您当前的位置:首页 > 教育论文>教育理论论文

医学论文统计学分析

2024-01-11 11:44 来源:学术参考网 作者:未知

医学论文统计学分析

一般常用的统计检验方法有:t 检验、卡方检验、方差分析和相关回归分析。
统计检验方法的选择主要依据数据的类型(计量、计数) 、组数的多少(两组、多组) 、样本量的大小以及对比的方式(相互比较、配对比较) ,此外计量数据还要考虑分布形态和方差齐性等问题。

医学论文统计学方法应用的错误解析论文

医学论文统计学方法应用的错误解析论文

摘 要: 统计学方法应用正确与否直接关系到医学科研结果的可信度和有效性,在研究设计时的错误应用会否决整个科研研究方案,基于错误统计学方法上产生的结果会浪费科研人员的时间和精力。编审人员应该高度重视医学论文的统计学方法应用,提高单篇文献的质量和学术水平。

关键词: 统计学方法;医学论文;解析

一、引 言

医学由于其研究的复杂性和系统性,常需要应用严谨的统计学方法,由于有些作者对医学科研的统计学理论和方法的应用缺乏深刻了解,在医学论文中错误应用统计学方法的现象时有发生。统计学方法应用的错误直接导致统计结果的错误。例如统计学图表、统计学指标、统计学的显著性检验等。因此,正确应用统计学方法,并将所获得的结果进行正确的描述有助于单篇论著的质量提高,现将医学论文中统计学方法应用及其常见结果的错误解析如下。

二、医学论文统计学方法应用概况

医学论文的摘要是全文的高度浓缩[1],主要由目的、方法、结果、结论组成。一般要求要写明主要的统计学方法、统计学研究结果和P值。一篇医学论文的质量往往通过摘要的统计学结果部分就能判断。统计学方法的选择和结果的表达直接影响单篇论著的科研水平。

(一)材料与方法部分

正文中,材料与方法部分必须对统计学方法的选择、应用、统计学显著性的设定进行明确说明。通过对统计学方法的描述,读者应该清楚论著的统计学设计思路。材料部分要清楚说明样本或病例的来源、入组和排除标准、样本量大小、研究组和对照组的设定条件、回顾性或者前瞻性研究、调查或者实验性研究、其他与研究有关的一般资料情况,其目的是表明统计学方法应用的合理性和可靠性,他人作相关研究时具备可重复性。方法部分应详细叙述研究组和对照组的不同处理过程、观察的具体指标、采用的测量技术,要具备可比较性和科学性,

方法部分还要专门介绍统计分析方法及其采用的统计软件。不同的数据处理要采用不同的方法,必须清楚的说明计数或者计量资料、两组或者多组比较、不同处理因素的关联性研究。常用的有两组间计量资料的t检验,多组间计量资料的F检验,计数资料的卡方检验,不同因素之间的相关分析和回归分析。有些遗传学研究方法还有专门的统计学方法,要在这里简要说明并给出参考文献,还要简单叙述统计方法的原理。统计学软件要清楚的说明软件的名称和版本号,如基于家系资料研究的FBAT1.7.3版本。

(二)论文结果部分

论文结果部分要显示应用统计学方法得到的统计量[2],所采用的统计学指标较多时,往往分开叙述。分组比较多时还要借助统计图表来准确表达统计结果。对于数据的精确度,除了与测量仪器的精密程度有关外,还与样本本身的均数有关,所得值的单位一般采用紧邻均数除以三为原则。均数和标准差的有效位数要和原始数据一致。标准差或标准误差有时需要增加一个位数,百分比一般保留一个小数。在统计软件中,分析结果往往精确度比较高,一般要采用四舍五入的方法使其靠近实验的实际情况,否则还会降低论文的可信度和可读性。

结果部分的统计表采用统一的“三线”表,表题中要注明均数、标准差等数据类型。表格中的数值要按照行和列进行顺序放置,要求整齐美观,不能出现错行现象。要明确标注观察的例数,得到的检验统计量。统计图可以直观的表达研究结果,如回归和相关分析的散点图可以显示个体值的散布情况。曲线图表达个体均值在不同组别随时间变化的情况或者不同条件下重复测量的结果。误差条图由均数加减标准误绘出,描述的是67%的置信区间,不是95%,提倡在误差条图采用95%的置信区间。

关于统计量,一般采用均数与标准差两个指标,均数不宜单独使用。使用均数的时候要明确变异指标标准差或者精确性指标标准误。关于百分比,分母的确定必须要符合逻辑,过小的样本会导致分母过小而出现百分比过大的情况。百分率的比较要写清两者中不同的变化,可以采用卡方检验。

1.假设检验的结果中,常见只写P值的情况,有时候会误导读者,也会隐藏计算失误的情况,因此写出具体的统计值,如F值、t值,可以增强可信度。对于率、相关系数、均数这类描述统计量,要清楚写明进行过统计学检验并将结果列出。P值一般取0.05与0.01作为检验显著性,对于结果的计算要求具体的P值,如P=0.23或P=0.02。

2.在对论文进行讨论时,作为统计学方法产生的结果往往要作为作者的主要观点支持其科学假设,对统计结果的正确解释至关重要。P值很大表明两组间没有差别属于大概率事件,P值很小表明两组间没有差别的概率很小。当P<;0.05,表明差异具有统计学意义。P值与观察的样本量的大小有关联,当样本量小的时候,数据之间的差别即使很大,P值也可能很大;当样本量大时,数据之间的差别即使很小,P值也可能显示有显著性差异。相关系数统计学意义的显著性也与相关系数的大小没有绝对的关联,有统计学意义的样本相关系数可能很小。因此,有统计学差异的描述并不一定意味着两组间差别很大,错判的危险性很大,显著性的检验为定性的结果,结合统计量大小方可判断是否具有专业意义。

变量间虚假的相关关系与变量随时间变化而变化相关,统计学意义的关联并不表示变量间一定存在因果关系。因果关系的确定要根据专业知识和采用的'研究方法的不同来考量。使用回归方程进行分析,当两变量间具有显著性关系,但是从自变量推测因变量仍然不会很精确。相关或回归系数不能预测推测结果的精确程度,而只是预测一个可信区间。诊断性检验应用于人群发病率很低的疾病,灵敏度、特异度的高低对于明确疾病诊断并不能很肯定。“假阳性率”与“假阴性率”根据实际的需要不同要求并不一致,在疾病患病率很低时,出现假阳性也是正常的,要确诊疾病必须要与临床症状体征相结合。因此,这两个率的计算方法必须交待清楚。

三、医学论文统计学方法应用的常见错误分析

(一)“材料与方法”中的统计学方法应用的常见错误

“材料与方法”中统计学方法常见的问题主要为:对样本的选择或者研究对象的来源和分组描述很少或者过于简单。例如,临床入组病例分组只采用简单的随机分组,未描述随机分组的方法,未描述是否双盲双模拟,未设置空白对照组,分组后对性别、年龄、文化程度的描述未进行统计学检验,对于特殊的统计学方法没有详细交代;动物实验分组的随机化原则描述过于简单,没有具体说清完全随机、配对或分层随机分组等;统计分析方法没有任何说明采用的分析软件,有的只说明采用的分析软件而不交代在软件中采用的统计方法;没有说明原因的情况下出现样本量过于小等情况。

(二)“结果”统计学方法应用的常见错误

1.应用正确的统计学方法出现的结果表达并不一定正确。例如前文所述数据的精确度要求。医学论文常见错误中包括均数、标准差、标准误等统计学指标与原始数据应保留的小数位数不同;对于率、例数、比值、比值比、相对危险度等统计学指标保留的小数点位数过多;罕见疾病的发病率、患病率、现患率等指标没有选择好基数,导致结果没有整数位;相关系数、回归系数等指标保留的小数位数过多或者过少;常用的一些检验统计量,如F值、t值保留的位数不符合要求。

2.对统计学指标进行分析和计算时,一般采用计数资料和计量资料进行区分。计量资料常用三线表,在近似服从正态分布的前提下采用均数、标准差进行说明,如果不符合正态分布时,可以采用加对数或其他的处理方式使其近似正态分布,否则只能采用中位数和四分位数间距等指标进行描述。医学论文中常见未对数据进行正态分布检验的计算,影响统计结果的真实性和可信度。对于率、构成比等常用的计数资料指标,常见样本量过小的问题,采用率进行描述会影响统计结果的可靠性,采用绝对数进行说明会显得客观一些。还有一些文献将构成比误用为率,也是不可取的。

3.在判断临床疗效之一指标时,两组平均疗效有差别并不意味着两组的每一个个体都有效或无效,必须通过计算有效率进行计算。如比较某药物治疗糖尿病的疗效,服药一周后,研究组和对照组的对血糖降低值分别为6.7 ±2.4 和1.2 ±0.6 ( P = 0.000 1) 。按空腹血糖值低于7.7mmol/L的疗效判定有效率,研究组和对照组的有效率分别为75.6%和12.4% ,尽管平均疗效相差较多,但也要注意到该药物对部分患者无效(24.4%)。对假设检验结果的统计学分析结果,P 值的表达提倡报告精确P值,如P = 0.015或P = 0.321等。目前的统计学分析软件均可自动计算精确的P 值。例如常用的SAS,SPSS等,只要提供原始数据,就可以计算出t值、F值和相应的自由度,并可获得精确的P值。

四、小 结

提高医学论文中统计学方法的使用质量是编辑部值得重视的一项长期而又艰巨的工作[3],医学论文中统计方法应用和统计结果的表达正确与否,不仅体现了论文的科学性和严谨性,而且对于提高期刊整体的学术质量,促进医学科学的发展和传播也有着重要作用[4]。

参考文献:

[1] 李敬文,吕相征,薛爱华.医学期刊评论性文章摘要的添加对期刊被引频次的影响[J].编辑学报,2011(23).

[2] 陈长生.生物医学论文中统计结果的表达及解释[J].细胞与分子免疫学杂志,2008(24).

[3] 潘明志.新时期复合型医学科技期刊编辑应具备的素质和能力[J].中国科技期刊研究,2011 (22).

[4] 张春军,董凯.网络信息时代加强医学期刊编辑的信息素养[J].牡丹江医学院学报,2011(32).

医学科研中常用的统计学方法有哪些

秋风送爽,也给我们送来了刘岭教授的统计说说第五期。这一期的统计学方法之选择大家一定要认真学起来,说不定马上你就会用到了。

编者语

针对常用的基本统计学方法,一般而言说的就是t检验、单因素方差分析和卡方检验,这也是大家在写论文、阅读论文时经常遇到的统计学方法(几乎每篇文章都会涉及这一种或几种方法),那到底该采用何种统计学方法呢?今天我们就此来聊聊。

一、拿到数据开始分析之前,一定要进行数据类型的划分(图1),因为不同数据类型资料,描述的方式不一样,统计学方法也不一样。

图1 统计资料的类型

举个例子(表1):

表1 某地2002年735例65岁以上老年人健康检查记录

二、各种类型资料的统计分析(描述与统计推断)

1.计量资料

特点:每个观察单位的观察值之间有量的区别,有单位;

描述形式:最常见采用“X±S”(一般文献中经常见到),用算数均数描述其平均水平,用标准差描述其离散程度。如果遇到数据“特别变态”(特别是标准差大于算数均数),就采用Md(P25,P75)(Md为中位数,P25和P75为四分位数)(表2)。正态分布检验请大家复习:医学科研课堂丨统计说说(三):你所应该了解的正态、方差齐性检验

表2 计量资料常用统计指标的特点及其应用场合

统计推断方法:一般分为单因素和多因素两种。

单因素分析方法分析要点:一是划清数据类型(计量资料);二是明确试验设计类型(完全随机设计?几组样本?);三是注意所用方法的应用条件;四是满足正态方差齐性时采用t检验(注意t检验有三种形式哦!)或单因素方差分析,不满足时采用秩和检验(图2)。

图2 计量资料统计方法的正确选择

提醒两点:

① 如果样本数据不服从正态分布的话,那就只能用非参数检验(秩和检验),但其检验效能低于参数检验(t检验或方差分析)。所谓检验效能低就是本身有差异,却没有能力发现其差异。

② 如果是两组以上样本的数据时,不能采用t检验(会导致假阳性错误概率增加),应该采用方差分析。若方差分析的P<0.05,需再进一步两两比较,常用的方法为LSD法或SNK法(注意依旧不能采用t检验)。

在上两讲内容中我们已经学过t检验(医学科研课堂丨统计说说(二):你的t检验做对了吗?)和方差分析(医学科研课堂丨统计说说(四):统计学方法之灵魂—方差分析)了,至于秩和检验,我们以后会逐步介绍滴。

多因素分析一般采用回归分析,主要是线性回归分析,以后会给大家介绍此方法。

2.计数资料

特点:无序分类,同类别中各观察单位之间没有量的差别,但各类别间有质的不同,各类别互不相容。其中二分类一定是计数资料(例如性别只有男/女之分,是否继发某种疾病只有继发/未继发之分),而多分类满足分类在性质上没有程度等级上的差别,即为计数资料(例如婚姻状况包括未婚、已婚、离异、丧偶,就属于多分类,但各分类没有程度等级差别,因此为计数资料,尿糖定性检测结果包括-、+、++、+++、++++,属于具有程度等级差别的多分类资料,就不属于计数资料,属于等级资料了)。

描述形式:最常见采用“例数(%)”(一般文献中经常见到),主要要分清构成比(结构相对数)和率(强度相对数)的差别(表3)。而且在应用时,分母(就是样本量啦)一般不宜过小,分母太小不足以反映数据的客观事实,也不稳定。

表3 计数资料常用统计指标的特点及其应用场合

比如说:

1.某地肺癌患者中男性A例,女性B例,则当地肺癌患者的性别比为A/B就是“比”。

2.某次研究共检出了致病菌3种,总株数为A+B+C,其中一种致病菌检出株数为A,那么A/(A+B+C)就是构成比,即该种致病菌占总致病菌的比重或分布。

3.某研究对患者(总例数为B)进行治疗,结果治愈的患者例数为A,则A/B即为率(可以理解为治愈率)。

统计推断方法:一般分为单因素和多因素两种。

单因素分析方法分析要点:一是划清数据类型(计数资料);二是明确试验设计类型(完全随机设计?几组样本?);三是注意所用方法的应用条件;四是多样本率比较,若卡方检验的P<0.05,需再进一步两两比较,并进行Bonferroni校正,以控制假阳性(图3)。

图3 计数资料统计方法的正确选择

提醒两点:

① 构成比是以100作为基数,各构成部分所占的比重之和必须为100%,故某组成部分所占比重的增减必影响其它组成部分的比重;

② 构成比和率在实际应用时容易混淆,主要区别在分母上,所以应正确选择分母。

多因素分析一般采用回归分析,主要是Logistic回归分析,以后会给大家介绍此方法。

3.等级资料

特点:属于多分类资料,满足多分类在性质上有程度等级上的差别,各分类属性按一定顺序排列(有序),即为等级资料。

描述形式:最常见采用“例数(%)”(一般文献中经常见到),这和计数资料的描述大体相同,主要区别在于多个分类排列时一定要按照顺序进行(从小到大或从弱到强)。

统计推断方法:等级资料的统计分析方法在单因素分析中采用非参数检验(秩和检验),当然对于双向有序R×C资料,也就说分组变量和结局变量都是有序(等级)的情况,构成比的比较采用卡方检验,程度的比较采用秩和检验,趋势关联性的比较用秩相关(也称等级相关)。多因素分析中采用有序Logistic回归。

注意:分类变量(计数资料和等级资料)在软件分析操作时,要适当数量化处理(赋值),赋值情况会直接影响统计分析结果的解释。

最后用下面这张图来总结基本统计学方法的选择(图4)。

图4 常用基本统计学方法的正确选择

今天的内容就到这里,同学们多多复习,有什么问题和不懂的可以在下面留言,我们会请刘岭教授一一解答。好了,让我们期待下一期吧!

撰稿:刘岭 约稿编辑:刘芹

排版:毕丽 审核:王东

专家简介

刘岭:陆军军医大学卫生统计学教研室副教授,主要从事卫生统计学教学、科研工作。担任中华卫生信息学会第八届统计理论与方法专业委员会委员,重庆市预防医学卫生统计专业委员会副主任委员,并担任《第三军医大学学报》等多家杂志的编委、统计审稿专家。

历史推荐

医学科研课堂丨统计说说(四):统计学方法之灵魂—方差分析
医学科研课堂丨统计说说(三):你所应该了解的正态、方差齐性检验
医学科研课堂丨统计说说(二):你的t检验做对了吗?
医学科研课堂丨统计说说(一):样本量估算是个什么东东?

医学论文统计学分析怎么做?如何做统计学分析?

医学论文统计学分析的知识你可以登陆:创新医学网

创新医学网上有医学论文统计学分析视频、医学论文写作辅导范文、医学论文写作视频、医学论文写作电子书等等,统计学分析的所有信息创新医学网上有很多资料,都是可以查看的。

卫生统计在医学期刊中占有非常重要的地位。任何科研设计、实验研究都离不开统计方法,而统计方法的正确与否直接影响到论文的质量。我们在编审稿件过程中,经常遇到统计学方法使用不当等问题。

数理统计的基础是概率论,对统计分析的资料下结论的依据是小概率事件在一次试验中是不可能发生的。一般统计上习惯把概率P≤0.05或P≤0.01认为是小概率事件[1]。当通过假设检验(显著性检验)获得P>0.05时,认为是大概率事件,说明在这一次试验中很可能发生,因此接受假设,认为差异无显著意义(差异不显著)。

医学统计学的重要性分析

医学统计定义

医学统计学,是研究如何搜集、整理、分析医学研究对象的数据,并作出推断的一门学科。医学研究的对象是人类的健康和疾病现象,人体及有关的生物体的内外环境受多种因素的综合影响,其中有许多因素是未知的。因此,即使是性质相同的事物,就同一指标来看,个体之间也有差异,此种现象称为变异。

人群生活在同一环境中,受同一疾病风险因素的威胁,但某一个体发病与否,个体间的病情轻重,接受治疗的疗效等等,均各不相同,这种事先无法判断出现与否的现象称偶然现象或随机现象。医学统计学的任务就是透过偶然现象反映同质事物的特征和规律。

必要性

作为医学工作者,学习和掌握一定的'统计学知识是十分必要的。

第一、在阅读医学书刊中,经常会遇到一些统计学方面的名词概念。了解统计学的知识,有助于正确理解文章的涵义;

第二、在实际工作中,经常要做登记工作,要填写各种报表,只有懂得了原始登记与统计结果的密切关系,并掌握收集、整理与分析资料的基本知识与技能,才能自觉地、认真地把登记工作做好,积累有科学价值的资料;

第三、参加科研工作时,从开始设计到数据整理分析与统计结果的表达,每一步骤都需要统计学知识;

第四、制订计划、检查工作、总结经验,都离不开统计数字。尤其在撰写科研论文时,有了统计学知识,才能使数据与观点密切结合,作出正确的结论。

医学工作者如何学习医学统计学

学习统计学,首先必须明确:我们掌握的关键不是数学原理,而是怎样合理地、恰当地把数理统计的方法应用到医学科研工作中去,并结合专业知识,提高分析问题与解决问题的能力。其次在学习过程中,要理论联系实际,重视实习与练习。作业中要遵守数学上的规则与习惯,如小数点及各个位数应上下对齐,一个多位数的数值不能分写成两行,等号不能写在一行的末了而应写在第二行的开头等等。再次,各种统计符号必须写正确,汉字、阿拉伯字与外文字母必须写清楚,不能写得模棱两可。只有在学习时养成良好的习惯,将来在工作中才能少出差错。

统计工作最根本的一条就是实事求是,如实反映情况。因此,无论在日常工作或科学研究中,必须养成严肃认真的作风和反复核对的习惯,同一切弄虚作假的现象进行坚决的斗争,尽最大努力获得正确数据,使分析结论建立在可靠的基础上。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页