您当前的位置:首页 > 经济论文>统计学论文

统计学与概率论的教学思考

2023-12-06 05:39 来源:学术参考网 作者:未知

  为了在教学方面自我完善,自我提高,更好的服务于教学工作,结合自己的教学实践浅谈一些自己的心得:


  一、统计与概率的内涵的进一步认

  数据能够帮助我们认识世界、做出决策和预测,而统计正是与数据打交道的科学,它是在人们对现实生活中数据资料的收集、整理、分析的过程中发展起来的。

  (1)紧密联系学生生活实际,创设情境。有了这样的情感学生学起数学知识来当然是事半功倍了。例如:“分苹果”的情境创设,动手操作,激发了学生提出问题,解决问题的欲望,让学生在情境中感受、理解数学问题。再如:圆的周长的实际测量,也练习了学生的动手操作。

  (2)在课堂上让学生充分交流讨论。在民主、和谐的氛围中开拓思维,积极参与,充分合作。教师适时地参与到学生的讨论和交流当中,较好地扮演了组织者、参与者、合作者的角色。

  (3)运用丰富多彩的课堂教学手段。随着科技的进步和发展,我们的课堂也要跟上时代的潮流改变传统的一支粉笔进课堂,这两节数学课让我增长了很多见识,随着一个个课件的展示,本来很难理解的数学难题变得形象、具体,一个个教学难点也随之被攻破。课堂也显得生动活泼了很多。如果有条件我们也要丰富我们的课堂,提高课堂的教学效率。


  (4)引用《不列颠百科全书》对统计学的一个定义。《不列颠百科全书》对统计学的一个定义:“统计学是关于收集和分析数据的科学和艺术”。我认为定义中有三个比较关键的核心词,第一个是数据。“数据”和“数”的最重要的区别是数据是具有实际背景的,而“数”则并不一定。从这个意义上我们就可以理解了为什么说可以把“统计”从过去我们认为的“数的运算”中单独出来,成为一个相对独立的学习领域,统计主要作用正是通过数据处理来提取信息从而帮助人们进行决策。进一步,“随着信息高速的增长,我们需要进一步扩大对数据的认识。事实上,现在的数据不仅仅是数,其实图像也可以看成是数据、语句也可以看成是数据。只要蕴含着一定信息的,无论是什么表现形式,都可以看作是数据”。


  二、教学当中概念的处理方法

  在教学中,我们应该首先注重学生统计观念的形成与培养。能从统计的角度思考与数据信息有关的问题;能通过收集数据、描述数据、分析数据的过程,作出合理的决策,认识到统计对决策的作用;能对数据的来源、处理数据的方法以及由此得到的结论进行合理的质疑。收集整理养出来的感觉,统计学习要培养学生能自觉地想到运用统计的方法解决有关的问题。学生没有经历数据的收集过程,随机的数据对他们来说还是确定的,学生也就根本无从体会统计思想方法的价值。因此必须创设原始的随机情境,突出活动性,让学生亲身面对实际问题,亲自调查、收集数据,先体会随机数据的不确定、杂乱无章,然后组织学生经历数据的分类整理,凸现随机数据的特点。在这样的教学情形下,学生才深深地领悟到统计思想确实很有用。


  我们还要注重学生在概率实验中的操作体验。教学中应以学生亲身经历和体验统计过程作为主线,即对数据从收集、整理、描述到分析、运用的全过程中突出学生的主体参与,再此过程中引导学生发现并提出问题,用适当的方法收集和整理数据,用合适的图表展示数据,对数据作简单的分析并对自己的分析、思考进行交流和改进。由于处理数据没有唯一的样式,在统计过程中,不同情况下、不同的学生会用不同的方法来记录和表示数据。因此,引导学生经历数据处理过程的教学具有很强的探索性。


  三、如何介绍收集和数据的分析和运用

  统计处理数据的步骤主要包括:第一是要确定需要解决什么问题;第二是决定收集数据的方法并收集数据;第三是整理并尽可能清晰地描述数据;第四是分析数据,并做出决策和推断。统计学有着它科学的一面,但也有艺术的一面。对于同样的数据,由于背景和目标不同可以有多种分析的方法,需要根据问题的实际背景选择合适的方法。也就是统计的方法没有简单的理论意义上的对和错,只有好和不好。


  统计在收集数据和运用数据做出推断等方面吸收了概率的主要成果和主要方法,产生了以抽样为特征的数学与概率论的统计学。数理统计学是运用统计的方法来研究随机现象、从而描述随机现象总体趋势的数学模型,它不会把注意力停留在个别的现象特征上,而是了解大量随机现象的总体的变化趋势,并由此得出随机现象的基本统计规律,进而得到关于社会发展、科学发现的统计预测。


  最后,我们再概括地分析一下统计与概率的关系。实际上,众所周知,统计与概率都是研究随机现象的学科。“不论怎么说,机遇(或说偶然性)无所不在,机遇伴随着人的一生(当然随人的情况而有异),这是一个无法回避的现实”。统计与概率正是从不同的角度来研究怎样更好的刻画随机现象,统计主要侧重于从数据来刻画随机,概率则主要侧重于建立理论模型来刻画随机。另一方面,概率为统计提供了理论基础。在运用样本估计总体的过程中,抽样的合理性、样本推断总体的合理性,包括犯错误的风险,都需要概率的知识来提供科学依据(这在下文还要论述)。“‘机遇(机会)的数学’,它包含数学中的两个学科分支——概率论和数理统计学。概括来说就是,前者属于机遇数量化的理论基础。而后者则是其应用。”


  四、统计与概率课程的教育价值

  由上一段内容我们可以看出,统计的关键是客观地提炼和表述现实世界中广泛存在的随机信息,准确地分析并把握随机信息中的关键因素的规律性,科学地应用数据并做出正确决策是统计与概率的主要任务,而这也构成了大学阶段学习统计与概率的重要原因。具体来说,学习统计与概率的主要目的是让学生适应现代社会的需要;帮助学生形成和运用数据进行推断的思考方式;有助于学生朝着数学思考、解决问题、情感态度等多方面的发展。


  在以信息和技术为基础的现代社会里,生活中充满着大量的数据和随机现象,各种信息量以成倍地速度增长,这时就需要人们面对它们做出合理的决策。事实上,每个人每天都会遇到许多需要判断和推理的事情。总之,生活已先于数学课程将统计与概率推到了学生的面前,统计与概率的思想已渗入人们日常生活和社会生活的方方面面。


  许多的例子表明,随着计算机等信息技术的飞速发展,数据日益成为一种重要的信息,21世纪的公民面临着更多的机会和挑战,常常需要在不确定情境中,根据大量无组织的数据,做出合理的决策,这就需要人们能对纷繁复杂的信息做出恰当的选择与判断,具有一定的收集与处理信息、做出决策的能力,并且能够进行有效的表达与交流。而统计与概率正是通过对数据的收集、整理和分析,来为人们更好的制定决策提供依据和建议。因此,要培养学生具有收集并处理数据、做出恰当的选择和判断的能力,以适应现代社会的发展,就必须将统计与概率的基本思想、方法和知识作为义务教育阶段数学课程的重要组成部分。统计与概率的学习必将为数学与学生的日常生活及其他学科联系起来提供一条自然的途径。


  参考文献:

  [1]教学数学教学策略.张丹

  [2]运怀立.概率论的思想与方法.中国人民大学出版社

  [3]郝晓斌,董西广.数学建模思想在概率论与数理统计中的应用.经济研究导刊,2010年第16期

  [4]刘清梅.统计与概率的思想方法及其联系.考试周刊,2008年第18期

  [5]刘琼荪,钟波.将数学建模思想融入工科概率统计教学中.大学数学,2006年22卷第2期


  来源:都市家教·上半月 2014年2期

  作者:李丹


相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页