您当前的位置:首页 > 计算机论文>智能科技论文

人工智能技术的发展趋势研究

2015-07-28 19:09 来源:学术参考网 作者:未知

摘 要:摘要:人工智能(Artificial Intelligence)是用人工的方法和技术模仿、延伸和扩展人的智能。本论文在阐述人工智能定义的基础上,详细分析人工智能的当前的发展状况和应用领域,并展望了人工智能今后的发展趋势。

关键词:关键词:人工智能;应用领域;发展趋势

中途分类号:TP39    文献标识码:A     文章编号:
引言:
  计算机学科的一个重要分支就是人工智能,它与基因工程、纳米科学被列为二十一世纪三大尖端技术、同时人工智能是一门汇集了多种学科相互渗透发展起来的交叉学科。对于人工智能的定义,至今尚未统一,美国斯坦福大学人工智能研究中心尼尔逊教授认为:人工智能是关于知识的学科——怎样表示知识以及怎样获得知识并使用知识的科学;麻省理工学院的温斯顿教授认为:人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。除此之外,还有很多种不同的观点,但这些说法都形象地反映了人工智能学科的基本内容和核心思想,那就是:人工智能是研究如何用人工的方法在计算机上模拟、实现和扩展人类智能的一门科学与技术。
1. 人工智能技术的发展
  人工智能((Artificial Intelligence)从上世纪50年代发展到现在,有高潮也有低迷的时期。研究的方法和研究的态度也有多种,不管是何观点,它们都推动着人工智能技术的发展。今天人工智能技术已渗透到人类生活的方方面面,实实在在的影响着科学技术的发展。
2. 人工智能技术的应用
  我们可以看到,当今社会很多领域的各种技术的发展都涉及到了人工智能技术。下面就人工智能的几种典型应用做如下探讨:
2.1人工智能应用之问题的求解
  人工智能中的问题解求,就是如何让机器去解决人类会遇到的问题,如何根据某一具体问题找到思考问题并解决这个问题的方法。目前,人工智能技术已经可以通过计算机程序解决了如何考虑要解决的问题,并能寻求较为准确的解决方案。
2.2人工智能应用之逻辑的推理与定理的证明
  人工智能研究中最持久的探究领域之一就是逻辑推理。有关定理的证明就是让机器证明非数值性的真假。其中比较重要的是,通过找到合理、准确的方法,集中注意力在大型数据库中的有效事实,关注可信度证明,并在出现新信息时适时修改这些证明。
2.3人工智能应用之自然语言的处理
  智能的另一表现就是进行自然语言的交流,自然语言处理就是让机器与人类进行无阻碍的沟通,这正是人工智能技术应用于实际领域的典型范例。目前此领域的主要研究内容是:如何利用计算机系统以主题和对话情境为基础,生成和理解自然语言。
2.4人工智能应用之模式的识别
  如何使机器具有感知能力也是智能的表现。模式的识别是利用人工智能技术开发智能机器的关键,主要是通过计算机用数学技术方法来研究模式的自动处理和判读,让计算机实现“看见”,“听见”等功能。计算机模式识别的主要特点是速度快,准确率高,效率高,计算机模式识别也为人类认识自身智能提供了有利帮助。
2.5人工智能应用之智能信息的检索技术
  在科学技术飞速发展的今天,人类已进入了“知识爆炸”的时代。传统检索系统已经满不足了对如今如此数量巨大以及种类繁多的文献检索要求。人工智能科技持续稳定发展的重要前提就是智能检索模块,可以说,智能信息的检索技术的运用势在必行。
2.6人工智能应用之专家系统
  我们常说的专家系统就是指从人类专家那里获取的知识,并用来解决只有专家才能解决的疑难问题。这是一种基于知识的系统,从而也被称为知识基系统。专家系统是人工智能技术中研究最活跃,最有成效的一个领域。现在的专家系统尤其特殊的模仿了专家在处理故障时的思维方式,其水平有时甚至可以超过人类专家的水平。
2.7人工智能应用之机器人学
  机器人对我们并不陌生,已在多个领域获得了越来越普遍的应用,诸如农业、工业、商业、旅游业、航空和海洋等。那么,机器人学所研究的问题主要包括从机器人手臂的最佳移动到实现机器人目标的动作序列的规划方法。机器人和机器人学的研究对人工智能思想的发展都起到了促进作用。
3. 人工智能技术发展趋势
  科学技术是第一生产力,但技术的发展往往是远远超越我们的想象。就目前的一些前瞻性研究可以看出,未来人工智能技术的发展有如下几大趋势:
3.1问题求解
  问题求解一般包括两种,一种是指解决管理活动中由于意外引起的非预期效应或与预期效应之间的偏差。正在逐渐发展成为搜索和问题归约这类人工智能的基本技术;另一种问题的求解程序,是把各种数学公式符号汇编在一起。其性能已达到非常高的水平,并正在被许多工程师和科学家应用,甚至还有些程序能够用经验来改善其性能。
3.2机器学习
  人工智能研究的核心课题之一就是机器学习。我们知道学习是人类智能的重要特征,那么机器学习就是指机器自动获取知识的过程。机器学习是机器获取知识的根本途径,也是机器智能的重要标志。计算机的机器学习主要研究内容为如何让计算机模拟或实现人类的学习能力。今后机器学习的研究主要是研究人脑思维的过程、人类学习的机理等。
3.3模式识别
  用计算机实现模式(文字、声音、人物、物体等)的自动识别,弥补计算机对外部世界感知能力低下的缺陷,使计算机能够通过感官接受外界信息,识别和理解周围环境。依然是人工智能技术今后研究的重要方向。因为模式识别能为人类认识自身智能提供线索,也是开发智能机器的一个最关键的突破口。目前计算机模式识别系统的研究热点主要为三维景物、活动目标的识别和分析方面。传统的用统计模式和结构模式的识别方法将会被近年来迅速发展起来的模糊数学模式、人工神经网络模式的方法逐渐取代,特别是神经网络方法在模式识别中取得较大进展。
3.4专家系统
  专家系统是根据某领域中一个或多个专家提供的知识或经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题的智能软件,它是一个具有大量的专门知识与经验的程序系统。目前各种专家系统已遍布各个专业领域,因此专家系统还将是人工智能应用研究最广泛和最活跃的应用领域之一。
3.5人工神经网络
  人工神经网络,常被简称为神经网络或类神经网络。是未来人工智能应用的新领域,人工神经网络是指由大量处理单元(神经元)互连而成的网络。人工神经网络具有很强的自学习能力,主要擅长处理复杂的多维的非线 性问题,不但可以解决定量的问题,还可以解决定性的问题,同时人工神经网络还具有大规模并行处理和分布的信息存储能力。或许未来智能计算机的构成可能就是作为主机的冯•诺依曼型机与作为智能外围的人工神经网络的结合。
4. 结论语
  人工智能的基本思想已经在许多领域中得到应用,对于人工智能技术未来的发展还有很多未知的可能,但无论如何发展都将推动人类在科学与生活领域的发展。
参考文献:
[1]胡勤.人工智能概述[J].电脑知识与技术,2010,(13):3507-3509.
[2]朱福喜,汤怡群等.人工智能原理[M].武昌:武汉大学出版社,2002.87-91.
[3]张妮等.人工智能技术发展及应用研究综述[J].煤矿机械,2009,(02):4-7.
[4]亓慧.议当代人工智能的应用领域和发展状况[J].福建电脑,2008,(05):33.
[5]蔡自兴,徐光.人工智能及其应用[M].北京:清华大学出版社,2003.51-93.
[6]王鸿斌,张立毅等.人工神经网络理论及其应用[J].山西电子技术,2006,(02):41-43.
[7]张凯斐, 人工智能的应用领域及其未来展望[J]. 吕梁高等专科学校学报, 2010-12
s

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页