首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

高一数学小论文800字

发布时间:

高一数学小论文800字

数学源于生活,又广泛用于生活。在实际生活中运用所学数学知识,处理实际问题是中学生的数学素养之一。新课程标准强调数学教学要“从学生已有的生活经验出发”,“使学生获得对数学知识的理解”。因此,在数学教学中,如何结合学生的生活实际,使学生“领悟”数学知识源于生活,又服务于生活,培养学生用数学眼光去观察生活,运用数学知识解决实际问题的素养,是每位数学教师重视的问题。1挖掘教材中的生活资源。例如,在低年级的教学中,教师可以提出这样的问题:你今年几岁啦?多高呀?身体有多重?比一比你和你的同桌谁重?……这些都是小学生经常遇到的问题,而要准确地说出结果,就需要我们量一量、称一称、算一算,这些都离不开数学。再如,像水电费收取、储蓄利息的计算、日常购物等生活中常用的各种知识均发生在身边,我们买东西、做衣服、外出旅游,也离不开数学。2指导学生观察生活中的数学。让学生观察生活中的数学,既是积累数学知识,更是培养学生学习数学兴趣的最佳途径。如在长正方形认识时,从生活中观察哪些物体的表面是长方形的,用实物的表面在黑板上画出一个长方形。学生善于发现并研究生活中的数学,本身就是最好的学习方法。学生在研究中不断思考,不断尝试,并不断地体验成功。如布置学生用硬纸板做一个长方体模型,学生要思考观察什么物体的形状是长方体,长方体有什么特征,怎样做才美观大方。第二天学生带着自己制作的长方体模型到课堂时,每个学生根据已有体验与同学交流,各抒己见,这样的课堂能不充实、活跃吗?总之,数学教学让学生的生活经验走进数学课堂,为学生提供了亲身体验和动手操作的机会,指导学生更好的学习数学。在这方面,我受益良多,通过上学期的教学实践活动,我们班的学生学习数学的兴趣非常浓厚,改变了以往数学学习的枯燥乏味,学生在思想上有了从“要我学”-----到“我要学和我喜欢学”质的飞跃,学生变的喜欢学习数学。我的教学工作也变很顺利,学生中没有了见了数学就头疼的“老大难”,工作效率有了很大的提高,学生的学习成绩有明显的进步。新《课标》也给我们明确提出:“数学教学要紧密联系学生的生活实际,从学生的生活经验和已有的知识出发,创设生动有趣的情境,引导学生开展观察、操作、猜想、推理、交流等活动。使学生通过数学活动,掌握基本的数学知识和技能,初步学会从数学角度去观察事物,思考问题。激发对学习数学的兴趣,以及学好数学的愿望,树立学好数学的自信心。

query取得iframe中元素的几种方法在iframe子页面获取父页面元素代码如下:$(

抽屉原理和六人集会问题 “任意367个人中,必有生日相同的人。” “从任意5双手套中任取6只,其中至少有2只恰为一双手套。” “从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。” ...... 大家都会认为上面所述结论是正确的。这些结论是依据什么原理得出的呢?这个原理叫做抽屉原理。它的内容可以用形象的语言表述为: “把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。” 在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,...,5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。 抽屉原理的一种更一般的表述为: “把多于kn个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。” 利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。 如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述: “把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。” 抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。 1958年6/7月号的《美国数学月刊》上有这样一道题目: “证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。” 这个问题可以用如下方法简单明了地证出: 在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人。如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线。考虑A点与其余各点间的5条连线AB,AC,...,AF,它们的颜色不超过2种。根据抽屉原理可知其中至少有3条连线同色,不妨设AB,AC,AD同为红色。如果BC,BD,CD3条连线中有一条(不妨设为BC)也为红色,那么三角形ABC即一个红色三角形,A、B、C代表的3个人以前彼此相识:如果BC、BD、CD3条连线全为蓝色,那么三角形BCD即一个蓝色三角形,B、C、D代表的3个人以前彼此不相识。不论哪种情形发生,都符合问题的结论。 六人集会问题是组合数学中著名的拉姆塞定理的一个最简单的特例,这个简单问题的证明思想可用来得出另外一些深入的结论。这些结论构成了组合数学中的重要内容-----拉姆塞理论。从六人集会问题的证明中,我们又一次看到了抽屉原理的应用。

数学论文800字高一

随着新课改的全面推进,一场更新 教育 观念,改革教学内容、 教学 方法 的运动正在兴起。教育呼唤教师教学方式的转变,对学生自身的学习能力也提出了更高的要求。 下面是我为大家整理的 高一数学 论文 范文 ,供大家参考。

《 高中数学个性化教学探讨 》

个性化教学是指,在课堂教学中教师充分尊重学生的个性,根据每个学生不同的个性,包括兴趣、特长等,因材施教.教师授课的观念已经不是传统的传授知识,而是带动学生自主学习,把教学方式由“苦力”转化为“技术”,给学生提供充足的学习空间,培养学生的学习能力,提升教学质量和水平.这样,对学生优良的评价已经不是根据学生能够记忆多少知识,而是学生的获取信息、分析信息以及信息加工的能力.个性化教学是实现这样的教学目标的关键所在.教师由“知识的传授者”转变为“学生学习的协作者”,传授学生学习的方法,促进教育个性化发展.个性化教学需要从“多元化”“以生为本”出发,通过具体教学活动体现每个学生的个性、兴趣、特长等.

一、高中数学个性化教学存在的问题

1.学校方面.学校以及教育部门的重视程度不高,学校的管理观念落后,一味追求学生的成绩和整体的升学率,而忽视了对学生的多元化教育,将学习成绩列为评定学生优劣的唯一标准.这是不恰当的,只会逐步消磨学生的个性.

2.教师方面.教师个性化教学能力相对低下.在个性化教学中,教师需要具备数学知识、 基本素养 、心理学以及教育多元化思想结构、个性化教育方法等,但是只有少数教师能够达标,尤其是在乡镇比较落后的地区,几乎没有教师能够在多元化、个性化教学方面达到标准.

3.学生方面.由于学生长期受到“填鸭式”教学方式的影响,基本数学知识和理论的掌握理解程度不一.在这样的环境下,学生大都对学习产生功利性.比如,大多数学生的刻苦努力都是冲着应付考试、取得好名次,或者是为了评先、评优而刻苦学习的.

4.课程和教材方面.教学目标缺乏一定的层次性,教学方法简单机械,教学内容乏味无趣;教材的设置和知识点的配置很难与实际生活和应用达成一致,使学生学习教材知识点仅仅是为了考高分,从而使教学变得没有意义.

二、高中数学个性化教学策略

1.加强对高中数学个性化教学的重视.学校方面应该逐步加强对学生个性化教学的认识和重视,需要在教学理念上予以革新,在管理制度上给予重视.例如,在学校组织多种多样的个性化教学的培训和交流活动,使个性化教学的目标与过程深入到学校各个环节的教育工作者心中,使个性化教学充分展现在校园中.

2.教师提高个性化教学能力.一方面,教师应该提高自身教学素质,形成个性化教学的能力.例如,在讲“椭圆方程”时,教师可以这样开展个性化教学:从教学目标的制定方面将整个章节作为一个大的教学目标,再将大章节分散成小章节,将大问题分解成若干小问题,借助多媒体课件展示椭圆定义的实质,将整个概念浮现在学生记忆里,通过让学生自己动手,独立思考,自主探索,自己提出问题,利用各种教学资源进行观察、分析、实验、探究,找到解决问题的途径.教师可以提出问题:到两定点的距离之和为定值的点的集合一定是椭圆吗?通过课件演示和自主观察,学生得出初步结论,最后由教师进行讲解与集体验证,挖掘其内涵,使该知识点在学生记忆中留下深刻印象.这样,能够提高学生学习的积极性,从而提高教学质量.

3.引导学生适应个性化教学.在高中数学教学中,教师要创造个性化教学环境,引导学生个性化学习,大胆质疑,勇于表达,开展个性化探究活动.例如,在讲“椭圆”时,教师可以准备一根细绳和两根钉子,在给出椭圆定义之前,在黑板上任意取两个点(注意两点之间的距离要小于绳子的长度),让两个学生按照教师的要求在黑板上画椭圆,学生通过自主画椭圆的过程, 总结 出椭圆应该具备的具体特征,之后教师根据学生推测出来的椭圆的特点进行讲解,将椭圆的数学定义与学生总结出来的椭圆的特点进行对比,总结 经验 和教学.这样,每个学生脑海中都会存在椭圆的定义和椭圆的基本形态,提高学习效果.

4.形成个性化教学策略.首先,教师要按照不同学生的具体水平制定不同的教学目标,再按照各个层次不同基础学生的学习状态以及学习要求选择层次分明的教学方法,有针对性地对不同阶段学生进行不同方式的教学.其次,引入综合性的教学办法.最后,对高中数学的教学内容进行拓展,培养学生的 发散思维 ,形成多元化的教学评价.总之,个性化教学关键在于教师.在“以生为主”的基础上,突出教师的主导作用,不失时机地引导学生,从学生内心完成其对教学方法的认可,帮助学生对数学知识的掌握以及知识框架的梳理.通过教学方法来指导学生的学习,通过学生的学习来完善教学方法.

《 高中数学互动教学探讨 》

教学过程是师生双边性的活动,是师生沟通交流、共同发展的互动过程。随着新课改的不断深入,高中数学课堂从表面也变得活跃起来,但数学教师并没有从本质上激发学生学习数学的兴趣,没有充分挖掘学生的数学潜能。新课程改革对高中数学教学提出了新的要求,其更加重视学生在学习中的主体性,也要求教师维持课堂活力,通过更有效的互动交流提高教学的有效性。这就要求教师要高度重视与学生的互动交流,在互动的过程中注重培养学生的独立自主性、思维创造性,引导他们真正成为学习的主人。在此,笔者对高中数学互动教学作了一定的探讨。

一、转变教师角色,师生平等参与数学教学活动

师生平等,老师不是居高临下的“说教者”,而是作为引导者,引导学生自主完成学习任务。我们知道,教育作为人类重要的社会活动,其本质是人与人的交往。教学过程中的师生互动,既体现了一般人际之间的关系,又在教育情景中“生产”着教育,推动教育的发展。根据交往理论,交往是主体间的对话,主体间对话是在自主的基础上进行的,而自主的前提是平等的参与。因为只有平等参与,交往双方才可能向对方敞开精神,彼此接纳,无拘无束地交流互动。因此,实现真正意义上的师生互动,首先应是师生完全平等地参与到教学活动中来。应该说,通过各种学习,尤其是课改理论的学习,我们的许多教师都逐步地树立起了这种平等的意识。但是在实际问题当中,师生之间不平等的情况仍然存在。教师闻道在先,术业专攻,是先知先觉,很容易在学生面前就有一种优越感。年龄比学生大,见识比学生多,认识比学生深刻,有时就很难倾听学生那些还不那么成熟、幼稚,甚至错误的意见。尤其是遇到一些不那么驯服听话的孩子,师道的尊严就很难不表现出来。因此,师生平等地参与到教学活动中来,其实是比较难于做到的。怎样才有师生间真正的平等,这当然需要教师们继续学习,深切领悟,努力实践。但师生间的平等并不是说到就可以做到的。很难设想,一个高高在上的、充满师道尊严意识的教师,会同学生一道,平等地参与到教学活动中来。要知道,历史上师道尊严并不是凭空产生的,它其实是维持传统教学的客观需要。这里必须指出的是,平等的地位,只能产生于平等的角色。只有当教师的角色转变了,才有可能在教学过程中,真正做到师生平等地参与。转变教育观念,改变学习方式,师生平等地参与到教学活动中来,实现新课程的培养目标,是这次课程改革实施过程中要完成的主要任务,这也正是纲要中提出师生积极互动的深切含义。为什么我们要强调纲要提出的师生互动绝不仅仅是一种教学方式或方法,其理由就在于此。

二、构建教学场景,师生在融洽氛围中深刻互动

情感渲染学指出,和谐师生关系、融洽生生关系,需要外在良好教学情境和氛围的渲染和支持。师生之间深入参与,积极互动,一方面需要积极的心理情态进行“驱动”,另一方面需要适宜的场景氛围进行“渲染”。部分教师轻视情感氛围的营造,强调教师的讲解指导功效,学生的主体意识淡化,参与情感淡薄,师生互动也只是“逢场作戏”,形式主义。笔者认为,教师应注重外在环境因素的应用,利用高中数学教材的生活应用特性、趣味生动特性、历史特点等,通过适宜融洽教学环境的“外因”,催化学生主动参与互动的“内因”,促使师生之间进行深入互动。如“等比数列的前n项和”新知讲解环节,教者发现,以往的“直接讲授法”教学模式限制了高中生掌握其知识内涵的“深度”,学生只有“参与其中”,深入互动,真切交流,采用场景激励法,设置了“古代印度国王准备对 国际象棋 的发明者给予麦子奖赏,而发明者提出了在第一格放1粒麦子,第二格放2粒麦子,第三格放4粒麦子,以此类推,放到象棋盘上的最后一格,将所用到的麦子全部奖赏给他”的现实案例,并利用教学课件进行动态演示展示,为学生营造具有真实感、现实感的场景氛围,贴合高中生认知实际,带着积极情感参与师生深刻互动。

三、注重综合评价,促进高中数学互动教学

在高中数学互动教学中,教师需要注重对学生进行综合全面的评价。只有通过有效的评价,教师才能对互动教学进行总结,才能够进一步激发学生的信心,使课堂教学氛围变得更加和谐。一方面,教师要评价的是师生互动中学生的收获与表现出的不足,要通过评价指出学生的得失,使学生能够在日后的学习中有意识的改正缺点并发挥优点。另一方面,教师要评价学生的能力与具体表现,要善于发现学生的闪光点,并通过正面的评价对其进行认可与肯定,达到巩固学生学习信心的目的。例如,在函数的单调性的教学中,教师利用课堂提问的方式引导学生进行思考与学习,同时在互动中了解学生掌握知识的情况。教师发现,部分学生能够在研究函数时有意识的利用数形结合的方法将抽象的条件放入函数图像中解析,并且能够从不同的角度思考问题分析问题。此时,教师并不能只看到学生在学习中取得的收获,而应该肯定意识和能力,要对学生表现出的能力进行肯定与认可。基于此,学生才能在与教师的互动中感受到教师对自己的关注与重视,才能在日后的交流中变得更加主动,同时有意识的发扬自己的优点,使其成为个人独特的能力。

有关高一数学论文范文推荐:

1. 高中数学论文范文

2. 高中数学评职称论文范文

3. 有关高中数学论文范文

4. 浅谈高一数学相关论文

5. 数学系毕业论文范文

6. 关于高中数学论文

7. 浅谈高中数学模型论文

8. 高中数学教育教学论文

抽屉原理和六人集会问题 “任意367个人中,必有生日相同的人。” “从任意5双手套中任取6只,其中至少有2只恰为一双手套。” “从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。” ...... 大家都会认为上面所述结论是正确的。这些结论是依据什么原理得出的呢?这个原理叫做抽屉原理。它的内容可以用形象的语言表述为: “把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。” 在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,...,5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。 抽屉原理的一种更一般的表述为: “把多于kn个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。” 利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。 如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述: “把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。” 抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。 1958年6/7月号的《美国数学月刊》上有这样一道题目: “证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。” 这个问题可以用如下方法简单明了地证出: 在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人。如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线。考虑A点与其余各点间的5条连线AB,AC,...,AF,它们的颜色不超过2种。根据抽屉原理可知其中至少有3条连线同色,不妨设AB,AC,AD同为红色。如果BC,BD,CD3条连线中有一条(不妨设为BC)也为红色,那么三角形ABC即一个红色三角形,A、B、C代表的3个人以前彼此相识:如果BC、BD、CD3条连线全为蓝色,那么三角形BCD即一个蓝色三角形,B、C、D代表的3个人以前彼此不相识。不论哪种情形发生,都符合问题的结论。 六人集会问题是组合数学中著名的拉姆塞定理的一个最简单的特例,这个简单问题的证明思想可用来得出另外一些深入的结论。这些结论构成了组合数学中的重要内容-----拉姆塞理论。从六人集会问题的证明中,我们又一次看到了抽屉原理的应用。

数学家庭中的一对孪生兄弟 ――浅谈轴对称图形的应用数学的世界真可谓是浩瀚无比。由点到线,由线到面,由面到体。无不蕴藏着丰富的知识。我记得曾经有一句著名的格言:数学比科学大得多,因为它是科学的语言。可想而知,数学的伟大与魅力了吧!然而,在数学的大家庭中。有一对兄弟深深的吸引了我,他们的形状,他们的关系,他们的普遍性,让人觉得他们一直在我们的身边,离我们很近很近。他们就是轴对称图形。轴对称图形是一个一定要沿着某直线折叠后,直线两旁的部分互相重合的图形,之所以说到他们的关系是因为他们两个总是被一条直线所连着,好似一对分不开的兄弟,关系十分的密切。把他们拉在一起的这条直线就是他们的对称轴。当然这条对称轴就像一个公正的法官。左右两边的长度、面积、大小等,都一点儿也不差,唯一不同的就是他们所朝的方向。在数学的课本上,我们看见过他们的身影,我们也接触和了解过他们。但是他们给我印象更多的,却是他们在日常生活中所扮演、组成的图形或者可以说是事物。一、生活当中的轴对称图形 1、自然界中的轴对称图形当我漫步在街头时,我时常看见飞来飞去的蝴蝶。当一只蝴蝶停留在花朵上,张合着翅膀时,我发现如果将蝴蝶两只触角的中点与尾部相连接,连接好的线段所在的那一条直线就是其对称轴。而右边的翅膀就像是左边的翅膀沿着对称轴翻过去的图形。跟蝴蝶一样是轴对称图形的动物还有很多。比如蜻蜓、飞蛾等。如果到了秋天,远看稻田,金黄的一片,不禁使人感觉到又是一个丰收的季节。就在这个令人喜悦的季节里,我行走在田边的小路上,随手捡起了一片金黄的树叶,仔细的观察了一下,发现其实树叶也有对称轴。如果我们将树叶中间的那根经,当成是其左右两边的对称轴,那将树叶右边部分沿着这条对称轴对折过去,正好与左边的一半树叶重合。 2、商标中的轴对称图形有一次,我跟我的家人去中国银行取钱,我无意间发现中国银行的标志也是一个轴对称图形。这个图形的对称轴有两条。第一条是图标中两竖相连接所形成的,而另一条就是方框上下两条横线连接的线段的中点,所在的那一条直线就是其第二条对称轴。和中国银行一样的还有中国联通、中国农业银行以及奔驰汽车等轴对称图形。但是如果大家觉得前面几个例子,平时都没有注意到的话,那么下面说到的这个例子大家肯定熟悉的不得了。这个例子就是商标,我先来举一个吧。平时我最大的兴趣就是吃零食。所以我对“旺旺”这个商标熟悉的不得了。我发现在旺旺这个商标当中,将其头发上的一个中点到两脚脚后跟之间的线段的中点,想连接的线段所在的那一条直线就是其对称轴。也正是这条对称轴将旺旺这个图标分成了相等的两份。像旺旺这样具有对称轴的商标还有很多。比如:五粮液的商标、麦当劳的商标、CONVERSE(匡威)的商标等等。而且这些图形都是我们日常生活中常见的,这也不告诉了我们,只要我们认真、仔细的观察生活,数学的无处不在吗。二、建筑当中的轴对称图形说了生活中较为普通也较常见的轴对称图形后,也应该说说在建筑方面关于轴对称的宏伟建筑了。像我们中国的天安门城楼。如果用线段连接天安门城楼的左右两边,这条线段的中点所在的直线就是对称轴了,这条对称轴不就把天安门城楼分成了相同的两份了吗?法国的埃菲尔铁塔,是法国标志性建筑之一。它的对称轴就是把铁塔底部的两边相连接。连接后的线段的中点与塔尖的点相连接的线段所在那一条直线了。还有一些建筑也利用了轴对称的方法,他们在建筑的前方建了一个很大的水池,使建筑倒映在水中,从而形成了轴对称的效果,也增大了空间,使原本的建筑更美观,更加壮观。像泰姬陵,它不就是建筑与轴对称图形相结合的最好例子吗。在地球的另一边,有一座建筑物深深地影响着整个世界的历史,这座建筑物就是白宫。这是一座位于美国华盛顿的著名行政大楼。白宫著名的背后,轴对称起了极其重要的作用。白宫它的对称轴就是顶部的点与底部左右两边线段的中点,相连接的线段所在的那一条直线。对了,还有我们每个人家里都会有门,一些建筑师为了使门显得更加大气,更加庄重。就把门进行设计,使门的左右两边相同,古代衙门的大门和一些官府府邸的大门也设计成了轴对称的形式。使大门显得更加有气势,愈发显的威严。从中我们也不难发现,只要懂得轴对称图形,善于利用轴对称图形,就能使轴对称图形溶入到方方面面。三、文学当中的轴对称图形 1、文字中的轴对称图形每个人都知道,我们中华民族有着5000年的悠久文化。这么多年的文化所沉淀下来的瑰宝可谓是数不胜数。剪纸是我们民族十分古老的民间艺术之一。就是在这艺术品当中也不乏有轴对称的应用。让我来举个例子吧。我还记得以前我奶奶教我剪繁体的“喜”字时,首先是将红纸对折一下,之后用剪刀在纸上挥舞了一会。打开刚刚对折的纸时,出现了一个“喜”字,当时我看了之后,心里那个高兴啊,惊奇啊,但是就是不知道为什么会这样。现在长大了,我也知道了其实在剪“喜”字的过程当中,也运用了轴对称。还有许多剪纸作品,也正是因为有了轴对称的存在,使其更加精致、美观。当然我们现在所写的简体字中,也有轴对称。如“丰”“目”“尖”等。文字的对称轴较为好找,横一横,竖一竖,基本上就能够找到。其实有时候,对称轴也具有复制的功能,它能够把一个字,分成与其相同的两个字,像“二”如果把它的对称轴当作是第一横的中点和第二横的中点,所连接成的线段所在的直线的话。那么左右两边的图案,不是可以近似的看成两个二吗?此时轴对称就具有复制的功能,但是在我的眼里它还具有另一个功能。就拿这个“一”来说吧。与前面相同,也是画竖下来的对称轴。画好之后,要把这条对称轴当成这个字原有的,那么你就会发现。“一”与这条对称轴就组成了一个“十”字。这就是在我眼里轴对称图形的第二个功能。能够使一个字变成另外一个字。 2、文学中的轴对称图形刚刚说的都是文字当中轴对称的应用。那由字所组成的句子呢?其实仔细推敲一下,也有。我记得我以前与同学们都在玩一个游戏,就是一个人说出一句话,另一个人马上就得把这个句子反着读出来。在整个游戏过程当中,有一句话给我留下了深刻的印象“上海自来水来自海上”当我们把这个句子反着读一便时,就会发现它与正着读的语序一模一样。再仔细看一看,这又是一个关于轴对称的应用。这么来说吧,如果我们把“上海自来水来自海上”中的水字不看,那么两个“来”字的中点所在的那一条直线,就可以把这句话分成相等的两等份,这不就证明了句子当中也有轴对称的应用吗?这一系列的例子,也让我们看出了轴对称在文学方面所做出的成就,它能使一些作品更加完美,有画龙点睛的作用。也能使文字变化起来,使句子顺口起来。给文字与句子带来更多的趣味,也给文学添上了十分美丽的一笔。四、奥运当中的轴对称图形 2008年北京奥运会即将来临。在这个令全中国人都兴奋起来,令全世界人都以不同形式参与进来的盛会中。我们也不难发现轴对称图形——奥运五环旗。我们可以把奥运五环旗(如图一),黄、绿两环相接触的地方点A与黑环上的点B相连接,此时对称轴就是线段A、B所在的那一条直线。在奥运会上有奥运五环旗当然也会有奥运吉祥物,2008年北京奥运会的吉祥物是奥运福娃。仔细看看我们的奥运福娃不禁让人喜欢的不得了。尤其是福娃晶晶更是惹人喜爱。他的憨厚,他的朴实,无不给人亲近的感觉。图二就是福娃晶晶在举重的画面。如果大家看一下图二这张图片,就会发现如果把这张图片中的点A与下端的点B相连接。那么这条线段所在的那一条直线就是福娃晶晶的对称轴。想不到吧,原来奥运福娃也是轴对称图形。还有在奥运会上,当各国的国旗徐徐上升时,又引发了我对轴对称图形的联想。像英国的国旗,它的对称轴就是国旗上下两边线段的中点,所连成的线段所在的那一条直线。像这样的国旗还有很多。如加拿大国旗、意大利国旗等等。轴对称图形的千变万化,使我眼花缭乱,头晕目眩。在它每一次变化中,都可以发现许多的惊喜。轴对称变化它也无处不在,它存在于各个角落,这也给我们研究它带来了很多的便利。在研究轴对称图形的过程中,我懂得了只有我们用心观察,才能发现数学。只有我们认识数学,在生活中善于利用数学,我们才能将数学溶入到方方面面。而且只有我们将数学溶入到方方面面,我们才能更加好的去研究数学。其实数学的世界真的好大好大。此时我真想将自己变成大山伫立在数学当中。变成流水穿梭与数学之中,化为白云漂浮在数学之中,成为鸟儿翱翔与数学之中。真诚的希望大家用发现美的眼睛,去发现数学!感受数学!

上千字的论文要吗

初一数学小论文800字

初一数学小论文浅谈多媒体技术在教学中的作用 一个有经验的教师在编写教案时,都要明确教学目的、重点、难点、课时安排和教学过程等,甚至对自己的语言、表情、和板书等都有所考虑,对于教具、实物、模型和实验都要事先做好准备。其目的在于让学生明确和接受所要讲解的知识。有了多媒体技术,这一切都变得更容易实现了。因为用多媒体来辅助教学,以逼真、生动的画面,动听悦耳的音响来创造教学的文体化情景,使抽象的教学内容具体化、清晰化,使学生的思维活跃,兴趣盎然地参与教学活动,有助于学生发挥学习的主动性,从而优化教学过程。具体的说,在现在各科的课堂教学中,多媒体技术有如下几点作用: 一、调整学生情绪,激发学习兴趣 兴趣是由外界事物的刺激而引起的一种情绪状态,它是学生学习的主要动力。然而许多的教学内容通常本身较为枯燥无味,这就需要每位教师善于采用不同的教学手段,以激发学生的兴趣。根据心理学规律和小学生学习特点,有意注意持续的时间很短,加之课堂思维活动比较紧张,时间一长,学生极易感到疲倦,就很容易出现注意力不集中,学习效率下降等,这时适当地选用合适的多媒体方式来刺激学生,吸引学生,创设新的兴奋点,激发学生思维动力,以使学生继续保持最佳学习状态。 如在教学“长方形的面积”时,老是运用公式计算面积,学生感觉比较厌倦,为了吸引学生注意力,活跃课堂气氛,拓宽学生思路,运用多媒体出示了一道“智慧爷爷”出的思考题:把一个正方形裁成两个完全相同的长方形,裁成的两个长方形周长之和与正方形周长有何变化?把两个完全相同的长方形拼成一个正方形,它们的周长又有何变化?先让学生根据题意想象,然后再电脑演示。演示过程中,画面不断闪烁,使学生清楚地感受到了周长的变化。同学们一看,兴趣来了。最后让学生互相讨论,就这样让学生在开放自由的情况下解决了该题,同时培养了学生的想像力。 二、形象导入新课,创设学习情景 导入新课,是课堂教学的重要一环。“好的开始是成功的一半”,在课的起始阶段,迅速集中学生的注意力,把他们思绪带进特定的学习情境中,激发起学生浓厚的学习兴趣和强烈的求知欲,对一堂课教学的成败与否起着至关重要的作用。运用电教媒体导入新课,可有效地开启学生思维的闸门,激发联想,激励探究,使学生的学习状态由被动变为主动,使学生在轻松愉悦的氛围中学到知识。 如低年级学生,他们的定向能力尚处在较低的层次,他们的注意状态仍然取决于教学的直观性和形象性,很容易被新异的刺激活动而兴奋起来。针对这些情况,运用多媒体,激起学生的学习兴趣。教《锄禾》这课,在导入新课时,可以用一组“动画”:“太阳火辣辣地炙烤着大地,辛勤的农民手拿锄头用力地耕种,大颗大颗的汗珠从额头滚落下来,滴入稻田里。”此情此景,学生已有深刻的感性认识,随后,我又在图画上方出示古诗,诗句和图相对照,激起学生思维的层层涟漪。对于刚才“明于心而不明于口”的心理状态,立刻解决带点字锄、汗、粒等的解释已是一触即发了。 三、突出学习重点,突破学习难点 传统的教学往往在突出教学重点,突破教学难点问题上花费大量的时间和精力,即使如此,学生仍然感触不深,易产生疲劳感甚至厌烦情绪。突出重点,突破难点的有效方法是变革教学手段。由于多媒体形象具体,动静结合,声色兼备,所以恰当地加以运用,可以变抽象为具体,调动学生各种感官协同作用,解决教师难以讲清,学生难以听懂的内容,从而有效地实现精讲,突出重点,突破难点,取得传统教学方法无法比拟的教学效果。 如在教学“圆柱的体积”一课时,为了让学生更好地理解和掌握圆柱体积计算公式推导这一重点,电脑演示把一个圆柱体的底面平均分成若干等份(平均分成16等份、32等份……),然后把圆柱切开,通过动画拼成一个近似的长方体(平均分的份数越多,就越接近于长方体)。反复演示几遍,让学生自己感觉并最后体会到这个近似的长方体的体积与原来的圆柱的体积是完全相等的。再问学生还发现了什么?通过动画演示体会到这个近似的长方体的底面积、高与圆柱的底面积、高的关系,从而推导出求圆柱的体积公式,使得这课的重难点轻易地突破,大大提高了教学效率,培养了学生的空间想象能力。 四、增强训练密度,提高教学效果 在练习巩固中,由于运用多媒体教学,省去了板书和擦拭的时间,能在较短的时间内向学生提供大量的习题,练习容量大大增加。这时可以预先拟好题目运用电脑设置多种题型全方位,多角度、循序渐进的突出重难点。当学生出错后(电脑录音)耐心地劝他不要灰心,好好想想再来一次,这符合小学生争强好胜的性格,生动有趣地复习巩固了新识。 总之,恰当地选准多媒体的运用与课堂教学的最佳结合点,要考虑各层次学生的接受能力和反馈情况,适时适量的运用多媒体,适当增强课件的智能化。就能较好地激发学生的兴趣,使学生独立地、创造性地完成学习任务,这样的教学才可以说是得多媒体教学之精髓了。

自己网上去查一篇啊 而且悬赏分也没有.....

数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.

各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.”

大一高等数学论文800字

高数学习对许多大一学生生来讲, 有些困难,成绩不理想。教师一直在苦苦思考:虽然教师在授课过程中尽了种种努力, 但还是有许多学生学习不好, 这是什么原因?调查显示:这部分学生或者学习兴趣不高,或者学习不得要领。因而, 高数学习必须充分调动学习者的积极性, 掌握合适的学习方法,才能有所收获。1 学习者要意识到学习高数的重要性, 提高学习兴趣, 变被动学习为主动学习据了解, 许多学生意识不到高数学习的重要性,他们对大学课程里学习高数的重要性不甚清楚,也没有学习的热情,更谈不上积极性了。1 . 1 数学教育具有重要的基础性作用与素质教育作用现代信息、空间技术、核能利用、基因工程、微电子、纳米材料等引领的新技术革命, 以及现代人文科学的定量分析需要以数学为主要基础。数学学科严密的定义方式、缜密的逻辑思维、全面的系统分析是辩证唯物主义思想在数学学科中的集中反映, 在大学生素质教育中起着不可替代的作用。素质表现在数学意识、数学语言、数学技能、数学思维四个方面。素质的提高有助于学生形成良好的思想道德素质,科学文化素质,生理心理素质,从而提高人的素质。这是有例子可以验证的。以北京大学地质系为例,一个系就培养了48 位中科院院士, 而这得益于李四光先生的理念——加强数理基础, 原因就是学生的工科数学基础好、逻辑思维强、头脑清晰。1 . 2 培养对高数的兴趣能激发学习热情“兴趣是最好的老师”。心理学家布鲁纳认为:“学习是主动的过程,对学生学习内因的最好的激发是对所学教材的兴趣。”“有了兴趣就会乐此不疲,好之不倦,就会挤时间学习了。”学生只有对学习感兴趣,能把心理活动指向和集中在学习的对象上,感知活跃,注意力集中,观察敏锐,记忆持久而准确,思维敏锐而丰富,强化学习的内在动力,调动学习的积极性,激发智力和创造力,提高学习效率。1.2.1 提高学习高数的兴趣首先从了解数学史做起我们可以首先了解中国数学史,了解中国数学的萌芽、发展、全盛、衰弱的过程和原因;我们还可以从高数中的微积分发明的历史谈起,通过对历史的了解和感受来体会到数学的博大精深,激发探求欲望。

“数学是美的。”经常有数学家这么讲,那么,数学到底美不美呢?大一第二学期我们接触了高数这门课,本来觉得应该比高中的数学稍微难一点吧,可是一上课才发现并不是难一点,而是难很多很多,比高中的数学更加抽象,更加难理解。但是慢慢的你会发现其实高数是一门学问,而且这门学问也有他的美。仔细想了想,发现数学的美体现在方方面面,就比如自然之美,简洁之美,对称之美,逻辑之美等等,中国悠久历史所积淀出来的文学底蕴,为中国的数学染上了一层夺目的别样的颜色,这就是数学之美,总之,数学并不像有些人认为的那般鼓噪乏味,他不是定理公式的积累,而是一种美的学科。在中国书香四溢的文学背景下,数学也闪烁着不一样的光辉。也经常听到有同学发出这样的疑问:“我们为什么要学数学?”不知道这些人当中有没有认真思考过这个问题,我倒是稀里糊涂读到大学才明白一点的。数学,我们学的应该是一种严谨的思维,一种观念。出了学校门,如果我们还能经常使用数学的眼光来观察周围事物,那么,这个数学才没有白学。我一直觉得,如果你把函数真学懂了,对已知和未知的依存关系就会特别敏感,社会上的许多看似纷繁复杂的事件,在你眼里就能看到关键因素,形成函数式。你会有另一种看待万事万物人视野。我们学数学,目的是学解题技巧?是挤进名校的砝码?还是将来能谋份不错的职业?数学的发源地在希腊,注定数学的性格就是超越的,我们把它作为换取利益的工具时,一开始这条路就走岔来的。所以,要培养好我们学数学,最初就要培养我们有良好的数学素养,求真,求美,求善。当然,数学一直是人类文明发展的主要文化力量,同时人类文化的发展又极大地影响了数学的进步;而且,数学还是一种艺术,因此,数学不但具有科学价值,还具有文化和艺术的价值。那么,这就需要我们一步步的认知到数学的各种价值,可以从生活中的数学学得数学思想方法与文化以及数学与人文精神、文化素质间的联系。总之学好高数,此生不后悔。

高数学习应该按照这些套路来。

课前有的同学喜欢预习,这点在初高中数学,非常有效,可是在面对高数的时候蒙圈了,因为根本看不懂,不过没关系,高数不用课前预习,因为你也看不懂,但是,上课一定要 认真的听讲,记得是认真的听讲,特别是认真听讲老师的推倒过程,这点是非常重要的,高数不仅仅要知道结果,重要的是过程。

至于在课后,当然还是和普通的数学学习方法一样,及时的复习,复习当天的内容,特别是要做一定量的题目,理解消化和吸收。

当然作业也是一项非常重要的事情,做作业一定要认真,虽然大学抄作业不丢人,因为还有不写作业的,但是,你如果是抄作业那还不如不写,建议认真完成高数的作业,因为实在太重要了。

数学中的无穷以潜无穷和实无穷两种形式出现。

在极限过程中,变量的变化是无止境的,属于潜无穷的形式。而极限值的存在又反映了实无穷过程。最基本的极限过程是数列和函数的极限。

数学分析以它为基础,建立了刻画函数局部和总体特征的各种概念和有关理论,初步成功地描述了现实世界中的非均匀变化和运动。

数学的计算性方面。在初等数学中甚至占了主导的地位。它在高等数学中的地位也是明显的,高等数学除了有很多理论性很强的学科之外,也有一大批计算性很强的学科,如微分方程、计算数学、统计学等。在高度抽象的理论装备下,这些学科才有可能处理现代科学技术中的复杂计算问题。

以上内容参考 百度百科-高等数学

最好从课本上的某一习题入手,对其推广还是很有价值,三千字随便够,因为推广涉及到证明和举例。

数学小论文800字高质量

数学在我们的生活中可以说是无处不在,到超市买东西付钱时,测量某东西的面积时,制作平行四边形、直角形、三角形等各种形状的物品时……都是数学知识在生活中的直接运用。前几天我们家就发生了一件运用数学知识解决生活问题的事情。那天放学回家,我往小椅子上一坐,只听“嘎吱”一声,吓得我赶忙跳了起来。哈,原来是椅子的一条腿松了。“我们来修椅子怎么样”,我一时心血来潮地对爸爸妈妈说。爸爸妈妈挺支持地说“行啊”。于是全家人便开始忙碌起来,找工具的找工具,扶椅子的扶椅子,钉钉子的钉钉子。一阵“噼噼啪啪”声后,几根大钉子钉进了那条松了的椅子腿上,“嘿,总算钉好了”,我拍拍手,满意地可往上一坐。“嘎吱,嘎吱”,咦,怎么还是不对劲啊,怎么办呢?突然,我想起数学老师讲过的一句话:三角形能对物体起到稳定作用。对啊,我刚才怎么没想到呢?我马上找来了一块小木头,并根据小椅子的四条腿与椅面形成的角度,将其切削成了4块同样大小的三角形小木头,后把三角形木头分别补在椅腿与椅面的空档处,用钉子钉紧。你别说,这一下椅子坐上去可是稳稳当当的了。嘿,数字可真奇妙。看来以后我一定要更加努力地学好数学,并将数学运用到生活的一点一滴当中,去分析、解决生活中遇到的实际问题,更好地适应社会的发展和需要。让生活变得更加有意义。

谁让我迷了眼。你让我迷了眼。素手白衣,挥墨纸上。花窗下,太阳笑开了眼。仔细瞧,个个扬着头,诚心祈祷你不要离去。又是谁在拉扯衣角,花了谁的妆。

有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。 1、三角形很稳定,许多支架都是三角形的许多支架用三个脚支撑用了一个数学公理三点确定一个平面 2、一些人在木门上钉斜条,是为了克服四边形的不稳定性。卷闸门也是一样的道理。 3、河南登封观星台、南京中山陵都是中心对称图形 4、蚊帐的孔是六边形的~ 5、筷子是圆锥型的。光碟是圆形的。 6、电线是线段冰箱是长方体门是长方形轮胎是圆形地球是圆形 数学是一门很有用的学科。自从人类出现在地球上那天起,人们便在认识世界、改造世界的同时对数学有了逐渐深刻的了解。早在远古时代,就有原始人“涉猎计数”与“结绳记事”等种种传说。可见,“在早期一些古代文明社会中已产生了数学的开端和萌芽”(引自《古今数学思想》第一册P1——作者注)。“在BC3000年左右巴比伦和埃及数学出现以前,人类在数学上没有取得更多的进展”,而“在BC600—BC300年间古希腊学者登场后”,数学便开始“作为一名有组织的、独立的和理性的学科”(引自《古今数学思想》第一册P1——作者注)登上了人类发展史的大舞台。 如今,数学知识和数学思想在工农业生产和人们日常生活中有极其广泛的应用。譬如,人们购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便利用了算术及统计学知识。此外,社区和机关大院门口的“推拉式自动伸缩门”;运动场跑道直道与弯道的平滑连接;底部不能靠近的建筑物高度的计算;隧道双向作业起点的确定;折扇的设计以及黄金分割等,则是平面几何中直线图形的性质及解Rt三角形有关知识的应用。由于这些内容所涉及的高中数学知识不是很多,在此就不赘述了。 由此可见,古往今来,人类社会都是在不断了解和探究数学的过程中得到发展进步的。数学对推动人类文明起了举足轻重的作用。 例如:在教学“求两个数的最小公倍数”时,课始,我创设了这样一个情景:皇塘每6分钟有一辆中巴车开往常州(向东),8分钟有一辆中巴车开往丹阳(向北)。现在刚好有两辆中巴车同时分别开往常州和丹阳,问再过几分钟,又有两辆中巴同时开往常州和丹阳?数学在我们得生活当中是无处不在到,小到买菜的讨价还价,大到火箭的设计......其实我们在学习数学得过程中是为了培养自己得逻辑判断能力,让自己得思维更严谨,我们在学校学习数学,不单单只是为了去记住一个公式,而是在学习这个公式得推倒得过程中渐渐得培养了自己得思维逻辑能力,可以说,一个人的数学学好了,对于一件事得判断能力会大大增强,所以学好数学,不单单只是为了应付考试,而是在学习一项在社会生存得基本技能.

数学新课程标准明确指出,义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实行“人人学有价值的数学”。这不禁让我重新对这一理念加以剖析。19世纪恩格斯说:“数学是关于空间形式和数量关系的学科。”而作为数学学科三大部分(数与代数、几何和统计)之一的数与代数部分,它是中小学数学课程中的经典内容,它在义务教育的阶段的数学课程中占有相当重要的地位,有着重要的教育价值。在新的课程标准下,这一学习领域的目标、内容、结构以及教学活动方面都发生了很大的变化。下面从三个方面谈谈自己的感想。(一)《标准》在总体目标中提出要使学生“经历运用数学符号和图形描述现实世界的过程,建立数感和符号感,发展抽象思维。”可见,理解数感、符号感让学生在数学学习的过程中建立数感和符号感是非常重要的,是进入数学学习的基础。在义务教育阶段学生要学习整数、小数、分数、有理数、实数等数的概念,这些概念本身是抽象的,但通过数学的学习,使学生能将这些数的概念与它们所表示的实际意义建立起联系,例如,一百万有多大,一把黄豆大约有多少粒等等。在课程标准中,重视对数的意义的理解,培养学生的数感和符号感,淡化过分“形式化”和记忆的要求,使学生在学习数学的过程中自主活动,不仅提高了自身的数学素养,还有助于他们利用数学头脑来理解和解释现实问题。数学与现实生活是密切相关的。联合国教科文组织早在八十年代初就提出“数学问题解决应作为学校数学教育的中心”。因此,有价值的数学更多地体现在学生用数学的眼光和思维去观察、认识日常生活现象,去解决生活中的问题,获得或提高适应生活的能力。过去教师一直非常重视学生笔算的正确率和熟练度,学生缺乏估算意识与估算方法。但在日常生活中恰恰是估算较笔算用得更为广泛。我们常常需要估计上学、上班所用的时间,估计完成某一任务(烧饭、买菜、做作业等)所需的时间,估计写一篇文章所需的纸量,放置冰箱所需地方的大小,估计一次旅游所需的费用等等。因此,加强估算,培养学生估算意识,发展学生的估算能力,具有重要的价值。新课程标准也反复强调要加强估算,淡化笔算。观察是指人对周围事物或现象进行全面、深入的察看,按照事物或现象的本来面目,研究和确定它们的性质和关系的一种心理现象。数学教学活动中的观察,就是有意识地对事物的数和形的特点进行感知活动,即对符号、字母、数字或文字所表示的数学关系式、命题、几何图形的结构特点进行的察看。 数学教学中必须重视学生观察能力的培养,其理由是显而易见的:首先,培养学生的观察能力是实现数学教学目标的需要。《义务教育全日制初级中学数学指导纲要》指出:初中数学教学,必须“使学生掌握数量关系、几何图形的基础知识和基本技能,具有一定的运算能力、处理数据的能力和初步的空间想象力、逻辑思维能力。”心理学告诉我们:感知和知觉是人类认识事物过程的最初级形式,而观察则是知觉的高级状态,是一种有目的、有计划、有步骤、有组织的持久的知觉活动。观察又是一种主动的、对思维起积极作用的感知活动。它不单纯是事物在人的意识中的直接反映过程,还包括积极的思维活动。事实上,在观察过程中,观察者必须根据观察到的现象或特征随时进行分析、比较、抽象、概括,否则就无法通过观察来研究和确定事物或现象的性质和关系。可见,观察是认识的基础,是思想的触觉。离开了观察能力的培养,学生就不可能具备完整的数学能力与数学素养,数学教学的目标也就不可能直正实现。 其次,培养学生的观察能力是全面提高学生数学素质的需要。素质教育呼唤着学科教学以培养学生的创新精神和实践动手能力为宗旨,而创新能力必须以学生的综合素质为基础和前提。初中数学是一门学习简易的数学运算和图形关系知识及其初步应用技能的课程,以现代公民所必需的数学基础知识和技能作为基本的教学内容。数学教学要根据数学本身的特点,着重培养和发展学生的运算能力、处理数据的能力、逻辑思维能力、空间想象能力、数学信息的表达和交流能力。观察能力对于数学学习中各种能力的培养都具有直接或间接的促进作用。无论是图形的识别、数据之间关系的把握,还是基本规律的发现、综合分析能力的提高都离不开认真、仔细的观察。同时,数学活动中的观察并不狭义地指直观的考察,需要眼、脑并用,而且观察的对象也并非都具有直观的形象。因此,观察能力,无疑是学生数学综合能力的重要组成部分。 再次,培养学生的观察能力是提高学生数学学习质量和课堂教学效率的需要。不可否认,现在的初中数学教学中存在着学生学习的质量不高、课堂教学效率低下的弊端。究其原因,当然各种各样,但学生的观察能力滞后,缺乏观察的习惯和基本的能力是其中的一个重要的原因。试想,一个没有观察习惯、毫无观察能力的学生,怎么能够发现图形之间、数据之间的内在关系?惟其如此,学生数学学习的低质量、数学教学的低效率也就不足为怪了。可见,培养并提高学生的观察能力,是改革数学课堂教学的重要切入点和突破口之一。教师在教学的各个环节中,应落实观察的手段,充分显示这一教学观,切实重视对学生观察能力的培养。 那么,数学教学中如何培养学生的观察力呢?笔者以为可着重从以下几个方面入手: 一、 激发浓厚的观察兴趣 学习是由内在的心理因素引起的,内在的动机比外驱力更活跃、更持久,更具有主动性,而兴趣则是内在学习动机的集中体现。激发学生对观察产生浓厚的兴趣,教师可采用许多方法: 以美引趣。学生对美具有一种近乎天然的向往。数学具有自身的魅力,数学美集中在数学的简单、统一、对称、奇异等方面。数学图形所展现的外在形式美、数学的抽象概括性所体现的简单统一的内在美、数量关系与空间形式所呈现的对称美、数学思想所表现的奇异美的原则,充分利用数学自身的特征和特有的美,引导学生通过观察发现并发掘数学中的美,就能激发学生对观察的浓厚兴趣,激励学生求知的强烈愿望。 以用促趣。引导学生观察并解决实际中的数学问题,使学生真正认识观察在解答数学问题的重要作用,更能培养学生持久的观察兴趣。如在一元二次方程与系数的教学中提出如下观察材料:已知X1、X2是方程X2+(K+2)X-1=0的两个根,且X13-11X1=X2,求K的值。对于这个问题,教师通过启发学生得出:X1+X2=-(K+2)①,X1X2=-1②,X13-11X1=X2③,由此,根据与系数运用时含有的特性——对称性,要求学生进行如下观察:1、③式中的X1与X2的指数是否相等;2、能否用X1的倒数表示X2;3、通过②③两式形变等式,能否表示成两根的和与两根的积。在观察中发现简洁、明了的变形,实施解决疑难问题的方案。 以成导趣。成功的体验,能使学生产生愉悦的内心激动,使其增强学习的信心。在数学教学中,学生观察的对象是图形、数量关系、逻辑过程等。教师在教学过程中要尽可能鼓励学生主动观察,为学生创设获得成功的机会和条件。结合教材内容,有意识地向学生介绍数学通过观察发现数学定理、解决数学难题的事例,并设计一些富有趣味性的练习,让学生通过自己的观察、分析,总结概括出数学概念,发现公式、定理的证明,掌握那些特殊题型的解题技巧,品尝成功的喜悦,调动学生主动观察的积极性。 二、培养正确的观察方法 初中学生在心理上缺乏观察事物所必须具备的基本素质,在掌握知识经验的水平上缺乏观察的能力和数学教学的特点,因此,只有注重对学生观察方法的指导和培养,才能保证观察的正确性。 首先,要引导学生在观察时把握合理的顺序,养成学生从整体到局部,又由局部到整体的观察习惯。发现不合理的观察方法,应通过示范分析及时指出,加以指正。例如,在几何的起始教学中,对观察材料:已知如图A、B、C、D、E、F是直线上的六点,图中共有几条线段? A B C D E F 教师在指导学生进行观察,得出观察结论后,可进行提问:1、以A为端点的线段有几条?2、以B、C、D、E为端点的线段有几条?3、你的观察顺序与正确的观察顺序有何不同?借此引导学生认识有序观察事物的合理性与重要性。其次,要引导学生懂得观察的渐进性,养成反复观察、仔细观察的习惯。要真正提示内在规律,需要从不同的数学角度出发,进行广泛的观察:既要观察事物表面的、明显的特点,还要观察内在的、隐蔽的特征;既要观察已知的材料,又要观察未知的、隐含的关系。如在等腰三角形的教学中,对于观察材料: A 如图,在△ABC中,AB=AC, P是BC上任意一点,PE⊥AB于E, D PF⊥AC于F,CD⊥AB于D,求证CD=PE+PF。 E F B C P 教师应启发学生按面积之和与大三角形面积相等的数量关系的角度和全等三角形的判定定理的角度进行观察,以求得一题多解。 再次,要引导学生了解常用的观察方法(如分类观察、从一般到特殊的观察、从特殊到一般的观察、对比观察等等),掌握观察的一般步骤:明确观察的目的和任务;制定周密的观察计划,做好有关知识的充分准备;在观察过程中做好观察记录;观察后对得到的材料进行整理、分析、归纳和总结。通过一定时间的训练,让学生能够较为熟练地自主观察。 三、养成良好的观察品质 观察不是消极的注视,不是被动的感知,而是一种“思维的知觉”,是智力发展的基础。因此,在培养学生观察能力时,必须十分重视观察的目的性、全面性、精确性、深刻性等良好观察品质的培养。 1、 培养观察的目的性 初中学生对观察材料缺乏全部感知的能力,总是有选择地以少数事物作为知觉的对象。教师在教学过程中,对观察对象叙述的语言要准确,提出观察任务时目标要明确,分析时要紧紧围绕确定的观察目的。例如,在利用配方法解一元二次方程中,对要求观察的材料: 解下列一元二次方程:①(X-1)2=2,②X2-2X+1=2,③X2-2X-1=0可提出如下观察要求:1、①式左、右两边的代数式有何特征?2、[MSOffice1]②式的左边能否转化为完全平方式?3、式的左边能否转化为完全平方式?通过提问,让学生有目的、分层次地观察,积极主动地感知观察对象,实现观察目的。 2、 培养观察的全面性 观察的全面性,要求通过观察反映事物的全貌以及事物的组成部分和相互联系;在较为复杂结构的图形中全面反映事物的某种属性;指出在某种特定的情况下感知对象所能发生的各种可能性。在观察中,由于学生缺乏对事物之间内在联系的全面理解,导致感知的对象不能反映各种可能的现象经常发生。在教学过程中,教师要帮助学生把握事物的基本属性,在初步观察的基础上,分析观察对象内在的规律性,鼓励学生依照一定的程序,深入观察。同时,教师要及时对观察的结果提出自己的观点,与学生相互讨论,对学生观察中出现的遗漏,要分析原因,加以补救,使观察结论全面、完整。 3、 培养观察的精确性 观察不能仅仅满足于了解事物的全貌,还要精确把握事物的特征,对不同事物既能发现它们的相似点,又能辨别它们的细微差别。教师要充分利用各种教学手段,如列表比较、对比观察等,利用现代教学手段,通过形象直观、富有动感的图片、画面,启迪学生发现观察对象的特征,揭示观察对象的本质。 4、培养观察的深刻性 观察的目的之一是提高学生的思维能力,因此,观察必须始终与思维训练紧密结合,尤其要重视对观察对象隐含条件的发掘,通过观察能力的培养,逐步使学生的数学思考意识抽象概括化、思考对象形式化、思考过程逻辑化、思考结果应用化。 总之,数学教学必须十分重视学生观察能力的培养:要运用多种手段,激发学生的观察兴趣;通过训练,使学生掌握观察的基本方法,具有良好的观察品质,逐步养成主动观察、善于观察的习惯,使数学教学更好地适应素质教育的需要。[附]参考文献 1.浙江省教育委员会:《义务教育全日制初级中学数学教学指导纲要》,浙江教育出版社,1997年11月9第二版). 2.王子兴: 《中学数学教育心理研究》,湖南师范大学出版社,1999年5月9 第一版) 3.朱智贤: 《思维发展心理学》,北京师范大学出版社,1986年版.从中筛选点有用的写吧!!!

相关百科

热门百科

首页
发表服务