正规战争模型的后继讨论题目:在正规战模型中,设乙方与甲方战斗有效系数之比为a/b=4,初始兵力x0与y0相同。(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定。(2) 若甲方在战斗开始后有后备部队以不变的速率r增援,重新建立模型,讨论如何判别双方的胜负。解:为解决上述问题,我们必须为正规战争建立模型,按题目要求,以节的模型为基础,现我们建立模型如下:用x (t)和y(t)表示甲、乙交战双方时刻t的兵力,可以视为双方的士兵人数。(1) 每一方的战斗减员率取决于双方的兵力和战斗力,甲乙方的战斗减员率分别用f(x, y)和g (x , y)表示。(2) 每一方的非战斗减员率(由疾病、逃跑等因素引起)只于本方的兵力成正比。(3) 甲乙双方的增援率是给定的函数,分别用u(t)和v(t)表示由此可以写出关于x(t),y(t)的微分方程为方程(1)当甲乙双方都用正规部队作战,我们只须分析甲方的战斗减员率f(x ,y).j甲方士兵公开活动,处于乙方每一个士兵的监视和杀伤范围之内,一旦甲方某个士兵被杀伤,乙方的火力立即集中在其余士兵身上,所以甲方的战斗减员率只与乙方兵力有关,可以简单地设f与y成正比,即f=ay。 a表示乙方平均每个士兵对甲方士兵的杀伤率(单位时间的杀伤数),称乙方的战斗有效系数。a可以进一步分解为a=rypy ,其中ry是乙方的射杀率(每个士兵单位时间的射击次数),py是每次射击的命中率。类似地有g=bx,且甲方的战斗有效系数b=rxpx ,rx和px是甲方的射击率和命中率。而且在分析战争结局时忽略非战斗减员一项(与战斗减员相比,这项很小),并且假设双方都没有增援,记双方的初始兵力分别是x0和y0,方程(1)可化简为:方程(2)又由假设2,甲乙双方的战斗减员率分别为, 。于是得正规作战的数学模型:方程(3)由方程(3)可知,双方的兵力x(t),y(t)都是单调减函数,不妨认为兵力先减至零的一方为负方,为了得到双方胜负的条件,不必直接求解方程(3),而在相平面上讨论相轨线的变化规律,由方程(3)可得(4)其解为Ay2—bx2=k (5)注意到方程(3)的初始条件。有K=ay02—bx02 (6)由(5)式确定的相轨线是双曲线,如图,箭头表示随时间t的增加,x(t),y(t)的变化趋势,可以看出,如果k>0,轨线将于y轴相交,这就是说存在t1使得x(t1)=0,y(t1)= >0,即当甲方兵力为零时乙方兵力为正值,表明乙方获胜,同理可知,看k<0时甲方获胜,而当k=0时双方战平进一步分析某一方比如乙方取胜的条件,由 (6)式并注意到a,b的含义,乙方获胜的条件可表为(7)(7)式说明双方初始兵力之比y0/x0以平方关系影响着战争的结局,例如若乙方兵力增加到原来的2倍(甲方不变),则影响到原来的4倍(px ,ry , py 均不变 ),那么为了与此相抗衡,乙方只需将初始兵力y0增加到原来的2倍,由于这个原因正规战争模型称为平方率模型。(1)针对第一问。即在正规战模型中,设乙方与甲方战斗有效系数之比为a/b=4,初始兵力x0与y0相同。问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定。解如下:根据上面的相轨线可得:乙方取胜时的剩余兵力为:y(t)=要确定乙方取胜的时间t1,需要解方程(3),可得令x(t1)=0.,且有a/b=4可算出t1= ,t1与甲方战斗有效导数b成正比。以上是第一问的解答,下面进行第二问的解答:(2)在正规战模型中,设乙方与甲方战斗有效系数之比为a/b=4,初始兵力x0与y0相同。若甲方在战斗开始后有后备部队以不变的速率r增援,重新建立模型,讨论如何判别双方的胜负。解:当甲方后备部队以不变的速率r增加时,方程(3)的第一个方程应给为即方程(3)改为:相轨线为:ay2—ry—bx2=kk=ay02-ry-bx02即在上图的相轨线图中的轨线向上移动r/2a ,由图可得乙方取得胜利的方程条件为k>0,即为:思考与讨论:在战争模型里,我们应用了微分方程建模的思想。我们知道,一个战争总是要持续一段时间的,随着战争态势的发展,交战双方的人力随时间不断变化。这类模型反映了我们描述的对象随时间的变化,我们通过将变量对时间求导来反映其变化规律,预测其未来的形态。譬如在战争模型中,我们首先要描述的就是单位时间双方兵力的变化。我们通过分析这一变化和哪些因素有关以及它们之间的具体关系列出微分方程。然后通过对方程组化简得出双方的关系。这也就是我们微分方程建模的步骤。
已经发了好几篇给你了,请注意查收一下。有几篇是自己做的,希望对你有用。
在我空间里面有,你去看下吧,就是历年的论文。希望你看得懂
作为一个高等数学教师,特别是一个常年辅导并带队参加全国大学生数学建模竞赛的指导老师,能深深地体会到数学建模竞赛论文与一般的数学论文不同,主要表现在它的综合性.数学建模竞赛论文紧密联系实际,针对问题的客观实际特征,有分析、整理综合的过程.它包含题意解读、选择合适的数学工具、建立合理的数学模型、使用恰当的计算方法、严格的论证和推演、明确的结论、结果的实际检验、恰如其分的评估和总结.还要有通俗简洁的语言.一篇好文章应具备以下特色:切合实际的分析,合理且令人信服的假设,选择合适的数学知识,严密的逻辑推理和论证,合理使用计算方法和软件并得出正确的解答,检验结果的正确性和实事求是的评估,既简单扼要又能说明问题的摘要.一、切合实际的分析和理解数学建模竞赛的题目都是客观的实际问题,内容无所不包.准确地了解题目的背景和要求是解题的第一步.这就要求我们对题目所涉及的各种因素进行分析.要分析有哪些因素对我们所讨论的问题有影响,哪些因素是主要因素,哪些因素是次要因素,哪些是起决定性作用的因素,哪些因素是微不足道的,以及各因素之间的主从关系.要充分和正确理解题目的要求,即题目要求我们要解决哪些问题.千万不能曲解题意,否则将前功尽弃,徒劳无功.要分析解决问题需要一些什么怎样的数据,这些数据题目是否已经给足,如果不够就要我们自己去收集.要分析哪些数学工具适合于问题的求解,哪些数学知识无助于问题的解决,或是不适合于本问题的解决.在分析的基础上,最好能够制定出解题的步骤和方法以及所需的工具(这里主要指数学知识、计算方法和软件).这样我们就可以有条不紊,从容不迫,按部就班地进行求解和写作.二、令人信服的合理假设数学模型的建立是在假设的基础上进行的.根据题目的要求,首先要收集有关的数据.这些数据必须来源可靠,具有一定的权威性.合理指符合客观实际,不能与已经被证明是正确的定理和规律相悖.假设是数学建模至关重要的一步,关系到建模的成败和模型的优劣.假设也是数学建模的一个难点,数学建模的假设就是要发挥每个人的想象力和创造力,提出适当的、合理的见解.如果这一步成功了,那么你的整个建模过程也就成功了一半.本题的合理的令人信服的假设我个人认为主要是:不同地区,不同学校,不同专业收费标准应该有区别;也就是说,你的模型是针对什么地区,哪类学校,什么专业的.所有的这些数据的来源应该都是可靠和具有权威性.模型的理据应该充分,有说服力.三、选择适合的数学知识数学建模中,同样的一道题可以有多种方法求解,因此往往可以用多种不同的数学知识.在可供选择的多种数学方法中,当然是所用数学知识越简单越好.因为我们的模型是给人看的,是为解决实际问题而建立的.只有模型(包括计算)越简单才能被的人看懂和应用,模型的应用价值也就更高.如果用得不当,不但不能解决问题,反而使问题复杂化,有时甚至得出荒谬的结果,这是我们需要慎重考虑和认真解决的.四、严密的逻辑推理和论证要按照不同地区、不同专业建立相应的模型.在分析论证过程中一定要有充分的依据,要说明数据的来源,且必须有充分的依据.不能凭借着自己的感觉去估算,要使人信服.五、注意语言的通俗和简洁数学建模的论文和其他科学论文一样,语言是给人的第一个印象,就好比人的衣着,要得体,既要朴素、整洁、好看,又不能太过华丽,更不能奇装异服,使人看起来很不舒服.这就要求我们平常要多训练,多看一些好文章;要善于学习别人的长处,有时候也可以模仿别人的做法.模仿不是抄袭.在前人已有的基础上,学习别人的思想方法,根据自身问题的客观实际,加以改进并结合自己的观点,这就是创新,这就是创造发明.六、好的摘要是第一道门坎为什么这样讲?因为现在参赛的队数越来越多,阅卷的专家人数有限,阅卷时先看摘要,如果看了摘要后给人的印象是这篇文章不值得一看,那就可能第一步就被淘汰,连门都进不了,哪里还有获奖的机会.摘要至少要包含思想方法、主要结论和优缺点.建议多看一些写得好的摘要,多动手,多训练.最好能达到如下的效果:就是看了你的文章的摘要后能使人产生有必要进一步细看文章内容的欲望.七、再谈谈文章的新意和创新1.创新创意从一点一滴做起文章要有不同于一般常人的新意和创新,这个可以从以下几点体现:(1)在模型的假设中体现;(2)在建模中体现;(3)在论证推导中体现;(4)在求解和计算中体现;(5)在数据的收集中体现
数学作为一门工具性的学科,是高中数学最基础的课程。相应的,数学课程的教学也是教育界一直在关注的重点内容。下文是我为大家搜集整理的关于数学毕业论文参考范文下载的内容,欢迎大家阅读参考! 数学毕业论文参考范文下载篇1 浅析高中数学二次函数的教学方法 摘要:二次函数的学习是高中数学学习的重点,也是难点。师生要一起研究学习二次函数的基本方法,掌握其学习思路和规律,这样才能学好二次函数。 关键词:高中数学;二次函数;教学方法 在高中数学教学过程中,二次函数是非常重要的教学内容。随着教学改革的不断推进,初中阶段的二次函数因为是理解内容,没有纳入到考试内容中去,使高中学生在学习二次函数时有难度。因此,教师在教学这部分内容时,必须注重巩固和复习初中二次函数的内容和知识点,同时采取有效的方法合理地进行二次函数教学,确保获得较高的效率和质量,达到提高高中生数学成绩的目的。 一、加强对二次函数定义的认识和理解 高中数学的二次函数教学主要建立在初中二次函数的知识和定义基础上。在定义和解释二次函数的内容和知识过程中,教师主要利用集合之间相互对应的关系来解释二次函数的定义。因此,高中数学的二次函数教学与初中二次函数教学之间存在本质区别,这就造成了在二次函数教学过程中,学生很难适应和接受二次函数的定义。在高中数学的二次函数教学过程中,教师要根据初中二次函数的内容和定义,引导学生全面透彻地理解二次函数的定义和相关知识,这样才能确保学生学习和掌握更多的函数知识。在二次函数教学的过程中,教师要注重引导学生复习和回顾初中阶段掌握的二次函数知识点以及相关定义,并且与高中数学的二次函数内容相比较,这样学生就能对二次函数的定义、定义域、对应关系以及值域等有更深入的认识和理解。例如,在讲解例题:f(x)=x2+1,求解f(2)、f(a)、f(x+1)的过程中,若学生对于二次函数的定义以及概念有比较清晰的认识和理解,学生就可以看出该题是一个比较简单的代换问题,学生只需要将自变量进行替换,就能求解出问题的答案。但是,在解答这类问题的过程中,教师需要正确引导学生对二次函数的定义和概念加以认识和理解,如在f(x+1)=x2+2x+2中,学生需要认识到该函数值的自变量是x+1,而不是x=x+1。 二、采用数形结合的方式进行二次函数教学 在高中数学的二次函数教学过程中,一种常见的教学方法就是数形结合教学法。在二次函数教学过程中,采用数形结合的教学方法,不仅能够帮助学生更好地理解和掌握二次函数的性质以及图象,同时还有利于解决各种各样的二次函数问题,从而达到培养学生的思维能力以及提高二次函数教学效率的目的。采用数形结合的方式进行二次函数教学,所运用到的图像既能将二次函数的性质变化、奇偶性、对称性、最值问题以及变化趋势很好地反映出来,同时也是学习二次函数解题方法以及有效开展教学的重要载体。所以,教师在二次函数的教学过程中,需采用由浅至深的方式进行教学,合理把握和控制教学的难易程度,在学生了解和熟悉二次函数图像的前提下,帮助学生总结和认识其性质变化,从而达到顺利开展二次函数教学的目的。例如,教师在引导学生绘制二次函数图像的过程中,可以采用循序渐进的方式,通过绘制简单的二次函数图像,帮助学生学习和理解图像性质。如采用描点法绘制二次函数图像f(x)=-x2、f(x)=x2、f(x)=x2+2x+1等。在学习绘制函数图像的过程中,教师还可以设置一些例题,如“假设函数f(x)=x2-2x-1,在区间[a,+∞]中,呈单调递增的变化,求解实数a的取值范围”,或者“已知函数f(x)=2x2-4x+1,且-2 三、采用开发式的教学方式,培养学生的思维能力 在高中数学的二次函数教学过程中,涉及的内容范围广,所占的比例也相对较大。因此,教师在开展二次函数教学的过程中,其涉及的教学方法以及教学思路也非常多,教师需要合理选用教学思路和方法,这样才能有效培养和提升学生的数学能力以及思维能力。例如,在二次函数教学过程中,教师可以通过引导学生求解下列例题,让学生进一步理解和掌握二次函数的定义以及外延,并思考和总结出求解二次函数的思路和方法,以培养和提升学生的数学思维能力。如已知函数y=mx2+nx+c,其中a>0,且f(x)-x=0的两个根,x1与x2满足0 参考文献: [1]高红霞.高中数学二次函数教学方法的探讨[J].数理化解题研究,2015(11). [2]郗红梅.例析求二次函数解析式的方法[J].甘肃教育,2015(19). 数学毕业论文参考范文下载篇2 浅谈高中数学教学对信息技术的应用 摘要:为了提高高中数学的教学质量与丰富数学教学内容,将原有的知识点进行整合,使得学生更容易接受相关知识,文章提出了信息技术在高中数学教学中的应用策略:以信息技术为基础,丰富课堂教学内容;以信息技术为支点,优化教学过程;利用信息技术,让学生养成探索的习惯。 关键词:信息技术;高中数学;教学 信息技术在当下社会的发展给教学带来了许多改变,不仅使得教学变得更为高效,同时还令教学的内容变得丰富多彩。因此,随着信息技术在教学中的应用越来越广泛,教师就要对于这种教学模式进行探究,让教材与信息技术可以在进行授课的时候有效结合。只要是做好了以上的内容,就可以将高中数学与信息技术有机地结合到一起,以此推动数学教学的全面发展。从另一方面来说,信息技术也从另一个角度丰富了课堂内容,让学生可以从更多的方面来接触并了解数学中相关的知识与内容。从而使得学生可以养成多方面思考的习惯,让创新精神在他们的心底萌芽。 一、以信息技术为基础,丰富课堂教学内容 学习是一件非常枯燥的事情,驱使学生进行学习的动力是对于未知事物探索的兴趣。高中数学尤为如此,因为数学是一门理论性的学科,因此在学习的过程中,肯定会涉及到一些比较抽象的知识。对于这些抽象的知识,学生在学习起来多少都会有点困难,并且会影响学生的学习积极性。那么面对高中数学的学习,教师如何缓解并改变这一现状呢?目前比较好的办法就是将数学教学与信息技术进行结合,利用信息技术的多样化以及对丰富内容的获取能力,来为学生提供更多、更好的信息内容,供学生理解与学习。多媒体可以将声音、图片、甚至是视频都集中整合起来,立体直观地将数学中的抽象知识展现给学生。并且以此来激发学生的学习兴趣,除此之外,教师利用信息技术可以让课程变得更有层次感,让学生在学习的过程中减少疲劳的感觉。比如,教师在讲解各种函数曲线及其特性的时候,就可以利用多媒体动画的方式,向学生展现相关的函数知识。通过直观的表现,学生可以轻松地理解各种函数对应的图像以及相关的变化,在今后的学习过程中,会更为熟练地运用这些知识。 二、以信息技术为支点,优化教学过程 数学是一门自然科学,它的理论都是源自我们身边的生活。因此,在教学的过程中,教师要根据知识不断地引入实例,让学生可以更好地了解所学的知识。在高中的教材中,对于知识来说,理论知识已经非常丰富,但是对于实例的列举就显得不足。那么学生在学习的时候,理解起这些枯燥的定理与公式就显得非常吃力。这就是因为教材忽略学生的学习能力,编写得太过于理论化,因此就需要教师利用多媒体的优势,来为学生搜集一些关于实际应用数学知识的例子,来让学生了解并掌握其中的规律。这样有利于培养学生的思维与抽象能力,有助于他们今后解决问题时具有明确的思路。比如,在学习概率这一部分的知识时,学生很难联想到生活中相关的事情,教师可以搜集一些类似于老虎机、彩票甚至是其他的一些生活中博彩类性质的事情让学生进行了解。然后带领学生根据其规则进行计算,让学生了解到概率知识在生活中的运用,使学生认识到赌博的坏处。 三、利用信息技术,让学生养成探索的习惯 学习对于学生来说,不是教师的任务,而是每个人自己的事情。学生作为学习的主人,应当对学习具有一定的主导性。在日常的学习中,由于枯燥的内容以及过于逻辑性的思考,会使得学生丧失对于学习的乐趣与动力。正确的教学应当是教师进行适当的引导,让学生可以在他们的好奇心以及兴趣的驱使下自由地进行学习,充分地满足他们的爱好。只有这样,才能最大程度地发挥他们的主观能动性。而将信息技术应用于高中数学,正是给学生搭建了一个这样的平台,让学生可以更好地接触到大量的数学知识以及数学理念。同时,在网络上,各种优质的教学录像比比皆是,学生如果对于某个知识点有疑问,可以随时在网络上进行查看。这对于知识的探索与掌握有着很大的帮助。此外,利用信息技术与网络的优势,还可以让学生在进行资料与问题查询的过程中,养成良好的动手与动脑习惯,不再单单地依靠教师来进行解答,而是学会尝试用自己的方式来找到答案,这对学生的自主探究能力产生了一种提升作用。同时,由于结论是学生自己得到的,那么印象自然非常深刻。总之,信息技术在高中数学教学中的应用,是一件一举多得的事情,不仅可以改变高中数学枯燥的教学环境,而且能充分调动学生的学习积极性,让学生在学习的同时还能了解到更为广泛的信息与其他知识,并且可以激励学生对于疑难问题进行自主探索,提高了他们动手动脑的能力,并且也提高了教学质量。 参考文献: [1]唐冬梅,陈志伟.信息技术在高中数学学科教学中的应用研究文献综述[J].电脑知识与技术,2016(18):106-108. [2]傅焕霞,张鑫.浅议信息技术与高中数学教学有效整合的必要性[J].科技创新导报,2011(35):163. [3]王继春.跨越时空整合资源:信息技术与高中数学教学的有效整合[J].中国教育技术装备,2011(31):135-136. [4]崔志.浅析新课程标准的背景下信息技术在高中数学教学中的应用[J].中国校外教育,2014(10):93. 猜你喜欢: 1. 关于数学的论文范文免费下载 2. 数学系毕业论文范文 3. 数学本科毕业论文范文 4. 数学文化的论文免费下载 5. 大学数学毕业论文范文
《数学教学方法综合》
【摘要】文章在综述数学教学方法已有研究的基础上,分析了数学教学方法改革的趋势,探讨了已有研究存在的不足,对今后数学教学方法的研究进行了展望。
【关键词】数学教学方法研究综述
1. 引言
我国的数学教学方法是在继承传统,学习国外理论和经验中构建起来的。不但继承吸收了传统优秀的教学方法,而且在学习国外结合自己的实践的过程中产生了不少新的运用比较广泛的教学方法。
2. 教学方法界定的研究
中外对教学方法有不同的界定。由于时代、社会背景、文化氛围的不同,以及研究者研究问题的角度的差异,使得中外不同时期的教学理论研究者对“教学方法”概念的说法也不尽相同。
(1)教学方法要服务于教学目的和教学任务的要求。
(2)教学方法是师生双方共同完成教学活动内容的手段。
(3)教学方法是教学活动中师生双方行为体系。
3. 教学方法本质的研究
教学方法,如果我们从更高角度去理解的话,我们可以理解为教法。教法,在国内基本是围绕三个方面理解:一是指教学方法论,也包含教学原则;二是指教学模式;三是指教学技能。关于教学方法的本质,有以下几种说法。
教学法说
教学是双边活动,教为学提供有利条件,使学法更合理并不断科学化。教还可以使学在速度与质量上得以优化。因此,教与学,必然同在于一个法。
学法前提说
有学者认为,现代教学论不能只重视教学方法的研究,还得重视学习方法的研究,教学方法的本质要求我们在实施教学时必须要考虑到教法的要求和学法的要求,使教与学结合,做到既教知识又教方法。
教法学法统一说
持这种观点的学者认为,教学方法不仅仅理解为“教师在教学过程中为了完成教学任务所采用的方式和在教师指导下学生的学习方式”。教学方法的本质教法学法的辩证统一。
4. 教学方法分类的研究
人们在长期的教学实践中积累了很多的教学方法。而教学方法的分类就是把多种多样的教学方法,按照一定的规则或者标准,将它们有机地组织成为一个体系。
国外学者对教学方法的分类
巴班斯基根据对人的活动的认识,把教学活动分成三种,即知识信息活动的组织、个人活动的调整、活动过程的随机检查。从而把教学方法划分为三大类:①组织和自我组织学习认识活动的方法;②激发学习和形成学习动机的方法;③检查和自我检查教学效果的方法。
拉斯卡依据新行为主义的学习理论,即刺激——反应联结理论。教学方法——学习刺激——预期的学习结果。
5. 教学方法运用问题的研究
有了正确的教学思想的指导,理解了教学方法的特性与功能,在具体的教学当中如何科学的运用是广大老师关注的问题。综述已有的研究,关于如何运用的观点如下。
综合运用说
任何教学方法都有它的优点和缺点。回顾以往,往往是由一个极端走向另一个极端,片面、盲目、形而上学是造成教学效果严重低下的主要原因。因此,有人提出要把各种教学方法综合的运用。要想做到综合运用,必须有:①教法学法相统一;②讲习知识的的方法于训练智能的方法要统一;③常规教学方法与现代教学方法相统一。
发扬借鉴说
有这种观点的学者认为,在运用教学方法的时候,应该做到:①发扬国内教学方法中的优势;②有选择的学习国外的先进理论和方法;③借鉴教学控制论,掌握教学平衡,提高教学质量。尤其对新的教学方法,更要有选择的学习、吸收。
目的要求说
学者认为,不能抛开教学目的去选择教学方法,如果抛开教学目的,盲目的选择,教学必然不会成功。因此,选择教学方法应该考虑以下几点:①教学目的;②学生的素质和特点;③教材内容;④教师的素质和特点;⑤教学条件。教学目标以及教学任务的完成,最终取决于学生,并且通过学生表现出来。所以,教师选择的教学方法也是为学生服务的,教学方法的选择也是建立在对中学各类基本知识的逻辑推理上的模糊评价。
6. 数学教学方法改革的趋向
强调提高教学效率
所谓教学效率,就是单位时间内所完成的教学任务。20世纪美国全国数学教师协会(NCTM)拟定的八十年代《行动计划》中第四条,明确提出:“必须把既讲效果又讲效率的严格标准应用于数学教学”。
强调发挥学生的积极性,鼓励学生独立发现和探索
传统的教学法是灌输式,把学生看作容器,不注意发展学生的智力,不能适应时代发展的要求。因此一些教育学家、心理学家提出了新的教学理论。布鲁纳也认为,学习重要的不是记忆事实,而是获得知识的过程。他提出“发现法”,强调“教数学……要让学生自行思考数学,参与到掌握知识的过程中去。”
发现法有利于促进学生理解,学会发现的方法,培养探究能力,有利于知识的记忆,提高学习的积极性。
面向全体适应个别差异
近些年来我们现在的教育,已经开始注意面向全体学生,同时适应个别差异。近年来,国外在这方面进行了许多试验,提倡分组教学。
7. 以往教学方法研究中存在问题
近几十年来,我国数学教育工作者将国外先进的教育理论与我国数学教育实践相结合,摸索出许多具有中国特色的数学教学方法,如:讲授法、谈话法、演示法、读书指导法、参观法、实验法、实习作业法、练习法、问题法(或发现法),等等。
但随着社会的发展,知识的更新以及教育教学理论的发展,这些教学方法需要加以反思。传统的数学教学方法研究主要存在以下几个问题:
①方法及名称繁多,缺乏科学的教育实验。
②强调单一教学方法而忽视教学方法的选择与组合。
③理论总结不够,体系混乱。
④以教为中心。长期以来,数学教学方法的研究往往侧重于教材和教师,而忽视了学生学习的心理规律。
⑤重知识轻能力。
⑥重结果轻过程。
⑦忽视非智力因素的作用。
8. 展望
纵观近几年来国际数学教育发展的趋势和我国数学教育发展的现状,我国数学教学方法的发展有以下几种趋势:
第一,计算机辅助数学教学(CAI)将大面积开展。计算机是当今社会先进生产工具的代表,21世纪,计算机工业将是全球最大的工业之一。 CAI必将渗透到教育的各个领域。
第二,引入以“问题解决”为中心的教学模式。“问题解决”对数学教育有着重大的意义。
第三,引入体现数学应用意识的教学方法。数学应用是数学教育的根本目的之一。随着新技术革命的深入发展,数学应用也越来越被人们重视。
第四,“再创造”、“发现式”教学方法将得到重视。
参考文献
[1]李定仁,徐继存.教学论研究二十年[M].北京:人民教育出版社,2001.
[2] 林六十,高仕汉,李小平.数学教育改革的现状与发展[M].武汉:华中理工大学出版社,1997.
[3] 陈丽.浅析中学数学教学方法的继承与发展[J].理科教学探索,2007:19
[4] 杨骞.我国数学教育研究近20年回顾与思考[J].大连教育学报.1999.
数学学科的 教育 要不断适应社会的需求。教育的作用是要把自然的人培养成社会的人,使其成为社会生产力的组成部分。下文是我为大家搜集整理的关于数学系 毕业 论文的内容,欢迎大家阅读参考!
谈谈小学数学兴趣的培养
孔子曾说:“知之者不如好之者,好之者不如乐之者。”这就是说“兴趣”是最好的老师。由此可见,小学数学不只是传授知识,而是培养和提高孩子的各方面素质,其中学习兴趣尤其重要。浓厚的兴趣是学习知识、培养能力、发展智力的重要条件。多年来的教学实践使我感到在数学教学中,教师应以兴趣为核心培养学生的非智力因素。以下,我在小学数学教学中如何培养学生的学习兴趣,谈几点体会。
一、根据小学生的心理特点来培养学习兴趣
教育家陶行知指出:“从前,先生只管照自己的意思去教学生,凡是学生的才能兴味,一概不顾,专门勉强拿学生来凑他的教法,配他的教材。”这样的结果只能是“先生收效少,学生苦恼多”。课堂教学应注意培养学生的学习兴趣,因为“兴趣是最好的老师”,学生只有对所学的知识感兴趣,才能集中注意力,积极思考,主动发现、探究新的知识。
1.要抓住学生“好奇”的心理特征,创设最佳的学习环境,提高学生的学习兴趣。数学课上教师要善于利用新颖的 教学 方法 ,唤起学生对新知识的好奇,诱发学生的求知欲,激发学生学习数学的兴趣。在教学的进行中,教师根据教材的重点、难点和本班学生的实际,在知识的生长点、转折点设计有趣新颖的提问,以创设最佳的情境,抓住学生的好奇心,激发学生的兴趣,提高课堂的教学效果。例如,我在给学生讲解乘法分配律内容时,为了促进学生的学习兴趣,我给他们讲了高斯用很短的时间内计算出自然数从1到100的求和的事故。这个 故事 立即引起了学生们的极大兴趣。这样,学生的思维活跃起来了,从而对要学习内容产生了兴趣。
2.要抓住学生“好胜”的特点,创设“成功”的情境,以激发学生和学习兴趣。学生对数学的学习兴趣是在每一个主动学习活动中形成和发展的。教师要善于掌握有利的时机,利用学生的好胜心鼓励、引导、点拨帮助学生获得成功。让学生从中获得成功的体验,这样再从乐中引趣,从乐中悟理,更进一步增强学生学习数学的兴趣。
二、加强教学的直观性,培养学习兴趣
人的思维是从具体到抽象,从形象思维向 抽象思维 转化的。 小学生的思维特点是以形象思维为主,而数学学科的特点又是高度的抽象性和严密的逻辑性。那么,怎样使学生逐步从形象思维向抽象思维过渡呢?在课堂教学中,采用直观教具、投影仪等生动形象的教学手段,能使静态的数学知识动态化,不但能激发学生学习的积极性,而且学生学到的知识也能印象深刻,永久不忘。
三、 创设情景使学生产生兴趣
教育家夸美纽斯曾说:“应该用一切可能的方式把孩子们的求知与求学的欲望激发起来”。在教学中,教师根据教学内容的特点,尽量利用形式多样、灵活多变、生动活泼的教学方法,为学生学习创设一种愉快的情境,让学生感到每节课都有新意,保持新鲜感。例如在学习了平行四边形、三角形、梯形的面积时,其基本方法是通过剪和拼,使新学习的图形转化为已学过的图形。学生一旦掌握了这种基本方法,就能举一反三,很容易学会这几何图形的面积计算了。所以可以特意安排一节课,专门让学生动手剪拼图形,观察剪拼成的图形与原图形的关系。这样,学习以上三种图形的面积公式时,就“水到渠成”,能收到事半功倍之效。“动手操作”这种学习方式由于能吸引学生多种感官参与学习,所以极大地激发学生学习数学的兴趣。
苏霍姆林斯基说:“在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、 研究者、探索者。在 儿童 的精神世界里,这种需要特别强烈。”在教学中创设问题情境,将会引起儿童迫不及待地探索、研究的兴趣。这样就能有效激发学生探究意识和学习兴趣,使学生产生渴望探究新知的良好心理状态,从而主动深入学习。
四、联系实际生活培养学习兴趣
联系实际生活就是注重数学的实用性,让数学贴近生活,突出从解决实际问题出发的运用能力。所以,在数学教学中充分利用这个特点,尽量联系实际,利用身边的例子、生活中的例子和所学知识解决实际问题。让数学走向生活,让学生在生活中体验数学,让学生明白数学并不神秘,数学就在我们的身边,体现数学的实用性。
例如:在教学人民币的认识时,课前先让学生和家长到超市购物,感性认识购物需要人民币,并记住所买物品的价钱。上课时让学生 说说 如何购物的,为学习人民币作好铺垫。课上又让学生通过模拟购买不同价格,不同品种的物品,使学生在简单的付钱,算钱,找钱的过程中,感知人民币的商品功能,从中体会生活中处处都有使用到人民币的地方,人人学有价值的数学,体会到数学与实际生活的紧密联系。这样学生的学习积极性就调动起来了。
总之,培养学生学习兴趣,是个长期的过程,要贯穿于整个教学过程的始终,教师要善于挖掘教材的兴趣因素和知识本身的魅力,适当地调整教学过程,灵活地运用教学方法,时时注意激发学生沉睡的兴趣,做到“课开始,趣已生;课进行,趣正浓;课结束,趣犹存。”
<<<下页带来更多的数学系毕业论文
历年优秀论文要不?
无忧在线有很多数学建模论文,你去搜一下就行
数学建模内容摘要:数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。关键词:数学模型、数学建模、实际问题伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。一、数学模型数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构.简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律.随着社会的发展,生物,医学,社会,经济……,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决.但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益.他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学.而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识.特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机.可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的.你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学.其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现.也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型.数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性.通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究.数学模型的另一个特征是经济性.用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出.但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真.所谓"模型就是模型"(而不是原型),即是指该性质.二、数学建模 数学建模是利用数学方法解决实际问题的一种实践.即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解.简而言之,建立数学模型的这个过程就称为数学建模.模型是客观实体有关属性的模拟.陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型.模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构.数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略.数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识.这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模.实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素.数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题.如果有现成的数学工具当然好.如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展.例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明.求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的.因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁.而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路.而在现在,要真正解决一个实际问题,离了计算机几乎是不行的.数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢 不是.既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的.因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等.如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施.但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进. 应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型.从这一意义上讲,可以说数学建模是一切科学研究的基础.没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一.数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一.三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:1.机理分析 机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义.(1) 比例分析法--建立变量之间函数关系的最基本最常用的方法. (2) 代数方法--求解离散问题(离散的数据,符号,图形)的主要方法. (3) 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际 问题,在决策,对策等学科中得到广泛应用. (4) 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式. (5) 偏微分方程--解决因变量与两个以上自变量之间的变化规律.2.测试分析方法 测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型. (1) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(2) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.(3) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(4) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法, 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致可见左图.3.仿真和其他方法(1) 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验.① 离散系统仿真--有一组状态变量.② 连续系统仿真--有解析表达式或系统结构图.(2) 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构.(3) 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统.(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种.1.按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等.范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等.2.按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等.按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模.3.按照模型的表现特性又有几种分法:确定性模型和随机性模型 取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型.静态模型和动态模型 取决于是否考虑时间因素引起的变化.线性模型和非线性模型 取决于模型的基本关系,如微分方程是否是线性的.离散模型和连续模型 指模型中的变量(主要是时间变量)取为离散还是连续的.虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法.4.按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等.5.按照对模型结构的了解程度分:有所谓白箱模型,灰箱模型,黑箱模型.这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙.白箱主要包括用力学,热学,电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了.灰箱主要指生态,气象,经济,交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做.至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象.有些工程技术问题虽然主要基于物理,化学原理,但由于因素众多,关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理.当然,白,灰,黑之间并没有明显的界限,而且随着科学技术的发展,箱子的"颜色"必然是逐渐由暗变亮的.五、数学建模的一般步骤建模的步骤一般分为下列几步:1.模型准备.首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息.2.模型假设.在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼,简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理,化学,生物,经济等方面的知识,又要充分发挥想象力,洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化,均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.3.模型构成.根据所作的假设以及事物之间的联系, 利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构――即建立数学模型.把问题化为数学问题.要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用.4.模型求解.利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要作出进一步的简化或假设.在难以得出解析解时,也应当借助计算机求出数值解.5.模型分析.对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏性分析等.6.模型检验.分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改,补充假设或重新建模,有些模型需要经过几次反复,不断完善.7.模型应用.所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善.应用的方式自然取决于问题的性质和建模的目的.参考文献:(1)齐欢《数学模型方法》,华中理工大学出版社,1996。(2)《数学的实践与认识》,(季刊),中国数学会编辑出版。
数学建模论文范文--利用数学建模解数学应用题 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。 加强高中数学建模教学培养学生的创新能力 摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。 关键词:创新能力;数学建模;研究性学习。 《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生: (1)学会提出问题和明确探究方向; (2)体验数学活动的过程; (3)培养创新精神和应用能力。 其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。 数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。 一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。 教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。 如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大? 这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。 这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。请采纳。
数学建模作为一种数学学习方式,是培养学生应用数学的意识,培养数学素养的一种形式。下文是我为大家蒐集整理的关于的内容,欢迎大家阅读参考!
浅谈高职数学建模实践
摘 要: 本文简述了数学建模及其发展历史,探讨了高职数学建模活动设计和实施情况,并分三个方面进行了有效实践。
关键词: 高职数学教学 数学建模 数学应用
随着教育改革的深入进行和“数学应用意识”的加强,知识经济社会对高职数学提出了新的要求。高职数学教学应以运用数学解决实际问题为目标,以数学建模作为改革的切入点,让学生在建模过程中学会用数学思维去认识和思考自己所生活的环境与社会[1],培养学生的创新思维能力和综合素质。
一、数学模型、数学建模和数学建模发展沿革[2]
数学模型还没有统一准确的定义,一般来说,“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,对于一个现实世界的一个特定物件,为了一个特定目的,根据其特有的内在规律,作出必要的简化假设,运用适当的数学工具,得到的一个数学结构。涉及实际问题的数学模型,还具有抽象性、准确性、非预制性和演绎性等特性。数学模型按模型的表现特性和所描述的不同的现象和过程,大致有四种:确定性数学模型、随机性数学模型、变突性数学模型和模糊性数学模型。当然,由于现实世界关系的复杂性和多样性,有些数学模型也可能是兼有几类特性的混合型数学模型。
数学建模即为建立数学模型的过程。建模即是对研究物件进行科学的分析、简化、抽象的过程。运用数学建模解决实际问题的一般步骤是:模型准备—模型假设—模型构成—模型求解—模型分析—模型检验—模型应用。
早在上世纪70年代,国外不少发达国家的有识之士已经开始研究开展数学建模活动,各种建模案例相继出现。大约在上世纪70年代末80年代初,英国著名的剑桥大学专门为研究生开设了数学建模,并建立了牛津大学与工业界研究合作的“OSGI”。与此同时,在欧洲、在美国等工业发达国家开始把数学建模的内容正式列入研究生、大学生乃至中学生的教学计划中,并于1983年开始举行两年一次的“数学建模和应用的教学国际会议”进行定期交流。80年代以后,数学建模已成为国际数学教育改革的主旋律,世界各国的课程标准也都要求在各年级或多或少地含有数学建模内容。我国工业与应用数学学会从1992年开始举办了“全国大学生数学模型联赛”,并发展成为现在的“全国大学生数学建模竞赛”。以数学建模竞赛为契机,国内很多大学将数学建模融入数学课程教学中,并将数学建模和数学实验等相关课程设定为基础课、必修课,培养学生的数学综合能力。数学教学必须适应社会实际需要,数学建模进入高职院校的课堂,既符合数学教改需求,又顺应社会发展大潮。对于高职数学教育教学而言,不仅需要让学生掌握数学计算方法和逻辑思维,更需要培养学生用数学工具和数学软体分析和解决实际问题的意识和能力。传统的高职数学课程教学体系无疑偏重于前者,引入数学建模则是加强后者的一种有益尝试。
二、高职数学建模活动设计
1.高职数学建模的活动设计目标
①系统地获得数学建模的基本知识、基本理论和方法。②培养数学应用意识,体现数学的实际应用价值。③提高学生学习数学的兴趣,培养学生学会团结合作,提高分析和解决实际问题的能力。④了解数学建模过程,培养数学创新能力和数学建模综合素质。
2.高职数学建模的活动设计原则
数学建模的教学设计应反映数学教育发展和改革的方向,具体说来它更应强调发展学生的数学应用能力、逻辑推理能力、软体使用能力和自主学习能力。
3.高职数学建模的活动设计内容
①理论知识方面:根据理论结合实际的原则,要求学生重点掌握数学模型的建立和求解方法。基本掌握的内容:初等模型、数学规划模型、微分方程模型、图论与网路模型、概率统计模型等。②实践技能方面:要求学生重点掌握资料处理的基本方法,能够使用Lindo、Lingo求解各种规划问题,使用Matlab求解微积分和微分方程,进行资料拟合,引数估计、假设检验、回归分析等概率问题。
三、我院高职数学建模活动实践
1.将数学建模融入高职数学主干课程
数学教学中引入数学建模,关键是要以生活实际应用来汇入案例,从金融、工程、美学、经济等方面创设真实学习情境。近几年来我们一直把数学建模和数学课程有机结合起来,从学习情况来看,已初见成效。通过数学教学中数学建模的应用,学生更加体会到数学知识的重要性,更加重视数学的学习。将数学建模融入高职数学主干课程,在教学中积极推进教学改革,各模组综合复习中加入数学建模和数学上机实验知识,较好地调动了学生的学习积极性。
2.积极开设数学建模相关选修课
在《国家中长期教育改革和发展规划纲要》和《教育资讯化十年发展规划》的指引下,为了进一步促进资讯化教学,我们摒弃了传统的数学教育方法,教学中多次尝试数学建模和数学试验。自2005年以来,我们一直对大一大二的学生开设了《数学模型》、《数学实验》、《数学建模与数学实验》等选修课,受到学生的热烈欢迎。课程的开设对全面培养大学生数学素质和有关专业所需要的数学知识起到了很大的促进作用。通过多位老师的实践和探索,由谢珊主编,刘志峰主审,吕靖、覃东君和陶盈老师参编的《数学建模与数学实验》校本教材已正式投入使用,这本书得到了师生普遍好评。
3.认真组织数学建模活动
学院数学教研室教师每年认真组织学院的高等数学竞赛和数学建模活动,丰富了学生的课余生活,在数学建模竞赛中也取得了一定的成绩:获得国家二等奖一次,获得省二等奖两次,获得省三等奖两次。实践证明,积极参与数学建模知识学习的学生在毕业之后发展潜力更大,无论是从学生受益面,还是在提高大学生综合素质方面,数学建模教学改革模式都取得了很好的成效[3]。
高职数学中融入数学建模对学生综合素质的培养是一项长期艰钜而有意义的工作。教师要根据学生的实际水平,进行准确的定位,寻找数学建模教学的起始点和切入点,提高学生的应用和建模能力,使他们能够自觉地应用数学的思想和方法去分析观察理解和解决问题,增强迎接未来社会竞争的能力,将数学建模思想融入教学中,使抽象的教学内容具体化、清晰化,使学生主动学习,积极思考,重视数学应用,从而提高了教学质量[4]。学无止境,数学建模融入高职数学教学改革应随着数学实践和教学经验的积累,及时补充新鲜血液。数学建模在我院的推广普及,培养了学生的综合素质和实践能力,对数学教学改革起到了推动作用。
参考文献:
[1]谢珊等.更新高职数学教育理念深化教学改革[J].现代企业教育,2011***11***:58.
[2]姜启源,谢金星,叶俊.数学模型[M].北京:高等教育出版社,2003:3-18.
[3]曹秀娟等.数学建模大众化教学改革模式的探索[J].中国校外教育,2010***11***:130-131.
[4]孟玲.高职数学建模教学的策略与方法刍议[J].教育与职业,2011***11***:107.
<<<下页带来更多的
下载一片获奖论文,之后的所有基本就都解决了吧!!
数学应用是数学 教育 的重要内容,呼唤数学应用意识,提高数学应用教学质量,已成为广大数学教育工作者的共识。下面是我为大家推荐的数学建模论文,供大家参考。
数学建模论文 范文 一:建模在高等数学教学中的作用及其具体运用
一、高等数学教学的现状
(一) 教学观念陈旧化
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及 逻辑思维 能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
(二) 教学 方法 传统化
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用
对学生的 想象力 、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体 措施
(一) 在公式中使用建模思想
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
(二) 讲解习题的时候使用数学模型的方式
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
(三) 组织学生积极参加数学建模竞赛
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
参考文献
[1] 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想[J]. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.
[2] 李薇. 在高等数学教学中融入数学建模思想的探索与实践[J]. 教育实践与改革,2012 ( 04) : 177 -178,189.
[3] 杨四香. 浅析高等数学教学中数学建模思想的渗透 [J].长春教育学院学报,2014 ( 30) : 89,95.
[4] 刘合财. 在高等数学教学中融入数学建模思想 [J]. 贵阳学院学报,2013 ( 03) : 63 -65.
数学建模论文范文二:数学建模教学中数学素养和创新意识的培养
前言
创新人才的培养是新的时代对高等教育提出的新要求.培养高质量、高层次人才不仅需要传统意义上的逻辑思维能力、推理演算能力,更需要具备对所涉及的专业问题建立数学模型,进行数学实验,利用先进的计算工具、数学软件进行数值求解和做出定量分析的能力.
因此,如何培养学生的求知欲,如何培养学生的学习积极性,如何培养学生的创新意识和创新能力已成为高等教育迫切需要解决的问题[1].
在数学教学中,传统的数学教学往往注重知识的传授、公式的推导、定理的证明以及应用能力的培养.尽管这种模式并非一无是处,甚至有时还相当成功,但它不能有效地激发广大学生的求知欲,不能有效地培养学生的学习积极性,不能有效地培养学生的创新意识和创新能力.
而如何培养学生的创新意识和创新能力,既没有现成的模式可循,也没有既定的方法可套用,只能靠广大教师不断探索和实践.
近年来,国内几乎所有大学都相继开设了数学建模和数学实验课,在人才培养和学科竞赛上都取得了显着的成效.数学建模是指对特定的现象,为了某一目的作一些必要的简化和假设,运用适当的数学理论得到的一个数学结构,这个数学结构即为数学模型,建立这个数学模型的过程即为数学建模[2].
所谓数学教学中的数学实验,就是从给定的实际问题出发,借助计算机和数学软件,让学生在数字化的实验中去学习和探索,并通过自己设计和动手,去体验问题解决的教学活动过程.数学实验是数学建模的延伸,是数学学科知识在计算机上的实现,从而使高度抽象的数学理论成为生动具体的可视性过程.
因此,数学实验就是一个以学生为主体,以实际问题为载体,以计算机为媒体,以数学软件为工具,以数学建模为过程,以优化数学模型为目标的数学教学活动过程[3-7].
因此,如何把实际问题与所学的数学知识联系起来;如何根据实际问题提炼数学模型;建模的方法和技巧;数学模型所涉及到的各类算法以及这些算法在相应数学软件平台上的实现等问题就成了我们研究的重点.现结合教学实践,谈谈笔者在数学建模和数学实验课的教学中 总结 的几点看法.
1掌握数学语言独有的特点和表达形式
准确使用数学语言模拟现实模型数学语言是表达数学思想的专门语言,它是自然语言发展到高级状态时的特殊形式,是人类基于思维、认知的特殊需要,按照公有思维、认知法则而制造出来的语言及其体系,给人们提供一套完整的并不断精细、完善、完美的思维和认知程序、规则、方法.
用数学语言进行交流和良好的符号意识是重要的数学素质.数学建模教学是以训练学生的思维为核心,而语言和思维又是密不可分的.能否成功地进行数学交流,不仅涉及一个人的数学能力,而且也涉及到一个人的思路是否开阔,头脑是否开放,是否尊重并且愿意考虑各方面的不同意见,是否乐于接受新的思想感情观念和新的行为方式.数学建模是利用数学语言模拟现实的模型,把现实模型抽象、简化为某种数学结构是数学模型的基本特征.
现实问题要通过数学方法获得解决,首先必须将其中的非数学语言数学化,摒弃其中表面的具体叙述,抽象出其中的数学本质,形成数学模型.通过分析现实中的数学现象,对常见的数学现象进行数学语言描述,从而将现实问题转化为数学问题来解决.
2借助数学建模教学使学生学会使用数学语言构建数学模型
根据现阶段普通高校学生年龄特点和知识结构,我们可以通过数学建模对学生加强数学语言能力的培养,让他们熟练掌握数学语言,以期提升学生的形象思维、 抽象思维 、逻辑推理和表达能力,提高学生的数学素质和数学能力.在数学建模教学过程中,教师要力求做到用词准确,叙述精炼,前后连贯,逻辑性强.在问题的重述和分析中揭示数学语言的严谨性;在数学符号说明和模型的建立求解中揭示数学语言的简约性,彰显数学语言的逻辑性、精确性和情境性,突出数学符号语言含义的深刻性;在模型的分析和结果的罗列中,显示图表语言的直观性,展示数学语言的确定意义、语义和语法;在模型的应用和推广中,显示出数学符号语言的推动力的独特魅力.
而在学生的书面作业或论文 报告 中,注意培养学生数学语言表达的规范性.书面表达是数学语言表达能力的一种重要形式.通过教师数学建模教学表述规范的样板和学生严格的书面表达的长期训练来完成.在书面表达上,主要应做到思维清晰、叙述简洁、书写规范.例如在建立模型和求解上,严格要求学生在模型的假设,符号说明、模型的建立和求解,图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.
对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面要及时纠正.
3借助数学实验教学,展示高度抽象
的数学理论成为具体的可视性过程要培养创新人才,上好数学实验课,首先要有创新型的教师,建立起一支"懂实验""会试验""能创新"的教师队伍.由于数学实验课理论联系实际,特点鲜明,内容新颖,方法特别,所以能够上好数学实验课,教师就必须具备扎实的数学理论功底,计算机软件应用操作能力,良好的科研素质与科研能力.
因此,数学与统计学院就需要选取部分教师,主攻数学建模、数学实验、数值分析课程.优先选派数学实验教师定期出去进修深造提高,以便真正形成一支"懂实验""会实验""能创新"的教师队伍.实验课的地位要给予应有的重视.我院现存的一个重要表现就是实验设备不足,实验室开放时间不够.为了确保数学实验有物质条件上的保证,必须建立数学实验与数学建模实验室.
配备足够的高性能计算机,全天候对学生开放,尽快尽早淘汰陈旧的计算机设备.精心设计实验内容,强化典型实验,培养宽厚扎实理论水平;精选实验内容,加强学生之间的互动,培养协作意识和团队精神.在实验教学时数有限的情况下,依据培养目标和教学纲要,对教材中的实验内容进行选择、设计.要最大限度地开发学生的创造性思维,数学实验在项目设计过程中应当遵循适应性、趣味性、灵活性、科学性、渐进性和应用性的基本原则.
选择基础性试验,重点培养宽厚扎实的理论水平,提高对数学理论与方法的深刻理解.熟练各种数学软件的应用与开发,提高计算机应用能力,增强实践应用技能;增加综合性实验和设计性实验,从实际问题出发,培养学生分析问题,解决问题的能力,强化 创新思维 的开发.
教学方法上实行启发参与式教学法:启发-参与-诱导-提高.充分发挥学生主体作用,以学生亲自动脑动手为主.
教师先提出问题,对实验内容,实验目标,进行必要的启发;然后充分发挥学生主体作用,学生动手操作,每个命令、语句学生都要在计算机上操作得到验证;根据学生出现的情况,老师总结学生出现的问题,进行进一步的诱导;再让其理清思路,再次动手实践,从理论与实践的结合上获得能力上提高.数学实验是一门强调实践、强调应用的课程.
数学实验将数学知识、数学建模与计算机应用三者融为一体,可以使学生深入理解数学的基本概念和理论,掌握数值计算方法,培养学生运用所学知识使用计算机解决实际问题的能力,是一门实践性很强的课程.在这一教学活动中,通过数学软件如MAT-LAB、Mathematica、SPSS的教学和综合数学实验,如碎片拼接、罪犯藏匿地点的查找、光伏电池的连接、野外漂流管理、水资源的有效利用、葡萄酒的分类等,通这些实际问题最终的数学化的解决,将高度抽象的数学理论呈现为生动具体的可视性结论,展示数学模型与计算机技术相结合的高度抽象的数学理论成为生动具体的可视性过程.
4突出学生的主体作用,循序渐进培养学生学习、实践到创新
实践教学的目的是要提高学生应用所学知识分析、解决实际问题的综合能力.
在教学中,搭建数学建模与数学实验这个平台,提示学生用计算机解决经过简化的问题,或自己提出实验问题,设计实验步骤,观察实验结果,尤其是将庞大繁杂的数学计算交给计算机完成,摆脱过去害怕数学计算、画函数图像、解方程等任务,避免学生一见到庞大的数学计算公式就会产生畏惧心理,从而丧失信心,让学生体会到在数学面前自己由弱者变成了强者,由失败者变成了胜利者、成功者.
再设计让学生自己动手去解决的各类实际问题,使学生通过对实际问题的仔细分析、作出合理假设、建立模型、求解模型及对结果进行分析、检验、总结等,解决实际问题,逐步培养学生熟练使用计算机和数学软件的能力以及运用数学知识解决实际问题的意识和能力.
同时,给学生提供大量的上机实践的机会,提高学生应用数学软件的能力.一个实际问题构成一个实验内容,通过实践环节加大训练力度,并要求学生通过计算机编程求解、编写实验报告等形式,达到提高学生解决实际问题综合能力的目标.数学建模与数学实验课程通过实际问题---方法与分析---范例---软件---实验---综合练习的教学过程,以实际问题为载体,以大学基本数学知识为基础,采用自学、讲解、讨论、试验、文献阅读等方式,在教师的逐步指导下,学习基本的建模与计算方法.
通过学习查阅文献资料、用所学的数学知识和计算机技术,借助适当的数学软件,学会用数学知识去解决实际问题的一些基本技巧与方法.通过实验过程的学习,加深学生对数学的了解,使同学们应用数学方法的能力和发散性思维的能力得到进一步的培养.实践已证明,数学建模与数学实验课这门课深受学生欢迎,它的教学无论对培养创新型人才还是应用型人才都能发挥其他课程无法替代的作用.
5具体的教学策略和途径
数学建模课程和数学实验课程同时开设,在课程教学中,要尽可能做到如下几个方面:
1)注重背景的阐述
让学生了解问题背景,才能知道解决实际问题需要哪些知识,才能做出贴近实际的假设,而这恰恰是建立一个能够解决实际问题的数学模型的前提.再者,问题背景越是清晰,越能够体现问题的重要性,这样才能激发学生解决实际问题的兴趣.
2)注重模型建立与求解过程中的数学语言的使用
在做好实际问题的简化后,使用精炼的数学符号表示现实含义是数学语言使用的彰显.基于必要的背景知识,建立符合现实的数学模型,通过多个方面对模型进行修正,向学生展示不同的条件相对应的数学模型对于现实问题的解决.在模型的求解上,严格要求学生在模型的假设,符号说明、图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面及时纠正.
3)注重经典算法的数学软件的实现和改进
由于实际问题的特殊性导致数学模型没有固定的模式,这就要求既要熟练掌握一般数学软件和算法的实现,又要善于改进和总结,使得现有的算法和程序能够通过修正来解决实际问题,这对于学生能力的培养不可或缺.只有不断的学习和总结,才有数学素养的培养和创新能力的提高.
参考文献:
[1]叶其孝.把数学建模、数学实验的思想和方法融人高等数学课的教学中去[J].工程数学学报,2003,(8):1-11.
[2]颜荣芳,张贵仓,李永祥.现代信息技术支持的数学建模创新教育[J].电化教育研究,2009,(3)。
[3]郑毓信.数学方法论的理论与实践[M].广西教育出版社,2009.
[4]姜启源.数学实验与数学建模[J].数学的实践与认识,2001,(5):613-617.
[5]姜启源,谢金星,叶俊.数学建模[M].第3版.北京:高等教育出版社,2002.
[6]周家全,陈功平.论数学建模教学活动与数学素质的培养[J].中山大学学报,2002,(4):79-80.
[7]付桐林.数学建模教学与创新能力培养[J].教育导刊,2010,(08):89-90.
数学建模论文范文--利用数学建模解数学应用题 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。 加强高中数学建模教学培养学生的创新能力 摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。 关键词:创新能力;数学建模;研究性学习。 《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生: (1)学会提出问题和明确探究方向; (2)体验数学活动的过程; (3)培养创新精神和应用能力。 其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。 数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。 一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。 教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。 如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大? 这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。 这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。请采纳。
数学作为一门工具性的学科,是高中数学最基础的课程。相应的,数学课程的教学也是教育界一直在关注的重点内容。下文是我为大家搜集整理的关于数学毕业论文参考范文下载的内容,欢迎大家阅读参考! 数学毕业论文参考范文下载篇1 浅析高中数学二次函数的教学方法 摘要:二次函数的学习是高中数学学习的重点,也是难点。师生要一起研究学习二次函数的基本方法,掌握其学习思路和规律,这样才能学好二次函数。 关键词:高中数学;二次函数;教学方法 在高中数学教学过程中,二次函数是非常重要的教学内容。随着教学改革的不断推进,初中阶段的二次函数因为是理解内容,没有纳入到考试内容中去,使高中学生在学习二次函数时有难度。因此,教师在教学这部分内容时,必须注重巩固和复习初中二次函数的内容和知识点,同时采取有效的方法合理地进行二次函数教学,确保获得较高的效率和质量,达到提高高中生数学成绩的目的。 一、加强对二次函数定义的认识和理解 高中数学的二次函数教学主要建立在初中二次函数的知识和定义基础上。在定义和解释二次函数的内容和知识过程中,教师主要利用集合之间相互对应的关系来解释二次函数的定义。因此,高中数学的二次函数教学与初中二次函数教学之间存在本质区别,这就造成了在二次函数教学过程中,学生很难适应和接受二次函数的定义。在高中数学的二次函数教学过程中,教师要根据初中二次函数的内容和定义,引导学生全面透彻地理解二次函数的定义和相关知识,这样才能确保学生学习和掌握更多的函数知识。在二次函数教学的过程中,教师要注重引导学生复习和回顾初中阶段掌握的二次函数知识点以及相关定义,并且与高中数学的二次函数内容相比较,这样学生就能对二次函数的定义、定义域、对应关系以及值域等有更深入的认识和理解。例如,在讲解例题:f(x)=x2+1,求解f(2)、f(a)、f(x+1)的过程中,若学生对于二次函数的定义以及概念有比较清晰的认识和理解,学生就可以看出该题是一个比较简单的代换问题,学生只需要将自变量进行替换,就能求解出问题的答案。但是,在解答这类问题的过程中,教师需要正确引导学生对二次函数的定义和概念加以认识和理解,如在f(x+1)=x2+2x+2中,学生需要认识到该函数值的自变量是x+1,而不是x=x+1。 二、采用数形结合的方式进行二次函数教学 在高中数学的二次函数教学过程中,一种常见的教学方法就是数形结合教学法。在二次函数教学过程中,采用数形结合的教学方法,不仅能够帮助学生更好地理解和掌握二次函数的性质以及图象,同时还有利于解决各种各样的二次函数问题,从而达到培养学生的思维能力以及提高二次函数教学效率的目的。采用数形结合的方式进行二次函数教学,所运用到的图像既能将二次函数的性质变化、奇偶性、对称性、最值问题以及变化趋势很好地反映出来,同时也是学习二次函数解题方法以及有效开展教学的重要载体。所以,教师在二次函数的教学过程中,需采用由浅至深的方式进行教学,合理把握和控制教学的难易程度,在学生了解和熟悉二次函数图像的前提下,帮助学生总结和认识其性质变化,从而达到顺利开展二次函数教学的目的。例如,教师在引导学生绘制二次函数图像的过程中,可以采用循序渐进的方式,通过绘制简单的二次函数图像,帮助学生学习和理解图像性质。如采用描点法绘制二次函数图像f(x)=-x2、f(x)=x2、f(x)=x2+2x+1等。在学习绘制函数图像的过程中,教师还可以设置一些例题,如“假设函数f(x)=x2-2x-1,在区间[a,+∞]中,呈单调递增的变化,求解实数a的取值范围”,或者“已知函数f(x)=2x2-4x+1,且-2 三、采用开发式的教学方式,培养学生的思维能力 在高中数学的二次函数教学过程中,涉及的内容范围广,所占的比例也相对较大。因此,教师在开展二次函数教学的过程中,其涉及的教学方法以及教学思路也非常多,教师需要合理选用教学思路和方法,这样才能有效培养和提升学生的数学能力以及思维能力。例如,在二次函数教学过程中,教师可以通过引导学生求解下列例题,让学生进一步理解和掌握二次函数的定义以及外延,并思考和总结出求解二次函数的思路和方法,以培养和提升学生的数学思维能力。如已知函数y=mx2+nx+c,其中a>0,且f(x)-x=0的两个根,x1与x2满足0 参考文献: [1]高红霞.高中数学二次函数教学方法的探讨[J].数理化解题研究,2015(11). [2]郗红梅.例析求二次函数解析式的方法[J].甘肃教育,2015(19). 数学毕业论文参考范文下载篇2 浅谈高中数学教学对信息技术的应用 摘要:为了提高高中数学的教学质量与丰富数学教学内容,将原有的知识点进行整合,使得学生更容易接受相关知识,文章提出了信息技术在高中数学教学中的应用策略:以信息技术为基础,丰富课堂教学内容;以信息技术为支点,优化教学过程;利用信息技术,让学生养成探索的习惯。 关键词:信息技术;高中数学;教学 信息技术在当下社会的发展给教学带来了许多改变,不仅使得教学变得更为高效,同时还令教学的内容变得丰富多彩。因此,随着信息技术在教学中的应用越来越广泛,教师就要对于这种教学模式进行探究,让教材与信息技术可以在进行授课的时候有效结合。只要是做好了以上的内容,就可以将高中数学与信息技术有机地结合到一起,以此推动数学教学的全面发展。从另一方面来说,信息技术也从另一个角度丰富了课堂内容,让学生可以从更多的方面来接触并了解数学中相关的知识与内容。从而使得学生可以养成多方面思考的习惯,让创新精神在他们的心底萌芽。 一、以信息技术为基础,丰富课堂教学内容 学习是一件非常枯燥的事情,驱使学生进行学习的动力是对于未知事物探索的兴趣。高中数学尤为如此,因为数学是一门理论性的学科,因此在学习的过程中,肯定会涉及到一些比较抽象的知识。对于这些抽象的知识,学生在学习起来多少都会有点困难,并且会影响学生的学习积极性。那么面对高中数学的学习,教师如何缓解并改变这一现状呢?目前比较好的办法就是将数学教学与信息技术进行结合,利用信息技术的多样化以及对丰富内容的获取能力,来为学生提供更多、更好的信息内容,供学生理解与学习。多媒体可以将声音、图片、甚至是视频都集中整合起来,立体直观地将数学中的抽象知识展现给学生。并且以此来激发学生的学习兴趣,除此之外,教师利用信息技术可以让课程变得更有层次感,让学生在学习的过程中减少疲劳的感觉。比如,教师在讲解各种函数曲线及其特性的时候,就可以利用多媒体动画的方式,向学生展现相关的函数知识。通过直观的表现,学生可以轻松地理解各种函数对应的图像以及相关的变化,在今后的学习过程中,会更为熟练地运用这些知识。 二、以信息技术为支点,优化教学过程 数学是一门自然科学,它的理论都是源自我们身边的生活。因此,在教学的过程中,教师要根据知识不断地引入实例,让学生可以更好地了解所学的知识。在高中的教材中,对于知识来说,理论知识已经非常丰富,但是对于实例的列举就显得不足。那么学生在学习的时候,理解起这些枯燥的定理与公式就显得非常吃力。这就是因为教材忽略学生的学习能力,编写得太过于理论化,因此就需要教师利用多媒体的优势,来为学生搜集一些关于实际应用数学知识的例子,来让学生了解并掌握其中的规律。这样有利于培养学生的思维与抽象能力,有助于他们今后解决问题时具有明确的思路。比如,在学习概率这一部分的知识时,学生很难联想到生活中相关的事情,教师可以搜集一些类似于老虎机、彩票甚至是其他的一些生活中博彩类性质的事情让学生进行了解。然后带领学生根据其规则进行计算,让学生了解到概率知识在生活中的运用,使学生认识到赌博的坏处。 三、利用信息技术,让学生养成探索的习惯 学习对于学生来说,不是教师的任务,而是每个人自己的事情。学生作为学习的主人,应当对学习具有一定的主导性。在日常的学习中,由于枯燥的内容以及过于逻辑性的思考,会使得学生丧失对于学习的乐趣与动力。正确的教学应当是教师进行适当的引导,让学生可以在他们的好奇心以及兴趣的驱使下自由地进行学习,充分地满足他们的爱好。只有这样,才能最大程度地发挥他们的主观能动性。而将信息技术应用于高中数学,正是给学生搭建了一个这样的平台,让学生可以更好地接触到大量的数学知识以及数学理念。同时,在网络上,各种优质的教学录像比比皆是,学生如果对于某个知识点有疑问,可以随时在网络上进行查看。这对于知识的探索与掌握有着很大的帮助。此外,利用信息技术与网络的优势,还可以让学生在进行资料与问题查询的过程中,养成良好的动手与动脑习惯,不再单单地依靠教师来进行解答,而是学会尝试用自己的方式来找到答案,这对学生的自主探究能力产生了一种提升作用。同时,由于结论是学生自己得到的,那么印象自然非常深刻。总之,信息技术在高中数学教学中的应用,是一件一举多得的事情,不仅可以改变高中数学枯燥的教学环境,而且能充分调动学生的学习积极性,让学生在学习的同时还能了解到更为广泛的信息与其他知识,并且可以激励学生对于疑难问题进行自主探索,提高了他们动手动脑的能力,并且也提高了教学质量。 参考文献: [1]唐冬梅,陈志伟.信息技术在高中数学学科教学中的应用研究文献综述[J].电脑知识与技术,2016(18):106-108. [2]傅焕霞,张鑫.浅议信息技术与高中数学教学有效整合的必要性[J].科技创新导报,2011(35):163. [3]王继春.跨越时空整合资源:信息技术与高中数学教学的有效整合[J].中国教育技术装备,2011(31):135-136. [4]崔志.浅析新课程标准的背景下信息技术在高中数学教学中的应用[J].中国校外教育,2014(10):93. 猜你喜欢: 1. 关于数学的论文范文免费下载 2. 数学系毕业论文范文 3. 数学本科毕业论文范文 4. 数学文化的论文免费下载 5. 大学数学毕业论文范文
数学毕业论文参考范文1.论文题目:四次带参数PH曲线的构造方法关键词: m-Bézier曲线;形状参数;PH曲线;几何特征摘要: 针对四次带参数PH曲线,讨论其几何特征和几何构造方法。首先,定义了一类含一个形状参数的四次m-Bernstein基函数,进而得到四次m-Bézier曲线。然后通过引入辅助控制顶点给出四次m-Bézier曲线成为PH曲线的几何特征条件,最后提出一种新的四次带参数PH曲线的几何构造方法,并给出误差分析,通过数值例子,验证了方法的有效性和可行性。文章引用:杨雪, 彭兴璇, 段卓. 四次带参数PH曲线的构造方法[J]. 理论数学, 2023, 13(3): 395-404. .一类分数阶微分方程初值问题解的存在唯一性关键词: 分数阶微分方程;初值问题;Picard迭代法;存在性;唯一性摘要: 分数阶微积分在数学和工程方面已经成为人们特别熟知的概念,其是整数阶微积分的推广。分数阶微积分有好多种形式,譬如,Riemann-Liouville、Caputo分数阶微积分,带有一个函数的分数阶微积分是Riemann-Liouville分数阶微积分的推广形式。在本文中,基于带有一个函数的分数阶微积分的基本性质和Picard迭代方法,我们将讨论一类以带有一个函数的分数阶导数表示的微分方程初值问题解的存在唯一性。同时通过本文的研究,我们不仅将Picard迭代法应用于一类以带有一个函数的分数阶导数表示的微分方程初值问题解的存在唯一性的论证中,还提供了求解此类分数阶微分方程初值问题近似解的一种思路。文章引用:杨钰翎, 梁俊玮, 李健. 一类分数阶微分方程初值问题解的存在唯一性[J]. 理论数学, 2023, 13(3): 476-485.
数学学科的 教育 要不断适应社会的需求。教育的作用是要把自然的人培养成社会的人,使其成为社会生产力的组成部分。下文是我为大家搜集整理的关于数学系 毕业 论文的内容,欢迎大家阅读参考!
谈谈小学数学兴趣的培养
孔子曾说:“知之者不如好之者,好之者不如乐之者。”这就是说“兴趣”是最好的老师。由此可见,小学数学不只是传授知识,而是培养和提高孩子的各方面素质,其中学习兴趣尤其重要。浓厚的兴趣是学习知识、培养能力、发展智力的重要条件。多年来的教学实践使我感到在数学教学中,教师应以兴趣为核心培养学生的非智力因素。以下,我在小学数学教学中如何培养学生的学习兴趣,谈几点体会。
一、根据小学生的心理特点来培养学习兴趣
教育家陶行知指出:“从前,先生只管照自己的意思去教学生,凡是学生的才能兴味,一概不顾,专门勉强拿学生来凑他的教法,配他的教材。”这样的结果只能是“先生收效少,学生苦恼多”。课堂教学应注意培养学生的学习兴趣,因为“兴趣是最好的老师”,学生只有对所学的知识感兴趣,才能集中注意力,积极思考,主动发现、探究新的知识。
1.要抓住学生“好奇”的心理特征,创设最佳的学习环境,提高学生的学习兴趣。数学课上教师要善于利用新颖的 教学 方法 ,唤起学生对新知识的好奇,诱发学生的求知欲,激发学生学习数学的兴趣。在教学的进行中,教师根据教材的重点、难点和本班学生的实际,在知识的生长点、转折点设计有趣新颖的提问,以创设最佳的情境,抓住学生的好奇心,激发学生的兴趣,提高课堂的教学效果。例如,我在给学生讲解乘法分配律内容时,为了促进学生的学习兴趣,我给他们讲了高斯用很短的时间内计算出自然数从1到100的求和的事故。这个 故事 立即引起了学生们的极大兴趣。这样,学生的思维活跃起来了,从而对要学习内容产生了兴趣。
2.要抓住学生“好胜”的特点,创设“成功”的情境,以激发学生和学习兴趣。学生对数学的学习兴趣是在每一个主动学习活动中形成和发展的。教师要善于掌握有利的时机,利用学生的好胜心鼓励、引导、点拨帮助学生获得成功。让学生从中获得成功的体验,这样再从乐中引趣,从乐中悟理,更进一步增强学生学习数学的兴趣。
二、加强教学的直观性,培养学习兴趣
人的思维是从具体到抽象,从形象思维向 抽象思维 转化的。 小学生的思维特点是以形象思维为主,而数学学科的特点又是高度的抽象性和严密的逻辑性。那么,怎样使学生逐步从形象思维向抽象思维过渡呢?在课堂教学中,采用直观教具、投影仪等生动形象的教学手段,能使静态的数学知识动态化,不但能激发学生学习的积极性,而且学生学到的知识也能印象深刻,永久不忘。
三、 创设情景使学生产生兴趣
教育家夸美纽斯曾说:“应该用一切可能的方式把孩子们的求知与求学的欲望激发起来”。在教学中,教师根据教学内容的特点,尽量利用形式多样、灵活多变、生动活泼的教学方法,为学生学习创设一种愉快的情境,让学生感到每节课都有新意,保持新鲜感。例如在学习了平行四边形、三角形、梯形的面积时,其基本方法是通过剪和拼,使新学习的图形转化为已学过的图形。学生一旦掌握了这种基本方法,就能举一反三,很容易学会这几何图形的面积计算了。所以可以特意安排一节课,专门让学生动手剪拼图形,观察剪拼成的图形与原图形的关系。这样,学习以上三种图形的面积公式时,就“水到渠成”,能收到事半功倍之效。“动手操作”这种学习方式由于能吸引学生多种感官参与学习,所以极大地激发学生学习数学的兴趣。
苏霍姆林斯基说:“在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、 研究者、探索者。在 儿童 的精神世界里,这种需要特别强烈。”在教学中创设问题情境,将会引起儿童迫不及待地探索、研究的兴趣。这样就能有效激发学生探究意识和学习兴趣,使学生产生渴望探究新知的良好心理状态,从而主动深入学习。
四、联系实际生活培养学习兴趣
联系实际生活就是注重数学的实用性,让数学贴近生活,突出从解决实际问题出发的运用能力。所以,在数学教学中充分利用这个特点,尽量联系实际,利用身边的例子、生活中的例子和所学知识解决实际问题。让数学走向生活,让学生在生活中体验数学,让学生明白数学并不神秘,数学就在我们的身边,体现数学的实用性。
例如:在教学人民币的认识时,课前先让学生和家长到超市购物,感性认识购物需要人民币,并记住所买物品的价钱。上课时让学生 说说 如何购物的,为学习人民币作好铺垫。课上又让学生通过模拟购买不同价格,不同品种的物品,使学生在简单的付钱,算钱,找钱的过程中,感知人民币的商品功能,从中体会生活中处处都有使用到人民币的地方,人人学有价值的数学,体会到数学与实际生活的紧密联系。这样学生的学习积极性就调动起来了。
总之,培养学生学习兴趣,是个长期的过程,要贯穿于整个教学过程的始终,教师要善于挖掘教材的兴趣因素和知识本身的魅力,适当地调整教学过程,灵活地运用教学方法,时时注意激发学生沉睡的兴趣,做到“课开始,趣已生;课进行,趣正浓;课结束,趣犹存。”
<<<下页带来更多的数学系毕业论文