摘 要:
关键词:
众所周知,数学在我们基础教育中占有很大的分量,也是我们的文化中极为重要的组成部分。它不但有智育的功能,也有其美育的功能。“那里有数学,哪里就有美”,这是古代哲学家对数学美的一个高度评价。数学中同样存在着能够启迪智慧,陶冶情操的“美”。数学美的内容是丰富的,如数学概念的简单性,统一性,结构关系的协调性、对称性;公式的普遍性、应用的广泛性,还有奇异性等都是数学美的具体内容。
一、 数学概念的简洁美
爱因斯坦说过:“美,本质上终究是简单性。”他还认为,只有借助数学,才能达到简单性的美学准则。物理学家爱因期坦的这种美学理论,在数学界,也被多数人所认同。朴素,简单,是其外在形式。只有既朴实清秀,又底蕴深厚,才称得上至美。数学基本概念、理论或公式所呈现的简单性就是一种实实在在的简洁美。而且这一种简洁美中,往往又包含了物质世界的伟力和完美性,使学生学得既轻松又有味。圆的周长公式:C=2πR,就是“简洁美”的典范。世间的圆形有多少?没有人能说清楚。但它们的周长C、半径R,都必须服从刚才所给出的公式,一个如此简单的公式,概括了所有圆形的共同特性,能不令人惊叹不已?在数学中,像周长公式这样形式简洁、内容深刻、作用很大的定理还有许多。如勾股定理:直角三角形两直角边的平方和等于斜边平方。数学的这种简洁美,用几个定理是不足以说清的,数学历史中每一次进步都使已有的定理更简洁。正如伟大的希而伯特曾说过:“数学中每一步真正的进展都与更有力的工具和更简单的方法的发现密切联系着”。
二、 符号美、抽象美、统一美
数学知识大部分由数字和符号组成,从四则运算到比较大小,还有运算中的大、中、小括号,符号都讲究大小适中、上下左右对称。美好的数字:一是万物之始,一统天下、一马当先;二是偶数,双喜临门、比翼双飞;一去二三里,烟村四五家。亭台六七座,八九十枝花(邵雍;七八个星天外,两三点雨山前(辛弃疾);一帆一桨一渔舟,一个渔翁一钓钩。一俯一仰一顿笑,一江明月一江秋(纪晓岚)。读了上面的成语、诗,每个人都明显感到,无论是数字的单个应用或重复引用或循环使用,看似毫无感染力的数字竟能表现出各种思想感情。可见世界上一切事物都是相互联系的,作为反映客观事物的量的方面的属性和规律的数学概念、定理、公式及法则等也必然是相互联系的,在一定的条件下处于一个统一体系中。数学美的统一性正体现了数学知识的部分与部分、部分与整体之间的有机联系。
三、结构系统的协调美、对称美
数学中这种对称性处处可见,如几何中的轴对称、中心对称;代数中多项式方程虚根的成对出现,函数与反函数图像的关系(关于直线yzx对称)等都显现出对称性。对称性能给人美观舒适之感。四边形的形状是多种多样的,但最完美的是正方形,因为它的对称轴比任何四边形都多,而且还是中心对称图形。这些性质使正方形获得了人们的喜爱和广泛应用。如人们用边长为单位长度的正方形面积,作为度量其它图形面积的基本单位。人们也喜欢用正方形图案美化环境。比如用正方形地板砖铺室内外地面,不仅美观大方,而且施工简单易行。毕达哥拉斯说:“一切立体图形中最美的是球形,一切平面图形中最美的是圆形。”因为这两种图形在任何方向上看都是对称的。其实在我们身边随处可见根据对称设计的东西。小到一块橡皮、一只球拍,大到一架飞机、一座建筑。著名的北京人民大会堂;高耸入云的上海东方电视塔;埃及金字塔的缩影;形象逼真的扇形;梅花瓣样的组合图形;铜钱式的圆中方;美丽的“雪花”图案,更显示出几何图形的对称美,和谐美。
四、奇异美
数学的奇异性很容易激发学生的创造欲望,数学奇异美是学生创新的内驱力。而学生在创造性学习活动中又能感受到数学奇异美,两者之间是相互联系相互促进的。数值计算中的反常设想,奇异的分法,美妙的结果都是数学在奇异美,这种奇异美可以揭发学生的创新欲望,培养创新精神,同时在主动探索的过程中能体验到数学奇异美;应用题教学中,学生表现出新奇独特的、不拘一格的方法,正是学习高明的创新思维能力的体现,在此过程中,学生体验了数学美,从而激发了创新欲望;在几何形体知识的教学时,学生所采用的巧妙方法和产生奇异结果,能使学生在惊异中受到美的熏陶,同时使学生产生追求、向往使用巧妙方法和产生奇异结果,培养了学生的创新精神。例如数值计算经常会产生一些奇异而美妙的结果:
3×4=12
33×34=1122
333×334=111222
3333×3334=11112222 ……
这一系列美妙的结果显示了一种规律:m个3构成的数与其直接后继的积是一个2m位数,其前m位为1,后m位为2。数学美的奇异性是客观物质世界奇特性的反映。奇异的结果,很容易激发学生的学习热情,会使人感到兴奋,受到吸引,产生美感,精彩之处能使人心灵震撼、心荡神驰。这些都是激励学生克服疑难,不断创新的极好动力。奇异、新颖的外表,又常常蕴含着独特而又有创新性的内容和思想,能给学习者以启迪,帮助其增强求异、创新的能力。因此,数学奇异美是学生创新的内驱力,而学生在创新过程中又能感受到数学的奇异美,两者之间是相互依存、相互促进的。
数学中的美,不是以艺术家所用的色彩、线条、旋律等形象语言表现出来,而是把自然规律抽象成一些概念、定理或公式,并通过演绎而构成一幅现实世界与理想空间的完美图像。只有数学内在结构的美,才更令人心驰神往与陶醉。它的博大精深与简明透彻都给观赏者以巨大的美的感染。如果在学习过程中,我们能与数学家们一起探索、发现,从中获得成功的喜悦和美的享受,那么我们就会不断深入其中,欣赏和创造美。