随着互联网的发展及各领域数字化的提高,大数据时代已经到来,这对传统的统计数据收集、处理与分析方法带来巨大的冲击,给统计学专业的教学带来了挑战。为了适应大数据时代的变革,统计学专业的教学需要在课程设计、实践教学以及毕业生就业导向上进行改革。
2011年2月,国务院学位委员会进行了学科调整,统计学完全从数学和经济学中独立出来,上升为一级学科,设在理学门类中,编号为0714。统计学上升为一级学科后,下设的二级学科包括数理统计学、社会经济统计学、生物卫生统计学、金融统计、风险管理和精算学、应用统计学。统计学上升为一级学科对统计学专业的教学带来巨大影响。
同时,随着大数据时代的到来,使得传统的统计数据收集、处理与分析方法面临新的挑战,从而推动统计学的发展进入了一个全新的阶段。在统计学上升为一级学科以及大数据时代已经到来的大背景下,统计学专业的课程教学也面临着新的挑战,需要进一步改革与调整。
一、大数据时代的到来
(一)大数据的生成
伴随着人类对客观世界各领域数字化程度的不断提高,每天都有大量的数据产生,并且其产生的速度也越来越快。这些数据来源广泛,其中最主要的来源有:科学研究(如天文学、生物学、高能物理等实验数据)、社交网络、电子商务、物联网、移动通信等。
(二)大数据的定义
为了应对数据大规模增长带来的机遇和挑战,美国《Nature》杂志在2008年9月4日率先提出了“大数据”的概念。国际数据中心IDC 是研究大数据及其影响的先驱,在2011年的报告中定义了大数据:“大数据技术描述了一个技术和体系的新时代, 被设计于从大规模多样化的数据中通过高速捕获、发现和分析技术提取数据的价值”。但是大数据是一个新兴而且内涵不断发展的概念,尚没有统一公认的定义,只能从其特点上加以认识。
(三)大数据的特点
与传统数据相比,大数据的特征可以用五个“V”来表示,即Volume(容量大)、Variety(种类多)、Velocity(时效性强)、Value(价值高)、Visualization(可视化呈现)。大数据容量大是个相对的概念,受时间、行业和数据类型等因素的影响;种类多是指数据集的结构异质性,科技进步导致了结构化、半结构、非结构化数据的日益增多;时效性强是指大数据被生成、处理、移动的速度相当快,是区别于传统数据最显著的特征,这也增加了对即时分析、加工数据的需求;价值高是指大数据潜在的高价值能为评价和决策提供依据。可视化是大数据分析的关键步骤,是对有价值信息加以提炼并显示的过程。
(四)大数据的应用
大数据具有5Vs(Volume、Velocity、Variety、Value、Veracity)特点,蕴含着巨大的社会价值、经济价值和科研价值,已引起了产业界、学术界、政府部门和其他组织的高度关注和重视。
近年来,世界发达国家相继布局大数据战略,诸如联合国“数据脉动”计划、美国大数据战略、英国“数据权”运动,大力推动大数据发展和应用。大数据已纳入我国国家发展战略,国务院2015年8月31日印发了《促进大数据发展行动纲要》的通知(国发[2015]50号),指出:“大数据成为推动经济转型发展的新动力,大数据成为重塑国家竞争优势的新机遇,大数据成为提升政府治理能力的新途径。以数据流引领技术流、物质流、资金流、人才流,将深刻影响社会分工协作的组织模式,促进生产组织方式的集约和创新。探索发挥大数据对变革教育方式、促进教育公平、提升教育质量的支撑作用”
二、大数据给传统统计学带来的冲击
(一)数据收集方法上
不同于传统的调查抽样方法获取数据,大数据的收集来源渠道通常为现代网络渠道,如互联网、物联网等。不同的数据源的数据采集需要专用数据采集技术, 如包含格式文本、图像和视频的网站数据,通常需要web爬虫技术。
(二)数据存储上
大数据的存储不同于传统的数据存储方式,有固定的格式和结构,对于大数据的数据库来说,可以直接将所探测到的信号自动容纳到其中;大数据需要有先进的存储设备,传统的存储设备已经不能容纳如此大量的数据。
(三)数据分析上
传统的统计分析方法,难以胜任对非结构化的大数据的分析。当前大数据分析技术的研究可以分为6个重要方向:结构化数据分析、文本数据分析、多媒体数据分析、web数据分析、网络数据分析和移动数据分析。
(四)数据展示上
数据可视化的目标是以图形方式清晰有效地展示数据的信息。一般来说,图表和地图可以帮助人们快速理解信息。但是,当数据量增大到大数据的级别,传统的电子表格等技术已无法处理海量数据。大数据的可视化展示需要专业的软件来完成。
三、大数据时代统计学专业教学改革
大数据时代的到来对统计学也带来了新的机遇和挑战,特别是大数据对于数据分析人才产生了巨大需求,同时也要求统计专业学生掌握更为复杂统计软件的编程和操作。大数据背景下,统计学要适应新的形势,需要对课程教学进行有针对性的改革。
(一)大数据时代统计学专业毕业生就业方向定位
大数据时代的到来,使各行各业,包括政府、企业、个人都希望能从大数据这座金矿中挖掘出对自己有价值的金子,从而增加了对统计专业毕业生的需求。一直以来,我国统计工作领域主要是政府统计、部门统计、民间统计。传统意义上,政府及各个部门是统计学学生就业的首选。然而,随着大数据时代的来临,越来越多的毕业生选择发展空间更为广阔的民间统计。民间统计相对于政府统计来说,涉及范围十分广泛,包括各类统计咨询公司、统计调查公司、统计研究院等,介于市场和企业、行业之间。民间统计的发展前景十分广阔,可以预见,随着大数据时代的来临,统计学作用的提高,民间统计必会成为统计专业毕业生选择就业的主要渠道之一。
(二)大数据时代统计学专业课程设置改革
大数据时代,在对统计数据分析人才需求增加的同时,也对统计专业毕业生的大数据处理能力提出了更高的要求,这就需要统计学专业在课程设置上,增加大数据处理与分析方法课程,如《大数据分析方法》、《数据挖掘》等,培养学生能够使用专业统计软件(R/SAS/Python)进行大数据的挖掘、清洗、分析等。
(三)大数据时代统计学专业学生实践能力培养改革
在课堂教学之外,通过广泛举办大数据技术创新大赛、大数据技术创新与创业大赛、数据挖掘挑战赛,支持学生成立大数据研究协会,举办大数据相关讲座论坛等方式,增强学生分析和处理大数据的能力。另外,还要加强校外大数据实践教学基地建设,通过与通信、互联网、电子商务等企业大数据开发中心以及大数据研究咨询机构合作,为学生提供给更多的实习、实践机会。
四、总结
总之,面对大数据时代的到来,统计学专业需要积极改革与调整课程的设置,注重学生实践能力的培养,以适应各行各业对大数据分析与挖掘人才的需求。
作者简介:
付强(1981~),男,安徽霍邱人,重庆邮电大学讲师,博士,研究方向:社会经济统计。牟棉(1985~),女,重庆沙坪坝人,重庆市纤维检验局职员,研究方向:工商管理。