您当前的位置:首页 > 经济论文>统计学论文

探讨统计数据分析体系中统计分析方法的选择与

2015-07-07 08:57 来源:学术参考网 作者:未知

相关合集:统计学论文

相关热搜:统计学  统计学原理


  一、数据统计分析的内涵


  数据分析是指运用一定的分析方法对数据进行处理,从而获得解决管理决策或营销研究问题所需信息的过程。所谓的数据统计分析就是运用统计学的方法对数据进行处理。在实际的市场调研工作中,数据统计分析能使我们挖掘出数据中隐藏的信息,并以恰当的形式表现出来,并最终指导决策的制定。


  二、数据统计分析的原则


  (1)科学性。科学方法的显著特征是数据的收集、分析和解释的客观性,数据统计分析作为市场调研的重要组成部分也要具有同其他科学方法一样的客观标准。(2)系统性。市场调研是一个周密策划、精心组织、科学实施,并由一系列工作环节、步骤、活动和成果组成的过程,而不是单个资料的记录、整理或分析活动。(3)针对性。就不同的数据统计分析方法而言,无论是基础的分析方法还是高级的分析方法,都会有它的适用领域和局限性。(4)趋势性。市场所处的环境是在不断的变化过程中的,我们要以一种发展的眼光看待问题。(5)实用性。市场调研说到底是为企业决策服务的,而数据统计分析也同样服务于此,在保证其专业性和科学性的同时也不能忽略其现实意义。


  三、推论性统计分析方法


  (1)方差分析。方差分析是检验多个总体均值是否相等的一种统计方法,它可以看作是t检验的一种扩展。它所研究的是分类型自变量对数值型因变量的影响,比如它们之间有没有关联性、关联性的程度等,所采用的方法就是通过检验各个总体的均值是否相等来判断分类型自变量对数值型因变量是否有显著影响。(2)回归分析。在数据统计分析中,存在着大量的一种变量随着另一种变量的变化而变化的情况,这种对应的因果变化往往无法用精确的数学公式来描述,只有通过大量观察数据的统计工作才能找到他们之间的关系和规律,解决这一问题的常用方法是回归分析。回归分析是从定量的角度对观察数据进行分析、计算和归纳。


统计学原理


  四、多元统计分析方法


  (1)相关分析。相关分析是描述两组变量间的相关程度和方向的一种常用的统计方法。值得注意的是,事物之间有相关关系,不一定是因果关系,也可能仅仅是伴随关系;但如果事物之间有因果关系,则两者必然存在相关关系。(2)主成分分析。在大部分数据统计分析中,变量之间是有一定的相关性的,人们自然希望找到较少的几个彼此不相关的综合指标尽可能多地反映原来众多变量的信息。所谓的主成分


  分析就是利用降维的思想,把多指标转化为几个综合指标的多元统计分析方法,很显然在一个低维空间识别系统要比在一个高维空间容易的多。(3)因子分析。因子分析的目的是使数据简单化,它是将具有错综复杂关系的变量综合为数量较少的几个因子,以再现原始变量与因子之间的相互关系,同时根据不同因子,对变量进行分类。这些因子是不可观测的潜在变量,而原先的变量是可观测的显在变量。(4)聚类分析。在市场调研中,市场细分是最常见的营销术语之一,它按照一定的标准将市场分割为不同的族群,并使族群之间具有某种特征的显著差异,而族群内部在这种特征上具有相似性。聚类分析就是实现分类的一种多元统计分析方法,它根据聚类变量将样本分成相对同质的族群。聚类分析的主要优点是,对所研究的对象进行了全面的综合分析,归类比较客观,有利于分类指导。(5)判别分析。判别分析是判别样品所属类型的一种多元统计方法。若在已知的分类下,遇到新的样本,则可利用此法选定一种判别标准,以判定将该新样品放置于哪个类中。由定义我们可以知道判别分析区别于聚类分析的地方,而在判别分析中,至少要有一个已经明确知道类别的“训练样本”,从而利用这个数据建立判别准则,并通过预测变量来为未知类别的观测值进行判别。与聚类分析相同的地方是,判别分析也是利用距离的远近来把对象归类的。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页