摘要:通过采用ecm模型及garch模型对沪深股市进行了研究,结果发现两市波动性存在非对称性和杠杆效应,沪深两市对的利空消息反应均大于利好消息的反应,但是深市风险大于沪市风险,当然其收益率也比较高。
关键词:收益;风险;误差修正模型;沪深股市
引言
中国a股市场经过十几年的发展,市场逐渐在规范,但是上市公司整体所表现出来的股市市值规模仍然较小,2005年开始的股权分置改革,使a股市场的发展迎来了新的机遇,走出了多年的熊市,有了较快的发展,处于上升的行情之中,但是与之相伴的却是股市激烈的波动。此外,由于诸多因素的影响和限制,中国a股市场投机气氛较浓。自从2008年世界金融危机以来,股市还出现了市场不确定性因素增多和市场风险加剧的趋势。
当前出现了大量的研究资产收益率方面的文献,有的定量研究波动性的非对称反应机制(李珠,吕明光,2001;胡永红,陆忠华,2005;周立、王东,2005),有的对波动性的形成方式与来源进行了分解(仲黎明等,2003;樊智、张世英,2005),有的研究了两市ipo的版块效应,这些研究具有一定的针对性,对我们研究金融市场运行机制与风险控制具有一定的启发意义。此外,有engle等人开创arch和grach计量(engel,1982),grange(1988)的因果检验已经用在了许多经济金融模型检验中(如高辉、赵敬文,2006),使研究者对金融市场有了更多的认识。
本文主要采用误差修正模型(error correct model)即ecm模型,检验两市短期波动模式的异同,判断两市对市场冲击的短期调整及反应程度,描述两市向均衡收敛的过程。WwW.133229.coM同时利用两种garch模型检验两市波动性之间的关系,判断两市的风险特征与风险转移过程,检验两市之间的“溢出效应”(spillover effect)和“杠杆效应”(leverage effect)。
一、变量选择和数据处理
在现有的可以衡量沪深股市的指数中,我们分别选择了上证a股综合指数和深圳a股综合指数作为指标。样本时间的选择,我们选择从2006年2月17日至2007年11月1日,这段时间,剔除节假日,共计样本416个。
我们将股市指数收益率rt定义为股票指数的对数的一阶差分:rt=ln(pt)-ln(pt-1),其中pt是股票指数价格。当股票指数波动不是十分剧烈的时候,它近似等于股票指数的日收益率,对应着股票市场的整体收益水平。
许多的学者研究结果倾向表明中国股市处于弱有效形式。因此,本文对股票指数收益率序列rt、股票指数绝对日收益率序列|rt|、日均方收益率序列r2t的变化情况进行考察。当样本容量比较大的时候,根据大数定理与市场弱型有效,可知样本区间的整体收益率均值为:rt=rt≈0,其中t是样本容量。假设εt表示沪深两市a股指数日收益率与样本均值的偏离,则有εt=rt-rt≈rt,εt=rt-≈rt,ε2t=(rt-rt)2≈r2t。
因此,沪深两市a股指数日收益率rt、日绝对收益率rt、日均方收益率r2t分别表示股指收益率分别围绕均值的双向变动,绝对变动,均方波动,他们体现了波动性逐渐增强的特点。
二、模型的建立
通过对沪深股市价格指数和收益率作单位根检验,granger因果关系检验和协整检验,我们发现:(1)沪指和深指对数序列均为一阶单整i(1),指数收益率序列为平稳序列;(2)上海股票市场指数是深圳股市指数的granger原因,但反之不成立;(3)沪深股指之间存在着协整关系(检验结果在附录)。基于检验结果,本文可以建立以下模型:
(一)误差修正模型
通过平稳检验,可以对沪深股指的收益率序列间建立误差修正模型,结果
rsht=0.7884rszt+0.0957rsh t-1+0.0288rsh t-2-0.0974rsz t-1-0.0787rsz t-2-
0.0006+εsh t
(41.6471) (1.9558) (0.58988) (-2.26068) (-1.82970)
(-1.15173)
rszt=01.0273rsht+0.1121rsz t-1+0.0577rsz t-2-0.1128rsht-1-0.0191rsht-2-
0.0002+εsz t
(41.6471)(2.2821)(1.1734)(-2.02089)(-0.34466)
(-0.46366) (1)
其中,sh表示上海综指,sz表示深圳综指,t表示时间,t-1表示t期滞后一阶。根据上述误差修正方程计算,如果仍然引入非显着的回归项,那么求解收益率序列的无条件数学期望,可以得到两市收益率水平分别为:=0.00371,=0.00428。可见两市的长期收益率有显着差异。两市收益率均受到长期均衡关系的显着影响,但是修正项对沪深股市收益率是负的边际贡献。在ecm模型中,存在沪深两市股票价格收益率的交互影响,因为滞后系数出现部分显着与不显着,体现了短期波动之间的相互影响。
因此,ecm模型表明,沪深两市股票收益率之间存在长期的协整趋势,但是它们的短期波动过程存在着相异的波动模式。
(二)garch模型和溢出效应模型的估计与检验
我们采用garch模型检验收益率序列的条件异方差性,首先利用偏自相关函数(pacf)和自相关函数(acf)决定均值方程中的ar过程与ma过程的阶数,然后根据绝对残差序列的特性,然后确定方差方程中的arch 项和garch项的阶数。在经过不断试错的情况下,garch(1,1)都能比较好地进行解释,其sc和aic值也比较小。
沪深市场的garch-m模型和溢出效应模型估计(括号中为z统计量值):
rsht=0.1789rsht-0.0597rsh t-1+ε t
(3.338219) (1.15366)(2)
hsht=0.0000105-0.08(εsht-1)2+0.899hsht-1
(1.7415)(3.6922) (31.7933)
rszt=0.18rszt-0.0122rsz t-1+ε t
(3.5721) (0.2446) (3)
hszt=0.00005-0.08(εsht-1)2+0.899hsht
(1.75)(3.66) (31.71)
上述garch-m模型的均值方程和溢出效应模型估计结果显示,中国沪深股市存在一定的风险,波动性增加了当前收益率;两市的风险激励0.18和0.1789相近,且两市都存在显着的正向风险溢价。风险与收益相伴,高收益,伴随着高风险,高风险也伴随着高收益,体现出两个市场上的投资者都有一定程度的风险偏好。以上情况也表明:中国沪深股市经过近几年来的发展,已经逐渐成熟,成交量放大,其收益率水平和波动性能够起到一定的示范作用,其波动性形成了一定程度的“溢出效应”。