首页

毕业论文

首页 毕业论文 问题

乙苯毕业论文设计

发布时间:

乙苯毕业论文设计

基于苯乙烯的用途广泛和需求量的不断提升,近年来世界各国苯乙烯生产发展迅速,并向着大型化发展。下面是我精心推荐的乙烯生产技术论文,希望你能有所感触!

苯乙烯生产技术研究

摘要:苯乙烯是一种重要的基本有机化工原料,主要用于生产聚苯乙烯树脂(PS)、丙烯腈-丁二烯- 苯乙烯三元共聚物(ABS)、苯乙烯- 丙烯腈共聚物(SAN)树脂、丁苯橡胶(SBR)和丁苯胶乳(SBR胶乳)、离子交换树脂、不饱和聚酯以及苯乙烯系热塑性弹性体SBS等。此外, 还可用于制药、染料、农药以及选矿等行业, 用途十分广泛。

一、苯乙烯生产工艺介绍

目前,世界上苯乙烯的生产方法有乙苯气相催化脱氢法、环氧丙烷—苯乙烯联产法、乙苯脱氢选择性氧化法、热解汽油抽提蒸馏回收法、乙苯—丙烯共氧法、甲苯甲醇合成法、丁二烯合成法等。其中,常用的方法有3种:催化脱氢法、乙苯脱氢选择性氧化(SMART)法、乙苯—丙烯共氧(POSM)法。下面就重点介绍这三种方法。

1.催化脱氢法

DOW化学公司与BASF公司与1937年联合开发出催化脱氢法,在长期生产中各公司在催化剂、反应器、流程、节能等方面各具特色,典型的如:Fina/Badger法、Monsanto/Lummus/UOP法、DOW法、Cosden/Badger法、CdF法等。其中Monsanto/Lummus/UOP法被世界上生产能力最大的一些苯乙烯装置所采用,与其他方法相比,每吨苯乙烯可节约蒸汽2t,降低生产成本16%。

2.乙苯脱氢选择性氧化法

乙苯氧化脱氢技术采用三段式反应器:一段脱氢反应器中乙苯和水蒸汽在脱氢催化剂层进行脱氢反应,在出口物流中加入定量的空气或氧气与水蒸汽进入二段反应器,二段反应器中装有高选择性氧化催化剂和脱氢催化剂,氧和氢反应产生的热量使反应物流升温,氧全部消耗,烃无损失,二段反应器出口物流进入三段反应器,完成脱氢反应。当脱氢反应温度为620~645℃、压力为~ MPa、蒸汽和乙苯质量比为(1∶1)~(2∶1)时,乙苯转化率为85%,苯乙烯选择性为92 %~96 %。

3.环氧丙烷—苯乙烯(PO/SM)联产法

环氧丙烷一苯乙烯(PO/SM)联产法又称共氧化法, 在130~160℃、~下,乙苯先在液相反应器中用氧气氧化生成乙苯过氧化物,生成的乙苯过氧化物经提浓到l7%后进入环氧化T序,在反应温度为110℃、压力为 MPa条件下,与丙烯发生环氧化反应成环氧丙烷和甲基苄醇。环氧化反应液经过蒸馏得到环氧丙烷,甲基苄醇在260℃、常压条件下脱水生成苯乙烯。反应产物中苯

乙烯与环氧丙烷的质量之比为:1。将乙苯脱氢的吸热和丙烯氧化的放热两个反应结合起来,节省了能量,解决了环氧丙烷生产中的三废处理问题。另外,由于联产装置的投资费用要比单独的环氧丙烷和苯乙烯装置降低25 %,操作费用降低50 %以上,因此采用该法建设大型生产装置时更具竞争优势。该法的不足之处在于受产品市场状况影响较大,且反应复杂,副产物多,投资大,乙苯单耗和装置能耗都要高于乙苯脱氢法工艺。

4.苯乙烯生产工艺国产化进展

华东理工大学开发的乙苯负压脱氢反应器采用轴径向反应器技术和气气快速混合两大关键技术,轴径向反应器是在床层顶部采用催化剂自封式结构、以使径向床的顶部造成轴径向二维流动的新颖径向反应器。与传统的径向反应器相比,这种催化剂自封式结构取消了催化床上部的机械密封区,简化了径向床结构,有效地利用此部分反应器空间中的催化剂,消除催化剂床的滞流区,有利于提高反应转化率,催化剂装卸方便。

二、苯乙烯的毒性机理

虽然苯乙烯具有燃爆性和毒性,但是由于对爆炸危险性的重视,因此很少出现苯乙烯的爆炸事故,而职业中毒却屡见不鲜,因此需对苯乙烯的职业中毒提高警惕。苯乙烯既有急性毒性又有慢性毒性,可对人体多个系统产生损害,虽然其生殖毒性、血液毒性和致癌作用尚不能确定,也应引起高度警惕。

1.对神经系统的影响

苯乙烯具有较强的致神经衰弱作用,苯乙烯大量吸入后可引起中毒性脑病,研究表明,脂质过氧化及神经逆质波动在中毒性脑病中有重要作用。少量苯乙烯吸入仅引起轻微头晕、头痛症状。并且近年国内有研究发现,苯乙烯长期接触组心电图异常率明显高于对照组,以心率失常居多,其中又以窦性心动过缓为主。

2.对消化系统的影响

短时间大量接触高浓度苯乙烯可引起恶心呕吐、腹痛、腹泻等消化道症状。长期接触苯乙烯可引起中毒性肝病,具有起病隐袭的特点。临床上以消化道症状为主,多数为肝肿大,但肝功能检查多为正常。

3.对泌尿生殖系统的影响

长期低浓度接触苯乙烯可引起肾功能损害,主要是通过抑制肾组织中酶的活动,使细胞三羧酸循环和膜吸收转运过程受到干扰,并使近曲小管上皮受损所致,短期接触也可影响肾小球的功能。此外,苯乙烯在体内的主要中间代谢产物苯乙烯-7,8-氧化物(SO)已被研究证明为一种强直接致突变剂。工人接触苯乙烯可引起精液DNA损伤。苯乙烯为高脂溶性的小分子化合物,在体内可经胎盘转运,与宫内的胎儿直接接触,从而对发育中的胚胎产生毒性作用,干扰器官的形成和胎儿的发育。

4.对呼吸系统的影响

一次大量吸入苯乙烯可引起呼吸道腐蚀性损伤,导致中毒性肺水肿。另外,苯乙烯可通过酶系统或呼吸爆发产生自由基、启动生物膜的脂质过氧化、并有炎性介质参与造成肺弥漫性损伤。短时间接触高浓度苯乙烯可引起咳嗽、咽痛等呼吸道刺激症状,长期接触低浓度苯乙烯对作业工人呼吸道有明显的刺激作用,可引起慢性鼻炎、慢性咽炎等。

对于安全专业来说,苯乙烯的生产工艺已经非常成熟,但是我们需要在工艺中找到潜在的危险,尽可能排除或者降低危害程度。

参考文献

[1]崔小明,李明.苯乙烯生产技术及国内外市场前景[J].弹性体,2005,15(3):53~59

[2]金栋.苯乙烯的市场现状及发展前景[J].精细化工及中间体,2007,4:28~32

[3] Anno. Styrene[J].Europear Chemical News,2004,80 (2096):13

[4]史永,张新民.苯乙烯综述(上)[J].上海化工,2000,7:23~28

[5]左文明,张群,王威等.苯乙烯生产工艺及国产化技术进展[J].炼油与化工,2007,18(3):55~58

[6]任引津,王世俊,何凤生,等.我国职业中毒临床及科研工作50年进展[J].中华劳动卫生职业病杂志,1999,17 (5):4~7

[7]任引津,王世俊,何凤生,等.我国职业中毒临床及科研工作50年进展[J].中华劳动卫生职业病杂志,1999,17 (5):4~7

作者简介:王连生,男,江苏扬州人,生于1960年5月,连云港凤蝶染化有限公司。

点击下页还有更多>>>乙烯生产技术论文

建筑装饰材料挥发性有机物及去除设备研究现状Review of researches on VOCs emission and their elimination1 挥发性有机物及其对人体健康的影响挥发性有机化合物(VOC)是指环境监测中以氢焰离子检测器测出的非甲烷烃类物质的总称,其中包括含氧烃类、含卤烃类,广义场合包括甲烷、丙烷、氯烃、氟烃及醇、醚、酯、酮、醛等含氧烃、胺等含氮烃、二硫化碳等含硫烃。通常按沸点的范围把有机化合物分为极易挥发性有机物(VVOC),挥发性有机物(VOC),半挥发性有机物 (SVOC)和与颗粒物质或颗粒有机物有关的物质(POM)等4类。有些有机化合物不能包括在以上的分类中。这是由于这些化合物(如甲醛和丙烯酸)因其反应性或对热的不稳定性不易从吸附剂上回收或用气相色谱法进行分析。挥发性有机物对人体的影响主要表现在感官效应和超敏感效应,包括感官刺激,感觉干燥,刺激眼黏膜、鼻黏膜、呼吸道和皮肤等,挥发性有机化合物很容易通过血液到大脑,从而导致中枢神经系统受到抑制,人人产生头痛、乏力、昏昏欲睡和不舒服的感觉;醇、芳得烃和醛能刺激黏膜和上呼吸道;很多挥发性有机化合物如苯、甲氯乙烯、三氯乙烷、三氯乙烯和甲醛等被证明是致癌物或可疑致癌物。Molhave依据室内VOC对人体的影响不同,对其浓度进行了划分[1],该划分原则通常作为权威引用或作为指导,并在美国ASHRAE标准62-1989R中得到应用,他的划分原则见表1。表1 VOC浓度与人体反应浓度范围/ug/m3 人体反应<200 舒适200~3000 可能抱怨3000~25000 抱怨>25000 有毒2 现有建筑中挥发性有机物的情况中国华西医科大学公共健康学院1995年冬天对刚装修的两个居民房进行了两个半月的VOC测量,发现这些房中产生不同程度的甲醇、乙醇、戊烷、已烷、苯、庚烷、环已烷、甲苯、二甲苯、乙基苯[2]。其中最主要的有机物是甲醇,苯,甲苯和二甲苯。中国预防医学科学院环境卫生监测所对一个办公室空气污染进行测量,发现办公室内主要有机物是苯、甲苯、二甲苯、乙苯和甲醛,浓度从到 mg/m3。美国环保局(EPA)通过对16个建筑的随机抽样调查发现,有4个建筑中的VOC浓度超过了 mg/m3。欧洲对9个国家的56栋建筑进行了室内VOC浓度的测量[3],发现有22栋建筑中VOC浓度超过 mg/m3。文献[4]指出日本住宅中的有机物浓度为~ mg/m3。文献[5]指出瑞典公寓中VOC浓度为 mg/m3,居民家庭中为 mg/m3。文献[6]指出英国综合建筑中VOC浓度为 mg/m3。从上述调查情况可以看出,目前室内VOC污染状况是比较严重的。3 不同建筑装饰材料挥发性有机物的散发量测量为了从污染源上控制VOC的产生,国内外很多单位都对建筑装饰材料的VOC散发情况进行了测量。文献[7]对中国生产的8种室内材料即酸漆、黑漆、地板清洁剂、地板蜡、空气清新剂、地毯背面粘接剂、墙约、墙纸粘接剂和彩色墙纸进行了测量,发现其散发的VOC有3~30种。文献[8]指出了TVOC的最大传和其衰减度随着材料的不同而不同,流态物质如油漆、清漆和地板油的衰减度最大。EPA做了实验来确认各种室内污染源的散发量,同时确认各种因素对散发量的影响[9],这些因素包括温度、相对湿度、空气变化及小室负荷。结果表明,空气换气次数对散发量尤其是湿材料的散发量有很大的影响。文献[10]对37种典型的加拿大民用住宅所使用的建筑装饰材料发散的VOC进行了测量,得出了这些材料的VOC数据库。目前世界上已有3个体积为55 m3 (5m×4m×)的实验室用于研究建筑装饰材料的VOC产生量,它们分别是IRC/NRC①,NRMRL/USEPA②和CSIRO/Austrlia③,这些实验室均用不锈钢制作,具有加热、通风、空气调节系统,能够控制室内各种参数。为了使各实验室所测得的数据有可比性及可靠性,欧洲已经建立了对室内污染物测量方法、选样方法、数据分析方法、结果整理方法等统一的协定方案[11]。4 建筑装饰材料VOC散发标准的制定和材料的分类目前我国国家质检总局已颁发了《室内装饰装修材料有害物质限量》10项强制性标准,从2002年7月1日开始的散发量作了规定[12]。北欧国家根据普通材料最大的VOC散发量为40,100和数百ug/(m2·h),将材料分为MEC-A(低挥发性材料),MEC-B(中挥发性材料)和MEC-C(高挥发性材料)3类[13]。美国EPA现在做出了污染源分类数据库,这个数据库含有材料的VOC散发量及毒性[14]。5 挥发性有机物散机理的研究挥发性有机物的散发率通常由以下两个过程决定[15]:①材料内部的扩散;②材料表面到周围空气的散发。材料内部的扩散是浓度梯度、温度梯度及密度梯度共同作用的结果。每种化合物都有自己的质扩散系数,与其相对分子质量、分子体积、温度及与被扩散的物质特性有关。表面散发由几种机理共同作用,包括蒸发和对流。对于表面散发而言,VOC的散发率会受到空气中浓度、气流速度及温度的影响[16,17]。根据材料的不同,VOC的产生率可能由上述一个或两个因素起决定作用。根据散发机理的不同,室内建筑装饰材料的散发模型,总体上可分为两类即经验模型和物理模型。6 挥发性有机物去除机理和去除设备的研究目前人们主要集中研究活性炭和光触媒设备对VOC的去除特性。吸附是由于吸附剂和吸附质分子间的作用力引起的,这些作用力分为两大类--物理作用力和化学作用力,它们分别引起物理吸附和化学吸附。物理吸附是可逆过程,只能暂阻挡污染而不能消除污染。而化学吸附是不可逆的过程,是挥发性物质的分子与吸附剂起化学反应而生成非挥发性的物质,这种机理可使得低沸点的物质如甲醛被吸附掉。活性炭是最常用的吸附剂,它对许多VOC都是很有效的,但对甲醛作用很小。已有的研究成果表明活性炭对芳香族化合物的吸附优于对非芳香族化合物的吸附,如对苯的吸附优于对环已烷的吸附;对带有支键的烃类物质的吸附优于直键烃的吸附;对相对分子质量大、沸点高的化合物的吸附总是高于相对分子质量小、沸点低化合物的吸附;空气湿度增大,则可降低吸附的负荷;吸附质浓度越高,则吸附量也越高;吸附量随温度升高而下降;吸附剂内表面积愈大,吸附量越高。浸了高锰酸钾的氧化铝(PIA)对甲醛及低浓度的醛和有机酸有很高的去除效率。所以PIA经常与活性炭联合起来使用以提高过滤器的效率。目前美国市场上有3种化学过滤器,都是用活性炭作为吸附剂的[18],第1种是V字型装有大颗粒的活性炭,第2种是折边型装有小颗粒的活性炭,第3种是折边型的活性炭编织物过滤器,效率为40%~80%,当风速为时阻力为约100Pa。光触媒设备是以N型半导体的能带理论为基础,N型半导体吸收能量大于或等于禁带宽度(禁带能量)的光子(hv)后,进入激发状态,此时价带上的受激发电子路过禁带,进入导带。同时在价带上形成光致空穴。可以用作光催化剂的N型半导体种类繁多,有TiO2,ZnO, Fe2O3,CdS和 WO3等。由于TiO2的化学稳定性高、耐光腐蚀、难溶,并且具有较深的价带能级,可使一些吸热的化学反应在被光辐射的TiO2表面得到实现和加速,加之TiO2无毒、成本低,所以被广泛用作光催化氧化反应的催化剂。TiO2的禁带宽度(Eg)为,当用波长小于387nm的光照射TiO2时,由于光子的能量大于禁带的宽度,其价带上的电子被激发,跃过禁带进入导带,同时在价带上形成相应的空穴。光致空穴h 具有很强的捕获电子的能力,而导带上的光致电子e-又具有高的活性,在半导体表面形成了氧化还原体系。利用光致空穴h 和光致电子e-与空气中的水分和氧气相互反应产生的具有高浓度活性的氢氧游离基·OH,可氧化各种有机物质并使之矿化。如下所示:有机污染物的降解机理与其分子结构有关,分子结构不同其降解机理及途径也有差异。Hashimoto等研究了脂肪族化合物的光催化降解机理,认为脂肪烃先于·OH生成醇,并进而氧化为醛和酸,终生成二氧化碳和水[19]。文献[20]指出TiO2光催化反应中,一些芳得族化合物的光催化降解过程往往伴随着多种中间产物的生成。目前,对于各类芳香族化合物的光催化降解机理研究还很不完备,初步研究认为其主要降解机理还是在·OH基的作用下,芳香环结构发生变化,并进一步开环,从而逐步被氧化,最终矿化为二氧化碳、水及小分子无机物。对室内甲醛和甲苯的研究表明,污染物光催化氧化与其浓度有关,质量数在1×10-4以下的甲醛可完全被光催化分解为二氧化碳和水,而在较高浓度时,则被氧化成为甲酸。高浓度的甲苯光催化降解时,由于生成的难分解的中间产物富集在TiO2周围,阻碍了光催化反应的进行,去除效率非常低,但低浓度时TiO2表面则没有中间产物生成。文献[21]对非均相光催化技术在室内空气品质控制方面的应用进行了研究。指出光催化氧化技术室内空气中低浓度的VOC有着良好的效果。光催化氧化设备可进行模块化设计,而且气体通过时压力降低可忽略不计,这样很容易加装到中央空调空调的系统中去。美国新泽西州的通用空气技术(UAT)公司已开发生产了落地式及管道式光催化空气交净化与消毒设备[22]。尽管许多厂家都在研制VOC去除设备,但对于室内多种有机物污染并存的情况,如何描述这些设备的性能及如何用于实际工程中,则是亟待解决的问题。7 结语7.1 国内外实测结果表明,目前许多建筑中存在VOC污染。国内这方面的研究刚起步,建议有关部门应规范现有建筑装饰材料,根据有关规范要求,尽快建立建筑装饰材料VOC数据库。7.2 为了评估建筑装饰材料对室内带来的挥发性有机物,应考虑实际房间中多污染源的问题,通过建立合理的房间污染模型来切实指导空调系统的设计运行和维护。7.3 针对目前国内外空调房间存在挥发性有机物的污染的问题,应该改变空调系统设计方法即从设计阶段就应该考虑这些污染的去除问题,并开发出用于去除各种污染包括牢固挥发性有机物的高效设备。参考文献1 Molhave L. Volatile organic compounds, indoor air quality, and health. Proceedings of the 5th International Conference on Indoor Air Quality and Climate Indoor Air'90, V5:15-342 Li Y, Hu J, Liu G, et al. Determination of volatile organic compounds in residential buildings. The proceedings of the 7th International Conference on Indoor Air Quality and Climate- Indoor Air'96, V3, 1997: Bluyssen P M, Oliveria Fernandes E De, Fanger P O, et al. Final report, European audit project to optimize indoor air quality and energy consumption in office buildings, (Contract JOU2-CT92-0022), TNO Building Construction Research, Delft, The Netherlands, Park J S, Fujii S, Yuasa K, et al. Characteristics of volatile organic compounds in residence. Proceedings of the 7th International Conference on Indoor Air Quality and Climate-Indoor Air'96, V3, 1997:579-5845 Englund F, Hardrup L E. Indoor air voc levels during the first year of a new three-story building with wooden frame. The proceedings of the 7th International Conference on Indoor Air Quality and Climate- Indoor Air'96, V3, 1997: 47-516 Yu C, Crump D, Squire R. The indoor air concentration and the emission of VOCs and formaldehyde from materials installed in BRE low energy test houses. Indoor and Built Environment, 1997(6): Han K, Jing H. Chamber testing of VOCs from indoor materials. The proceedings of the 7th International Conference on Indoor Air Quality and Climate- Indoor Air'96, V3, 1997:107-1118 Tahtinen M, Saarela K, Tirkkonen T et al. Time dependence of tvoc emission for selected materials. Proceedings of the 7th International Conference on Indoor Air Quality and Climate- Indoor Air'96, V3, 1997: EPA Report No. EPA-600/R-94-141. Characterization of emissions from carpet samples using a 10 gallon aquarium as the source chamber. Prepared by Acurex Environmental Corporation for the U S Environmental Protection Agency Office of Research and Development, Figley D, Makohon J, Dumont R, et al. Development of a voc emission database for building materials. The Proceedings of the 7thd International Conference on Indoor Air Quality and Climate- Indoor Air' 96, V3, 1997: Saarela K, Clausen G, Pejtersen J, et al. European database on indoor air pollution sources in buildings, principles of the protocol for testing of building materials. The Proceedings of the 7th International Conference on Indoor Air Quality and Climate- Indoor Air'96, V3, 1997: Schriever R, Marutzky R. VOC emissions of coated parquet floors. Indoor Air'90. Proceedings of the 5th International Conference on Indoor Air Quality and Climate. Toronto, 1990, 3: Saarela K, Sandell E. Comparative emission studies of flooring materials with reference to nordic guidenlines. ASHRAE IAQ 94 Healthy Buildings Conference Proccedings, Washington, DC: Johnston P K, Cinalli C A, Girman J R ,et al. Priority ranking and characterisation of indoor air sources. Characterising Sources of Indoor Air Pollution and Related Sink Effects. ASTM STP 1287, Bruce A Tichenor editor, American Society for Testing and Materials, USA, 1996:392~400。15 Knudsen H N, Kjaer U D, Nielsen P A. Characterization of emissions from building products: long-term sensory evaluation, the impact of concentration and air velocity. The Proceedings of the 7th International Conference on Indoor Air Quality and Climate-Indoor Air'96, V3, 1997: Tichnor B A, Guo Z, Sparks L E. Fundamental mass transfer model for indoor air emissions form surface coatings. Indoor Air, 1993, 3 (4): Clausen P A. Emission of volatile and semi-volatile organic compounds from water borne paints- the effect of film thickness. Indoor Air: International Journal of Indoor Air quality and Climate, 1993, 3 (4): Michael A J. Chemical filtration of indoor air : An application primer. ASHRAE J, 1996 (2).19 Hashimoto Kazuhito, et al. J Phys. Chem, 1984, 88: 藤屿昭,机能材料,1998,18(9):2921 Jacoby W A, et al. Heterogeneous photocatalysis for control of volatile organic compunds in indoor air. J Air & Waste Manage Assoc, 1996, 46:

人类正面临有史以来最严重的环境危机,由于人口急剧的增加,资源的消耗日益扩大,人均耕地、淡水和矿产等资源占有量逐渐减少,人口与资源的矛盾越来越尖锐;环保问题就成为经济与社会发展的重要问题之一。作为国民经济支柱产业之一的化学工业及相关产业,在为创造人类的物质文明作出重要贡献的同时,在生产活动中不断排放出大量有毒物质,化学工业也为环境和人类的健康带来一定的危害。发达国家对环境的治理,已开始从治标,即从末端治理污染转向治本,即开发清洁工业技术,消减污染源头,生产环境友好产品。“绿色技术”已成为21世纪化工技术与化学研究的热点和重要科技前沿。 绿色化学又称绿色技术、环境无害化学、环境友好化学、清洁化学。绿色化学即是用化学及其它技术和方法去减少或消除那些对人类健康、社区安全、生态环境有害的原料、催化剂、溶剂、试剂、产物、副产物等的使用和产生。 化学可以粗略地看作是研究从一种物质向另一种物质转化的科学。传统的化学虽然可以得到人类需要的新物质,但是在许多场合中却既未有效地利用资源,又产生大量排放物,造成严重的环境污染。绿色化学则是更高层次的化学,它的主要特点是“原子经济性”,即在获得物质的转化过程中充分利用每个原料原子,实现“零排放”,因此既可以充分利用资源,又不产生污染。传统化学向绿色化学的转变可以看作是化学从“粗放型”向“集约型”的转变。绿色化学可以变废为宝,可使经济效益大幅度提高。绿色化学已在全世界兴起,它对我国这样新兴的发展中国家更是一个难得的机遇。1 采用无毒、无害并可循环使用的新物料 原料选择 工业化的发展为人类提供了许多新物料,它们在不断改善人类物质生活的同时,也带来大量生活废物,使人类的生活环境迅速恶化。为了既不降低人类的生活水平,又不破坏环境,我们必须研制并采用对环境无毒无害又可循环使用的新物料。 以塑料为例,据统计,到1989年美国在包装上使用的塑料就超过亿kg(20世纪90年代数量进一步上升),打开包装后即被抛弃,这些塑料废物破坏环境是我们面临的一大问题:掩埋它们将永久留在土地里中;焚烧它们会放出剧毒。 我国也大量使用塑料包装,而且在农村还广泛地使用塑料大棚和地膜,造成的“白色污染”也越来越严重。解决这个问题的根本出路在于研制可以自然分解或生物降解的新型塑料,目前国际上已有一些成功的方法,例如:光降解塑料和生物降解塑料。前者已经投入生产。光生物双降解塑料研究是我国“八五”科技攻关的一个重大项目,已取得一些进展。 溶剂的选择 大量的与化学制造相关的污染问题不仅来源于原料和产品,而且源自在其制造过程中使用的物质。最常见的是在反应介质,分离和配方中所用的溶剂。在传统的有机反应中,有机溶剂是最常用的反应介质,这主要是因为它们能较好地溶解有机化合物。但有机溶剂的毒性和难以回收又使之成为对环境有害的因素。因此,在无溶剂存在下进行的有机反应,用水作反应介质,以及超临界流体作反应介质或萃取溶剂将成为发展洁净合成的重要途径。 固相反应 固相化学反应实际上是在无溶剂化作用的新颖化学环境下进行的反应,有时可比溶液反应更为有效并达到更好的选择性。它是避免使用挥发性溶剂的一个研究动向。 以水为溶剂的反应 由于大多数有机化合物在水中的溶解性差,而且许多试剂在水中会分解,因此一般避免用水作反应介质。但水作为反应溶剂有其独特的优越性,因为水是地球上自然丰度最高的“溶剂”,价廉、无毒、不危害环境。此外水溶剂特有的疏水效用对一些重要有机转化是十分有益的,有时可提高反应速率和选择性,更何况生命体内的化学反应大多是在水中进行的。 水相有机合成在有机金属类反应,水相Lewis酸催化的反应现都已取得较大进展。因此在某些有机化学反应中,开发利用以水作溶剂是大有可为的。 超临界流体作为有机溶剂 超临界流体是指超临界温度及超临界压力下的流体,是一种介于气态与液态之间的流体。在无毒无害溶剂的研究中,最活跃的研究项目是开发超临界流体(SCF),特别是超临界CO2作溶剂。超临界CO2是指温度和压力在其临界点(℃,7 )以上的CO2流体。它通常具有流体的密度,因而有常规常态溶剂的溶解度;在相同条件下,它又具有气体的粘度,因而又具有很高的传质速度。而且,由于具有很大的可压缩性,流体的密度,溶剂溶解度和粘度等性能可由压力和温度的变化来调节。其最大优点是无毒、不可燃、价廉等。 催化剂的选择 许多传统的有机反应用到酸、碱液体催化剂。如烃类的烷基化反应一般使用氢氟酸、硫酸、三氯化铝等液体酸做催化剂,这些液体酸催化剂的共同缺点是:对设备腐蚀严重,对人身危害和产生废渣污染环境。为了保护环境,多年来人们从分子筛、杂多酸、超强酸等新催化材料入手,大力开发固体酸做为烷基催化剂。其中采用新型分子筛催化剂的乙苯液相烃化技术较为成熟,这种催化剂选择性高,乙苯收率超过,而且催化剂寿命长。2 化学反应的绿色化 为了节约资源和减少污染,合成效率成了当今合成方法学研究中关注的焦点。合成效率包括两方面,一是选择性(化学、区域、非对映体和对映体选择性),另一个就是原子经济性,即原料分子中究竟有百分之几的原子转化为产物,理想的原子经济反应是原料分子中的原子百分之百的转变为产物,不产生副产物或废弃物,实现废物的“零排放”。为此,化学化工工作者在设计合成路线时,要减少“中转”、增加“直快”、“特快”,更加经济合理地利用原料分子中的每一个原子,减少中间产物的形成,少用或不用保护基或离去基,避免副产物或废弃物的产生。实现原子经济反应的有效手段很多,在些不作赘述。3 生物技术的应用 生物科学是当代科学的前沿。生物技术是世界范围内新技术革命的重要组成部分,生物化工是21世纪最具有发展潜力的产业之一,它将成为创造巨大社会财富的重要产业体系。采用生物技术已在能源、采油、采矿、肥料、农药、蛋白质、聚合物、表面活性剂、催化剂、基本有机化工原料、精细化学品的制造等方面得到广泛应用。从发展绿色化学的角度出发,它最大的特点和魅力就在节约能源和易于实现无污染生产而且可以实现用一般化工技术难以实现的化工过程,其产品常常又具有特殊性能。因此,生物技术的研究和应用倍受青睐。 绿色化学是人类的一项重要战略任务。绿色化学的根本目的是从节约资源和防止污染的观点来重新审视和改革传统化学,从而使我们对环境的治理可以从治标中转向治本。绿色化学的发展不仅将对环境保护产生重大影响,而且将为我国的企业与国际接轨创造条件!

聚苯乙烯毕业论文

摘要:系统总结国内外废旧塑料的主要回收利用技术,针对目前我国回收处理废旧塑料的现状,指出提高分类筛选水平,吸收开发关键技术,是我国回收处理废旧塑料的必要途径。由于治理白色污染是个庞大的系统工程,政府部门须在制定法规和加强管理的同时,提高全社会的科技意识、环保意识和参与意识,这样才是减少和消除白色污染,提高资源综合利用水平的根本途径。 关键词:废塑料,白色污染,回收,再生,热解,技术进展 废旧塑料通常以填埋或焚烧的方式处理。焚烧会产生大量有毒气体造成二次污染。填埋会占用较大空间;塑料自然降解需要百年以上;析出添加剂污染土壤和地下水等。因此,废塑料处理技术的发展趋势是回收利用,但目前废塑料的回收和再生利用率低。究其原因,有管理、政策、回收环节方面的问题,但更重要的是回收利用技术还不够完善。 废旧塑料回收利用技术多种多样,有可回收多种塑料的技术,也有专门回收单一树脂的技术。近年来,塑料回收利用技术取得了许多可喜的进展,本文主要针对较通用的技术做一总结。 1 分离分选技术 废旧塑料回收利用的关键环节之一是废弃塑料的收集和预处理。尤其我国,造成回收率低的重要原因是垃圾分类收集程度很低。由于不同树脂的熔点、软化点相差较大,为使废塑料得到更好的再生利用,最好分类处理单一品种的树脂,因此分离筛选是废旧塑料回收的重要环节。对小批量的废旧塑料,可采用人工分选法,但人工分选效率低,将使回收成本增加。国外开发了多种分离分选方法。 仪器识别与分离技术 意大利Govoni公司首先采用X光探测器与自动分类系统将PVC从相混塑料中分离出来[1]。美国塑料回收技术研究中心研制了X射线荧光光谱仪,可高度自动化的从硬质容器中分离出PVC容器。德国Refrakt公司则利用热源识别技术,通过加热在较低温度下将熔融的PVC从混合塑料中分离出来[1]。 近红外线具有识别有机材料的功能,采用近红外线技术[1]的光过滤器识别塑料的速度可达2000次/秒以上,常见塑料(PE、PP、PS、PVC、PET)可以明确的被区别开来,当混合塑料通过近红外光谱分析仪时,装置能自动分选出5种常见的塑料,速度可达到20~30片/min。 水力旋分技术 日本塑料处理促进会利用旋风分离原理和塑料的密度差开发了水力旋风分离器。将混合塑料经粉碎、洗净等预处理后装入储槽,然后定量输送至搅拌器,形成的浆状物通过离心泵送入旋风分离器,在分离器中密度不同的塑料被分别排出。美国Dow化学公司也开发了类似的技术,它以液态碳氢化合物取代水来进行分离,取得了较好的效果[2]。 选择性溶解法 美国凯洛格公司和Rensselaser工学院共同开发了一种利用溶剂选择性溶解分离回收废塑料的技术。将混合塑料加入二甲苯溶剂中,它可在不同的温度下选择性溶解、分离不同的塑料,其中的二甲苯可循环使用,且损耗小[1,3]。 比利时Solvay SA公司开发了Vinyloop技术,采用甲乙酮作溶剂,分离回收PVC,回收到的PVC与新原料密度相差无几,但颜色略呈灰色。德国也有溶剂回收的Delphi技术,所用的酯类和酮类溶剂比Vinyloop技术少得多。 浮选分离法 日本一家材料研究所采用普通浸润剂,如木质素磺酸钠、丹宁酸、Aerosol OT和皂草甙等,成功地将PVC、PC(聚碳酸酯)、POM(聚甲醛)和PPE(聚苯醚)等塑料混合物分离开来[4]。 电分离技术[5] 用摩擦生电的方法分离混合塑料(如PAN、、PE、PVC和PA等)。其原理是两种不同的非导电材料摩擦时,它们通过电子得失获得相反的电荷,其中介电常数高的材料带正电荷,介电常数低的材料带负电荷。塑料回收混杂料在旋转锅中频繁接触而产生电荷,然后被送如另一只表面带电的锅中而被分离。 2 焚烧回收能量 聚乙烯与聚苯乙烯的燃烧热高达46000kJ/kg,超过燃料油的平均值44000 kJ/kg,聚氯乙烯的热值也高达18800 kJ/kg。废弃塑料燃烧速度快,灰分低,国外用之代替煤或油用于高炉喷吹或水泥回转窑。由于PVC燃烧会产生氯化氢,腐蚀锅炉和管道,并且废气中含有呋喃,二恶英等。美国开发了RDF技术(垃圾固体燃料),将废弃塑料与废纸,木屑、果壳等混合,既稀释了含氯的组分,而且便于储存运输。对于那些技术上不可能回收(如各种复合材料或合金混炼制品)和难以再生的废塑料可采用焚烧处理,回收热能。优点是处理数量大,成本低,效率高。弊端是产生有害气体,需要专门的焚烧炉,设备投资、损耗、维护、运转费用较高。 3 熔融再生技术 熔融再生是将废旧塑料加热熔融后重新塑化。根据原料性质,可分为简单再生和复合再生两种。简单再生主要回收树脂厂和塑料制品厂的边角废料以及那些易于挑选清洗的一次性消费品,如聚酯饮料瓶、食品包装袋等。回收后其性能与新料差不多。 复合再生的原料则是从不同渠道收集到的废弃塑料,有杂质多、品种复杂、形态多样、脏污等特点,因此再生加工程序比较繁杂,分离技术和筛选工作量大。一般来说,复合回收的塑料性质不稳定,易变脆,常被用来制备较低档次的产品。如建筑填料、垃圾袋、微孔凉鞋、雨衣及器械的包装材料等。 4 裂解回收燃料和化工原料 热裂解和催化裂解技术 由于裂解反应理论研究的不断深入[6-11],国内外对裂解技术的开发取得了许多进展。裂解技术因最终产品的不同分为两种:一种是回收化工原料(如乙烯、丙烯、苯乙烯等)[12],另一种是得到燃料(汽油、柴油、焦油等)。虽然都是将废旧塑料转化为低分子物质,但工艺路线不同。制取化工原料是在反应塔中加热废塑料,在沸腾床中达到分解温度(600~900℃),一般不产生二次污染,但技术要求高,成本也较高。裂解油化技术则通常有热裂解和催化裂解两种。 日本富士循环公司的将废旧塑料转化为汽油、煤油和柴油技术,采用ZSM-5催化剂,通过两台反应器进行转化反应将塑料裂解为燃料。每千克塑料可生成汽油、 煤油和柴油。美国Amoco公司开发了一种新工艺,可将废旧塑料在炼油厂中转变为基本化学品。经预处理的废旧塑料溶解于热的精炼油中,在高温催化裂化催化剂作用下分解为轻产品。由PE回收得LPG、脂肪族燃料;由PP回收得脂肪族燃料,由PS可得芳香族燃料。Yoshio Uemichi等人[13]研制了一种复合催化体系用于降解聚乙烯,催化剂为二氧化硅/氧化铝和HZSM-5沸石。实验表明,这种催化剂对选择性制取高质量汽油较有效,所得汽油产率为,辛烷值94。 国内李梅等[14]报道废旧塑料在反应温度350~420℃,反应时间2~4s,可得到MON73的汽油和SP-10的柴油,可连续化生产的工艺。李稳宏等[3]进行了废塑料降解工艺过程催化剂的研究。以PE、PS及PP为原料的催化裂化过程中,理想的催化剂是一种分子筛型催化剂,表面具有酸性,操作温度为360℃,液体收率90%以上,汽油辛烷值大于80。刘公召[15]研究开发了废塑料催化裂解一次转化成汽油、柴油的中试装置,可日产汽油柴油2t,能够实现汽油、柴油分离和排渣的连续化操作,裂解反应器具有传热效果好,生产能力大的特点。催化剂加入量1~3%,反应温度350~380℃,汽油和柴油的总收率可达到70%,由废聚乙烯、聚丙烯和聚苯乙烯制得的汽油辛烷值分别为72、77和86,柴油的凝固点为3,-11,-22℃,该工艺操作安全,无三废排放。袁兴中[16]针对釜底清渣和管道胶结的问题,研究了流化移动床反应釜催化裂解废塑料的技术。为实现安全、稳定、长周期连续生产,降低能耗和成本,提高产率和产品质量打下了基础。 将废料通过裂解制得化工原料和燃料,是资源回收和避免二次污染的重要途径。德国、美国、日本等都有大规模的工厂,我国在北京、西安、广州也建有小规模的废塑料油化厂,但是目前尚存在许多待解决的问题。由于废塑料导热性差,塑料受热产生高黏度融化物,不利于输送;废塑料中含有PVC导致HCl产生,腐蚀设备的同时使催化剂活性降低;碳残渣粘附于反应器壁,不易清除,影响连续操作;催化剂的使用寿命和活性较低,使生产成本高;生产中产生的油渣目前无较好的处理办法等等。国内关于热解油化的报道还有很多[43-54],但如何吸收已有的成果,攻克技术难点,是我们急需要做的工作。 超临界油化法 水的临界温度为℃,临界压力为。临界水具有常态下有机溶液的性能,能溶解有机物而不能溶解无机物,而且可与空气、氧气、氮气、二氧化碳等气体完全互溶。日本专利有用超临界水对废旧塑料(PE、PP、PS等)进行回收的报告,反应温度为400~600℃,反应压力25Mpa,反应时间在10min以下,可获得90%以上的油化收率。用超临界水进行废旧塑料降解的优点是很明显的:水做介质成本低廉;可避免热解时发生炭化现象;反应在密闭系统中进行,不会给环境带来新的污染;反应快速,生产效率高等。邱挺等[17]总结了超临界技术在废塑料回收利用中的进展。 气化技术 气化法的优点在于能将城市垃圾混合处理,无需分离塑料,但操作需要高于热分解法的高温(一般在900℃左右)。德国Espag公司的Schwaize Pumpe炼油厂每年可将1700t废塑料加工成城市煤气。RWE公司计划每年将22万吨褐煤、10万吨塑料垃圾和城镇石油加工厂产生的石油矿泥进行气化。德国Hoechst公司采用高温Winkler工艺将混合塑料气化,再转化成水煤气作为合成醇类的原料。 氢化裂解技术 德国Vebaeol公司组建了氢化裂解装置,使废塑料颗粒在15~30Mpa,470℃下氢解,生成一种合成油,其中链烷烃60%、环烷烃30%、芳香烃为1%。这种加工方法的能量有效利用率为88%,物质转化有效率为80%。 5 其他利用技术 废旧塑料还有着广泛的用途。美国得克萨斯州立大学采用黄砂、石子、液态PET和固化剂为原料制成混凝土,Bitlgosz [18] 将废塑料用作水泥原材料。解立平等[19]利用废旧塑料与木料、纸张等制备中孔活性炭,雷闫盈等[20报道应用废旧聚苯乙烯制涂料,李玲玲[21]报道塑料可变成木材。宋文祥[22]介绍了国外用HDPE作原料,通过一种特殊的方法,使长度不同的玻璃纤维在模具内沿着物料流向的轴向同向,从而生产高强度塑料枕木。蒲廷芳[23]等使用废旧聚乙烯制高附加值的聚乙烯蜡。李春生等[24]报道,聚苯乙烯与其他热塑性塑料相比,具有熔融粘度小,流动性大的特点,因此熔融后可以很好地浸润所接触的表面而起到良好的粘接作用。张争奇等[25]用废塑料改性沥青,将某一种或几种塑料按一定比例均匀溶于沥青中,使沥青的路用性能得到改善,从而提高沥青路面质量,延长路面寿命。 结束语 治理白色污染是个庞大的系统工程,需要各部门,各行业的共同努力,需要全社会在思想上和行动上的共同参与和支持,有赖于全民科技意识、环保意识的提高。政府部门在制定法规加强管理的同时,可把发展环保技术和环保产业作为刺激经济和扩大就业的重要渠道,使废塑料的收集、处理及回收利用产业化。目前我国回收和加工企业分散,规模小,很多国内外塑料回收与加工的新技术和新设备无法推广实施,回收加工产品质量低下,因此对塑料回收企业应进行规范化管理,以提高其科技含量和经济效益。在回收利用的同时,更需研究开发可环境消纳塑料,寻求切实可行的替代品。

发泡型聚苯乙烯 要一个PID图,一个车间布置图 还有说明书不

挤出发泡聚苯乙烯防水隔板工艺及车间设计The Process and Workshop Design of Extruded Polystyrene (XPS) Waterproof Baffle Plate摘要Abstract挤塑聚苯乙烯泡沫塑料(XPS)是以聚苯乙烯树脂或其共聚物为主要成份,添加发泡剂和相关助剂,通过加热挤塑而制得的具有闭孔结构的硬质泡沫塑料。它在世界上得到了广泛的使用。本课题主要设计了挤出发泡聚苯乙烯防水隔板生产工艺。Extruded polystyrene (XPS) is a rigid foam with closed pores made by heating and extrusion using polystyrene resin or its copolymer as main ingredients, and adding foaming agent and other relevant auxiliaries. It has been widely used in the world. This project/task is mainly focused on the design of production process of extruded polystyrene (XPS) waterproof baffle plate.本文是通过对PS材料性质的了解和分析,利用PS的各种优良性能,对生产量为2万m3/年的挤出发泡聚苯乙烯防水隔板成型工艺的设计。After understanding and analyzing the properties of PS, this paper proposed a forming process design for the production of extruded polystyrene (XPS) waterproof baffle plate with a capacity of 20000 m3/year using the superior performances of PS,详细叙述了各个阶段的设计,包括:XPS的发展形势及应用、挤出成型工艺概述、选料与配方设计、生产工艺流程的确定、物料衡算与热量衡算、设备选型与计算、车间管理与生产组织等。It described the design in detail at various stages, including the development and application of XPS, overview of the extrusion forming process, material selection and compound design, determination of production process, material balance and heat balance, equipment selection and computation, workshop management and production organization etc.并且对挤出机等型号的设备进行了明确的计算,对挤出机常见的故障做出了解释。计算了工艺过程中物料衡算和热量衡算。另外对废料的处理提出了解决方案,最后对车间管理和生产组织、工程经济概算进行了规划。It also explicitly calculated the types of equipment such as the extruder, explained the common faults of the extruder, and calculated the material balance and heat balance in the process. It further proposed the solution for waste disposal, and finally made a plan for workshop management, production organization and project estimate.关键词:PS,XPS,挤出发泡,工艺流程,设计Keywords: PS, XPS, extrusion foaming, process, design

您是想问聚苯乙烯致孔剂原理是什么吗?与普通聚合物微球相比,聚合物多孔微球在多孔结构、高交联度和机械性能稳定等方面具有优势。多孔的结构导致其比表面积大,渗透压相比之下要小很多,而高交联度可以使其具有稳定的机械性能,所以其在色谱等方面有很广泛的应用。色谱柱作为液相色谱的关键部件,其性能很大程度上取决于色谱柱填料的性能,而对于多孔微球进行改性,从而提高其色谱分离性能受到越来越多科研工作者的关注。本论文基于两步溶胀法合成聚合物多孔微球在单分散性等方面的优势,为实现多孔微球的精准可控合成,分别对影响聚合物多孔微球的因素进行了考察,并将其进行改性,考察了其在色谱方面的性能。具体工作如下:1.采用两步种子溶胀聚合法,成功合成了单分散性良好的聚苯乙烯多孔微球,微球粒径为5μm。为实现多孔微球的准确可控性合成对多孔聚合物微球表面形态的影响因素包括致孔剂比例、溶胀温度和交联剂种类进行了考察。当致孔剂邻苯二甲酸二丁酯(DBP)与甲苯的比例为1:3时得到的聚苯乙烯多孔微球比表面积最大,溶胀温度为25℃时表面最粗糙,使用乙二醇二甲基丙烯酸酯(EDMA)做交联剂时得到的多孔微球的结构比较疏松。对各类微球的比表面积进行了比较,得到的结果为比表面积最大的是P(S-DVB)-4,其值为562m2/g。2.对聚合物多孔微球进行了重氮树脂改性,并以改性后的微球为色谱柱填料进行了几种色谱分离实验。利用光交联的反应原理,用水溶性的感光高分子重氮树脂实现了对聚合物微球的功能化改性。首先将微球磺酸化,然后将重氮树脂和磺酸基进行接枝,最后用紫外灯对其进行照射,将静电相互作用转化为共价相互作用。提高了固定相的极性,不仅保留并增强了对于非极性物质的性能,还实现了对极性物质的分离性能。本论文进行的多孔聚苯乙烯多孔微球的合成考察了各种因素对聚合物多孔微球表面形态的影响,对实现孔径分布和比表面积的可控具有一定的意义。多孔微球随后的改性综合了物理吸附和化学键合方法的诸多优点,通过光照交联即可实现对聚合物微球简单快捷的功能化改性,是一种高效,稳定,绿色环保的改性方法。对非极性物质和极性物质都实现了良好的分离性能。

关于乙苯的毕业论文

基于苯乙烯的用途广泛和需求量的不断提升,近年来世界各国苯乙烯生产发展迅速,并向着大型化发展。下面是我精心推荐的乙烯生产技术论文,希望你能有所感触!

苯乙烯生产技术研究

摘要:苯乙烯是一种重要的基本有机化工原料,主要用于生产聚苯乙烯树脂(PS)、丙烯腈-丁二烯- 苯乙烯三元共聚物(ABS)、苯乙烯- 丙烯腈共聚物(SAN)树脂、丁苯橡胶(SBR)和丁苯胶乳(SBR胶乳)、离子交换树脂、不饱和聚酯以及苯乙烯系热塑性弹性体SBS等。此外, 还可用于制药、染料、农药以及选矿等行业, 用途十分广泛。

一、苯乙烯生产工艺介绍

目前,世界上苯乙烯的生产方法有乙苯气相催化脱氢法、环氧丙烷—苯乙烯联产法、乙苯脱氢选择性氧化法、热解汽油抽提蒸馏回收法、乙苯—丙烯共氧法、甲苯甲醇合成法、丁二烯合成法等。其中,常用的方法有3种:催化脱氢法、乙苯脱氢选择性氧化(SMART)法、乙苯—丙烯共氧(POSM)法。下面就重点介绍这三种方法。

1.催化脱氢法

DOW化学公司与BASF公司与1937年联合开发出催化脱氢法,在长期生产中各公司在催化剂、反应器、流程、节能等方面各具特色,典型的如:Fina/Badger法、Monsanto/Lummus/UOP法、DOW法、Cosden/Badger法、CdF法等。其中Monsanto/Lummus/UOP法被世界上生产能力最大的一些苯乙烯装置所采用,与其他方法相比,每吨苯乙烯可节约蒸汽2t,降低生产成本16%。

2.乙苯脱氢选择性氧化法

乙苯氧化脱氢技术采用三段式反应器:一段脱氢反应器中乙苯和水蒸汽在脱氢催化剂层进行脱氢反应,在出口物流中加入定量的空气或氧气与水蒸汽进入二段反应器,二段反应器中装有高选择性氧化催化剂和脱氢催化剂,氧和氢反应产生的热量使反应物流升温,氧全部消耗,烃无损失,二段反应器出口物流进入三段反应器,完成脱氢反应。当脱氢反应温度为620~645℃、压力为~ MPa、蒸汽和乙苯质量比为(1∶1)~(2∶1)时,乙苯转化率为85%,苯乙烯选择性为92 %~96 %。

3.环氧丙烷—苯乙烯(PO/SM)联产法

环氧丙烷一苯乙烯(PO/SM)联产法又称共氧化法, 在130~160℃、~下,乙苯先在液相反应器中用氧气氧化生成乙苯过氧化物,生成的乙苯过氧化物经提浓到l7%后进入环氧化T序,在反应温度为110℃、压力为 MPa条件下,与丙烯发生环氧化反应成环氧丙烷和甲基苄醇。环氧化反应液经过蒸馏得到环氧丙烷,甲基苄醇在260℃、常压条件下脱水生成苯乙烯。反应产物中苯

乙烯与环氧丙烷的质量之比为:1。将乙苯脱氢的吸热和丙烯氧化的放热两个反应结合起来,节省了能量,解决了环氧丙烷生产中的三废处理问题。另外,由于联产装置的投资费用要比单独的环氧丙烷和苯乙烯装置降低25 %,操作费用降低50 %以上,因此采用该法建设大型生产装置时更具竞争优势。该法的不足之处在于受产品市场状况影响较大,且反应复杂,副产物多,投资大,乙苯单耗和装置能耗都要高于乙苯脱氢法工艺。

4.苯乙烯生产工艺国产化进展

华东理工大学开发的乙苯负压脱氢反应器采用轴径向反应器技术和气气快速混合两大关键技术,轴径向反应器是在床层顶部采用催化剂自封式结构、以使径向床的顶部造成轴径向二维流动的新颖径向反应器。与传统的径向反应器相比,这种催化剂自封式结构取消了催化床上部的机械密封区,简化了径向床结构,有效地利用此部分反应器空间中的催化剂,消除催化剂床的滞流区,有利于提高反应转化率,催化剂装卸方便。

二、苯乙烯的毒性机理

虽然苯乙烯具有燃爆性和毒性,但是由于对爆炸危险性的重视,因此很少出现苯乙烯的爆炸事故,而职业中毒却屡见不鲜,因此需对苯乙烯的职业中毒提高警惕。苯乙烯既有急性毒性又有慢性毒性,可对人体多个系统产生损害,虽然其生殖毒性、血液毒性和致癌作用尚不能确定,也应引起高度警惕。

1.对神经系统的影响

苯乙烯具有较强的致神经衰弱作用,苯乙烯大量吸入后可引起中毒性脑病,研究表明,脂质过氧化及神经逆质波动在中毒性脑病中有重要作用。少量苯乙烯吸入仅引起轻微头晕、头痛症状。并且近年国内有研究发现,苯乙烯长期接触组心电图异常率明显高于对照组,以心率失常居多,其中又以窦性心动过缓为主。

2.对消化系统的影响

短时间大量接触高浓度苯乙烯可引起恶心呕吐、腹痛、腹泻等消化道症状。长期接触苯乙烯可引起中毒性肝病,具有起病隐袭的特点。临床上以消化道症状为主,多数为肝肿大,但肝功能检查多为正常。

3.对泌尿生殖系统的影响

长期低浓度接触苯乙烯可引起肾功能损害,主要是通过抑制肾组织中酶的活动,使细胞三羧酸循环和膜吸收转运过程受到干扰,并使近曲小管上皮受损所致,短期接触也可影响肾小球的功能。此外,苯乙烯在体内的主要中间代谢产物苯乙烯-7,8-氧化物(SO)已被研究证明为一种强直接致突变剂。工人接触苯乙烯可引起精液DNA损伤。苯乙烯为高脂溶性的小分子化合物,在体内可经胎盘转运,与宫内的胎儿直接接触,从而对发育中的胚胎产生毒性作用,干扰器官的形成和胎儿的发育。

4.对呼吸系统的影响

一次大量吸入苯乙烯可引起呼吸道腐蚀性损伤,导致中毒性肺水肿。另外,苯乙烯可通过酶系统或呼吸爆发产生自由基、启动生物膜的脂质过氧化、并有炎性介质参与造成肺弥漫性损伤。短时间接触高浓度苯乙烯可引起咳嗽、咽痛等呼吸道刺激症状,长期接触低浓度苯乙烯对作业工人呼吸道有明显的刺激作用,可引起慢性鼻炎、慢性咽炎等。

对于安全专业来说,苯乙烯的生产工艺已经非常成熟,但是我们需要在工艺中找到潜在的危险,尽可能排除或者降低危害程度。

参考文献

[1]崔小明,李明.苯乙烯生产技术及国内外市场前景[J].弹性体,2005,15(3):53~59

[2]金栋.苯乙烯的市场现状及发展前景[J].精细化工及中间体,2007,4:28~32

[3] Anno. Styrene[J].Europear Chemical News,2004,80 (2096):13

[4]史永,张新民.苯乙烯综述(上)[J].上海化工,2000,7:23~28

[5]左文明,张群,王威等.苯乙烯生产工艺及国产化技术进展[J].炼油与化工,2007,18(3):55~58

[6]任引津,王世俊,何凤生,等.我国职业中毒临床及科研工作50年进展[J].中华劳动卫生职业病杂志,1999,17 (5):4~7

[7]任引津,王世俊,何凤生,等.我国职业中毒临床及科研工作50年进展[J].中华劳动卫生职业病杂志,1999,17 (5):4~7

作者简介:王连生,男,江苏扬州人,生于1960年5月,连云港凤蝶染化有限公司。

点击下页还有更多>>>乙烯生产技术论文

人类正面临有史以来最严重的环境危机,由于人口急剧的增加,资源的消耗日益扩大,人均耕地、淡水和矿产等资源占有量逐渐减少,人口与资源的矛盾越来越尖锐;环保问题就成为经济与社会发展的重要问题之一。作为国民经济支柱产业之一的化学工业及相关产业,在为创造人类的物质文明作出重要贡献的同时,在生产活动中不断排放出大量有毒物质,化学工业也为环境和人类的健康带来一定的危害。发达国家对环境的治理,已开始从治标,即从末端治理污染转向治本,即开发清洁工业技术,消减污染源头,生产环境友好产品。“绿色技术”已成为21世纪化工技术与化学研究的热点和重要科技前沿。 绿色化学又称绿色技术、环境无害化学、环境友好化学、清洁化学。绿色化学即是用化学及其它技术和方法去减少或消除那些对人类健康、社区安全、生态环境有害的原料、催化剂、溶剂、试剂、产物、副产物等的使用和产生。 化学可以粗略地看作是研究从一种物质向另一种物质转化的科学。传统的化学虽然可以得到人类需要的新物质,但是在许多场合中却既未有效地利用资源,又产生大量排放物,造成严重的环境污染。绿色化学则是更高层次的化学,它的主要特点是“原子经济性”,即在获得物质的转化过程中充分利用每个原料原子,实现“零排放”,因此既可以充分利用资源,又不产生污染。传统化学向绿色化学的转变可以看作是化学从“粗放型”向“集约型”的转变。绿色化学可以变废为宝,可使经济效益大幅度提高。绿色化学已在全世界兴起,它对我国这样新兴的发展中国家更是一个难得的机遇。1 采用无毒、无害并可循环使用的新物料 原料选择 工业化的发展为人类提供了许多新物料,它们在不断改善人类物质生活的同时,也带来大量生活废物,使人类的生活环境迅速恶化。为了既不降低人类的生活水平,又不破坏环境,我们必须研制并采用对环境无毒无害又可循环使用的新物料。 以塑料为例,据统计,到1989年美国在包装上使用的塑料就超过亿kg(20世纪90年代数量进一步上升),打开包装后即被抛弃,这些塑料废物破坏环境是我们面临的一大问题:掩埋它们将永久留在土地里中;焚烧它们会放出剧毒。 我国也大量使用塑料包装,而且在农村还广泛地使用塑料大棚和地膜,造成的“白色污染”也越来越严重。解决这个问题的根本出路在于研制可以自然分解或生物降解的新型塑料,目前国际上已有一些成功的方法,例如:光降解塑料和生物降解塑料。前者已经投入生产。光生物双降解塑料研究是我国“八五”科技攻关的一个重大项目,已取得一些进展。 溶剂的选择 大量的与化学制造相关的污染问题不仅来源于原料和产品,而且源自在其制造过程中使用的物质。最常见的是在反应介质,分离和配方中所用的溶剂。在传统的有机反应中,有机溶剂是最常用的反应介质,这主要是因为它们能较好地溶解有机化合物。但有机溶剂的毒性和难以回收又使之成为对环境有害的因素。因此,在无溶剂存在下进行的有机反应,用水作反应介质,以及超临界流体作反应介质或萃取溶剂将成为发展洁净合成的重要途径。 固相反应 固相化学反应实际上是在无溶剂化作用的新颖化学环境下进行的反应,有时可比溶液反应更为有效并达到更好的选择性。它是避免使用挥发性溶剂的一个研究动向。 以水为溶剂的反应 由于大多数有机化合物在水中的溶解性差,而且许多试剂在水中会分解,因此一般避免用水作反应介质。但水作为反应溶剂有其独特的优越性,因为水是地球上自然丰度最高的“溶剂”,价廉、无毒、不危害环境。此外水溶剂特有的疏水效用对一些重要有机转化是十分有益的,有时可提高反应速率和选择性,更何况生命体内的化学反应大多是在水中进行的。 水相有机合成在有机金属类反应,水相Lewis酸催化的反应现都已取得较大进展。因此在某些有机化学反应中,开发利用以水作溶剂是大有可为的。 超临界流体作为有机溶剂 超临界流体是指超临界温度及超临界压力下的流体,是一种介于气态与液态之间的流体。在无毒无害溶剂的研究中,最活跃的研究项目是开发超临界流体(SCF),特别是超临界CO2作溶剂。超临界CO2是指温度和压力在其临界点(℃,7 )以上的CO2流体。它通常具有流体的密度,因而有常规常态溶剂的溶解度;在相同条件下,它又具有气体的粘度,因而又具有很高的传质速度。而且,由于具有很大的可压缩性,流体的密度,溶剂溶解度和粘度等性能可由压力和温度的变化来调节。其最大优点是无毒、不可燃、价廉等。 催化剂的选择 许多传统的有机反应用到酸、碱液体催化剂。如烃类的烷基化反应一般使用氢氟酸、硫酸、三氯化铝等液体酸做催化剂,这些液体酸催化剂的共同缺点是:对设备腐蚀严重,对人身危害和产生废渣污染环境。为了保护环境,多年来人们从分子筛、杂多酸、超强酸等新催化材料入手,大力开发固体酸做为烷基催化剂。其中采用新型分子筛催化剂的乙苯液相烃化技术较为成熟,这种催化剂选择性高,乙苯收率超过,而且催化剂寿命长。2 化学反应的绿色化 为了节约资源和减少污染,合成效率成了当今合成方法学研究中关注的焦点。合成效率包括两方面,一是选择性(化学、区域、非对映体和对映体选择性),另一个就是原子经济性,即原料分子中究竟有百分之几的原子转化为产物,理想的原子经济反应是原料分子中的原子百分之百的转变为产物,不产生副产物或废弃物,实现废物的“零排放”。为此,化学化工工作者在设计合成路线时,要减少“中转”、增加“直快”、“特快”,更加经济合理地利用原料分子中的每一个原子,减少中间产物的形成,少用或不用保护基或离去基,避免副产物或废弃物的产生。实现原子经济反应的有效手段很多,在些不作赘述。3 生物技术的应用 生物科学是当代科学的前沿。生物技术是世界范围内新技术革命的重要组成部分,生物化工是21世纪最具有发展潜力的产业之一,它将成为创造巨大社会财富的重要产业体系。采用生物技术已在能源、采油、采矿、肥料、农药、蛋白质、聚合物、表面活性剂、催化剂、基本有机化工原料、精细化学品的制造等方面得到广泛应用。从发展绿色化学的角度出发,它最大的特点和魅力就在节约能源和易于实现无污染生产而且可以实现用一般化工技术难以实现的化工过程,其产品常常又具有特殊性能。因此,生物技术的研究和应用倍受青睐。 绿色化学是人类的一项重要战略任务。绿色化学的根本目的是从节约资源和防止污染的观点来重新审视和改革传统化学,从而使我们对环境的治理可以从治标中转向治本。绿色化学的发展不仅将对环境保护产生重大影响,而且将为我国的企业与国际接轨创造条件!

有机化学的发展简史“有机化学”这一名词于1806年首次由贝采里乌斯提出。当时是作为“无机化学”的对立物而命名的。由于科学条件限制,有机化学研究的对象只能是从天然动植物有机体中提取的有机物。因而许多化学家都认为,在生物体内由于存在所谓“生命力”,才能产生有机化合物,而在实验室里是不能由无机化合物合成的。1824年,德国化学家维勒从氰经水解制得草酸;1828年他无意中用加热的方法又使氰酸铵转化为尿素。氰和氰酸铵都是无机化合物,而草酸和尿素都是有机化合物。维勒的实验结果给予“生命力”学说第一次冲击。此后,乙酸等有机化合物相继由碳、氢等元素合成,“生命力”学说才逐渐被人们抛弃。由于合成方法的改进和发展,越来越多的有机化合物不断地在实验室中合成出来,其中,绝大部分是在与生物体内迥然不同的条件下合成出来的。“生命力”学说渐渐被抛弃了,“有机化学”这一名词却沿用至今。从19世纪初到1858年提出价键概念之前是有机化学的萌芽时期。在这个时期,已经分离出许多有机化合物,制备了一些衍生物,并对它们作了定性描述,认识了一些有机化合物的性质。法国化学家拉瓦锡发现,有机化合物燃烧后,产生二氧化碳和水。他的研究工作为有机化合物元素定量分析奠定了基础。1830年,德国化学家李比希发展了碳、氢分析法,1833年法国化学家杜马建立了氮的分析法。这些有机定量分析法的建立使化学家能够求得一个化合物的实验式。当时在解决有机化合物分子中各原子是如何排列和结合的问题上,遇到了很大的困难。最初,有机化学用二元说来解决有机化合物的结构问题。二元说认为一个化合物的分子可分为带正电荷的部分和带负电荷的部分,二者靠静电力结合在一起。早期的化学家根据某些化学反应认为,有机化合物分子由在反应中保持不变的基团和在反应中起变化的基团按异性电荷的静电力结合。但这个学说本身有很大的矛盾。类型说由法国化学家热拉尔和洛朗建立。此说否认有机化合物是由带正电荷和带负电荷的基团组成,而认为有机化合物是由一些可以发生取代的母体化合物衍生的,因而可以按这些母体化合物来分类。类型说把众多有机化合物按不同类型分类,根据它们的类型不仅可以解释化合物的一些性质,而且能够预言一些新化合物。但类型说未能回答有机化合物的结构问题。这个问题成为困扰人们多年的谜团。从1858年价键学说的建立,到1916年价键的电子理论的引入,才解开了这个不解的谜团,这一时期是经典有机化学时期。1858年,德国化学家凯库勒和英国化学家库珀等提出价键的概念,并第一次用短划“—”表示“键”。他们认为有机化合物分子是由其组成的原子通过键结合而成的。由于在所有已知的化合物中,一个氢原子只能与一个别的元素的原子结合,氢就选作价的单位。一种元素的价数就是能够与这种元素的一个原子结合的氢原子的个数。凯库勒还提出,在一个分子中碳原子之间可以互相结合这一重要的概念。1848年巴斯德分离到两种酒石酸结晶,一种半面晶向左,一种半面晶向右。前者能使平面偏振光向左旋转,后者则使之向右旋转,角度相同。在对乳酸的研究中也遇到类似现象。为此,1874年法国化学家勒贝尔和荷兰化学家范托夫分别提出一个新的概念:同分异构体,圆满地解释了这种异构现象。他们认为:分子是个三维实体,碳的四个价键在空间是对称的,分别指向一个正四面体的四个顶点,碳原子则位于正四面体的中心。当碳原子与四个不同的原子或基团连接时,就产生一对异构体,它们互为实物和镜像,或左手和右手的手性关系,这一对化合物互为旋光异构体。勒贝尔和范托夫的学说,是有机化学中立体化学的基础。1900年第一个自由基,三苯甲基自由基被发现,这是个长寿命的自由基。不稳定自由基的存在也于1929年得到了证实。在这个时期,有机化合物在结构测定以及反应和分类方面都取得很大进展。但价键只是化学家从实践经验得出的一种概念,价键的本质尚未解决。现代有机化学时期 在物理学家发现电子,并阐明原子结构的基础上,美国物理化学家路易斯等人于1916年提出价键的电子理论。他们认为:各原子外层电子的相互作用是使各原子结合在一起的原因。相互作用的外层电子如从—个原了转移到另一个原子,则形成离子键;两个原子如果共用外层电子,则形成共价键。通过电子的转移或共用,使相互作用的原子的外层电子都获得惰性气体的电子构型。这样,价键的图象表示法中用来表示价键的短划“—”,实际上是两个原子共用的一对电子。1927年以后,海特勒和伦敦等用量子力学,处理分子结构问题,建立了价键理论,为化学键提出了一个数学模型。后来马利肯用分子轨道理论处理分子结构,其结果与价键的电子理论所得的大体一致,由于计算简便,解决了许多当时不能回答的问题。

乙苯生产工艺毕业论文

首先明确:石油中只含有很少的聚苯乙烯,渣油中很少的聚苯乙烯不值得提炼。目前市场上的聚苯乙烯都是用苯乙烯聚合生产的;而苯乙烯是由乙苯脱氢生产出来的;而乙苯是由苯和乙烯烷基化生产制得;苯和乙烯是由石油或其它途径生产得到的。乙苯的生产工艺如下(其它各个工艺过程自己找找吧,实在是太多了,无法在一个帖子里答复你):==== 生产苯乙烯的原料是乙苯。目前,世界上90%以上的乙苯是由苯和乙烯烷基化生产制得,一分子乙烯在适当条件下与一分子苯作用生成一分子乙苯。乙苯乙基苯的俗称,无色,具有芳香气味的可燃液体,沸点°C。熔点(℃) ,可由苯通过烷基化或直接从碳八芳烃分离获得,主要用于制造苯乙烯,少量用于有机合成工业,如制成苯乙酮用于香料、医药等方面。现在工业上约有90%的乙苯是通过苯烷基化生产的。1.生产工艺方法液相法 液相法使用的催化剂为三氯化铝,反应器为塔式,反应温度范围在125~140℃,反应压力在~,使乙烯与苯反应生成乙苯:副反应是乙苯进一步用乙烯烷基化生成多乙苯。工业上将苯的转化率限制在52%~55%左右,并采用高的苯与乙烯配料比(摩尔比一般为2左右),以防止生成更多的二乙苯与多乙苯。乙苯的平均收率为94%~96%。应严格控制原料苯和乙烯中的硫化物、乙炔等杂质,以减少三氯化铝的消耗。一般烃化液的组成(质量%):苯40,乙苯47,多乙苯(主要是二乙苯)13。反应前应将苯干燥至水含量30mg/kg以下,乙烯纯度为。反应产物(粗乙苯)用精馏分离得到乙苯,分离得到的苯再循环使用。气相法 气相法的设备是固定床式,催化剂为磷酸负载在硅藻土构成的催化剂。反应温度为200~250℃,反应压力为.关于乙烯的综合纯度指标高低不是关键,关键是应在预处理中除掉硫及硫化物,氮化物和乙炔。纯化后的乙烯与气-液混合物苯混合后通过负载催化剂的固定床反应器,并产生放热反应,将反应生成物进行冷凝和冷却。未参加反应的惰性气体循环并与进料反应物混合重新被使用。被冷凝下来的液相反应产物用精馏分离,被分离出的苯再循环使用,乙苯进入罐压。这种工艺的问题是需采用高苯/乙烯比例,以防止多烷基苯的产生(因对多烷基苯后处理有难度)。这种工艺的优势是反应器成本低(用低碳钢),催化剂成本低,对催化剂再生处理工序少。2.乙苯精制 乙苯精致采用精馏分离,通常为三步进行。第一步是将苯分离出来,第二步是将乙苯分离出来,第三步是将多乙苯分离出来乙苯脱氢生产苯乙烯乙苯在催化剂作用下,达到550~600℃时脱氢生成苯乙烯:乙苯脱氢是一个可逆吸热增分子反应,加热减压有利于反应向生成苯乙烯方向进行。工业上采用的方法是在进料中掺入大量高温水蒸气,以降低烃分压,并提供反应所需的部分热量,水蒸气与烃的摩尔比(简称水比)视反应器类型的不同而异,范围约在6~14之间。反应器 乙苯脱氢反应器有等温和绝热两种。等温反应器为列管式,已很少采用。使用绝热反应器时,反应所需的热量由提高进料温度(610~660℃)和加大水比(≈14)而带入。但温度过高将引起乙苯的热裂解,通常采用径向反应器,以减小气体通过催化剂层的温度降、压力降,并分段引入过热蒸汽,使轴向温度分布均匀。催化剂 早期采用的有美国加利福尼亚标准油公司的镁系催化剂和德国法本公司的锌系催化剂。第二次世界大战后,广泛采用美国壳牌石油公司开发的以氧化铁为主要成分的催化剂(Fe2O3:K2O:Cr2O3=87:10:3),乙苯转化率约60%,选择性约87%。1978年,又出现了一种加有多种助催化剂的铁系催化剂,苯乙烯选择性可达95%,加入的助催化剂多为碱金属或碱土金属,如钾、钒、钼、钨、铈、铬等。80年代工业上仍在继续努力开发适用于低水比的催化剂,以节约能耗。2.工艺流程简介包括乙苯脱氢和苯乙烯精馏分离两部分。乙苯在反应器内转化率约在35%~40%,脱氢液约含乙苯55%~60%,苯乙烯35%~40%以及少量苯、甲苯及焦油等。用精馏方法可分出苯乙烯成品。由于乙苯和苯乙烯的沸点比较接近,分离时所需塔板数较多,而苯乙烯在较高温度下又极易聚合。为了减少聚合反应的发生,除加对苯二酚或硫等阻聚剂外,尚需采用减压操作,并使用塔板效率高、阻力小的新型塔器或新型高效填充塔,使塔釜温度不超过90℃。苯乙烯精馏塔塔顶产品为苯乙烯,浓度可达。

乙苯脱氢反应实验报告 - 百度文库13页发布时间: 2022年04月10日可降低乙苯的分压有利于乙苯转化率的提高起到与降低反应压力一样的效果工业装置生产实践表明在其它条件不变的情况下压力每降低10kpa乙苯转化率...百度文库乙苯转化率比正常低的原因及处理措施 - 问一问1个回答回答时间:2022年11月20日最佳回答:乙苯转化率比正常低的原因及处理措施如下:(1)通过加热炉“气改油”改造,一方面消耗热值较高的燃料油,另一方面节省干气,用于制氢...问一问影响乙苯转化率的原因有哪些,分析所得实验数据是否合理?为什么? - 高校教师答疑 - 问一问在线2149位教育培训答主在线答已服务超亿人5分钟内回复Hi,为您实时解答教育类升学、学科答疑等问题,与高校名师、专家1对1在线沟通影响乙苯转化率的原因有哪些,分析所得实验数据是否合理?为什么?马上提问为什么增加反应物浓度转化率减小146人正在咨询转化率低119人正在咨询乙苯脱氢制苯乙烯实验报告102人正在咨询为什么增加反应物浓度转化率减小146人正在咨询问一问乙苯脱氢生产苯乙烯课题解析 - 百度文库14页发布时间: 2022年04月29日1. 反应温度 乙苯脱氢是强吸热反应,升温对脱氢反应有利。但是,由于烃类 物质在高温下不稳定,容易发生许多副反应,甚至分解成碳和氢,所 以脱氢适宜在2. 反应压力 乙苯脱氢反应是体积增大的反应,降低压力对反应有利,其平 衡转化率随反应压力的降低而升高。反应温度、压力对乙苯脱氢平衡 转化率的百度文库

目前市场上的聚苯乙烯都是用苯乙烯聚合生产的,而不是从石油提炼时产生的废渣提炼出来的,要生产该类物质还要注意与周边环境的卫生防护距离(在卫生防护距离内不得有居民点),一般卫生防护距离与当地的气象条件有关,但最少不低于400米范围。

苯氧乙酸合成毕业论文

配方 乙醇纳(15%工业用) 苯乙腈(工业用) 乙酸乙脂(工业品) 硫酸(工业品) 活性镍 制备方法 (1)苯丙胺的合成可以用苯乙酸为原料,在无水醋酸纳存在下与乙酸酐作用制得苯丙酮,然后以苯丙酮与甲酸铵反应得苯丙胺。 另一种合成方法是以苯乙腈和乙酸乙脂为原料,在乙醇纳存在下进行脱羧反应制得苯丙酮,再由苯丙酮制备苯丙胺,制备过程如下; 生产工艺 1 a-氰基苯丙酮的制备 将15%乙醇纳255克置于反应瓶内,在搅拌下加热至温沸,这时,加苯乙腈65克和乙酸乙脂75克的混合液。然后搅拌回流2小时,冷却至0度,过滤。将滤得的固体抽干,溶与360毫升水中,用38%盐酸中和至PH为4左右,放置2小时,过滤,将滤得的固体抽干,即得粗品a-氰基苯丙酮。 2 苯丙酮的制备 用工业用硫酸95豪升置于反应瓶内,搅拌冷却至10度左右,分批加入a-氰基苯丙酮(直至加完,温度保持在20度以下)。加毕,继续搅拌10分钟,加入水490毫升,置沸水浴上加热2小时,然后静置3--4小时,分取油层进行件压蒸馏,收集109--112度(24*)馏分,即得苯丙酮(C9H10O),含量约95%,收率以苯乙腈计算约57%。 3苯丙胺制备 将苯丙酮888克,活性镍148克和17%氨-乙醇3升加入反应器内,密闭反应系统,排除空气后,与45--50度,以压力通入氢气进行氨氢反应,之至不吸氢为止。然后将反应液过滤分离活性镍,排氨,回收乙醇,最后在减压蒸馏中收集80--90度(10--15*)馏分,即得苯丙胺,含量93%,收率96%左右

苯氧乙酸制备方法:由苯酚与一氯乙酸在碱性溶液中进行缩合,然后酸化即制得苯氧乙酸. 一氯乙酸制备方法:一种制取一氯乙酸的工艺,其工艺步骤为:(1)配比好醋酸和硫磺,在90~100℃的温度下通入氯气;(2)将所得的乙酰氯气体引出、冷凝器后呈液态由冷醋酸吸收备用;(3)将步骤1和步骤2产生的液料比例配置,并预热;(4)在高位将步骤3配置好的液料连续放入氯化反应塔内,并同时通入氯气,其中生成的氯代乙酰氯和乙酰氯气体经冷凝后被回收,并循环生成一氯乙酸粗品.具有氯化反应速度快,液态混合,适合于塔式连续氢化反应操作;制取利用现成生产设备和条件,方法简单方便等优点.

相关百科

热门百科

首页
发表服务