文题目(黑体,三号字) Title in English(Time New Roman, 三号字,加粗) 学位申请者姓名 指导教师 学科、专业 申请答辩年度 论文提交日期 附件1        新乡医学院学位论文编排顺序 1.封面 2.学位论文原创性声明 3.目录 4.中文摘要 5.外文摘要 6.前言(引言、序言) 7.正文(包括材料、方法、结果、讨论、结论等部分) 8.参考文献 9.文献综述 10.附录 11.攻读学位期间发表文章情况 12.致谢 13.个人简历 附件2 目    录 中文摘要……(1) 英文摘要……(3) 前言……(5) 材料与方法……(7) 结果 …… (18) 讨论 ……(25) 结论 ……(43) 附图 ……(47) 参考文献……(49) 综述……(51) 参考文献…… 附录…… 攻读学位期间发表文章情况…… 致谢…… 个人简历…… 附件3 新乡医学院 学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:                日期:    年   月   日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权新乡医学院可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 本学位论文属于(请在以下相应方框内打“√”): 1.保密□,在   年解密后适用本授权书。 2.不保密□。 作者签名:                日期:    年   月   日 导师签名:                日期:    年   月   日 附件4 学位论文条文排列格式 …… 1材料与方法 1.1材料 1.1.1实验对象 1.1.2主要仪器及试剂 1.2实验方法 1.2.1的制备及检测 1.2.2细胞的培养及鉴定 1.2.3的检测及定量 1.3统计学处理 2结果 …… 附件5 参考文献 [1]朱武凌,张会勇,程海霞,等。大鼠部分肝切后血清对体外培养肝细胞的刺激作用 [J].中国组织化学与细胞化学杂志,2008,17(1):79-82. [2]Vega KJ,Pina I,Krevsky B,et al.Heart transplantation is associated with an increased risk for pancreatobiliary disease[J].Ann Intern Med,1966,124(11):9803-9805 [3]寿天德。神经生物学[M].北京:高等教育出版社,2001:159-186 [4]宋向凤。人生长激素基因在小鼠体内的表达及对免疫功能的影响[D].新乡:新乡医学院,2003. [5]姜锡州。一种温热外敷药制备方法[P].中国专利,881056073,1980-07-26. [6]中华人民共和国国家技术监督局。GB3100-3102.中华人民共和国国家标准—量与单位[S].北京:中国标准出版社,1994-11-01. [7]Online Computer Library Center,Inc.History of OCLC[EB/OL].[2000-01-08]. …… 附件6 攻读学位期间发表文章情况 序号 作者(全体作者,按顺序排列) 题    目 发表或投稿刊物名称、级别 发表的年月卷期、起止页码 被索引收录情况 注:1、填写在学期间已发表(包括已接受待发表)的论文,以及已投稿、或已成文打算投稿、或拟成文投稿的论文情况(只填写与学位论文内容相关的部分): 2、“发表的卷期、年月、页码”栏: (1)如果论文已发表,请填写发表的卷期、年月、页码; (2)如果论文已被接受,填写将要发表的卷期、年月; (3)以上都不是,请据实填写“已投稿”,“拟投稿”.

神经生物学杂志

neuron杂志水平,神经科中,Neuron 排名第一,NEURON是神经科学顶级期刊,世界期刊影响力指数(WJCI)为12.287。

认知神经科学杂志(Journal of Cognitive Neuroscience),美国跨学科的心理学专业期刊。月刊。1989年创刊。由马萨诸塞理工学院出版。发表大脑与行为的相互关系研究的论文。

重点研究大脑活动中的认知过程是如何发生的。研究内容涉及的学科有神经科学、心理学、认知心理学、神经生物学、语言学、计算机科学和哲学。

简介

杂志(Magazine),有固定刊名,以期、卷、号或年、月为序,定期或不定期连续出版的印刷读物。它根据一定的编辑方针,将众多作者的作品汇集成册出版,定期出版的,又称期刊。“杂志”的形成来源于罢工、罢课或战争中的宣传小册子。

这种类似于注重时效的报纸的手册,兼顾了更加详尽的评论,一种新的媒体也就因这样特殊的原因而产生了。最早出版的一本杂志是于1665年1月在阿姆斯特丹由法国人萨罗出版的《学者杂志》。

我国最早的中医杂志——《吴医汇讲》,创刊于清乾隆五十七年(公元1792年),停刊于清嘉庆六年(公元1801年),前后历时10年,共刊出11卷,每卷均合订为一本,是类似年刊性质的中医杂志。它的稿件是当时江南一带的名医所供给的,故名《吴医汇讲》。

任何一种杂志以自己的“ISSN"(国际标准连续出版物号)进行出版。

相关百科

热门百科

首页
发表服务