孟德尔(1822.7.20-1884.1.6),奥地利帝国生物学家。出生于奥地利帝国西里西亚海因策道夫村,在布隆(今捷克的布尔诺 )的修道院担任神父,是遗传学的奠基人,被誉为现代遗传学之父。他通过豌豆实验,发现了遗传学三大基本规律中的两个,分别为分离规律及自由组合规律。 1822年7月20日,孟德尔出生在奥匈帝国西里西亚(现属捷克)海因策道夫村的一个贫寒的农民家庭里,父亲和母亲都是园艺家(外祖父是园艺工人)。孟德尔童年时受到园艺学和农学知识的熏陶,对植物的生长和开花非常感兴趣。 1840年他考入奥尔米茨大学哲学院,主攻古典哲学,但他还学习了数学。1843年因家贫而辍学,同年10月年方21岁的孟德尔进了布隆城奥古斯汀修道院,并在当地教会办的一所中学教书,教的是自然科学。他由于能专心备课,认真教课,所以很受学生的欢迎。但在1850年的教师资格考试中,因生物学和地质学的知识过少,孟德尔被教会派到维也纳大学深造,受到相当系统和严格的科学教育和训练,也受到杰出科学家们的影响,如多普勒,孟德尔为他当物理学演示助手;又如依汀豪生,他是一位数学家和物理学家;还有恩格尔,他是细胞理论发展中的一位重要人物,但是由于否定植物物种的稳定性而受到教士们的攻击。这些为他后来的科学实践打下了坚实的基础。孟德尔经过长期思索认识到,理解那些使遗传性状代代恒定的机制更为重要。 1856年,从维也纳大学回到布鲁恩不久,孟德尔就开始了长达8年的豌豆实验。孟德尔首先从许多种子商那里弄来了34个品种的豌豆,从中挑选出22个品种用于实验。它们都具有某种可以相互区分的稳定性状,例如高茎或矮茎、圆粒或皱粒、灰色种皮或白色种皮等。 孟德尔通过人工培植这些豌豆,对不同代的豌豆的性状和数目进行细致入微的观察、计数和分析。运用这样的实验方法需要极大的耐心和严谨的态度。他酷爱自己的研究工作,经常向前来参观的客人指着豌豆十分自豪地说:这些都是我的儿女! 8个寒暑的辛勤劳作,孟德尔发现了生物遗传的基本规律,并得到了相应的数学关系式。人们分别称他的发现为孟德尔第一定律(即孟德尔遗传分离规律)和孟德尔第二定律(即基因自由组合规律),它们揭示了生物遗传奥秘的基本规律。 孟德尔开始进行豌豆实验时,达尔文进化论刚刚问世。他仔细研读了达尔文的著作,从中吸收丰富的营养。保存至今的孟德尔遗物之中,就有好几本达尔文的著作,上面还留着孟德尔的手批,足见他对达尔文及其著作的关注。 起初,孟德尔豌豆实验并不是有意为探索遗传规律而进行的。他的初衷是希望获得优良品种,只是在试验的过程中,逐步把重点转向了探索遗传规律。除了豌豆以外,孟德尔还对其他植物作了大量的类似研究,其中包括玉米、紫罗兰和紫茉莉等,以期证明他发现的遗传规律对大多数植物都是适用的。 从生物的整体形式和行为中很难观察并发现遗传规律,而从个别性状中却容易观察,这也是科学界长期困惑的原因。孟德尔不仅考察生物的整体,更着眼于生物的个别性状,这是他与前辈生物学家的重要区别之一。孟德尔选择的实验材料也是非常科学的。因为豌豆属于具有稳定品种的自花授粉植物,容易栽种,容易逐一分离计数,这对于他发现遗传规律提供了有利的条件。 孟德尔清楚自己的发现所具有的划时代意义,但他还是慎重地重复实验了多年,以期更加臻于完善、1865年,孟德尔在布鲁恩科学协会的会议厅,将自己的研究成果分两次宣读。第一次,与会者礼貌而兴致勃勃地听完报告,孟德尔只简单地介绍了试验的目的、方法和过程,为时一小时的报告就使听众如坠入云雾中。 第二次,孟德尔着重根据实验数据进行了深入的理论证明。可是,伟大的孟德尔思维和实验太超前了。尽管与会者绝大多数是布鲁恩自然科学协会的会员,其中既有化学家、地质学家和生物学家,也有生物学专业的植物学家、藻类学家。然而,听众对连篇累牍的数字和繁复枯燥的论证毫无兴趣。他们实在跟不上孟德尔的思维。孟德尔用心血浇灌的豌豆所告诉他的秘密,时人不能与之共识,一直被埋没了35年之久! 豌豆的杂交实验从1856年至1864年共进行了8年。孟德尔将其研究的结果整理成论文《植物杂交试验》发表,但未能引起当时学术界的重视!其原因有三个。 第一,在孟德尔论文发表前7年(1859年),达尔文的名著《物种起源》出版了。这部著作引起了科学界的兴趣,几乎全部的生物学家转向生物进化的讨论。这一点也许对孟德尔论文的命运起了决定性的作用。 第二,当时的科学界缺乏理解孟德尔定律的思想基础。首先那个时代的科学思想还没有包含孟德尔论文所提出的命题:遗传的不是一个个体的全貌,而是一个个性状。其次,孟德尔论文的表达方式是全新的,他把生物学和统计学、数学结合了起来,使得同时代的博物学家很难理解论文的真正含义。 第三,有的权威出于偏见或不理解,把孟德尔的研究视为一般的杂交实验,和别人做的没有多大差别。 孟德尔晚年曾经充满信心地对他的好友,布鲁恩高等技术学院大地测量学教授尼耶塞尔说:看吧,我的时代来到了。这句话成为伟大的预言。直到孟德尔逝世16年后,豌豆实验论文正式出版后34年,他从事豌豆试验后43年,预言才变成现实。 随着20世纪雄鸡的第一声啼鸣,来自三个国家的三位学者同时独立地重新发现孟德尔遗传定律。1900年,成为遗传学史乃至生物科学史上划时代的一年。从此,遗传学进入了孟德尔时代。 通过摩尔根、艾弗里、赫尔希和沃森等数代科学家的研究,已经使生物遗传机制——这个使孟德尔魂牵梦绕的问题建立在遗传物质DNA的基础之上。 随着科学家破译了遗传密码,人们对遗传机制有了更深刻的认识。人们已经开始向控制遗传机制、防治遗传疾病、合成生命等更大的造福于人类的工作方向前进。然而,所有这一切都与圣托马斯修道院那个献身于科学的修道士的名字相连。 除了进行植物杂交实验之外,孟德尔还从事过植物嫁接和养蜂等方面的研究。此外,他还进行了长期的气象观测,他生前是维也纳动植物学会会员,并且是布吕恩自然科学研究协会和奥地利气象学会的创始人之一。 试验成功因素 1.正确选用实验材料。豌豆是严格的自花授粉植物,在花开之前即完成授粉过程,避免了外来花粉的干扰。豌豆具有一些稳定的、容易区分的性状,所获实验结果可靠。 2.应用统计学方法分析实验结果。 3.从单因子到多因子的研究方法。对生物性状进行分析时,孟德尔开始只对一对性状的遗传情况进行研究,暂时忽略其他性状,明确一对性状的遗传情况后再进行对2对、3对甚至更多对性状的研究。 4.合理设计实验程序。如设计测交实验来验证对性状分离的推测。 孟德尔揭示遗传基本规律的过程表明,任何一项科学研究成果的取得,不仅需要坚韧的意志和持之以恒的探索精神,还需要严谨求实的科学态度和正确的研究方法。 1857年,捷克第二大城市布尔诺南郊的农民们发现,布尔诺修道院里来了个奇怪的修道士。这个没事找事的怪人在修道院后面开垦出一块豌豆田,终日用木棍、树枝和绳子把四处蔓延的豌豆苗支撑起来,让它们保持直立的姿势,他甚至还小心翼翼地驱赶传播花粉的蝴蝶和甲虫。 这个怪人就是孟德尔。 在其他修道士眼中,孟德尔的样子是使人过目不忘的:头大,稍胖,戴着大礼帽,短裤外套着长靴,走起路晃晃荡荡,却有着透过金边眼镜凝视世界的眼神。 孟德尔出身于贫寒农家,很喜欢自然科学,对宗教和神学并无兴趣。为了摆脱饥寒交迫的生活,他不得不违心进入修道院,成为一名修道士。 当时的欧洲,人们热衷于通过植物杂交实验了解生物遗传和变异的奥秘,而研究遗传和变异首先要选择合适的实验材料,孟德尔选择了豌豆。1857年夏天,孟德尔开始用34粒豌豆种子进行他的工作,开始了被人称为毫无意义的举动的一系列实验,并持续了8年时间。 在1868年,孟德尔被选为修道院院长,从此他把精力逐渐转移到修道院工作上,最终完全放弃了科学研究。这一年他才四十六岁,当修道院院长显得还太年轻了。在当时,修道院院长死后,政府就会派人来查账并课以重税。正是由于这个原因,修道院倾向于选举较年轻的修道士当院长。1874年,奥地利政府颁布了一项严苛的税法。孟德尔认为新税法不公平,拒绝交税,花了大笔的钱与政府打一场旷日持久的官司。其它修道院的院长纷纷被政府收买,屈服了,只有孟德尔坚拒政府的威胁利诱,决心抵抗到底。结果可想而知。法庭判决孟德尔败诉,修道院的资金被没收了。修道院的修道士们也背弃了孟德尔,向政府妥协。孟德尔的身心完全垮了,得了严重的心脏病。 1884年1月6日这天,他精神看起来似乎不错,护士问候了他一句:你的气色真好。五分钟后,前去看望孟德尔的修女发现,他靠在沙发上已经停止了呼吸。
1866年9月25日出生在Kentucky州的Lexington。在Kentucky放立学院接受教育。他在Johns Hopkins学院研究胚胎学,并获得博士。大约在1910年5月,在摩尔根的实验室中诞生了一只白眼雄果蝇。摩尔根把它带回家中,把它放在床边的一只瓶子中,白天把它带回实验室,不久他把这只果蝇与另一只红眼雌果蝇进行交配,在下一代果蝇中产生了全是红眼的果蝇,一共是1240只。后来摩尔根让一只白眼雌果蝇与一只正常的雄果蝇交配。却在其后代中得到一半是红眼、一半是白眼的雄果蝇,而雌果蝇中却没有白眼,全部雌性都长有正常的红眼睛。摩尔根对此现象如何解释呢?他说:“眼睛的颜色基因(R)与性别决定的基因是结在一起的,即在X染色体上。”或者像我们现在所说那样是链锁的,那样得到一条既带有白 眼基因的X染色体,又有一条Y染色体的话,即发育为白眼雄果蝇。摩尔根及其同事、学生用果蝇做实验材料。到1925年已经在这个小生物身上发现它有四对染色体,并鉴定了约100个不同的基因。并且由交配试验而确定链锁的程度,可以用来测量染色体上基因间的距离。1911年他提出了“染色体遗传理论”。果蝇给摩尔根的研究带来如此巨大的成功,以致后来有人说这种果蝇是上帝专门为摩尔根创造的。 摩尔根发现,代表生物遗传秘密的基因的确存在于生殖细胞的染色体上。而且,他还发现,基因在每条染色体内是直线排列的。染色体可以自由组合,而排在一条染色体上的基因是不能自由组合的。摩尔根把这种特点称为基因的“连锁”。摩尔根在长期的试验中发现,由于同源染色体的断离与结合,而产生了基因的互相交换。不过交换的情况很少,只占1%。连锁和交换定律,是摩尔根发现的遗传第三定律。他于20世纪20年代创立了著名的基因学说,揭示了基因是组成染色体的遗传单位,它能控制遗传性状的发育,也是突变、重组、交换的基本单位。但基因到底是由什么物质组成的?这在当时还是个谜。1933年,摩尔根获得诺贝尔生理医学奖。 摩尔根,L.H. Lewis Henry Morgan (1818~1881) 美国民族学家、原始社会史学家。生于美国纽约州奥罗拉,卒于罗切斯特。1840年毕业于罗切斯特联合学院。1844年起在罗切斯特开设律师事务所,终生以律师为职业。早年对研究印第安人社会产生浓厚的兴趣,与志同道合的青年们一起,组织了“大易洛魁社”,其宗旨是促进同印第安人的感情,获得有关印第安人的知识,协助他们解决自身的问题。在易洛魁人塞内卡部落为夺回被诱出卖的土地、争取生存权利而进行的斗争中,摩尔根和同伴们为他们多方奔走,动员舆论界为印第安人的利益呼吁,筹款给塞内卡部落的子弟上学。摩尔根与塞内卡部落的青年艾利·帕克结下了深厚的友谊。这个后来成为将军、被易洛魁人尊奉为英雄的印第安人,对摩尔根的科学研究给予了很大帮助。 1846年,摩尔根被塞内卡部落鹰氏族接纳为养子。他详细地调查了易洛魁人氏族、胞族、部落、部落联盟的结构、经济和社会生活。养子的身份使他得以了解那些从不向外人透露的秘密习俗和仪式。1851年,他发表了《易洛魁联盟》一书。该书以联盟的组织结构为主题,全面地描述了易洛魁人的氏族社会,包括历史、语言、经济生活、社会组织、家庭婚姻、习俗和宗教。这本书被誉为世界上关于印第安人的第一部科学著作。 摩尔根是对亲属制度进行科学研究的开创者。他发现易洛魁人的亲属制度同实际存在的家庭关系相矛盾,这种现象也存在于其他印第安部落中。1859~1862年,每年夏季,他都去美国中西部印第安人地区作实地调查,着重研究印第安人的亲属制度和社会结构,并广泛考察其经济、社会生活的各个方面。这是他日后许多卓越发现的事实依据。他还把精心设计的调查表格寄到世界各地,通过驻外使节、传教士等,调查当地的民族,这项活动历时10年之久。通过广泛调查,使他掌握了世界大多数民族近 200种亲属制度的资料。1871年他发表了《人类家族的血亲和姻亲制度》。他根据亲属制度和社会组织的研究,系统地提出了家庭进化的理论,概述了人类家庭的发展的历史。他认为,人类从杂交状态经过血缘家庭、普那路亚家庭、对偶家庭和父权家庭而达到一夫一妻制家庭。这就彻底推翻了先前的历史家们认为一夫一妻制家庭自古就有、并且始终是人类社会的基本单位的理论。 进化生物学奠基人C.R.达尔文在1859年发表了《物种起源》之后,在科学界引起了强烈的反响,人们试图用进化论来解释社会的发展。摩尔根起初倾向于物种不变的观点,在对原始社会进行了长期、深入的研究之后,改变了原来的看法。1871年他与达尔文会面后,彻底地接受了进化论,并进一步提出了人类社会进化的学说。为了研究社会进化,他在密歇根半岛的森林沼泽地带观察海狸怎样协力筑堰造巢,对其活动进行研究,于1868年撰写了《美洲海狸及其活动》一书。他在书中把海狸筑堰造巢的活动与人类最原始的发明相比,提出人类从动物分化出来,同动物既有区别又有联系,人类沿着上升的阶梯攀登进入文明社会的观点。1877年,摩尔根发表了他的主要著作《古代社会》,在先前研究的基础上,全面地提出了社会进化的理论,阐述了人类从蒙昧时代经过野蛮时代到文明时代的发展过程,说明人类社会从低级阶段向高级阶段发展,从原始社会发展到阶级社会,并将随着资本主义制度的灭亡而揭开社会的下一个更高的阶段。他通过研究印第安人和世界其他地区的部落及希腊、罗马等古代民族史,揭示了氏族的本质和氏族制度存在的普遍性,证明母系制先于父系制,说明氏族制度发展的结果必然产生它本身的对立物──政治社会即国家。 1878年摩尔根60岁时,又去美国西南部印第安部落作调查。1881年撰写了《美洲土著居民的住房和居住生活》,把房屋建筑的发展与社会的发展相联系,说明人类早期房屋建筑形式的发展也是原始共产主义存在的证据。 摩尔根在原始社会史领域所作的研究,证实和丰富了马克思主义唯物史观,受到K.马克思和F.恩格斯的高度评价。马克思读过《古代社会》后,写了详细摘要和批语(见《摩尔根〈古代社会〉一书摘要》)。恩格斯写了《家庭、私有制和国家的起源》(1884),称赞摩尔根“以他自己的方式,重新发现了40年前马克思所发现的唯物主义历史观”;“在原始历史的研究方面开辟了一个新时代”。 摩尔根从事民族学研究,取得了杰出的成就。1875年他当选为美国国家科学学会成员,1879年当选为美国科学促进会主席。这是美国科学界给予一个民族学家的最高荣誉。 但是长期以来,他的理论迭遭褒贬。 近二、三十年来西方民族学者重新评价他的著作和成就,逐步恢复了他应有的地位和名誉。 摩尔根的名著《古代社会》在中国翻译出版后,广为流传,他的学术观点对中国民族学界有较广泛的影响。同时,学者们根据中国少数民族大量调查资料,对摩尔根的一些具体观点提出了补充和修改意见。 摩尔根的著作除以上所述外,还发表过许多论文。他逝世后,由L.A.怀特编辑出版的还有:《摩尔根的印第安人日记(1859~1862)》(1959),《摩尔根欧洲旅行日记选》(1937),《摩尔根的西南科罗拉多和新墨西哥旅行,1878年6月21日至8月7日》(1943)等
目前《中国农学通报》和《农学学报》都是农业综合类中文科技核心期刊,投稿到刊出一般半年左右,流程规范,学术影响逐年提升,是发文的较好选择
1、文稿应资料可靠、数据准确、规范,文责自负。来稿在3000字符以上,每版字符数在2000字以内,2版面4000内(含空格不包含图表)。来文随附作者单位、邮编、电话、电邮等个人信息。2、姓名在文题下按序排列,排列应在投稿时确定,同时注明作者单位名称及邮政编码。来稿严格按学术论文格式要求,附有摘要、关键词、注释、参考文献等。3、论文涉及的课题如取得国家或部、省级以上专项基金或攻关项目,用黑体字加圆括号标注,置于正文后、注释或参考文献前。4、为缩短刊出周期和减少错误,来稿一般采取电子文档。文档名请作者设为作者姓名,以便查阅。5、来稿不退。严禁抄袭,文责自负。请勿一稿多投!来稿无论录用与否都将在3日内给予回复,作者来稿前后可与编辑部联系,以便查收。6、本刊所发论文将为中国学术期刊网全文数据库(CNKI 中国知网)、万方数据数字化期刊群、中国学术期刊(光盘版)全文收录期刊。
要说快的,你可以看下这个会议:国际生物技术与生物工程学术会议(International Conference on Biotechnology and Bioengineering),查看他们合作的SCI发表,审稿和发表还是很快的,仅限生物、动植物、医药大类。
国内生物类期刊中,排在第一的《Cell Research》杂志已经成为了本领域较为有影响力的期刊,不少著名学者都选择将新成果发表在该期刊上,其影响因子自突破10之后,今年又稳步上升至了12.413,这份期刊于1990年创刊,2001年首次获得影响因子,这份杂志由中国科学院上海生命科学研究院生物化学与细胞生物学研究所与中国细胞生物学学会共同主办。 同时,中科院的另外一份期刊:MOL PLANT(分子植物) 也升至6.337,排在第三,据报道这两份期刊SCI影响因子位于同学科前10%,另外中科院还有《国家科学评论》《中国病毒学》今年上半年被SCI正式收录。MOL PLANT(分子植物)创刊于2008年,由中国科学院主管,中国科学院上海生命科学研究院植物生理生态研究所和中国植物生理与分子生物学学会共同主办,中国科学院上海生命科学信息中心承办。目前这份期刊在植物科学领域期刊中已位列亚洲第一,在全球植物生物学领域研究类期刊排名也很靠前,前面的几份期刊是Plant Cell, Plant Physiology, New Phytologist等,可见这一期刊已跻身国际植物学领域顶级期刊行列。还有遗传学报(J GENET GENOMICS)也是发展迅猛,影响因子从去年的2.924上升至3.585,这份期刊由中国遗传学会,中国科学院遗传与发育生物学研究所主办,主要刊载动物、植物、医学和微生物等遗传学领域的研究论文,也包括该领域中的最新技术和最新方法。
饿,介绍他的特点以及给你的感受,抓住他的重大案子写具体,写出你的体会。最好把华生带上,还有莫里亚提教授,形成鲜明的反派,突出福尔摩斯正派的气质与他的日常习性。。。
英文名:Sherlock Holmes译名:歇洛克·福尔摩斯(夏洛克·福尔摩斯) ( 注:都是对的,外文翻译经常这样。例如:鲁摈孙和鲁滨逊,都是对的。不但人名如此,地名也如此,来克星顿和莱克星顿。放心使用吧!)国籍:英国生日:1月6日星座:魔羯座血型:O身高:188厘米体重:235磅地址:伦敦贝克街221B大学:Oxford(牛津)最喜欢的颜色:黑色最喜欢的食物:哈德森太太做的最尊敬的女人:艾琳.艾德勒最喜欢做的事:破案(废话)、去剧院听歌家人:哥哥——迈克罗夫特·福尔摩斯朋友:约翰·H·华生对手:莫里亚蒂看不起的人:雷斯垂德、葛莱森性格:冷峻、诙谐、机警、沉着、意志坚强爱好:破案(这好象是废话)、艺术、音乐、小提琴、拳击、剑术特长:以上都是职业:私家侦探福尔摩斯的学识范围:1.文学知识——无。2.哲学知识——无。3.天文学知识——无。4.政治学知识——浅薄。5.植物学知识——不全面,但对于莨蓿制剂和鸦片却知之甚详。对毒剂有一般的了解,而对于实用园艺学却一无所知。6.地质学知识——偏于实用,但也有限。但他一眼就能分辨出不同的土质。他在散步回来后,曾把溅在他的裤子上的泥点给我看,并且能根据泥点的颜色和坚实程度说明是在伦敦什么地方溅上的。7.化学知识——精深。8.解剖学知识——准确,但无系统。9.惊险文学——很广博,他似乎对近一世纪中发生的一切恐怖事件都深知底细。10.提琴拉得很好。11.善使棍棒,也精于刀剑拳术。12.关于英国法律方面,他具有充分实用的知识。履历表:※1854年(出生) 福尔摩斯该年出生,祖父为世代乡绅(《希腊语译员》),成长环境不详,但从其年长七岁的哥哥在====工作来看(《希腊语译员》)(《证券经济人的书记员》),说明他家道中落(当时的绅士是不工作的)。有一位叫弗纳•凡尔奈的做医生的远亲(《诺伍德的建筑师》)。兄弟大概都是由乳母南妮养大的。※1861年(7岁) 进入贵族学校(寄宿制度)或是请家庭教师接受教育。祖母是法国拿破仑时代的画家贺拉斯•凡尔奈的妹妹。福尔摩斯自认为他也继承了这样的血统(血液中的这种艺术成分很容易有最奇特的遗传形式《希腊语译员》)。福尔摩斯家里形成了良好的音乐气氛,少年时代开始学习拉小提琴。※1867年(13岁) 虽然当时的贵族子弟一般都要进入公学(贵族和上流社会子弟,主动体育的学校),但福尔摩斯对这种学校常设的体育项目橄榄球不感兴趣,所以就没有进入这种学校。而是请家庭教师继续传授知识(《新娘失踪事件》)※1872年(18岁) 进入大学,传说福尔摩斯读的是著名的牛津或剑桥大学。在那时,他不喜好集体体育活动,而喜欢击剑和拳击,专业为化学(《格洛里亚•斯科特号之迷》)。似乎认同『文学知识等于零』这个观点,而且还因此遭到过华生的嘲笑。※1873年(19岁) 一年级的最后一个学期,因被同级威克多•特雷佛的狗咬伤,两人便熟识起来,之后的一个夏天,福尔摩斯受邀去威克多•特雷佛家做客,在特雷佛的父亲提醒下,意识到自己有做侦探的条件(当时福尔摩斯的推理、观察能力就已经非常强了)。同年侦破了《格洛里亚•斯科特号之迷》案件。暑假期间,他多半时间沉迷于化学时间中(《格洛里亚•斯科特号之迷》)。※1874年(20岁) 大学的最后一段曰子,同学们盛传他的推理方法(《马斯格雷夫礼典》)※1875年(21岁) 大学毕业。※1877年(23岁) 他开始在大英博物馆附近从事侦探工作,为数极少的工作间隙,积极去研究各门科学,为将来打基础。生活得很艰难。※1878年(24岁) 侦破了(《跛足的里科特和他可恶妻子案》)※1879年(25岁) 受同学雷金纳德•马斯格雷夫的委托,侦破了(《马斯格雷夫礼典》)。※1881年(27岁) 在圣巴罗米医院,通过朋友斯坦弗的介绍,福尔摩斯与退役军医华生结识,并合租了贝克街221号B室。并介绍雷斯垂德和葛莱森给华生认识。同年侦破了《血字的研究》一案。※1882年(28岁) 华生开始记录案子《五个橘核》。福尔摩斯开始出名,并以『工作本身就是报酬』安慰过海伦•斯托纳。※1883年(29岁) 同年四月侦破《斑点带子案》。※1887年(33岁) 因侦破《荷兰----苏门答腊公司案》和《莫波吐依兹男爵的庞大计划案》而在欧洲声名大噪。也因疲劳过度而病倒,前往萨里郡的赖盖特修养(《赖盖特之迷》)。同年四月侦破《赖盖特之迷》。※1888年(34岁) 一月侦破了《恐怖谷》一案。同年七月侦破了《四个签名》案件。福尔摩斯发表了《各种烟草的鉴别》、《脚印探索》、《职业对手形造成的影响》等几篇文章。侦破了《希腊语译员》一案,而且发表的文章也得到了好评。同年十月,福尔摩斯开始服用可卡因,令华生大为其担心。※1889年(35岁) 华生与《四个签名》案子中的摩斯坦小姐结婚后而离开贝克街,但仍经常与福尔摩斯一起办案。同年三月,侦破《波西米亚丑闻》案,而且因案中的艾琳•艾德勒而改变了福尔摩斯小看女人的看法。并首次称华生为『我的传记』作者(《波西米亚丑闻》)。同年六月,侦破《歪唇男人》、《驼背人》、《证券经济人的书记员》及《博斯科姆比溪谷》案件。同年七月侦破《海军协定》一案。且是福尔摩斯为维护国家利益所侦破的案件。同年九月侦破《工程师的大拇指》与《五个橘核》案。同年十月侦破《巴斯克维尔的猎犬》一案。※1890年(36岁) 秋季侦破《红发会》案件。同年十一月发生《临终的侦探》事件同年十二月侦破《蓝色石榴石》一案。从冬季到春季,福尔摩斯都在法国====工作。为追踪莫里亚蒂教授而和华生去了欧洲。※1891年(37岁) 《最后一案》中福尔摩斯和宿敌莫里亚蒂教授在瑞士的莱辛巴赫瀑布决一死战。此后便为空,福尔摩斯的存在性推论福尔摩斯的原型,据道尔自己在《真实的福尔摩斯》(The Truth About Sherlock Holmes)中叙述,是根据他的医学院导师Dr. Bell(也就是中国通常翻译的贝尔教授)而来。但是,就是贝尔本人似乎不喜欢这样的说法。我个人也觉得这是道尔在那位真实原型的要求下误导读者。我觉得歇洛克很可能真实存在于伦敦。当然,这位侦探先生不叫福尔摩斯也不住在贝克街221B,但他大概是道尔爵士的朋友,而且也和歇洛克做类似的“咨询侦探”工作。也就是说,我认为福尔摩斯是来自于真人原型的。他的个性大概不会象福尔摩斯那么鲜明,他的演绎法大概也不会每次都管用,但这个伦敦的天才侦探是存在的。歇洛克最重要的几个案件-四签名,巴斯克威尔的猎犬,血字的研究和冒险史中大部分的案件可能都是这位真实侦探的办案记录。而归来记和新探案中的案件大概有一半以上是柯南道尔虚构的。特别是到了新探案后期的案件,可能都是道尔编造的。这里有两种可能,一是这位真实的侦探去世了,或者他真的象歇洛克后来一样隐退了。而当时柯南道尔和报社签了合同进行连载,不可能中途停笔,所以不得不编造。而冒险史和归来记中少数看上去很糟糕的故事,大概也是因为当时没有好的案件可以写而编造的。关于这个理论的直接证据的确没有。但是,近年来有许多美国研究者(比如Saul Cohen 的“Notes for an Essay on Holmes and Holmes”)把美国一位也姓福尔摩斯的法官Oliver Wendell Holmes, Jr和大师联系在一起。说他和大师可能是堂兄弟之类之类。温森特?斯塔瑞特(Vincent Starrett)在他的著名福尔摩斯研究《福尔摩斯的私生活》(The Private Life of Sherlock Holmes )中也提到他曾经在伦敦图书馆里找到作者为亨利?华生(Henry Watson)的医学著作。这与其说是华生那位酗酒的哥哥的作品,不如说华生在纪录福尔摩斯案件的时候使用了约翰(John)这个假名。另外,垂福尔?豪尔(Trevor Hall )在他的福尔摩斯的大学与学院“Sherlock Holmes's University and College”中居然在相应年份的剑桥三一学院学生名单中查到R?马斯各雷夫(R. Musgrave),这很可能就是福尔摩斯大学同学,马斯格雷夫礼典的委托人雷金纳德?马斯格雷夫(Reginald Musgrave)。这些似是而非的间接证据,都有不少漏洞。福尔摩斯,华生,马斯格雷夫等等作品中使用的名字,都是很常见的姓氏,同名同姓的可能也不是没有。华生在很多情况下为了照顾到委托人的隐私,又不得不更名改姓。就是在他据实而书的时候,我们也不能完全依赖他那往往含混不清的记性。所以,我们若是像原旨主义者一样相信道尔原著的每一句话,很快就会陷入自相矛盾的境地。这也为福尔摩斯研究增加了很多困难和乐趣。分辨哪些是华生的笔误(或者故意隐瞒),哪些是可以引导我们探知真相的证据,恰恰是福学最具挑战的部分。有趣的是,很多福尔摩斯研究者,包括著名的希德尼?罗伯特爵士(Sir Sidney Robert), 和全注释版福尔摩斯的作者威廉姆?B?巴瑞格德( William B. Baring-Gould), 温森特?斯塔瑞特(Vincent Starrett)和我最喜欢的垂佛尔?豪尔(Trevor Hall), 在作品开篇,能够理智地意识到自己在研究一个公认的虚构人物。但是,到了作品末尾,都不由自主地把大师当成一个存在的历史人物。这大概是所有福学研究者心中共同的希望吧。2,福尔摩斯的存在性推论2我的朋友并不认为福尔摩斯真实存在,但是他认为案件是存在的。身为医生的柯南道尔可能经常以法医的身份协助警方办案,对后者的很多手法都不甚苟同,而在他提出自己的看法时,恐怕时常遭到警官的嘲笑和忽略。所以他把当时警方放弃的疑案攒了一些,用自己提出的所谓演绎法进行分析给出自己的结论。为此,他虚构了一个“咨询侦探”福尔摩斯和医生助手华生,并把这些换过地名人名的案件寄给报社发表。这种说法就可以解释在福尔摩斯探案集中不时流露的对警察的嘲笑。在《血字的研究》收到好评之后,他开始连载。在积攒的案件用完之后,他不得不编造案件。之所以如此推测是因为福尔摩斯故事里的情节有时候太过巧合,缺乏生活中的随机性。所以很有可能是柯南道尔借用当时的案件,自己加入情节改造而成。3,关于福尔摩斯的历史。福尔摩斯作为一个人格来研究其实是蛮有趣的。(我建议各位去研读W.H. Baring-Gould的《Sherlock Holmes of Baker Street》这是任何一个Sherlockian都会反复阅读的经典。其次,我推荐Trevor Hall 的《Sherlock Holmes: Ten Literary Studies》。)整个故事中,歇洛克简直如机器一样精确冷酷,一点点似有若无的温情使他的个性变的更复杂。这也是我认为他有原型的主要原因。很多福尔摩斯专家认为他对女性的排斥很可能来自于他幼年和母亲的不愉快(Sir Sidney, Mr. Hall)。当然这种把心理问题都归罪于年幼时与父母之间的问题,是弗洛伊德的典型论调,我并不是很喜欢……不过,值得注意的是麦可罗夫特也在与人交流和异性关系上存在很严重的问题,所以这种心理问题可能的确和他们两个所共有的历史有关-也就是幼年时期的家庭问题。一个很极端又富于戏剧化的解释认为歇洛克的母亲因为有外遇而被歇洛克的父亲杀死(Hall),而后者因为种种原因而没有受到应有的制裁。所以歇洛克终生讨厌女性,对警察毫无好感,坚持自己的“正义”标准。他所进行的“咨询侦探”几次在警察之前找到凶手,自己扮演法官的角色对后者进行“正义”的审判。当然……这是有点太过戏剧化了,所以我不是很喜欢这个说法。4,福尔摩斯的心理问题。福尔摩斯最主要的心理问题是忧郁症,种种迹象都表明他绝对是抑郁狂躁型忧郁症(Bipolar Disorder)患者。这一型的忧郁症患者时而充满精力,可以连续工作几天几夜,极其兴奋,脾气暴躁,感官异常灵敏,;随之尔来的是连续几个星期的低潮期,患者表现乏力,没精神,对什么都提不起兴趣,可以懒在床上一天不动,厌食……这难道不就是福尔摩斯吗?只要一有案件就可以兴奋的工作,没有案件的时候就懒在家里跟华生发牢骚“伦敦没有具有天赋的罪犯了!”在沮丧到极点的时候甚至需要可卡因来维持生命……对于福尔摩斯来说,注射可卡因是必要的,否则他大概会因为过度沮丧而自杀。但是需要注意的是,大部分抑郁狂躁型忧郁症患者脑部运作方式和精神分裂类似,以分散无连续性的思维为主要症状之一,换言之,他们都不具备逻辑思维的能力。然而,考虑到海明威也是抑郁狂躁型忧郁症患者,同时也是美国大文豪……对这个问题,我需要做更深入的研究。而且我相信福尔摩斯大概有偏执倾向(Obsessive-Compulsive Disorder),偏执的对象当然就是他心目中的所谓“高于一切的绝对正义”。然而,我并不认为福尔摩斯患有与他的忧郁症同等程度的OCD。毕竟他并没有怀疑周围所有人都是“非正义”的,也并没有用自己的条条框框去限制其他人。所以,他还的OCD 还远没有达到人格障碍的程度,大概只是有些许偏执而已。然而无论是忧郁症或者偏执都无法解释他对女性的冷淡。这可能的确是来自于他过去发生的事情……大概不太可能是初恋,因为麦可罗夫特也对女性冷淡。再顺带说说麦可罗夫特,他是典型的自闭症(Schizoid personality disorder)。就他们两个的心理问题来说,对于“母亲外遇-父亲谋杀母亲-父亲逍遥法外”的推论也并非那么虚无缥缈。5,福尔摩斯和开膛手杰克。很多人谈论过这个问题……有很多关于这个话题的电影和游戏。一般认为福尔摩斯生于1854年,那么他到1888年,也就是开膛手杰克活动的一年,不过34岁,也就是四签名之前的事情,当时华生应该还和他住在一起。如此重要的案件为什么福尔摩斯探案集里没有写到,甚至连提都没提一句?如果按照我的解释,福尔摩斯真的存在,那么很可能是福尔摩斯成功的侦破了这个案件,否则开膛手杰克不可能在杀掉5个女人之后就收手。但因为其中涉及敏感人物所以不便透露详情,甚至可能连柯南道尔都不知道具体情况。按照我朋友的解释,福尔摩斯不存在,但案件是存在的。那么就是柯南道尔也拿这个案子没辙,所以就干脆不提。事实上,柯南道尔在开膛手杰克案发之后,的确提出了自己对凶手身份的推断。只不过他和当时警方的推断是一样的,认为是最后一个牺牲品:玛丽?凯丽的丈夫,为了恐吓惩罚自己的老婆而犯案。这个推论不但和当时的目击证词不符,也不符合开膛手杰克的犯案轨迹。6,大脑与心。英国一位在舞台上扮演过福尔摩斯的人说:“歇洛克最恐怖的地方在于他只有大脑没有心,他是完全空的。”我无法同意这种说法,福尔摩斯对案件的精确推断来自于他的大脑,但是对正义与否的判断却来自内心。7,华生。福尔摩斯到底是否需要华生?很多人认为是作者柯南道尔,而不是福尔摩斯,真正需要华生。我比较同意这个看法,柯南道尔需要一个叙事者,而福尔摩斯,他大概和他哥哥一样,如果有可能,尽量自闭。但是我的另外一个朋友却不同意,他认为福尔摩斯需要一个叙述的对象,因为叙述是整理思路的最好办法。以下出自《爬行人》的一段话正说明了这种关系:“在他晚年我们的关系是特别的。他是一个受习惯支配的人,他有一些狭隘而根深蒂固的习惯,而我已经成了他的习惯之一。做为一种习惯,我好比他的提琴,板烟丝,陈年老烟斗,旧案索引,以及其他一些不那么体面的习惯。每当他遇到吃力的案子,需要一个在勇气方面他多少可以依靠的同伴时,我的用处就显出来了。但除此以外我还有别的用途。对于他的脑子,我好比是一块磨刀石。我可以刺激他的思维。他愿意在我面前大声整理他的思想。他的话也很难说就是对我讲的,大抵对墙壁讲也是同样可行的,但不管怎么说,一旦养成了对我讲话的习惯,我的表情以及我发出的感叹词之类对他的思考还是有些帮助的。如果说,我头脑的那种一贯的迟钝有时会使他不耐烦,这种烦躁反倒使他的灵感更欢快地迸发出来。在我们的友谊中,这就是我的微不足道的用处。”或者说,福尔摩斯需要一个朋友。如果就故事本身来说,福尔摩斯的确对华生很有好感,曾经多次坚持华生留下来进行委托人面谈,并且把华生从度假中拖出来跟他一起侦破案件。如果抛开柯南道尔不谈,福尔摩斯的确是把华生当成朋友的,这种友谊让歇洛克的无边冷酷中稍微透出了一点人性,同时也让他更迷人了。8,Jeremy Brett.他是我认为的最伟大的福尔摩斯扮演者。北京最近出了一套12碟的福尔摩斯连续剧DVD。我记得我很小的时候曾经在电视里看过,对他的迷恋就是从那个时候开始的。后来我又看过很多福尔摩斯电影,没有一个人超过Jeremy,无论是从外貌的相似或者是演技。Jeremy 后来被认为因为扮演福尔摩斯太过投入而陷入忧郁症,这种说法太过极端,他的忧郁症是因为妻子去世的缘故。不过Jeremy对福尔摩斯的诠释的确投入了他自己的理解。因为故事中柯南道尔对福尔摩斯的过去基本上没有提及,所以为了让福尔摩斯变的更丰满,他不得不自己想像福尔摩斯的童年大概生活在什么样的地方,有什么样的保姆和家庭教师等等……这样福尔摩斯就由一个简单的形象变成一个有血有肉的人,这也是为什么他扮演的福尔摩斯如此维妙维肖的原因。(有一种说法是莫利亚蒂教授曾经是歇洛克和麦可罗夫特的家庭教师……)9,福尔摩斯的星座:福尔摩斯肯定是摩羯座的!一般来说,摩羯座的男人都是工作狂,而且很少表露自己的感情,因为无法信任所以总是对女人保持距离。他们往往都是完美主义者,什么事情都得自己动手去做才放心。而且摩羯座的男人很多都有周期性的陷入忧郁心情中。这些特征都很符合福尔摩斯的个性。另外两个可能性是天平座和水瓶座。但这两个风向星座虽然都以聪明,富于逻辑性,思想深刻著称,但由于在人际关系上太过活跃,并不符合福尔摩斯的自闭个性。但是,值得注意的是,福尔摩斯对待他人的冷淡态度很可能是由于后天经历造成的心理障碍,所以,从这个角度来看,天平和水瓶也并非没有可能。(注:写这篇文章的时候,我还不知道福尔摩斯生于1854年1月6日,所以他当然是摩羯座的。)10,关于the Woman.是啊,是啊,我马上就要提起这位伟大的女性了。福尔摩斯心目中永远的“那位女士”。到底有多少位福尔摩斯学者控制不住自己的幻想,在毫无事实基础的情况下让艾琳?艾德勒小姐和福尔摩斯先生喜结良缘?有人说是在福尔摩斯失踪的那四年,有人说是在福尔摩斯退休之后,有人说并没有结婚,只是同居。而关于他们两个的孩子更有长篇累牍,不着边际的各种推测。就连Hall先生也在他的《福尔摩斯十研究》中用最后一章来写这两个人的罗曼史。11,关于福尔摩斯之死他吸鸦片,应该是吸入量过大而死。(按原文推敲而出)但福尔摩斯只是柯南道尔爵士笔下的人物,柯南道尔爵士让他与他的大对手莫里亚提教授同时落下瀑布而死,后来因为福尔摩斯迷们的强烈要求下,作者又让他神奇的复活了,所以福尔摩斯侦探还没死,具体什么时候死要问柯南道尔爵士,不过估计他死不了。就算他死了,他的精神会永远活在人们的心里!12,福尔摩斯的影响和意义福尔摩斯之所以出名,在此书问世100年后,英国皇室决定授予小说同名主人公大侦探福尔摩斯以爵士爵位.英皇授爵的条件是苛刻而严肃的,而次却破天荒授给一个书上的虚构人物.可见,阿瑟 柯南道尔100年前的著作对外国人有多么深远的影响和重要的意义。
您要写福学论文,您干什么的?崇拜,请问是侦探或推理小说家吗,我是超级福迷,请点我的名字并加我好友
先把它看一遍 然后找找中国同类书籍 做一个文学的比较研究既省事又不怕出错,关键是这种方法现在比较热,会给人眼前一亮的感觉。而且中国人读国外的推理小说 先天的优势就在于文化的差异。以中国人的眼睛看,就叫“多视角”。如果还觉得麻烦,就去期刊网搜搜相关论文。你是哪个学校的?
疾病简介 遗传病是指由遗传物质发生改变而引起的或者是由致病基因所控制的疾病。[编辑本段]疾病类型 由于遗传物质的改变,包括染色体畸变以及在染色体水平上看不见的基因突变而导致的疾病,统称为遗传病。根据所涉及遗传物质的改变程序,可将遗传病分为三大类: 其一是染色体病或染色体综合征,遗传物质的改变在染色体水平上可见,表现为数目或结构上的改变。由于染色体病累及的基因数目较多,故症状通常很严重,累及多器官、多系统的畸变和功能改变。 其二是单基因病,目前已经发现 5余种单基因病,主要是由单个基因的突变导致的疾病,分别由显性基因和隐性基因突变所致。所谓显性基因是指等位基因中(一对染色体上相同座位上的基因)只要其中之一发生了突变即可导致疾病的基因。隐性基因是指只有当一对等位基因同时发生了突变才能致病的基因。 第三是多基因病,顾名思义,这类疾病涉及多个基因起作用,与单基因病不同的是这些基因没有显性和隐性的关系,每个基因只有微效累加的作用,因此同样的病不同的人由于可能涉及的致病基因数目上的不同,其病情严重程度、复发风险均可有明显的不同,如唇裂就有轻有重,有些人同时还伴有腭裂。值得注意的是多基因病除与遗传有关外,环境因素影响也相当大,故又称多因子病。很多常见病如哮喘、唇裂、精神分裂症、高血压、先心病、癫痫等均为多基因病。 遗传病是指完全或部分由遗传因素决定的疾病,常为先天性的,也可后天发病。如先天愚型、多指(趾)、先天性聋哑、血友病等,这些遗传病完全由遗传因素决定发病,并且出生一定时间后才发病,有时要经过几年、十几年甚至几十年后才能出现明显症状。如假肥大型肌营养不良要到儿童期才发病;慢性进行性舞蹈病一般要在中年时期才出现疾病的表现。有些遗传病需要遗传因素与环境因素共同作用才能发病,如孝喘病,遗传因素占80%,环境因素占20%;胃及十二指肠溃疡,遗传因素占30%~40%,环境因素占60%~70%。遗传病常在一个家族中有多人发病,为家族性的,但也有可能一个家系中仅有一个病人,为散发性的,如苯丙酮尿症,因其致病基因频率低,又是常染色体隐性遗传病,只有夫妇双方均带有一个导致该疾病的基因时,子女才会成为这种隐性致病基因的纯合子(同一基因座位上的两个基因都不正常)而得病,因此多为散发,特别在只有一个子女的家庭,偶有散发出现的遗传病患者,就不足为奇了。 那么,遗传病能够治疗吗? 以前,人们认为遗传病是不治之症。近年来,随着现代医学的发展,医学遗传学工作者在对遗传病的研究中,弄清了一些遗传病的发病过程,从而为遗传病的治疗和预防提供了一定的基础,并不断提出了新的治疗措施。家族遗传病 遗传性疾病是由于遗传物质改变而造成的疾病。 遗传病具有先天性、家族性、终身性、遗传性的特点。 遗传病的种类大致可分为三类: 一、单基因病。 单基因常常表现出功能性的改变,不能造出某种蛋白质,代谢功能紊乱,形成代谢性遗传病。单基因病又分为三种: 1.显性遗传:父母一方有显性基因,一经传给下代就能发病,即有发病的代代,必然有发病的子代,而且世代相传,如多指,并指,原发性青光眼等。 2.隐生遗传:如先天性聋哑,高度近视,白化病等,之所以称隐性遗传病,是因为患儿的双亲外表往往正常,但都是致病基因的携带者。 3.性链锁遗传又称伴性遗传发病与性别有关,如血友病,其母亲是致病基因携带者。又如红绿色盲是一种交叉遗传儿子发病是来自母亲,是致病基因携带者,而女儿发病是由父亲而来,但男性的发病率要比女性高得多。 二、多基因遗传:是由多种基因变化影响引起,是基因与性状的关系,人的性状如身长、体型、智力、肤色和血压等均为多基因遗传,还有唇裂、腭裂也是多基因遗传。此外多基因遗传受环境因素的影响较大,如哮喘病、精神分裂症等。 三、染色体异常:由于染色体数目异常或排列位置异常等产生;最常见的如先天愚型,这种孩子面部愚钝,智力低下,两眼距离宽、斜视、伸舌样痴呆、通贯手、并常合并先天性心脏病。 上述遗传病并非携带致病基因就肯定会发病。 其实几乎所有的疾病都与基因有关系,也和环境有密切联系!遗传按生物体的照性状分,还可以分为质量性状和数量性状!所谓质量性状就是白种人和黄种人的差别,这主要是遗传决定的,受环境因数影响小。也就是男女的差别!数量性状即稻谷的重量,人的身高,颜色深浅等等,这些都叫数量性状。数量性状是多基因决定的,基因数一般不易测算,因为误差可以相差一个数量级。所以主要讲基因的总效应!数量性状受环境的影响非常大。可以说超过遗传因子! 总之,绝大部分疾病是环境因子和遗传因子共同作用的结果由于受精卵形成前或形成过程中遗传物质的改变造成的疾病。有人认为只有受父母遗传因素决定的疾病才是遗传病,这一认识不够全面。例如有一些染色体畸变并非由父母遗传因素决定,而是在受精卵形成过程中产生,习惯上染色体畸变都包括在遗传病的范畴内。还有人认为凡是受遗传因素影响的疾病都是遗传病,这一概念也不确切,因为在人类所有疾病中,除了少数几种(如外伤造成骨折)完全由环境因素所致,不受遗传因素影响外,几乎绝大多数疾病都是环境和遗传两方面因素互相作用的结果,只是两者影响疾病发生的程度可不相同。即使细菌感染、外伤后癫痫等环境因素十分明显的疾病,不同个体之间也存在着易感性的差异,而这种差异也是受遗传因素影响的,不可能把这些病都包括在遗传病的范畴之中。完全由遗传因素决定的疾病(A类,如21三体综合征)和完全由环境因素决定的疾病(D类, 如外伤性骨折)都是少数,而大多数人类疾病都居于B类和C类。B类指基本上由遗传因素决定,但需要环境中一定的诱因才发病,如苯丙酮酸尿症患儿在出生后摄入苯丙氨酸就会发病。 C类指遗传因素和环境因素都对发病起作用的疾病,如高血压病、感染等;但不同疾病的遗传度不同,即遗传因素影响越大,则遗传度就越高。所以从理论上来说, A、B、C等三类均属遗传病,但C类如感染、外伤后癫痫等在习惯上不包括在遗传病的范畴中。遗传病不同于先天性疾病,后者是指出生时就已表现出来的疾病。虽然不少遗传病在出生时就已表现出来,但也有些遗传病在出生时表现正常,而是在出生数日、数月,甚至数年、数十年后才开始逐渐表现出来,这显然不属于先天性疾病。另一方面,先天性疾病也并不都是遗传因素造成的,例如孕期母亲受放射线照射时所致的先天畸形,就不属于遗传病。遗传病也不同于家族性疾病。虽然有些由于同一个家族成员具有相同的遗传基础可表现遗传病的家族发病,但是不同的遗传病在亲代、子代之间的传递规律是复杂多样的,有些遗传病(如白化病等隐性遗传病)就可能没有家族史,另一方面,家族性疾病也可能由非遗传因素(如相同的生活条件)造成,如饮食中缺乏维生素 A使多个家族成员出现夜盲。 过去认为遗传病是一个较罕见的疾病,但随着医学的发展和人民生活水平的提高,一些过去严重威胁人类健康的传染病、营养性疾病得以控制,而遗传病成为比较突出的问题。如英国1914年的一项儿童死因调查表明,非遗传性疾病(如感染、肿瘤等)占83.5%,而遗传性疾病只占16.5%,但到20世纪70年代后期,两类疾病各占50%。国内的情况也同样,1951年北京市儿童的死亡原因中,感染性疾病占重要地位,但在1974~1976年儿童死因分析中,先天畸形占全部死因的23.4%,居首位,而在这些畸形中,属遗传病的达3~10名。另一方面,遗传病的病种非常多,随着生物学和医学的发展,近年发现新的遗传病更是层出不穷。表1 表明1958~1982年人类认识的单基因病的病种,至今已有4000种左右的遗传病被人们所认识。 简史 18 世纪法国人莫佩尔蒂第一个对遗传病作了家系调查,他分析了白化病的遗传方式。1814年亚当斯发表有关临床疾病遗传性质的论文,这被认为是近代最早的一篇系统论述遗传病的文章。1908年A.E.加罗德首次提出“先天代谢异常”的概念,将遗传与代谢联系起来,并认为尿酸尿症等先天代谢异常的遗传规律可以用孟德尔定律来解释,为医学遗传学作出了划时代的贡献。1949年L.波林提出了“分子病”的概念。1944年比克尔首先提出控制新生儿营养,可有效防止苯丙酮酸尿症的发展,为遗传病的有效治疗开创了新的一章。1958年J.勒热纳发现先天愚型患儿为三条21号染色体,这是第一次报道了遗传病的染色体异常。 1969年拉布斯发现了 X染色体的脆性部位,为染色体的畸变的研究开辟了一个新的领域。从60年代起,遗传病的产前诊断开始应用于临床。1978年卡恩和多齐首次将 DNA重组技术应用于遗传病的诊断,他们诊断了一例镰刀状细胞性贫血,此后这一诊断技术发展极为迅速。 分类 按照目前对遗传物质的认识水平,可将遗传病分为单基因遗传病、多基因遗传病和染色体病三大类。 单基因遗传病 同源染色体中来自父亲或母亲的一对染色体上基因的异常所引起的遗传病。这类疾病虽然种类很多,3000种以上(见表[1958~1982年全世界报告的单基因遗传病的病种数]1958~1982年全世界报告的单基因遗传病的病种数),但是每一种病的患病率较低,多属罕见病。欧美国家统计,约1%的新生儿患有较严重的基因病。按照遗传方式又可将单基因病分为四类:①常染色体显性遗传病。人类的23对染色体中,一对与性别有关,称为性染色体,其余22对均称常染色体。同源常染色体上某一对等位基因彼此相同的,称为纯合子,一对基因彼此不同的称杂合子。如果在杂合状态下,异常基因也能完全表现出遗传病的,称为常染色体显性遗传病,如多指并指、先天性肌强直,这类遗传病的发生与性别无关,男女患病率相同。父母中有一位患此疾病,其子女中就可能出现患者。据估计,约7‰新生儿患有常显体显性遗传病。②常染色体隐性遗传病。常染色体上一对等位基因必须均是异常基因纯合子才能表现出来的遗传病。大多数先天代谢异常均属此类。父母双方虽然外表正常,但如果均为某一常显体隐性遗传基因的携带者,其子女仍有可能患该种遗传病。近亲婚配时容易产生纯合状态,所以其子女隐性遗传病的发病率也高。③常染色体不完全显性遗传病。这是当异常基因处于杂合状态时,能且仅能在一定程度上表现出症状的遗传病。如地中海贫血,引起该病的异常基因为,纯合子 表现为重症贫血,杂合子则表现为中等程度的贫血④ 伴性遗传病。分为X连锁遗传病和Y连锁遗传病两种。有些遗传病的基因位于X染色体上,Y染色体过于短小,无相应的等位基因,因此,这些异常基因将随X染色体传递,所以称为X连锁遗传病。也分为显性和隐性两种,前者是指有一个X染色体的异常基因就可表现出来的遗传病,由于女性拥有两条X染色体而男性只有一条,所以女性获得该显性基因的机会较多,发病率高于男性,但这类遗传病为数很少,至今仅知10余种。如Xg血型,又如抗维生素D佝偻病是 X连锁不完全显性遗传病。X连锁隐性遗传病是指X染色体上等位基因在纯合状态下才发病者,在女性,只有当两条X染色体上的一对等位基因都属异常时才患病,如果其中有一条 X染色体的等位基因正常就不会患有此病。但是男性只有一条X染色体,只要X染色体上的基因异常,就会表现出遗传病,所以男性发病率高于女性发病率。这种伴性隐性遗传病占伴性遗传病的绝大部分,例如红绿色盲、血友病等都比较常见。据估计约1‰新生儿患有X连锁遗传病。 Y连锁遗传病的致病基因位于Y染色体上,X染色体上则无相应的等位基因,因此这些基因随着Y染色体在上下代间传递,也叫全男性遗传。在人类中属于 Y连锁遗传病的有外耳道多毛症等。 多基因遗传病 与两对以上基因有关的遗传病。每对基因之间没有显性或隐性的关系,每对基因单独的作用微小,但各对基因的作用有积累效应。一般说来,多基因遗传病远比单基因遗传病多见。受环境因素的影响,不同的多基因遗传病,受遗传因素和环境因素影响的程度也不同。遗传因素对疾病发生的影响程度,可用遗传度来说明,一般用百分数来表示,遗传度越高,说明这种多基因遗传病受遗传因素的影响越大。例如唇裂、腭裂是多基因遗传病,其遗传度达76%,而溃疡病仅37%。多基因遗传病还包括一些糖尿病、高血压病、高脂血症、神经管缺陷、先天性心脏病、精神分裂症等。在人群中,多基因遗传病的患病率在2~3%以上。 染色体病 指由于染色体的数目或形态、结构异常引起的疾病。新生儿中染色体异常的发病率为 0.5%。染色体异常称为染色体畸变,包括常染色体的异常和性染色体的异常。但是染色体病在全部遗传病中所占的比例不大,仅约1/10。 遗传病的研究和诊断 要研究判断某一疾病是否为遗传病可通过以下几个途径:家系调查及分析、挛生子分析、种族比较,伴随性状研究、动物模型和 DNA分析。通过家系调查、分析并与人群发病情况比较,不仅可以判断某病是否为遗传病,如果是遗传病的话,还可进一步确定其遗传方式。通过单卵孪生和双卵孪生同胞发病的一致率分析,可能判断某种病受遗传因素及环境因素影响的程度。不同种族和民族发病情况的比较,尤其是对同样生活环境不同种族的发病率的研究可能为遗传病的判断提供重要线索。在伴随症状分析中,目前应用最多的是同种白细胞抗原(HLA)系统,应用这一系统作为遗传病标志。研究作为某一遗传的伴随性状,进行连锁分析,则也能为遗传病的判断提供依据。目前已建立了数十种染色体畸变和单基因遗传病的动物模型,为遗传病的研究提供了有力手段。 DNA分析是近年来发展的重要手段,其中以限制片断长度多态性(RFLP)分析在遗传病判断中应用最多。 遗传病的临床诊断比其他疾病更困难。一方面遗传病的种类极多,另一方面每一种遗传病的单独发病率很低,所以临床医师在遗传病的诊断上不容易取得经验。除了一般疾病的诊断方法(如病史、体格检查、实验室和仪器检查)外,遗传病的诊断还可能需要依靠一些特殊的诊断手段,如染色体检查,特殊的生化学测定及系谱分析。遗传病的临床表现是最重要的诊断线索,每一种遗传病都有一些症状、体征同时存在,被称为“综合征”,这是提示诊断的最初线索,也是选择实验室检查和其他遗传学检查的依据。对遗传病患者必须要详细询问家族史并绘制准确可靠的家系谱,对家系谱的分析不仅是遗传病诊断的一项依据,而且对遗传方式的判明及进行遗传咨询也是极为重要的。皮纹分析是遗传病诊断的另一种特殊手段,主要对染色体病最有价值,对其他个别单基因遗传病也可能有一定意义,常用于临床检查的是指纹、掌纹、掌褶纹、指褶纹和脚掌纹。许多遗传病的最后诊断,还有赖于染色体检查和特殊的生化测定或DNA分析。 产前诊断是遗传病诊断的一个重要方面,在婴儿出生以前通过穿刺取得羊水或绒毛组织。进行染色体检查、特异的酶活性或代谢产物测定,或进行DNA分析对胎儿的发病情况作出判断,决定是否需要进行人工流产以终止妊娠,这在减少遗传病患儿的出生,提高人口素质方面具有重要意义,尤其在目前人类对大多数遗传病还不能进行有效治疗的条件下,用终止妊娠来防止遗传病患儿的出生更具有突出的意义。近年来由于 B型超声扫描仪的广泛应用和技术的提高,在产前诊断,尤其是发育畸形的诊断上有很大的价值。胎儿镜也开始应用于产前诊断。 基因诊断是新发展起来的一项重要技术,也能对近百种遗传病作出准确的诊断,但是由于这些遗传病大多数还不能作有效治疗,所以从医学伦理学的观点来看,除应用于产前诊断外,基因诊断的推广仍存在很大问题。 治疗和预防,要根治遗传病,应该从基因水平或染色体水平来纠正已发生的缺陷,这种方法称为基因治疗,属于基因工程的范畴。但是基因治疗在理论上、技术上还存在着极大的困难,目前谈不上临床应用。目前对遗传病所能进行的治疗只是在早期诊断的前提下,通过控制环境条件(如饮食成分等),调节代谢过程,防止症状的出现,称为“环境工程”。目前能应用于环境工程的治疗包括饮食控制疗法(如苯丙酮尿症用低或无苯丙酮酸奶粉喂养)、药物疗法(如用维生素B6治疗B6 依赖症,用别嘌呤醇治疗痛风等)、手术治疗(如脾切除术治疗遗传性球形红细胞增多症)、酶的补充(如异体骨髓移植治疗戈谢氏病)和对症疗法(如用抗癫痫药物控制苯丙酮酸尿症的惊厥)等。环境工程虽然可以减轻或消除一些遗传病的症状,对个体来说是有利的,但是治疗结果却使带有致病基因的患者不仅存活下来,甚至还能继续繁殖后代,而这些患者如果不经治疗本来可以自然淘汰,至少不会繁衍后代。所以环境工程对整个人类的影响可能是有害的,它将使致病基因的频率在人群中逐代提高,从而导致遗传病发病率的增高。 正因为目前对大多数遗传病尚无有效治疗方法,所以遗传病的预防就有特别重要的意义。预防措施包括新生儿筛查、环境保护、携带者的检出和遗传咨询等方面。新生儿筛查是指对所有出生的婴儿进行某项遗传病的简单检查,以便在症状出现以前就开始治疗,防止症状发生。只有那些在症状出现以前就可以通过检查发现生化异常,而且已有治疗措施,而不给予治疗日后又会造成严重残疾的遗传病才进行新生儿筛查。苯丙酮酸尿症和先天性甲状腺功能低下在许多国家已列为法定新生儿筛查项目。中国自1982年以来在北京、上海、天津、武汉等地也进行了一些筛查。其中1985年发表的全国12省市的苯丙酮酸尿症筛查是中国第一次报告的较大规模的新生儿筛查。生物素基酶缺陷的新生儿筛查在国际上也还是一个新课题,中国从1987年开始已在北京开始了这项筛查工作。环境保护是指减少或消除环境中的致畸剂、致癌剂、致染色体畸变剂和致基因突变剂,主要是工农业生产中产生的污染。携带者检出是指将那些外表正常,但带有致病基因或异常染色体的个体从人群中检出,对其婚姻和生育进行指导,防止其后代发生这种遗传病,检出的方法主要是染色体检查、特异的酶活性测定或代谢产物测定以及DNA分析,目前已能对染色体平衡易位及百余种单基因病作携带者的检出,对这些遗传病的预防有重要意义。遗传咨询, 1952年首先出现在美国,中国70年代以后才开展起来,是医务人员对遗传病患者及其家属对该遗传病的病因、遗传方式、防治、预后,以及提出的各项问题进行解答,并对患者的同胞子女再患此病的危险率作出估计,给予建议和指导。可以认为遗传咨询、产前诊断和终止妊娠三者为防止遗传病患者出生的“三部曲”。有人把婚姻咨询和生育咨询也纳入遗传咨询的范畴内,这些工作对优生优育具有重大意义。
遗传学的论文一篇,给点素材你怎么理解,分析探讨具体谈清晰的
遗传携带者的检出 遗传携带者(genetic carrier)是指表型正常,但带有致病遗传物质的个体。一般包括: ①隐生遗传杂合子;②显性遗传病的未显者;③表型尚正常的迟发外显者;④染色体平衡易位的个体。 遗传携带者的检出对遗传病的预防具有积极的意义。因为人群中,虽然许多隐性遗传病的发病率不高,但杂合子的比例却相当高。例如苯酮尿症的纯合子在人群中如为1:1000,携带者(杂合子)的频率为2:50,为纯合子频率的200倍。对发病率很低的遗传病,一般不做杂合子的群体筛查,仅对患者亲属及其对象进行筛查,也可以收到良好效果。对发病率高的遗传病,普查携带者效果显著。例如我国南方各省的α及β地中海贫血的发病率特别高(共占人群8%-12%,有的省或地区更高),因此检出双方同为α或同为β地贫杂合子的机会很多,这时,进行婚姻及生育指导,配合产前诊断,就可以从第一胎起防止重型患儿出生,从而收到巨大的社会效益和经济效益,不仅降低了本病的发病率,而且防止了不良基因在群体中播散。 染色体平衡易位携带者生育死胎及染色体病患儿的机会很大(参阅第二章),因此,对染色体平衡易位的亲属进行检查十分重要。 隐性致病基因杂合子检出方法的理论根据是基因的剂量效应,即基因产物的剂量,杂合子介于纯合子与正常个体之间,约为正常个体的半量,但因机体内外环境各种因素对基因表达的影响,以及检测方法的不同(直接测定基因产物或测定基因间接产物),使测定值在正常与杂合子之间,杂合子与纯合子之间发生重叠,造成判断的困难。 杂合子携带者的检测方法大致可分为:临床水平、细胞水平、酶和蛋白质水平及分子水平。从临床水平,一般只能提供线索,不能准确检出,故已基本弃用。细胞水平主要是染色体检查,多用于平衡易位携带者的检出。酶和蛋白质水平的测定(包括代谢中间产物的测定),目前对于一些分子代谢病杂合子检测尚有一定的意义,但正逐渐被基因水平的方法所取代。即随着分子遗传学的发展,可以从分子水平即利用DNA或RNA分析技术直接检出杂合子,而且准确,特别是对一些致病基因的性质和异常基因产物还不清楚的遗传病,或用一般生化方法不能准确检测的遗传病,例如慢性进行舞蹈病、甲型和乙型血友病、DMD、苯酮尿症等;最后,对一些迟发外显携带者还可作症状前诊断,因而有可能采取早期预防性措施,如成人多囊肾病等(参阅第十三章)。目前,用基因分析检测杂合子的方法日益增多,并逐步向简化、快速、准确的方向发展,以求扩大到高危人群的筛查。
这个网上的论文感觉不是很多~你可以在(亚洲遗传病病例研究)期刊里面找下~网上应该可以找的到的~
在孟德尔之前,已先后有科尔罗伊德(J.G.Koelreuter,1733—1806)、奈特(T.A.Knight,1759-1838)、萨格莱特(A.Sageret,1763-1851)、盖特纳(C.F.V.Gartnor,1722-1850)和诺丁(C.Naudin,1815-1899)等科学家,至少持续了100年的植物杂交工作,但是都没有取得大的进展。 1856年,为了探究控制杂种形成和发育的规律,孟德尔在奥地利布隆(Brunn)(现属捷克)的奥古斯丁(Augustin)修道院中,进行了长达8年的豌豆杂交实验。他在实验中对于要解决什么问题、选择什么实验材料、怎样分析实验结果等,都有一个十分清楚的构想。他创造了一整套全新的遗传学研究方法,这主要包括:单因子分析法、数学统计法和测交实验法等。严谨正确的科学方法,使孟德尔的实验结果真实地反映出了生物遗传的实质。 1865年,在奥地利布隆自然科学协会每月例会上,孟德尔分两次(2月8日和3月8日)报告和解释了他的豌豆杂交实验目的、方法和过程。在这个报告中,孟德尔着重根据经统计到的实验数据进行了深入的理论论证;详细地陈述了他独特的遗传学分析方法;提出了关于遗传因子分离和组合的新观念。 1866年,孟德尔对他的豌豆杂交实验结果,经过再次核查各年的实验记录而未发现有什么错误后,以题为“植物杂交试验”之论文,发表在布隆自然科学协会会刊第4卷上。在这篇约3万字的论文中,孟德尔如实地记述了他的重大发现;总结出了被后人称为“分离律”和“自由组合律”的遗传定律。 孟德尔的论文,当时曾分送至德国植物学会、英国皇家学会、法国科学院、奥地利维也纳大学和美国哥伦比亚大学等国内外130多个科研机构和大学的图书馆。但是各方面都没有作出任何的反应,整个科学界对此保持沉默,谁也没有认识到,在孟德尔的论文中,蕴藏着一个划时代的发现。 这样,被后人视为是科学实验和资料丰富透彻的重要典范的孟德尔论文,由于“时机不成熟”,超越了当时的认识水平,便在布满灰尘的各国图书馆的书架上,默默无闻地沉睡了30多年。 3 种质学说的提出及其影响 就在孟德尔定律被埋没之时,细胞学的研究由于显微制片技术的改进而有了重大发展。细胞学家和胚胎学家关于“细胞分裂”、“染色体行为”和“受精过程”等方面的研究,正从另一角度探讨着生物遗传的原理。与此同时,英国生物学家达尔文(C,Darwin,1809—1882)在他的进化论巨著《物种起源》一书中提出的“支配生物遗传的定律大部分还不明了”的问题,也促使人们把研究生物遗传的兴趣推向高峰。许多学者设想出各种理论,试图解释生物遗传和变异的现象。遗传理论的探讨,伴随着不成熟的思辩,极其缓慢地前进着。 德国生物学家魏斯曼(A.Weismann,1834—1914)立足当时生物学的研究成果,主要根据比利时胚胎学家贝内登(E.von.Beneden,1846—1910)、德国实验胚胎学家鲍维里(T.Boveri,1862—1915)等人对马蛔虫的研究,从思辩推理出发,于1892年发表了代表作“种质:一种遗传理论”。在这个遗传理论中,魏斯曼把生物体明确分为体质和种质,认为“遗传是由具有一定化学性,首先是具有分子结构的物质在世代之间的传递来实现的,这种物质就是‘种质’。它具有稳定性和连续性。”魏斯曼还认为,“有性生殖能够增加遗传的变异性。”“遗传的变异是由种质的变异产生的,因而成为生物进化的原因。”“当环境的影响只改变了体质,而并没有引起种质发生相应的变异时,这种体质变异,即后天获得性状是不能遗传的。”它和达尔文提出的“暂定的泛生说”、荷兰植物学家德弗里斯(H.DeVries,1848—1935)提出的“细胞内的泛生论”等,成为众所周知的、被广泛讨论的遗传理论。激烈的论战,以及当时生产实践上急待解决的动植物育种中的遗传问题,促使以德弗里斯、德国植物学家科伦斯(C. Corrcns,1864—1933)、奥地利植物学家丘歇马克(E. von.S.Tschermak,1972—1962)等纷纷去进行孟德尔早在30多年以前就已做过的杂交实验,从而为1900年孟德尔定律的重新发现拉开了序幕。 3 孟德尔定律的重新发现 1899年7月11日—12日以“植物杂交工作国际会议”的名义,在英国伦敦召开的第1届国际遗传学大会上,英国遗传学家贝特森(W.Bateson,1861—1926)宣读了“作为科学研究方法的杂交和杂交育种”的论文中,提醒人们注重研究生物单个性状的遗传原理,指出:“如果要使实验结果具有科学价值,就一定要对杂交后产生的子代,从统计学上加以检验。”早在1897年,贝特森便就生物如何进化的问题,开始对家鸡的冠形和羽色等性状进行杂交实验。在实验中,他不仅发现了与孟德尔类似的分离比率,还了解了对杂种后代进行统计学分析的重要性。可见,不论是研究方法,还是实验结果,贝特森都很接近30多年前的孟德尔。这也说明了孟德尔遗传理论此时被学术界接受的时机已经成熟。在这次大会召开后的第二年,德弗里斯的“杂种的分离律”、科伦斯的“关于品种间杂种后代行为的孟德尔定律”以及丘歇马克的“豌豆的人工杂交”等三篇论文,相继在《柏林德国植物学会》杂志第18卷上发表(三篇论文收到的时间分别为1900年的3月14日、4月24日和6月2日)。这样,三位不同国度的科学家通过各自独立进行的植物杂交实验,并在研究论文发表的前夕查阅有关文献,而几乎同时重新发现了孟德尔早在1866年发表的论文——“植物杂交试验”。科学史上把这一重大事件称为孟德尔定律的重新发现。 4 遗传学的真正崛起 在孟德尔定律被重新发现后的最初时间里,科学界并没有引起多大的震动。孟德尔论文受到科学界重视,遗传学的真正崛起,主要归功于贝特森的积极倡导和不懈努力。 1900年5月初,贝特森从德弗里斯寄给他的论文中了解到孟德尔的工作和发现。作为一个长期致力于生物进化、变异和遗传研究的科学家,贝特森比前三位再发现者,更加深刻地认识到孟德尔工作的重要意义。他立即修改了已拟定的讲演稿,在5月8日的英国皇家园艺学会大会开幕时,作了题为“作为园艺学研究课题中的遗传问题”的演讲,结合孟德尔论文,报告了证实孟德尔定律的有关实验,包括他自己的家鸡杂交实验结果。演讲中提到:“孟德尔对杂交实验结果的解释是精确而又完备的。他从实验中推导出来的定律,对于我们今后探讨生物进化问题,显然有着极其重要的意义。”由于贝特森的演讲,出席这次会议的学者们才第一次知道了孟德尔的豌豆杂文实验及其所揭示的遗传定律。 1901年,贝特森率先把孟德尔的论文“植物杂交实验”由德文译成英文,并加以评注发表在英国皇家园艺学会杂志。正是这篇译文,使孟德尔的重大发现首先引起了英语国家的注意,进而在世界各地产生了巨大的反响。 在此同时,为了使人们易于理解和接受孟德尔的遗传理论,贝特森和他的学生庞尼特(R.C. Punnett)将孟德尔原始论文所使用的文字和数学公式加以图式化,并给予了固定符号,如杂种第一代用“”表示、杂种第二代用“”表示、将遗传图用简明的棋盘式图解(即人们后来称为的庞尼特方格)表示。 1906年7月30日~8月3日在英国伦敦召开的第3届国际遗传学大会,仍然以“杂交和植物育种”的名义。贝特森在大会宣读“遗传学研究进展”论文,第一次公开建议人们把研究遗传和变异的生理学统称为“Genetics”(遗传学)。他在论文中提到:“采用‘遗传学’这个词,能完全表述我们所从事阐明生物遗传和变异现象的工作,其中包括进化论者和分类学者的理论问题、应用于动植物育种学家的实际问题。贝特森的建议,被出席大会的学者们顺利接受。 5 染色体遗传理论的建立 在20世纪最初几年间,当植物学家和杂文工作者以极大的兴趣通过大量的动植物的杂交实验,继续去证明孟德尔学说具有普遍意义的同时,一些具有深厚细胞学基础的学者已敏锐地觉察到,在显微镜下可看到的染色体与孟德尔的”遗传因子”之间有着某种必然的联系。 1902年,鲍维里在用胚胎学和细胞学的实验方法对马蛔虫和海胆的染色体进行研究后,得出了“染色体的行为与孟德尔遗传因子具有平行关系”的结论。1903年,美国遗传学家萨顿(W.S.Sutton,1877—1916)通过对笨蝗精子形成过程中染色体变化的研究,意识到孟德尔遗传因子的分离和重组,与染色体在减数分裂中的分离和重组是如影随形,完全一致的。由此,他得出了“同源染色体在减数分裂时,以配对形式联合,再彼此分离,将构成孟德尔定律的物质基础”的著名推论。萨顿-鲍维里提出的染色体遗传理论,为解释孟德尔定律寻找到细胞学的基础。 1902年,美国细胞学家威尔森(E.B.Wilson,1856—1939)在他的经典著作《发生与遗传中的细胞》(第2版)中,也把细胞学家对染色体的认识与孟德尔定律进行了漂亮的综合,把生物的发生与遗传统一在细胞水平上,推进了人们对染色体和遗传之关系的认识。 1909年,美国遗传学家摩尔根(T.H.Morgan,1866-1945)从他自己培养的野生型红眼果蝇群体里,意外地发现了一只白眼雄果蝇。通过对果蝇眼色的遗传学分析,摩尔根第一次把一个具体的基因(白眼基因)定位于一个特定的染色体(X染色体)上,从而为遗传的染色体理论捉供了重要实验证据,开辟了一条遗传学和细胞学紧密结合的研究道路。 这以后,摩尔根和他的学生继续以果蝇为研究材料,进行了一系列的确定基因与染色体关系的精彩实验,相继发现了基因的连锁和互换规律、性别决定和伴性遗传的机理,为遗传学的染色体理论的最终建立打下了牢固的基础。1926年,摩尔根出版了集染色体遗传学之大成的名著《基因论》(《The Theory of theGene》),系统阐述了遗传学在细胞水平上的基因理论,丰富和发展了孟德尔遗传学说,使遗传学获得了前所未有的大发展 孟德尔(1822-1884)与达尔文(1809-1882)都是十九世纪的科学巨人,这是常识。我们生活在「后-基因组时代」的人,甚至可能觉得孟德尔才是巨人中的巨人。例如起草高中生物学课程大纲的大学教授,就认为达尔文演化论是可有可无的题材,只适合让高三学生选修,意思就是网开一面,免修啦。有人敢主张遗传学也放在高三选修吗? 不过,我们对孟德尔这个人知道得的确很少。要是拿他与达尔文比较,更能凸显这个事实。达尔文出身名门,连雪莱夫人的《科学怪人》(1818)都要抬出他祖父的名号,说服读者相信书中故事「不完全向壁虚构」。在母系方面,达尔文的母亲来自知名的威吉伍(Wedgwood)家。达尔文的外祖父为「威吉伍瓷器」奠定了基础,与达尔文的祖父是知识与事业上的朋友;他们一伙人在英国工业革命发轫之初(十八世纪末)的活动,仍是史家研究的焦点。 就算达尔文没搞出什么伟大的名堂,他五年环球航行的游记,一路上收集的标本,加上他写的短篇论文与私人信件、札记,都能确保他在科学史上的地位,因为那些资料全都可以反映英国在十九世纪的典型科学活动。 有时,平庸一些的科学家更能让我们一窥科学生涯的究竟。别的不说,做实验就是个沈闷的苦差事。百分之九十以上的实验都以失败告终。即使诺贝尔奖得主,也有许多人在本行之内,发表的错误意见比正确的还多。 孟德尔实在太平庸了。他出生于农家,是长子,也是独子。他不想继承家业,家里又供不起他念书,这才进了修道院。孟德尔正式成为神职人员之后,连例行的职责都做不好,例如到医院照顾病人,因为他受不了医院内的景象。那时,贫穷的人才会上医院看病,医院资源不够,脏乱不堪,简直是病媒集散地。孟德尔身心受创,自己都病了。于是修道院长派他去教书。 可是孟德尔到维也纳大学考中学教员资格考试,两次都失败了。修道院长送他到维也纳大学进修两年,好让他当个称职的中学老师。一八五三年七月,孟德尔返回修道院,第二年夏天就开始进行豌豆实验。一八六五年,他把实验结果整理出来,在当地的自然科学会分两次宣读,第二年正式发表,我们现在知道,其中包括了现在中学课本里的「孟德尔定律」:分离律与独立分配律。 问题在于:孟德尔做豌豆实验的「本意」是什么?他想解决什么问题?他自认为得到了什么结论?他什么实验记录、笔记都没有留下,这几个问题的答案,后人只能从论文里自行解读。牛顿说他看得远,只因为他站在巨人的肩上;我们现在可以肯定发现行星三定律的克卜勒(Kepler, 1571-1630)是他的巨人之一。孟德尔呢? 别说现在的我们搞不清楚孟德尔的企图,即使在当年,孟德尔也没什么知音,最冷酷的事实是:当时科学界对他的实验结果毫无反应。他订购了四十份论文抽印本,许多都寄给当时他心仪的学者,在达尔文的图书室里也找到过一份,居然还没有拆封!这件事让崇拜达尔文的人跌足叹息,因为达尔文自己发明的遗传学理论(1868),当年是个笑话。 孟德尔「暴得大名」,是他过世后十六年的事。公元一九○○年春,荷兰、德国、奥国有三位学者不约而同地「重新发现」孟德尔论文的价值。现在教科书将孟德尔冠上「遗传学之父」的头衔,就是根据他们的解释。 有趣的是,科学界重新发现了孟德尔之后,一些自命为孟德尔信徒的学者反而是驳斥天择理论最力的人,使达尔文拒绝拆读孟德尔论文的往事似乎更显得合理。 两位科学界的巨人,对彼此的成就既不讶异,又不欢喜,给了科学史家作文章的机会。为孟德尔作传的人就麻烦了,必须东拉西扯才能完成厚度足以与「遗传学之父」相称的传记。难的是,东拉西扯得有功力。中译出版的孟德尔传《花园中的僧侣》,英文原着(2000)没博得好评,就因为作者没扯出什么道理。 例如一八六一年夏,孟德尔到伦敦参加世界博览会,作者想象两位大师万一见面的情景,根本没有抓住达尔文演化论的关键:人类数千年的育种经验,已足以撑起达尔文的论证;因此达尔文的遗传理论虽然是笑话,却无损他的学术地位。而作者无法清楚说明孟德尔豌豆实验的企图,使她的想象只能凑字数而已。 生物遗传有两个面向,一是常,一是变。孟德尔遗传学定律可以说明「常」,却无法说明「变」。达尔文需要的遗传理论,必须能说明生物的「变」。因此,他们即使有机会切磋,大概也没有交集吧。 至于孟德尔怎么看自己,仍是个谜。其实也不重要,科学史上是没有「个人」的。重要的是孟德尔定律,而不是孟德尔。......
汗。。不会写。。你自己加油吧。。。
疾病简介 遗传病是指由遗传物质发生改变而引起的或者是由致病基因所控制的疾病。[编辑本段]疾病类型 由于遗传物质的改变,包括染色体畸变以及在染色体水平上看不见的基因突变而导致的疾病,统称为遗传病。根据所涉及遗传物质的改变程序,可将遗传病分为三大类: 其一是染色体病或染色体综合征,遗传物质的改变在染色体水平上可见,表现为数目或结构上的改变。由于染色体病累及的基因数目较多,故症状通常很严重,累及多器官、多系统的畸变和功能改变。 其二是单基因病,目前已经发现 5余种单基因病,主要是由单个基因的突变导致的疾病,分别由显性基因和隐性基因突变所致。所谓显性基因是指等位基因中(一对染色体上相同座位上的基因)只要其中之一发生了突变即可导致疾病的基因。隐性基因是指只有当一对等位基因同时发生了突变才能致病的基因。 第三是多基因病,顾名思义,这类疾病涉及多个基因起作用,与单基因病不同的是这些基因没有显性和隐性的关系,每个基因只有微效累加的作用,因此同样的病不同的人由于可能涉及的致病基因数目上的不同,其病情严重程度、复发风险均可有明显的不同,如唇裂就有轻有重,有些人同时还伴有腭裂。值得注意的是多基因病除与遗传有关外,环境因素影响也相当大,故又称多因子病。很多常见病如哮喘、唇裂、精神分裂症、高血压、先心病、癫痫等均为多基因病。 遗传病是指完全或部分由遗传因素决定的疾病,常为先天性的,也可后天发病。如先天愚型、多指(趾)、先天性聋哑、血友病等,这些遗传病完全由遗传因素决定发病,并且出生一定时间后才发病,有时要经过几年、十几年甚至几十年后才能出现明显症状。如假肥大型肌营养不良要到儿童期才发病;慢性进行性舞蹈病一般要在中年时期才出现疾病的表现。有些遗传病需要遗传因素与环境因素共同作用才能发病,如孝喘病,遗传因素占80%,环境因素占20%;胃及十二指肠溃疡,遗传因素占30%~40%,环境因素占60%~70%。遗传病常在一个家族中有多人发病,为家族性的,但也有可能一个家系中仅有一个病人,为散发性的,如苯丙酮尿症,因其致病基因频率低,又是常染色体隐性遗传病,只有夫妇双方均带有一个导致该疾病的基因时,子女才会成为这种隐性致病基因的纯合子(同一基因座位上的两个基因都不正常)而得病,因此多为散发,特别在只有一个子女的家庭,偶有散发出现的遗传病患者,就不足为奇了。 那么,遗传病能够治疗吗? 以前,人们认为遗传病是不治之症。近年来,随着现代医学的发展,医学遗传学工作者在对遗传病的研究中,弄清了一些遗传病的发病过程,从而为遗传病的治疗和预防提供了一定的基础,并不断提出了新的治疗措施。家族遗传病 遗传性疾病是由于遗传物质改变而造成的疾病。 遗传病具有先天性、家族性、终身性、遗传性的特点。 遗传病的种类大致可分为三类: 一、单基因病。 单基因常常表现出功能性的改变,不能造出某种蛋白质,代谢功能紊乱,形成代谢性遗传病。单基因病又分为三种: 1.显性遗传:父母一方有显性基因,一经传给下代就能发病,即有发病的代代,必然有发病的子代,而且世代相传,如多指,并指,原发性青光眼等。 2.隐生遗传:如先天性聋哑,高度近视,白化病等,之所以称隐性遗传病,是因为患儿的双亲外表往往正常,但都是致病基因的携带者。 3.性链锁遗传又称伴性遗传发病与性别有关,如血友病,其母亲是致病基因携带者。又如红绿色盲是一种交叉遗传儿子发病是来自母亲,是致病基因携带者,而女儿发病是由父亲而来,但男性的发病率要比女性高得多。 二、多基因遗传:是由多种基因变化影响引起,是基因与性状的关系,人的性状如身长、体型、智力、肤色和血压等均为多基因遗传,还有唇裂、腭裂也是多基因遗传。此外多基因遗传受环境因素的影响较大,如哮喘病、精神分裂症等。 三、染色体异常:由于染色体数目异常或排列位置异常等产生;最常见的如先天愚型,这种孩子面部愚钝,智力低下,两眼距离宽、斜视、伸舌样痴呆、通贯手、并常合并先天性心脏病。 上述遗传病并非携带致病基因就肯定会发病。 其实几乎所有的疾病都与基因有关系,也和环境有密切联系!遗传按生物体的照性状分,还可以分为质量性状和数量性状!所谓质量性状就是白种人和黄种人的差别,这主要是遗传决定的,受环境因数影响小。也就是男女的差别!数量性状即稻谷的重量,人的身高,颜色深浅等等,这些都叫数量性状。数量性状是多基因决定的,基因数一般不易测算,因为误差可以相差一个数量级。所以主要讲基因的总效应!数量性状受环境的影响非常大。可以说超过遗传因子! 总之,绝大部分疾病是环境因子和遗传因子共同作用的结果由于受精卵形成前或形成过程中遗传物质的改变造成的疾病。有人认为只有受父母遗传因素决定的疾病才是遗传病,这一认识不够全面。例如有一些染色体畸变并非由父母遗传因素决定,而是在受精卵形成过程中产生,习惯上染色体畸变都包括在遗传病的范畴内。还有人认为凡是受遗传因素影响的疾病都是遗传病,这一概念也不确切,因为在人类所有疾病中,除了少数几种(如外伤造成骨折)完全由环境因素所致,不受遗传因素影响外,几乎绝大多数疾病都是环境和遗传两方面因素互相作用的结果,只是两者影响疾病发生的程度可不相同。即使细菌感染、外伤后癫痫等环境因素十分明显的疾病,不同个体之间也存在着易感性的差异,而这种差异也是受遗传因素影响的,不可能把这些病都包括在遗传病的范畴之中。完全由遗传因素决定的疾病(A类,如21三体综合征)和完全由环境因素决定的疾病(D类, 如外伤性骨折)都是少数,而大多数人类疾病都居于B类和C类。B类指基本上由遗传因素决定,但需要环境中一定的诱因才发病,如苯丙酮酸尿症患儿在出生后摄入苯丙氨酸就会发病。 C类指遗传因素和环境因素都对发病起作用的疾病,如高血压病、感染等;但不同疾病的遗传度不同,即遗传因素影响越大,则遗传度就越高。所以从理论上来说, A、B、C等三类均属遗传病,但C类如感染、外伤后癫痫等在习惯上不包括在遗传病的范畴中。遗传病不同于先天性疾病,后者是指出生时就已表现出来的疾病。虽然不少遗传病在出生时就已表现出来,但也有些遗传病在出生时表现正常,而是在出生数日、数月,甚至数年、数十年后才开始逐渐表现出来,这显然不属于先天性疾病。另一方面,先天性疾病也并不都是遗传因素造成的,例如孕期母亲受放射线照射时所致的先天畸形,就不属于遗传病。遗传病也不同于家族性疾病。虽然有些由于同一个家族成员具有相同的遗传基础可表现遗传病的家族发病,但是不同的遗传病在亲代、子代之间的传递规律是复杂多样的,有些遗传病(如白化病等隐性遗传病)就可能没有家族史,另一方面,家族性疾病也可能由非遗传因素(如相同的生活条件)造成,如饮食中缺乏维生素 A使多个家族成员出现夜盲。 过去认为遗传病是一个较罕见的疾病,但随着医学的发展和人民生活水平的提高,一些过去严重威胁人类健康的传染病、营养性疾病得以控制,而遗传病成为比较突出的问题。如英国1914年的一项儿童死因调查表明,非遗传性疾病(如感染、肿瘤等)占83.5%,而遗传性疾病只占16.5%,但到20世纪70年代后期,两类疾病各占50%。国内的情况也同样,1951年北京市儿童的死亡原因中,感染性疾病占重要地位,但在1974~1976年儿童死因分析中,先天畸形占全部死因的23.4%,居首位,而在这些畸形中,属遗传病的达3~10名。另一方面,遗传病的病种非常多,随着生物学和医学的发展,近年发现新的遗传病更是层出不穷。表1 表明1958~1982年人类认识的单基因病的病种,至今已有4000种左右的遗传病被人们所认识。 简史 18 世纪法国人莫佩尔蒂第一个对遗传病作了家系调查,他分析了白化病的遗传方式。1814年亚当斯发表有关临床疾病遗传性质的论文,这被认为是近代最早的一篇系统论述遗传病的文章。1908年A.E.加罗德首次提出“先天代谢异常”的概念,将遗传与代谢联系起来,并认为尿酸尿症等先天代谢异常的遗传规律可以用孟德尔定律来解释,为医学遗传学作出了划时代的贡献。1949年L.波林提出了“分子病”的概念。1944年比克尔首先提出控制新生儿营养,可有效防止苯丙酮酸尿症的发展,为遗传病的有效治疗开创了新的一章。1958年J.勒热纳发现先天愚型患儿为三条21号染色体,这是第一次报道了遗传病的染色体异常。 1969年拉布斯发现了 X染色体的脆性部位,为染色体的畸变的研究开辟了一个新的领域。从60年代起,遗传病的产前诊断开始应用于临床。1978年卡恩和多齐首次将 DNA重组技术应用于遗传病的诊断,他们诊断了一例镰刀状细胞性贫血,此后这一诊断技术发展极为迅速。 分类 按照目前对遗传物质的认识水平,可将遗传病分为单基因遗传病、多基因遗传病和染色体病三大类。 单基因遗传病 同源染色体中来自父亲或母亲的一对染色体上基因的异常所引起的遗传病。这类疾病虽然种类很多,3000种以上(见表[1958~1982年全世界报告的单基因遗传病的病种数]1958~1982年全世界报告的单基因遗传病的病种数),但是每一种病的患病率较低,多属罕见病。欧美国家统计,约1%的新生儿患有较严重的基因病。按照遗传方式又可将单基因病分为四类:①常染色体显性遗传病。人类的23对染色体中,一对与性别有关,称为性染色体,其余22对均称常染色体。同源常染色体上某一对等位基因彼此相同的,称为纯合子,一对基因彼此不同的称杂合子。如果在杂合状态下,异常基因也能完全表现出遗传病的,称为常染色体显性遗传病,如多指并指、先天性肌强直,这类遗传病的发生与性别无关,男女患病率相同。父母中有一位患此疾病,其子女中就可能出现患者。据估计,约7‰新生儿患有常显体显性遗传病。②常染色体隐性遗传病。常染色体上一对等位基因必须均是异常基因纯合子才能表现出来的遗传病。大多数先天代谢异常均属此类。父母双方虽然外表正常,但如果均为某一常显体隐性遗传基因的携带者,其子女仍有可能患该种遗传病。近亲婚配时容易产生纯合状态,所以其子女隐性遗传病的发病率也高。③常染色体不完全显性遗传病。这是当异常基因处于杂合状态时,能且仅能在一定程度上表现出症状的遗传病。如地中海贫血,引起该病的异常基因为,纯合子 表现为重症贫血,杂合子则表现为中等程度的贫血④ 伴性遗传病。分为X连锁遗传病和Y连锁遗传病两种。有些遗传病的基因位于X染色体上,Y染色体过于短小,无相应的等位基因,因此,这些异常基因将随X染色体传递,所以称为X连锁遗传病。也分为显性和隐性两种,前者是指有一个X染色体的异常基因就可表现出来的遗传病,由于女性拥有两条X染色体而男性只有一条,所以女性获得该显性基因的机会较多,发病率高于男性,但这类遗传病为数很少,至今仅知10余种。如Xg血型,又如抗维生素D佝偻病是 X连锁不完全显性遗传病。X连锁隐性遗传病是指X染色体上等位基因在纯合状态下才发病者,在女性,只有当两条X染色体上的一对等位基因都属异常时才患病,如果其中有一条 X染色体的等位基因正常就不会患有此病。但是男性只有一条X染色体,只要X染色体上的基因异常,就会表现出遗传病,所以男性发病率高于女性发病率。这种伴性隐性遗传病占伴性遗传病的绝大部分,例如红绿色盲、血友病等都比较常见。据估计约1‰新生儿患有X连锁遗传病。 Y连锁遗传病的致病基因位于Y染色体上,X染色体上则无相应的等位基因,因此这些基因随着Y染色体在上下代间传递,也叫全男性遗传。在人类中属于 Y连锁遗传病的有外耳道多毛症等。 多基因遗传病 与两对以上基因有关的遗传病。每对基因之间没有显性或隐性的关系,每对基因单独的作用微小,但各对基因的作用有积累效应。一般说来,多基因遗传病远比单基因遗传病多见。受环境因素的影响,不同的多基因遗传病,受遗传因素和环境因素影响的程度也不同。遗传因素对疾病发生的影响程度,可用遗传度来说明,一般用百分数来表示,遗传度越高,说明这种多基因遗传病受遗传因素的影响越大。例如唇裂、腭裂是多基因遗传病,其遗传度达76%,而溃疡病仅37%。多基因遗传病还包括一些糖尿病、高血压病、高脂血症、神经管缺陷、先天性心脏病、精神分裂症等。在人群中,多基因遗传病的患病率在2~3%以上。 染色体病 指由于染色体的数目或形态、结构异常引起的疾病。新生儿中染色体异常的发病率为 0.5%。染色体异常称为染色体畸变,包括常染色体的异常和性染色体的异常。但是染色体病在全部遗传病中所占的比例不大,仅约1/10。 遗传病的研究和诊断 要研究判断某一疾病是否为遗传病可通过以下几个途径:家系调查及分析、挛生子分析、种族比较,伴随性状研究、动物模型和 DNA分析。通过家系调查、分析并与人群发病情况比较,不仅可以判断某病是否为遗传病,如果是遗传病的话,还可进一步确定其遗传方式。通过单卵孪生和双卵孪生同胞发病的一致率分析,可能判断某种病受遗传因素及环境因素影响的程度。不同种族和民族发病情况的比较,尤其是对同样生活环境不同种族的发病率的研究可能为遗传病的判断提供重要线索。在伴随症状分析中,目前应用最多的是同种白细胞抗原(HLA)系统,应用这一系统作为遗传病标志。研究作为某一遗传的伴随性状,进行连锁分析,则也能为遗传病的判断提供依据。目前已建立了数十种染色体畸变和单基因遗传病的动物模型,为遗传病的研究提供了有力手段。 DNA分析是近年来发展的重要手段,其中以限制片断长度多态性(RFLP)分析在遗传病判断中应用最多。 遗传病的临床诊断比其他疾病更困难。一方面遗传病的种类极多,另一方面每一种遗传病的单独发病率很低,所以临床医师在遗传病的诊断上不容易取得经验。除了一般疾病的诊断方法(如病史、体格检查、实验室和仪器检查)外,遗传病的诊断还可能需要依靠一些特殊的诊断手段,如染色体检查,特殊的生化学测定及系谱分析。遗传病的临床表现是最重要的诊断线索,每一种遗传病都有一些症状、体征同时存在,被称为“综合征”,这是提示诊断的最初线索,也是选择实验室检查和其他遗传学检查的依据。对遗传病患者必须要详细询问家族史并绘制准确可靠的家系谱,对家系谱的分析不仅是遗传病诊断的一项依据,而且对遗传方式的判明及进行遗传咨询也是极为重要的。皮纹分析是遗传病诊断的另一种特殊手段,主要对染色体病最有价值,对其他个别单基因遗传病也可能有一定意义,常用于临床检查的是指纹、掌纹、掌褶纹、指褶纹和脚掌纹。许多遗传病的最后诊断,还有赖于染色体检查和特殊的生化测定或DNA分析。 产前诊断是遗传病诊断的一个重要方面,在婴儿出生以前通过穿刺取得羊水或绒毛组织。进行染色体检查、特异的酶活性或代谢产物测定,或进行DNA分析对胎儿的发病情况作出判断,决定是否需要进行人工流产以终止妊娠,这在减少遗传病患儿的出生,提高人口素质方面具有重要意义,尤其在目前人类对大多数遗传病还不能进行有效治疗的条件下,用终止妊娠来防止遗传病患儿的出生更具有突出的意义。近年来由于 B型超声扫描仪的广泛应用和技术的提高,在产前诊断,尤其是发育畸形的诊断上有很大的价值。胎儿镜也开始应用于产前诊断。 基因诊断是新发展起来的一项重要技术,也能对近百种遗传病作出准确的诊断,但是由于这些遗传病大多数还不能作有效治疗,所以从医学伦理学的观点来看,除应用于产前诊断外,基因诊断的推广仍存在很大问题。 治疗和预防,要根治遗传病,应该从基因水平或染色体水平来纠正已发生的缺陷,这种方法称为基因治疗,属于基因工程的范畴。但是基因治疗在理论上、技术上还存在着极大的困难,目前谈不上临床应用。目前对遗传病所能进行的治疗只是在早期诊断的前提下,通过控制环境条件(如饮食成分等),调节代谢过程,防止症状的出现,称为“环境工程”。目前能应用于环境工程的治疗包括饮食控制疗法(如苯丙酮尿症用低或无苯丙酮酸奶粉喂养)、药物疗法(如用维生素B6治疗B6 依赖症,用别嘌呤醇治疗痛风等)、手术治疗(如脾切除术治疗遗传性球形红细胞增多症)、酶的补充(如异体骨髓移植治疗戈谢氏病)和对症疗法(如用抗癫痫药物控制苯丙酮酸尿症的惊厥)等。环境工程虽然可以减轻或消除一些遗传病的症状,对个体来说是有利的,但是治疗结果却使带有致病基因的患者不仅存活下来,甚至还能继续繁殖后代,而这些患者如果不经治疗本来可以自然淘汰,至少不会繁衍后代。所以环境工程对整个人类的影响可能是有害的,它将使致病基因的频率在人群中逐代提高,从而导致遗传病发病率的增高。 正因为目前对大多数遗传病尚无有效治疗方法,所以遗传病的预防就有特别重要的意义。预防措施包括新生儿筛查、环境保护、携带者的检出和遗传咨询等方面。新生儿筛查是指对所有出生的婴儿进行某项遗传病的简单检查,以便在症状出现以前就开始治疗,防止症状发生。只有那些在症状出现以前就可以通过检查发现生化异常,而且已有治疗措施,而不给予治疗日后又会造成严重残疾的遗传病才进行新生儿筛查。苯丙酮酸尿症和先天性甲状腺功能低下在许多国家已列为法定新生儿筛查项目。中国自1982年以来在北京、上海、天津、武汉等地也进行了一些筛查。其中1985年发表的全国12省市的苯丙酮酸尿症筛查是中国第一次报告的较大规模的新生儿筛查。生物素基酶缺陷的新生儿筛查在国际上也还是一个新课题,中国从1987年开始已在北京开始了这项筛查工作。环境保护是指减少或消除环境中的致畸剂、致癌剂、致染色体畸变剂和致基因突变剂,主要是工农业生产中产生的污染。携带者检出是指将那些外表正常,但带有致病基因或异常染色体的个体从人群中检出,对其婚姻和生育进行指导,防止其后代发生这种遗传病,检出的方法主要是染色体检查、特异的酶活性测定或代谢产物测定以及DNA分析,目前已能对染色体平衡易位及百余种单基因病作携带者的检出,对这些遗传病的预防有重要意义。遗传咨询, 1952年首先出现在美国,中国70年代以后才开展起来,是医务人员对遗传病患者及其家属对该遗传病的病因、遗传方式、防治、预后,以及提出的各项问题进行解答,并对患者的同胞子女再患此病的危险率作出估计,给予建议和指导。可以认为遗传咨询、产前诊断和终止妊娠三者为防止遗传病患者出生的“三部曲”。有人把婚姻咨询和生育咨询也纳入遗传咨询的范畴内,这些工作对优生优育具有重大意义。
基因定位是遗传学研究中的重要环节,基因位置的确定有助于了解基因的功能 ; 对一个基因的定位也有助于同染色体或同线组其它基因的进一步定位 ; 对医学领域遗传病基础的认识、动物生产中遗传标记辅助选择和经济性状遗传规律的掌握,基因定位都起着重要作用。近年来的转基因技术的研究中,基因定位是确定供体基因及转基因在受体染色体整合位置的必要手段。正如地图的发明对于世界的认识那样,基因定位为人类深入认识生物现象和规律,具有划时代的意义。 随着基因定位技术的发展,其概念的内涵也不断深入。早期的基因定位主要指区别基因间是否连锁,是位于常染色体还是性染色体。目前,它包括认识连锁群上基因相对位置的遗传定位 (Genetic mapping) 和认识基因在某染色体具体位置的物理定位 (physical mapping) 。定位的内容除质量性状基因外,还包括 QTL 基因和分子遗传标记 ( 主要是微卫星位点、 RFLP 等 ) 。基因染色体定位的方法多种多样,其中物理定位的主要方法包括传统的荧光原位杂交技术 (Fluorescent in situ hybridization, FISH) 和放射杂交 (radiation hybrid , RH) 定位等。尽管 FlSH 技术可以对基因进行染色体定位,但从分子角度来看,它的定位工作仍显得粗糙, RH 定位的精确度要比 FlSH 定位高,而且成本低、定位效率高,是一种基因染色体定位的新方法,越来越在遗传学研究中显示出重要的作用。 然后你可以就一种方向的基因定位进行论述:如水稻:猪:目前用于猪基因物理定位的体细胞杂种细胞系有:法国的猪 ´ 啮齿类体细胞杂种板 (Pig × rodent Somatic cell hybrid panel, SCHP) 、法国农科院和明尼苏达州大学共同构建的辐射杂种克隆板 (INRA–Minnesota porcine radiation hybrid panel, IMpRH) 、日本的辐射杂种板 (Sus scrofa radiation hybrid panel, SSRH) 以及英国 Roslin 研究和剑桥大学共同构建的猪辐射杂种板(林丽, 2004 )。目前应用比较普遍的是前两种,二者的共同点是它们都基于 PCR 分型,方便而且快捷。 猪 ´ 啮齿类体细胞杂种板是由法国农业科学院 (Laboratoire de Génétique Cellulaire, INRA, Castanet-Tolosan, France) 构建的,由 27 个杂种细胞系组成 (Yerle, et al. , 1996) 。该体细胞杂种板所用供体细胞是猪的淋巴细胞或纤维原细胞,然后与中国仓鼠黄嘌呤磷酸核糖转移酶缺陷型 (HPRT-) 细胞株( 1-19 杂种细胞系)和小鼠胸腺嘧啶激酶缺陷型 (TK-) 细胞株( 20-27 杂种细胞系)融合,最后经过细胞遗传学方法鉴定得到。通过 PCR 检测某个基因在 27 个杂种细胞系中的分型结果后将其与各杂种细胞种所存留的猪染色体或片段进行对应分析,可以得到此基因在猪染色体上的区域定位结果 (Chevalet et al., 1997) 。该方法仅能将基因定位于比较粗略的染色体位置。 猪辐射杂种克隆板 IMpRH 是由法国农业科学院和美国 Minnesota 大学共同构建的 (Yerle, et al., 1998) 。经过 7,000 Rads 的辐射剂量辐射猪淋巴细胞或纤维原供体细胞后,与中国仓鼠受体细胞融合,获得 152 个杂种细胞克隆,采用以 SINE (small interspersed repeat element) 作探针的 FISH 和特异的 SINE 作引物的 PRINS 技术对每个杂种细胞系中存留的染色体或片段的大小和长度进行细胞遗传学鉴定后,得到一套由 118 个杂种细胞系所组成的,覆盖整个猪基因组的猪辐射杂种板 (IMpRH) (Yerle et al., 1998) 。 Hawken 等 (1999) 借助 IMpRH 通过对 900 多个 Ⅰ类和 Ⅱ 类标记进行定位首次构建了第一代猪全基因组辐射杂种图谱 (Porcine whole-genome radiation hybrid map) 。该图谱共由 128 个连锁群(位标的最小 LOD 值为 4.8 ), 59 个单独的标记组成,覆盖了全部常染色体和 X 染色体,理论分辨率为 145kb ,平均存留率为 29.3 %,平均约 70 kb/cR 。猪的第一张辐射杂种图谱的构建为新 DNA 标记的定位提供了丰富的 DNA 位标,为构建高分辨率的猪基因组物理图谱奠定了基础,因此这套克隆板得到广泛的应用。由于 RH 法是基于 PCR 分型 检测 技术和互联网结合的定位方法,对于 118 个克隆的 IMpRH 板,在引物特异、扩增效率高、条件稳定的情况下,一天内即可将分析结果提交到相应的网站并得到最终定位结果,所以它具有快速、 简单易行 和 定位精度高的特点 , 其结果也具有可比性。与连锁图谱相比,辐射杂种克隆板可以相对精确地定位和排列标记,它 可以将遗传连锁图谱中在 5cM 区域以内难以分辨位置的一簇标记进行排序 (Rohrer et al., 1996; Hawken et al., 1999; 林丽, 2004) 。除了对具体 DNA 标记进行定位外,随着 ESTs 数据库的大量增长, RH 法对 ESTs 的定位也显示了广泛的应用前景。 Cirera 等 (2003) 利用 IMpRH 成功定位从小肠 cDNA 文库测序得到的 214 个 ESTs ; Tuggle 等 (2003) 同样利用 IMpRH 定位了主要在母猪繁殖器官中表达的 64 个 ESTs 。 希望能帮到你