摘要:高职数学教学应体现“以应用为目的,以必需、够用为度”的原则,体现“服务专业、注重应用、更新计算技术、全面育人”的特点和要求,应进行相关的模块教学,以更好地提高教学效率,加强应用,更好地服务于专业。
关键词:高职数学;模块式教学;职业能力
高职数学教学现状分析
高职数学对学生后续专业课的学习和综合数学能力的培养至关重要。然而,由于高职教育在我国起步较晚,而同时又发展迅猛,在教学方面还未形成完整的教学体系,大多沿用传统的教学模式,即:教师讲→学生听→做题→复习→考试,教学内容都是一些老面孔,与专业结合不密切。这与当前高职数学教育的培养目标严重不符,主要表现在以下几方面。
教育观念落后,难以适应时代发展传统数学教育观以“知识本位”为中心,重理论轻实践,忽视专业需要。高职教育的人才培养模式不同于普通高等教育,要求教学内容体现“以应用为目的,以必需、够用为度”的原则,体现“服务专业、注重应用、更新计算技术、全面育人”的特点和要求。因此,教育观念应由“知识本位”转变为“能力本位”。
教学内容陈旧,难以满足专业需要随着高职教育改革的推进,各院校都加强了专业教学建设,增加了大量专业实训,压缩了基础课教学时数,这就造成了数学课教学内容多、课时少的矛盾。同时,在课程体系上过多考虑数学学科的完整性,在教学内容上满足于逻辑上的严谨、计算上的精确,面面俱到,脱离高职各专业人才培养目标,服务性功能不足。因此研究各专业对数学的需求,更好地与专业相衔接,进行工科、经管类、信息类等专业模块教学势在必行,创新高职数学教学模式刻不容缓,为此应进行必要的探索研究,以更好地适应高职教学,更全面提升学生的专业能力、社会能力及综合职业能力。wWW.133229.CoM
学生学习积极性不高,学习效率不容乐观随着高校扩招,学生质量急剧下降,特别是高职院校学生的数学基础更是薄弱,很大一部分学。觉得学数学就是为了考试,是没得选择的无奈之举,以后根本用不上。基础本身就不好再加上这种消极的态度,导致学生学习积极性不高,另外,大学的学习毕竟不同于高中,使得很多学生不会学习,学习效率可想而知。
建立合理的教学内容体系
优化教学内容,进行专业模块教学高等职业教育的目的是提高国民科学文化素质,为经济建设和社会发展培养第一线技术应用型的高等职业技术人才。所以,高职数学教学内容要体现“服务专业、注重应用、更新计算技术、全面育人”的特点和要求,为学生打下较为扎实的数学基础,为未来发展提供有力的知识支撑。为此,应将高职数学分为公共基础模块、专业基础模块以及应用拓展模块,其中公共基础模块由一元微积分和数学实验组成;专业基础模块包括多元微积分、常微分方程、向量和空间几何、级数、布尔代数以及线性代数和概率;应用拓展模块主要是用数学建模案例来反映数学来源于生活,又回归于生活,强调应用性。工科、经管类、信息类三大类结合调研进行合理选块。工科教学的专业模块为多元微积分、常微分方程、级数以及线性代数等;经济管理类专业模块为二元微积分、线性代数、概率等;信息类的专业模块为布尔代数、矩阵行列式、概率、图论基础等。
加强高职数学与专业课的联系 实施模块式教学对教师的能力和素质提出了更高的要求。由于数学教师对高职各专业知识了解有限,与专业教师缺乏沟通,且不同专业又有着不同的问题,为此数学教师必须去面对专业知识问题,认真听取专业教师对数学课程、内容、范围的要求和建议,针对不同专业搜集相关典型案例,为提高数学教学质量提供有力依据。例如,经济类专业的学生,在今后的工作中很少接触到曲线的凹凸性及函数图形的描绘、变力作功、液体静压力等问题,完全没有必要花很多时间来学习这些内容,而要把重点放在今后工作中经常接触的单利、复利、税收、最小投入、最大收益、最佳方案等知识点上,这样更实用、更有价值。而线性代数与计算机原理有直接的联系,计算机专业的学生应把这方面的知识作为重点。同时,直接选取专业课程的相关内容作为例题、习题讲解和练习,对内容拓宽和深化,强调知识应用可起到积极的作用。通过反复学习,学生得以反复记忆,进而熟练掌握,这更有利于所培养的人才能够胜任其岗位职责,为用人单位创造良好效益。让学生看到学习数学能够应用于实际,更有利于激发学生的学习兴趣。当然,在具体操作时,要做到:
1.由传统的“面向定义”转变为“面向问题”的新型教学模式,进行问题驱动教学。删去那些繁琐的计算与复杂的推理过程,遵循实践——认识——再实践—再认识的过程,加强对数学本质的理解,自觉应用数学解决实际问题,提高学生的数学能力和职业能力。例如,函数作为过渡性衔接内容可少讲,只需重点介绍分段函数、复合函数等,空间解析几何是多元函数微分学的预备知识,加之学生在中学已接触过,可略讲;导数与微分中重点介绍导数,微分则利用导数即微商这一关键点略讲。
2.教师应有意识地收集与各专业教学内容相关的案例,尽可能多地将数学与工程学、经济学、生态学、社会学、军事学等领域联系起来,展现高等数学的巨大魅力。例如,在生活实际中建立微分方程模型是比较难的,在介绍微分方程时可以举抵押贷款买车买房问题、人口增长等多个例子。这些不但让学生了解了数学的巨大作用,而且能大大提高学生的学习兴趣。此外,教师还应介绍与教学内容相关的数学知识和最新前沿动态,帮助学生更好地学习。
3.重视思想方法的教学。在高等数学教学过程中,教师应当对课程中蕴含的一些数学方法加以阐述,例如类比、演绎、递推、构造、换元、化归、建模等方法,这对深化学生知识,提高学生分析问题、解决问题的能力,增强学生的整体素质有着重要作用。就拿建模来说,一切数学概念和知识都是从现实世界的各种模型中抽象出来的,利用建模思想进行教学是理论与应用相结合的重要手段。传统的高等数学教学也强调从实际问题出发,建立模型,再引入概念和方法。笔者认为,数学教学中贯彻建模思想,应强调量的差异,应举更多有实际意义的例子,贯彻数学建模思想,是将解决问题思想贯彻到每个环节,而不只是用做某些部分的引入手段。
教学方法和手段的改进