首页

毕业论文

首页 毕业论文 问题

数学毕业论文函数的写法

发布时间:

数学毕业论文函数的写法

数学毕业论文参考范文1.论文题目:四次带参数PH曲线的构造方法关键词: m-Bézier曲线;形状参数;PH曲线;几何特征摘要: 针对四次带参数PH曲线,讨论其几何特征和几何构造方法。首先,定义了一类含一个形状参数的四次m-Bernstein基函数,进而得到四次m-Bézier曲线。然后通过引入辅助控制顶点给出四次m-Bézier曲线成为PH曲线的几何特征条件,最后提出一种新的四次带参数PH曲线的几何构造方法,并给出误差分析,通过数值例子,验证了方法的有效性和可行性。文章引用:杨雪, 彭兴璇, 段卓. 四次带参数PH曲线的构造方法[J]. 理论数学, 2023, 13(3): 395-404. .一类分数阶微分方程初值问题解的存在唯一性关键词: 分数阶微分方程;初值问题;Picard迭代法;存在性;唯一性摘要: 分数阶微积分在数学和工程方面已经成为人们特别熟知的概念,其是整数阶微积分的推广。分数阶微积分有好多种形式,譬如,Riemann-Liouville、Caputo分数阶微积分,带有一个函数的分数阶微积分是Riemann-Liouville分数阶微积分的推广形式。在本文中,基于带有一个函数的分数阶微积分的基本性质和Picard迭代方法,我们将讨论一类以带有一个函数的分数阶导数表示的微分方程初值问题解的存在唯一性。同时通过本文的研究,我们不仅将Picard迭代法应用于一类以带有一个函数的分数阶导数表示的微分方程初值问题解的存在唯一性的论证中,还提供了求解此类分数阶微分方程初值问题近似解的一种思路。文章引用:杨钰翎, 梁俊玮, 李健. 一类分数阶微分方程初值问题解的存在唯一性[J]. 理论数学, 2023, 13(3): 476-485.

数学论文是从事数学研究的数学工作者,为发表自己的数学科研成果而写出的一种论文,它是科学论文的一种。

数学论文与其他科学论文最根本的共同点之一,就是科学内容和科学语言文字形式的统一。它的特殊性体现在结构的格式化、逻辑的严格性、语言的简洁性和符号的广泛性。

1结构的格式化

数学论文的结构形式,与一般的科学论文常用格式没有多少区别,只是在某些具体环节上具有不尽相同的布局,这是根据所取得的科研成果的内容来安排的。在数学前言部分一般应包括提出课题的背景、动机,这是属于那一方面的课题,对已有成果的评价,课题在所属领域中所占的地位、课题的范围和所达到的目标等。

正文部分是数学论文的核心,在写作布局上,由于研究工作所涉及的数学学科、选题、研究方法,结果的表达方式就有一定的差别,因此,就不能作统一的规定。对于纯数学理论方面,该部分内容应包括定理和定理的证明,’用来证明定理的引理和由定理得出的推论,为了证明或验证某一间题所举的例子。对于应用数学方面的问题,该部分内容一般应包括实际问题的描述、数学模型的建立、解决问题的方法及其理论根据和具体实例。

2逻辑的严格性

作为宣布成果的数学论文,应按照逻辑的严格性的要求去写,不然就不成其为数学论文。一篇数学论文要无懈可击,要经得起推敲。在叙述定理的证明时,要追究每一步是否有根据,它的根据是什么,是定义,还是公理和定理,决不能含糊,更不能想当然。当你使用“显然”二字时,要仔细考虑一下,是否真“显然”。用直观自然语言推导的环节,要特别注意,是否还存在没有考虑的情况,是否可换成严格的推理。在这里一定要细心推敲,一些不可弥补的错误往往出现在这里。

按照演绎的逻辑系统写数学论文,这是宣布成果的一个传统写法。这种形式写出的数学论文一环扣一环,结构紧凑,使整篇论文形成一:个严密的逻辑结构,能以较小的篇幅容纳较多的信息量。但这种传统的写法,把数学家的思维过程隐蔽起来。我们写论文宣布成果,这当然很重要,但仅作到这点还不够,还应该给人更多的启迪思维的作用。应该告诉读者,该定理是怎样提出来的,又是怎样想到这个证明的,这就是要把数学家的思维过程写进去。’当然这会增加论文的篇幅。不过我们没有必要每篇论文都写思维过程,只要选择那些典型的具有启发意义的数学成果写出其思维过程。阅读这样的论文,使人能够得到数学发现发明的启示,从而更好地培养人们的数学创造能力。欧拉著作之所以能成为启迪人们智慧的源泉,就在于他把自己的一些不严格的猜想过程也写到著作中去了,这样使读者很容易窥察到欧拉是怎样进行思维的。因此我们写论文要求定理的证明过程一定是严格的,对于定理的提出和证明的某些思路就没有必要一定要求它是按严格逻辑推理得出来的',实际上,这也是不可能的。因此严格和不严格是相对的。

3语言的简洁性名

数学论文要求语言简洁,以恰到好处的语言,准确地表达数学概念、逻辑推理,使之字里行间,增一字则太多,减一字则术少。能以最少的语言表达出最精湛的数学结果,反映出最丰富的数学内容。

在数学推论的过程中,并不是每步都要写出理论根据。数学论文不是教科书,它的对象是给专业工作者看的。因此,推证过程以同行专家能看懂为原则,所以证明步骤不需要写那么详细、允许有较大的跳跃性。特别是那些常见的推理步骤,明显的推理过程,显然的理论根据,可以一笔而过,不需要费笔墨.论文要求以最少的篇幅,容纳最多的信息。对于常用的数学概念和定理在论文中出现不需要作解释,对于数学申新出现的概念租定理要注明出处,以便读者查对,如果出处的论文不宜查对,为了方便读者,可以给出其释义。有些新出现的概念和定理虽然名称一样,但其含义在不同的论文里不尽相同,这样注明出处,使读者不会产生歧义.

数学术语就是在数学科学领域里使用的专门词语,髓着数学科学的发展,人们对数学的认识日益深化,反映数学本质和表达数学内容的新概念不断地涌现出来,用专口的诃语把这些新概念固定下来,就形成了数学术语。这些新概念是否需要以定义的形式给出来,以及用什

么样的词语把它固定下来,这是需要认真考虑的。以定义给出的溉念需要考虑它的作用的重要性以及应用的广泛性。给新概念以合适的词语名称,这需要考虑概念的含义和已有的一些概念的名称之间的关系。在数学发展的历史长河中,每个数学术语二经舜生,就以其精确的固定的含义长久地为人们所使用。有些名称,尽管与其含义不相符,也没有必要去改动。例如,无理数与虚数.

在公理、定义、定理中恰当使用一些文言词语,可以使数学论文更加精炼、简洁、准确。例如在定理中运用“当且仅当”4个字,就把定理中条件和结论的关系表达得一清二楚。在给数学概念下定义和叙述定理时,句型结构严谨规范,比较固定单一。我们在写作时,要很好效法这些已有的规范句型,把常见固定的格式用在自己的写作中,论文就显得干净利落,简洁有力,准确可靠,给人赏心悦目之感。

4符号的广泛性.

一‘在数学论文中广泛地使用数学符号和由符号组成的公式,形成了一套数学语言符号系统,它与自然语言一样承担着贮存和传递数学信息的职能。利用数学符号和公式可简明扼要地反映出准确而深刻的数学知识,能够较集中地表达数学内容,使人看了一目了然,便于记忆,容易演算和进行推理,也便于国际交流·刘如n个数相加简单符号代替,这样可以压缩论文篇幅,行文也显得明了清秀,例如记等式右边的式子在论文中多次出现,这样把它简记成等式右边的符号IR皿就简洁多了。符号用;来表示所要阐述的数学概念和定理,恰当连贯地使用数学符号,可以使一篇论文明自易读,使人得到一种美的享受。每篇论文都要用到大量符号,因此着手写数学论文时,首先要考虑一下符号系统,哪些符号应该用英文大写,哪些用小写,哪些用黑体,哪些用法文花体,又哪些该用希腊字母等等,都要有周全的考虑。这样才能使整个文章协调一致,整齐美观。

使用符号要注意协调性,例如三元线性函数一般表示为ax+b夕+。z或a:二:十a:二:+。:劣:,如果表示为“‘劣:+by:+。x:就显得不协调了。又如果给定的两个集合表示为A,b,那就不好,习惯地表示为A,B。方程就不如把z换成y好,即如下表示

因为是考虑两个变元,通常用二,y表示,这是一种习惯表示法。·数学中一些习惯法在写论文时,最好应予保留。自然语言和数学符号语言联合使用时,要按汉语语言规范,有时虽然有些变态,但并不影响意义的表达,例如二必须大于零,可以表达为必须劣>0。

虽然不合汉语的语序,但这种变态是允许的,这种变态是一种合理的变态。自然语言与数学符号重复也是允许的,例如自然数。,这种重复使得表达清晰、连贯,而不是一种赘余。

写数学函数论文还是比较简单的。首先你看看你对哪一块的函数最熟悉,简单的一次二次,超越函数,复变函数,幂函数等等都是可以拿来写的,其实真正函数在生活中用到的极为有限,都是搞科研做课题才会用到,而且用起来也都是套套公式之流,算不得复杂。要是有能力的话,尝试写论文讨论下函数的建模问题,各类函数分别对应哪种建模,优势在哪里,不行在哪里,这个比较有营养,写的好了会特别出彩哦。

数学毕业论文函数怎么写

函数教学论文【1】

摘 要:初中数学中的函数知识非常重要,搞好这部分内容的教学,必须要理解基本概念,理清知识结构,树立“运动变化”的理念,渗透数形结合的思想。

关键词:初中数学 函数教学 数形结合

初中数学中变量与函数概念的引入,标志着数学由常量数学向变量数学的迈进。

尽管初中函数内容只是讲述了函数的一些最基本、最初步的知识,但是其中蕴含的数学思想和方法,对培养学生观察、研究、解决问题的能力是十分有益的。

不仅如此,函数概念还是高中代数的核心部分,学好初中函数的有关知识,可以为研究高中数学中的各种初等函数奠定一定的基础。

因而,初中函数概念的基础性作用是显而易见的。

在教学中应从四个方面引导学生正确理解函数的概念,进而掌握函数的特征和性质。

一、正确理解三组关系,系统把握函数概念

点的坐标的定义与点与坐标的一一对应关系;函数定义中某一变化过程和自变量与函数的对应关系;函数图象定义中的自变量值。

函数值→有序数对→点的坐标→点→图象,加强这三组关系的理解,有利于把函数的解析式、点的坐标和函数图象结合起来,建立起较完整的函数概念。

二、理清知识结构,构建知识体系

用这样一个知识结构图,可以把平面直角坐标系、点、图象和解析式有机地结合起来,并从中可以找到相互之间的联系和问题的转化方式。

三、树立运动变化的观点

函数概念的核心意义是反映在某一变化过程中两个变量之间的依赖关系,即一个量的变化随着另一个量的变化而变化。

这就使得原本静止的数的概念之间产生了一种动感的联系。

在教学过程中,应引导学生通过寻找、发现身边的事例来体会这种变量关系。

例如,生长期的身高随着年龄的变化而变化;一天中的气温随着时间的变化而变化;工厂的收入随着产量的增加而增加;二元一次方程的无数解,在方程3x-2y=1中,当x的取值发生变化时,y的值随着x的变化而变化……

在阐述这种运动关系的同时,还应该用式子、表格、图示的方法来举例描述,以加深学生对这种抽象的运动关系的直观认识,这样就可以逐步地帮助学生树立一种“运动变化”的观点。

四、培养数形结合的思想

数学教学过程应该体现明暗两条线:一条是明线,即数学知识内容的教学;另一条是暗线,即数学思想方法的形成。

由于数学思想方法既是数学的基础知识,又是将知识转化成能力的桥梁,用好了数学思想就是发展了数学能力。

因此,在教学中老师要注重培养学生对数学思想方法的渗透、概括和总结、应用能力的提升。

数形结合的思想方法是初中数学中一种重要的思想方法。

何为数形结合的思想方法?我们知道,数学是研究现实世界的数量关系和空间形式的科学,数和形是数学知识体系中两大基础概念,把刻画数量关系的数和具体直观的图形有机结合,将抽象思维和形象思维有机结合,根据研讨问题的需要,把数量关系的比较转化为图象性质或其位置关系的讨论,或把图形间的待定关系转化为相关因素的数量计算,即数与形的灵活转换、相互作用,进而探求问题的解答,就是数形结合的思想方法。

在函数这部分内容中,蕴含着丰富的数学思想,如坐标的思想、数形结合的思想等,其中最重要的是数形结合的思想。

那么在函数的教学过程中如何渗透与应用数形结合的思想方法,就显得尤为重要。

例如,一次函数就是一条直线,这条直线上的点的坐标无论怎样变化都满足解析式。

直线是由点组成的,点可以用数来描述。

反过来,直线就反映了数的变化特征。

一个函数可以用图形来表示,而借助这个图形又可以直观地分析出函数的一些性质和特点,这为数学的研究与应用提供了很大的帮助,教学时老师若注重了数形结合思想方法的渗透,将会收到事半功倍的效果。

在初中数学教学中常见的体例有:(1)数与数轴的点的对应关系;(2)函数与图象的对应关系;(3)曲线与方程的对应关系;(4)集合元素和几何条件为背景建立起来的概念;(5)所给的等式或代数式的结构有明显的几何意义。

当然,以上谈及的几点内容仅仅是本人在教学实践中的一点体会,事实上,初中函数部分的内容及要求是极其丰富的,培养学生的思维能力以及能够灵活地应用知识才是我们学习的最终目的,在讨论社会问题、经济问题、跨学科综合等问题时,越来越多的运用到了数学的思想、方法,其中函数的内容占有相当重要的地位。

因此,我们一定要在教与学的过程中认真钻研教材,深入挖掘教材中蕴含的思想、方法和观点,以达到提高学生的思维能力、应用能力和认知水平的目的。

初中函数教学【2】

【摘要】数学思想方法乃是数学规律与本质,学生掌握了数学思想方法,就能更快捷的获取知识,更透彻地理解知识。

初中函数教学应教给学生掌握学习函数的思想方法。

本文仅对初中函数教学作初步探索.

【关键词】函数教学

一、认识函数思想,引领教学方向

函数描述了自然界中量的依存关系,反映了一个事物随着另一个事物变化而变化的关系和规律,函数的思想方法就是提取问题的数学特征,用联系变化的观点提出数学对象,抽象其数学特征,建立函数关系,并利用函数的性质研究解决问题的一种数学思想方法。

尽管内容不多,但函数的思想已经有所体现,它仍占据着重要地位。

二、理清初中函数概念,系统掌握初等函数知识

1、理解概念的逻辑性。

数学概念可分为两个重要方面:一是概念的'质',也就是概念的内涵(概念的本质属性);二是概念的'量'也就是概念的外延(概念所有对象的和)概念的外延还有大小之分,外延大的概念叫做种概念,外延小的概念叫做属概念,一个属概念与其他属概念本质上的差别又称为属差,要想给某一个概念下定仪,首先应给学生指出被定义的概念最接近的概念是什么,再紧接着指出被定义概念的属差,既概念定义 = 种概念 + 属查。

2、明确概念的层次性。

一般的概念都是通过对实验现象或对某中具体事物分析经过抽象概括而导出的,他是一个形成过程,中学中的许多概念,是从几个原始概念和公理出发,通过一番的推理而扩展成为一系列的定义和公里,而每一个新出现的概念都依赖着旧的概念来表达,或是由旧概念推倒出来的。

3、掌握概念的抽象性。

初中学数学中的许多原始概念,都是对具体的数和形的感知而形成表象,再从表象经过抽象概括而形成的。

概念是人们对感性材料进行抽象的产物,感性认识是形成概念的基础。

如果学生没有感性认识或感性认识不怎么完备时,我们就应该借助与实物、模型、多媒体课件、或形象的语言进行较直观的教学,使学生从中获得感性认识。

三、绘制初等函数图象 ,理解初等函数性质

著名数学家华罗庚先生说:"数缺形时少直观,形缺数时难入微"。

因此要想绘制初等函数图象,理解其性质,首先要了解"数形结合"的思想。

数学中大量数的问题后面都隐含着形的信息,图形的特征上也体现着数的关系。

我们要抽象复杂的数量关系,通过形的形象、直观揭示出来,以达到形帮数的目的。

四、运用函数同其他学科和实际的联系,培养学生学习函数的兴趣

函数是这样定义的,"设在某变化过程中的两个变量x和y,若对于x在某一范围内的每一确定的值,y都有唯一确定的值与它对应,那么,就把y称为x的函数 ,x是自变量,y是因变量"。

如图1⑴中,在矩形ABCD中,AB=10cm,BC=8cm。

点P从点A出发,沿路线A→B→C→D运动,到点D停止;点Q从点D出发,沿D→C→B→A路线运动,到点A停止。

若P、Q两点同时出发,点P的速度为1厘米/秒,点Q的速度为2厘米/秒。

a秒时,P、Q两点同时改变速度,点P的.速度变为b厘米/秒,点Q的速度变为d厘米/秒。

图1第2个图是点P出发x秒后△APD的面积S1(平方厘米)与x(秒)的函数关系图象。

图1第3个图是点Q出发x秒后△AQD的面积S2(平方厘米)与x(秒)的函数关系图象。

2、函数与市场经济

例2、某化工材料销售公司购进了一种化工原料共7000千克,购进价格为每千克30元。

物价部门规定其销售单价不得高于每千克70元,也不得低于30元。

市场调查发现:单价定为70元时日均销售60千克;单价每低1元日均多售出2千克。

在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算)。

设销售单价为x元,日均获利y元。

顶点坐标为(65,1950)。

二次函数的草图(如图2)所示。

观察草图可知,当单价定为65元时,日均获利最多,是1950元。

⑶、当日均获利最多时,单价为65元,日均销售60+2×(70-65)=70千克,那么总获利为1950×(7000÷70)=195000元

当销售单价最高时,单价为70元日均销售60千克,将这种化工原料全部售完需700÷60≈117天。

那么总获利为(70-30)×7000-117×500=221500元

∵ 221500>195000,且221500 - 195000 = 26500

∴销售单价最高时获总利最多,且多获利26500。

可见,函数的应用非常广泛,它与其它学科有着密切的联系,是解决实际问题的重要工具,因此可以提高和培养学生学习初等函数的兴趣。

当今世界科技发展一日千里,科学知识急剧增加,学生在今后的工作生活和进一步学习中有许多需要认识、探讨、分析和解决的纷繁复杂的问题,我们要把函数的思想方法作为一把金光闪闪的钥匙来交给学生,让他们运用这把金钥匙来开启知识的宝库,迎接新生活的挑战!

中学函数教学【3】

【摘要】从数学自身的发展过程来看,变量与函数概念的引入,标志着数学由常量数学向变量数学的迈进,尽管初中函数内容只是讲述了函数的一些最基本、最初步的知识,但是其中蕴含的数学思想和方法,对培养学生观察问题、研究问题和解决问题的能力都是十分有益的。

【关键词】学习兴趣 情境教学

函数是初中数学里重要的数学知识,函数学习的好坏对于学生的继续学习影响深远,特别是现在新的课程标准提出研究性学习,更多地注重学生识图能力的培养,并尝试用数形结合思想和函数思想解决问题。

笔者结合多年的中学数学教学,就如何搞好中学函数教学,浅谈如下思考。

一、明确学习函数的重要性,培养学生学习函数的兴趣

函数概念在初中数学关于式、方程、不等式等主要内容中起到了横向联系和纽带作用,从本质上看:代数式可看作函数的解析式或值;两个代数式A与B恒等等价于函数y=A-B恒等于零;方程的根可看作函数图像与x轴的交点的横坐标;在不等式的证明中,函数的性质经常是有力的工具。

由于函数应用十分广泛,而函数的概念的形成和发展是中学数学中从常量到变量的一个认识上的飞跃,理解和掌握函数的思想方法无疑会有助于实现这一飞跃。

在初中阶段我们学习的函数是比较简单的,属于函数启蒙,但是它是高中数学乃至整个数学体系的主要内容,所以初中阶段是函数概念和函数思想形成的关键阶段,这一阶段教学的成败,直接关系到学生进入高中、大学的数学学习乃至一生的数学造诣。

让学生充分认识到函数的重要性,有利于提高他们学习函数的兴趣。

二、进行情境教学

教师可以把数学知识点以问题的形式提出,激发学生的学习欲望,在思考的过程中加深对知识点的思考,同时创设情境为其提供思考空间,使其思维从形象过渡到抽象,完成思维的转换.进行课堂教学, 很多问题都是要靠学生自己想象出来的, 但是如果每个问题都让学生去室外感受也是不可能的,这就需要我们很好地加强学生的抽象思维能力. 尤其是在学习函数的时候,就更需要学生一定的理解能力与思维水平。

学习函数知识的最终目的是要能够用于实际生活中. 因此教师在进行函数教学时,将具体情境中的材料作为启发学生的思考的材料,通过相互交流、合作学习、独立思考等形式来讲,加强学生对知识点的理解.

当学生在一个问题情境中,则更能够把握问题的理解,在问题情境中,教师要给予一定的指导和帮助. 教师遵守循序渐进、逐渐理解的方式,为学生创设问题情境,创设学习的机会. 在问题情境中邀游,学生能够沐浴在数学活动中. 问题情境是一种加强数学理解与问题解决的有效方式.

三、坚持相互联系、运动发展的观点进行教学

函数表现出两个变量之间的相互依存关系,一个变量会随着另一个变量的变化而发生变化,两者处于相互牵制、共同变化发展的秩序之中,看似静止的数的概念之间存在着运动的联系。

在初中函数教学中,教师应带领学生在学习函数基础知识以及解题过程中,培育学生们树立相互联系、运动发展的数学理念,在动态的思维模式中掌握函数知识的基本要领。

两个变量间的相互影响关系,对于刚刚接触函数知识的学生来说不太容易理解。

初中函数教师可以根据“一个量随另一个量的变化而变化”这一关系,让学生结合熟悉的数学知识以及日常生活实际来举例,比如“汽车的汽油消耗量随着行车路程的变化而变化”,或者“圆形的面积随着半径长的变化而变化”等等。

这样,便使学生更迅速地理解自变量与变量的定义,并能在活跃的思维环境中锻炼分析、解决问题的能力。

函数中的变量关系,与数学知识体系中的很多领域都存在着融会贯通的关系,比如求路程问题“距离=速度*时间”等,体现出函数的重要性。

学习函数知识,实际上也打开了更多数学领域的视角。

另外,函数同其他学科的联系也十分紧密,是解决实际问题的重要工具。

初中数学教师可以利用函数的广泛联系性,在广征博引中激发学生的学习热情,从而达到真正的教学实效。

四、讲解中注意类比法的运用

在讲解一次函数的图像时,我们一般由特例导出。

例如:在同一直角坐标系中画出下列函数的图像:(1)y=2x+3(2)y=2x+5 (3)y=2x-3;(4)y=-2x+3(5)y=-2x-3

然后由学生归纳出一次函数的图像是一条直线,并让学生由上述图像得出:当(1)k>0,b>0 ;

(2)k>0, b<0;(3)k<0, b>0;(4)k<0, b<0时函数图像所经过的象限及单调性,最后老师总结,学生理解记忆。

这套程序很一般化,学生也难以记忆。

不如先让学生回忆正比例函数(1)y=2x;(2)y=-2x的图像与性质,再画出以上函数图像,借助类比的方法得出一次函数的图像及性质。

向学生演示正比例函数图像的平移变化即得到一次函数图像,这样可以避免学生把二者割裂开,把握它们的共性,区分正比例函数的特殊性。

通过类比,培养学生知识迁移能力。

五、加强学科之间的相互沟通,增强学生运用数学的意识

当前教育改革的方向之一是加强各学科知识间的综合运用。

数学作为一门基础学科,不仅服务于其他学科,而且在研究数学的应用时,若能结合别的学科特点,运用别的学科知识解释其基本原理,无疑对数学应用的理解也有很大的帮助,进而对学生的综合能力的培养也将有极大的好处。

例3、一根弹簧原长15cm,已知在20公斤内弹簧的长度与所挂的质量成一次函数关系。

现测得当挂重4公斤时,弹簧的长度为17cm,问当弹簧的长度为22cm时,挂重多少公斤?

分析:由已知条件弹簧的长度与挂重成一次函数关系,则可用待定系数法求出函数关系。

再通过计算即能求得问题的解答。

解:设挂重x(kg)(0≤x≤20)时,弹簧长度为y(cm),依题意可设,y=kx+b (k≠0)由条件:x=0时,y=15 即b=15

当 x=4时,y=17 即4k+15=17 所以K=

故函数解析式为:y= x+15 (0≤x≤20)

所以当y=22时,由 x+15=22,得x=14

答:当弹簧长为22cm时,挂重14公斤。

对于物理问题,必须根据物理概念,物理知识列出函数关系式,把它转化为数学问题,再运用数学方法进行运算,其它学科也如此。

总之,中学函数学得如何,将直接影响到学生今后数学学习兴趣和成绩的好坏,因此广大中学数学老师肩负着关键的职责,一定要引起我们的高度重视。

以上几点是笔者的拙见,希望能给同行一点帮助,并敬请同行斧正。

【参考文献】

[1]张凤林.浅谈初中函数教学[J].学问, 2009(15).

[2]徐德本.初中函数教学要把握好“四个一”[J].中学数学教学参考.2008,(18).

[3]王学海;探究初中生学习函数困难及教学策略[J];成功(教育);2011年18期

数学作为一门工具性的学科,是高中数学最基础的课程。相应的,数学课程的教学也是教育界一直在关注的重点内容。下文是我为大家搜集整理的关于数学毕业论文参考范文下载的内容,欢迎大家阅读参考! 数学毕业论文参考范文下载篇1 浅析高中数学二次函数的教学方法 摘要:二次函数的学习是高中数学学习的重点,也是难点。师生要一起研究学习二次函数的基本方法,掌握其学习思路和规律,这样才能学好二次函数。 关键词:高中数学;二次函数;教学方法 在高中数学教学过程中,二次函数是非常重要的教学内容。随着教学改革的不断推进,初中阶段的二次函数因为是理解内容,没有纳入到考试内容中去,使高中学生在学习二次函数时有难度。因此,教师在教学这部分内容时,必须注重巩固和复习初中二次函数的内容和知识点,同时采取有效的方法合理地进行二次函数教学,确保获得较高的效率和质量,达到提高高中生数学成绩的目的。 一、加强对二次函数定义的认识和理解 高中数学的二次函数教学主要建立在初中二次函数的知识和定义基础上。在定义和解释二次函数的内容和知识过程中,教师主要利用集合之间相互对应的关系来解释二次函数的定义。因此,高中数学的二次函数教学与初中二次函数教学之间存在本质区别,这就造成了在二次函数教学过程中,学生很难适应和接受二次函数的定义。在高中数学的二次函数教学过程中,教师要根据初中二次函数的内容和定义,引导学生全面透彻地理解二次函数的定义和相关知识,这样才能确保学生学习和掌握更多的函数知识。在二次函数教学的过程中,教师要注重引导学生复习和回顾初中阶段掌握的二次函数知识点以及相关定义,并且与高中数学的二次函数内容相比较,这样学生就能对二次函数的定义、定义域、对应关系以及值域等有更深入的认识和理解。例如,在讲解例题:f(x)=x2+1,求解f(2)、f(a)、f(x+1)的过程中,若学生对于二次函数的定义以及概念有比较清晰的认识和理解,学生就可以看出该题是一个比较简单的代换问题,学生只需要将自变量进行替换,就能求解出问题的答案。但是,在解答这类问题的过程中,教师需要正确引导学生对二次函数的定义和概念加以认识和理解,如在f(x+1)=x2+2x+2中,学生需要认识到该函数值的自变量是x+1,而不是x=x+1。 二、采用数形结合的方式进行二次函数教学 在高中数学的二次函数教学过程中,一种常见的教学方法就是数形结合教学法。在二次函数教学过程中,采用数形结合的教学方法,不仅能够帮助学生更好地理解和掌握二次函数的性质以及图象,同时还有利于解决各种各样的二次函数问题,从而达到培养学生的思维能力以及提高二次函数教学效率的目的。采用数形结合的方式进行二次函数教学,所运用到的图像既能将二次函数的性质变化、奇偶性、对称性、最值问题以及变化趋势很好地反映出来,同时也是学习二次函数解题方法以及有效开展教学的重要载体。所以,教师在二次函数的教学过程中,需采用由浅至深的方式进行教学,合理把握和控制教学的难易程度,在学生了解和熟悉二次函数图像的前提下,帮助学生总结和认识其性质变化,从而达到顺利开展二次函数教学的目的。例如,教师在引导学生绘制二次函数图像的过程中,可以采用循序渐进的方式,通过绘制简单的二次函数图像,帮助学生学习和理解图像性质。如采用描点法绘制二次函数图像f(x)=-x2、f(x)=x2、f(x)=x2+2x+1等。在学习绘制函数图像的过程中,教师还可以设置一些例题,如“假设函数f(x)=x2-2x-1,在区间[a,+∞]中,呈单调递增的变化,求解实数a的取值范围”,或者“已知函数f(x)=2x2-4x+1,且-2 三、采用开发式的教学方式,培养学生的思维能力 在高中数学的二次函数教学过程中,涉及的内容范围广,所占的比例也相对较大。因此,教师在开展二次函数教学的过程中,其涉及的教学方法以及教学思路也非常多,教师需要合理选用教学思路和方法,这样才能有效培养和提升学生的数学能力以及思维能力。例如,在二次函数教学过程中,教师可以通过引导学生求解下列例题,让学生进一步理解和掌握二次函数的定义以及外延,并思考和总结出求解二次函数的思路和方法,以培养和提升学生的数学思维能力。如已知函数y=mx2+nx+c,其中a>0,且f(x)-x=0的两个根,x1与x2满足0 参考文献: [1]高红霞.高中数学二次函数教学方法的探讨[J].数理化解题研究,2015(11). [2]郗红梅.例析求二次函数解析式的方法[J].甘肃教育,2015(19). 数学毕业论文参考范文下载篇2 浅谈高中数学教学对信息技术的应用 摘要:为了提高高中数学的教学质量与丰富数学教学内容,将原有的知识点进行整合,使得学生更容易接受相关知识,文章提出了信息技术在高中数学教学中的应用策略:以信息技术为基础,丰富课堂教学内容;以信息技术为支点,优化教学过程;利用信息技术,让学生养成探索的习惯。 关键词:信息技术;高中数学;教学 信息技术在当下社会的发展给教学带来了许多改变,不仅使得教学变得更为高效,同时还令教学的内容变得丰富多彩。因此,随着信息技术在教学中的应用越来越广泛,教师就要对于这种教学模式进行探究,让教材与信息技术可以在进行授课的时候有效结合。只要是做好了以上的内容,就可以将高中数学与信息技术有机地结合到一起,以此推动数学教学的全面发展。从另一方面来说,信息技术也从另一个角度丰富了课堂内容,让学生可以从更多的方面来接触并了解数学中相关的知识与内容。从而使得学生可以养成多方面思考的习惯,让创新精神在他们的心底萌芽。 一、以信息技术为基础,丰富课堂教学内容 学习是一件非常枯燥的事情,驱使学生进行学习的动力是对于未知事物探索的兴趣。高中数学尤为如此,因为数学是一门理论性的学科,因此在学习的过程中,肯定会涉及到一些比较抽象的知识。对于这些抽象的知识,学生在学习起来多少都会有点困难,并且会影响学生的学习积极性。那么面对高中数学的学习,教师如何缓解并改变这一现状呢?目前比较好的办法就是将数学教学与信息技术进行结合,利用信息技术的多样化以及对丰富内容的获取能力,来为学生提供更多、更好的信息内容,供学生理解与学习。多媒体可以将声音、图片、甚至是视频都集中整合起来,立体直观地将数学中的抽象知识展现给学生。并且以此来激发学生的学习兴趣,除此之外,教师利用信息技术可以让课程变得更有层次感,让学生在学习的过程中减少疲劳的感觉。比如,教师在讲解各种函数曲线及其特性的时候,就可以利用多媒体动画的方式,向学生展现相关的函数知识。通过直观的表现,学生可以轻松地理解各种函数对应的图像以及相关的变化,在今后的学习过程中,会更为熟练地运用这些知识。 二、以信息技术为支点,优化教学过程 数学是一门自然科学,它的理论都是源自我们身边的生活。因此,在教学的过程中,教师要根据知识不断地引入实例,让学生可以更好地了解所学的知识。在高中的教材中,对于知识来说,理论知识已经非常丰富,但是对于实例的列举就显得不足。那么学生在学习的时候,理解起这些枯燥的定理与公式就显得非常吃力。这就是因为教材忽略学生的学习能力,编写得太过于理论化,因此就需要教师利用多媒体的优势,来为学生搜集一些关于实际应用数学知识的例子,来让学生了解并掌握其中的规律。这样有利于培养学生的思维与抽象能力,有助于他们今后解决问题时具有明确的思路。比如,在学习概率这一部分的知识时,学生很难联想到生活中相关的事情,教师可以搜集一些类似于老虎机、彩票甚至是其他的一些生活中博彩类性质的事情让学生进行了解。然后带领学生根据其规则进行计算,让学生了解到概率知识在生活中的运用,使学生认识到赌博的坏处。 三、利用信息技术,让学生养成探索的习惯 学习对于学生来说,不是教师的任务,而是每个人自己的事情。学生作为学习的主人,应当对学习具有一定的主导性。在日常的学习中,由于枯燥的内容以及过于逻辑性的思考,会使得学生丧失对于学习的乐趣与动力。正确的教学应当是教师进行适当的引导,让学生可以在他们的好奇心以及兴趣的驱使下自由地进行学习,充分地满足他们的爱好。只有这样,才能最大程度地发挥他们的主观能动性。而将信息技术应用于高中数学,正是给学生搭建了一个这样的平台,让学生可以更好地接触到大量的数学知识以及数学理念。同时,在网络上,各种优质的教学录像比比皆是,学生如果对于某个知识点有疑问,可以随时在网络上进行查看。这对于知识的探索与掌握有着很大的帮助。此外,利用信息技术与网络的优势,还可以让学生在进行资料与问题查询的过程中,养成良好的动手与动脑习惯,不再单单地依靠教师来进行解答,而是学会尝试用自己的方式来找到答案,这对学生的自主探究能力产生了一种提升作用。同时,由于结论是学生自己得到的,那么印象自然非常深刻。总之,信息技术在高中数学教学中的应用,是一件一举多得的事情,不仅可以改变高中数学枯燥的教学环境,而且能充分调动学生的学习积极性,让学生在学习的同时还能了解到更为广泛的信息与其他知识,并且可以激励学生对于疑难问题进行自主探索,提高了他们动手动脑的能力,并且也提高了教学质量。 参考文献: [1]唐冬梅,陈志伟.信息技术在高中数学学科教学中的应用研究文献综述[J].电脑知识与技术,2016(18):106-108. [2]傅焕霞,张鑫.浅议信息技术与高中数学教学有效整合的必要性[J].科技创新导报,2011(35):163. [3]王继春.跨越时空整合资源:信息技术与高中数学教学的有效整合[J].中国教育技术装备,2011(31):135-136. [4]崔志.浅析新课程标准的背景下信息技术在高中数学教学中的应用[J].中国校外教育,2014(10):93. 猜你喜欢: 1. 关于数学的论文范文免费下载 2. 数学系毕业论文范文 3. 数学本科毕业论文范文 4. 数学文化的论文免费下载 5. 大学数学毕业论文范文

本文从以下几方面探讨如何学好二次函数 . 一、理解二次函数的内涵及本质 . 二次函数 y=ax2 + bx + c ( a ≠ 0 , a 、 b 、 c 是常数)中含有两个变量 x 、 y ,我们只要先确定其中一个变量,就可利用解析式求出另一个变量,即得到一组解;而一组解就是一个点的坐标,实际上二次函数的图象就是由无数个这样的点构成的图形 . 二、熟悉几个特殊型二次函数的图象及性质 . 1 、通过描点,观察 y=ax2 、 y=ax2 + k 、 y=a ( x + h ) 2 图象的形状及位置,熟悉各自图象的基本特征,反之根据抛物线的特征能迅速确定它是哪一种解析式 . 2 、理解图象的平移口诀“加上减下,加左减右” . y=ax2 → y=a ( x + h ) 2 + k “加上减下”是针对 k 而言的,“加左减右”是针对 h 而言的 . 总之,如果两个二次函数的二次项系数相同,则它们的抛物线形状相同,由于顶点坐标不同,所以位置不同,而抛物线的平移实质上是顶点的平移,如果抛物线是一般形式,应先化为顶点式再平移 . 3 、通过描点画图、图象平移,理解并明确解析式的特征与图象的特征是完全相对应的,我们在解题时要做到胸中有图,看到函数就能在头脑中反映出它的图象的基本特征; 4 、在熟悉函数图象的基础上,通过观察、分析抛物线的特征,来理解二次函数的增减性、极值等性质;利用图象来判别二次函数的系数 a 、 b 、 c 、△以及由系数组成的代数式的符号等问题 . 三、要充分利用抛物线“顶点”的作用 . 1 、要能准确灵活地求出“顶点” . 形如 y=a ( x + h ) 2 + K →顶点(- h,k ),对于其它形式的二次函数,我们可化为顶点式而求出顶点 . 2 、理解顶点、对称轴、函数最值三者的关系 . 若顶点为(- h , k ),则对称轴为 x= - h , y 最大(小) =k ;反之,若对称轴为 x=m , y 最值 =n ,则顶点为( m , n );理解它们之间的关系,在分析、解决问题时,可达到举一反三的效果 . 3 、利用顶点画草图 . 在大多数情况下,我们只需要画出草图能帮助我们分析、解决问题就行了,这时可根据抛物线顶点,结合开口方向,画出抛物线的大致图象 . 四、理解掌握抛物线与坐标轴交点的求法 . 一般地,点的坐标由横坐标和纵坐标组成,我们在求抛物线与坐标轴的交点时,可优先确定其中一个坐标,再利用解析式求出另一个坐标 . 如果方程无实数根,则说明抛物线与 x 轴无交点 . 从以上求交点的过程可以看出,求交点的实质就是解方程,而且与方程的根的判别式联系起来,利用根的判别式判定抛物线与 x 轴的交点个数 . 五、灵活应用待定系数法求二次函数的解析式 . 用待定系数法求二次函数的解析式是我们求解析式时最常规有效的方法,求解析式时往往可选择多种方法,如能综合利用二次函数的图象与性质,灵活应用数形结合的思想,不仅可以简化计算,而且对进一步理解二次函数的本质及数与形的关系大有裨益 .〖教学目标〗 ◆1,经历一元二次方程概念的发生过程. ◆2,理解一元二次方程的概念. ◆3,了解一元二次方程的一般形式,会辨别一元二次方程的二次项系数,一次项系数及常数项. 〖教学重点与难点〗 ◆教学重点:一元二次方程的概念,包括一般形式. ◆教学难点:例1第4题计算容易产生差错,是本节教学的难点. 〖教学过程〗 合作学习 列出下列问题中关于未知数x的方程 ①正方形的面积为80,边长为x,则可列出方程 . ②某村的粮食年产量,在两年内从60万千克增长到72万千克,问平均每年增长的百分率是多少 设年平均增长率为x,则可列出方程 . 引入新课 观察方程x2=80 和 两边都是整式,只含有一个未知数,并且未知数的最高次数是2次,我们把这样的方程叫做一元二次方程,能使一元二次方程两边相等的未知数的值叫一元二次方程的解(或根) 练一练:1,判断下列方程是否为一元二次方程:① 2(3x+2)=x2 ② +x+3=0 ③ ④ ⑤ 2,判断未知数的值,,是否是方程的根. 一般地,任何一个关于x 的一元二次方程都可以化为的形式,我们把形如(,,为常数,)称为一元二次方程的一般形式,其中,,分别称为二次项,一次项和常数项.,分别称为二次项系数和一次项系数. 思考:为什么,,可以为零吗 三,范例讲解: 例1:把下列方程化成一元二次方程的一般形式,并写出它的二次项系数,一次项系数和常数项. ① ② ③ ④ 解:① 移项,整理,得 这个二次项系数为,一次项系数为,常数项为. ② 移项,整理,得 这个二次项系数为,一次项系数为,常数项为. ③ 移项,整理,得 这个二次项系数为,一次项系数为,常数项为. ④ 移项,整理,得 这个二次项系数为,一次项系数为,常数项为. 我们在写一元二次方程的一般形式时,通常按未知数的系数从高到低排列,先写二次项,再写一次项,最后是常数项. 四,练习巩固: 1,方程 ① ② ③ ④ 中是一元二次方程的为 (填序号). 2,关于的一元二次方程的一个解是,则 3,判断下列各方程后面的两个数是不是它的解. ① ( ) ② ( ) ③ (3 , 1) ( ) ④ () ( ) 五,小结: 记住一元二次方程的一般形式,并会判断方程是否为一元二次方程; 化成一元二次方程的一般形式后,能说出二次项系数,一次项系数和常数项; 能判断的值是不是方程的解. 作业:见作业本 一元二次方程(2) 【教学目标】 ◆1.掌握因式分解法解一元二次方程的基本步骤. ◆2.会用因式分解法解一元二次方程. 【教学重点与难点】 ◆教学重点:用因式分解法解一元二次方程. ◆教学难点:例3方程中含有无理系数,需将常数项2看成,才能分解因式,是本节教学的难点. 【教学过程】 复习引入 1,将下列各式分解因式: 教师指出:把一个多项式化成几个整式的积的形式叫做因式分解. 2,你能利用因式分解解下列方程吗 请中等程度的学生上来板演,其余学生写在练习本上,教师巡视. 之后教师指出:像上面这种利用因式分解解一元二次方程的方法叫做因式分解法.(板书课题) 新课学习 归纳因式分解法解一元二次方程的步骤: 教师首先指出:当方程的一边为0,另一边容易分解成两个一次因式的积时,用因式分解法求解方程比较方便.然后归纳步骤:(板书) 若方程的右边不是零,则先移项,使方程的右边为零; 将方程的左边分解因式; 根据若M·N=0,则M=0或N=0,将解一元二次方程转化为解两个一元一次方程. 2,讲解例2. (1)解下列一元二次方程: 教师在讲解中不仅要突出整体的思想:把x-2及3x-4和4x-3看成整体,还要突出化归的思想:通过因式分解把一元二次方程转化为一元一次方程来求解.并且教师要认真板演,示范表述格式,强调两个一元一次方程之间的连结词要用"或",而不能用且. (2)想一想:将第(1),(2),(3)题的解分别代人原方程的左,右两边,等式成立吗 (3)归纳用因式分解法解的一元二次方程的基本类型: ①先变形成一般形式,再因式分解: ②移项后直接因式分解. 在选择方法时通常可先考虑移项后能否直接分解因式,然后再考虑化简后能否分解因式. 讲解例3. 解方程 在本例中出现无理系数,要注意引导学生将将常数项2看成,另外对于方程中出现两个相等的根,教师要做好板书示范. 3,补充例4 若一个数的平方等于这个数本身,你能求出这个数吗 首先让学生设出未知数,列出方程(),再让学生求解.根据学生的求解情况强调:对于此类方程不能两边同时约去x,因为这里的x可以是0. 三,巩固练习: 课本第32页课内练习. 四,体会和分享 能说出你这节课的收获和体验让大家与你分享吗 先由学生自由发言,教师再投影演示: 1.能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积; 2.用分解因式法解一元二次方程的一般步骤: (1)将方程的右边化为零; (2)将方程的左边分解为两个一次因式的乘积; (3)令每一个因式为零,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解. 3. 用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0. 4,用分解因式法解一元二次方程的注意点:1.必须将方程的右边化为零;2.方程两边不能同时除以含有未知数的代数式. 5,数学思想:整体思想和化归思想. 五.课后作业 1.书本作业题 2.作业本 【板书设计】 屏幕 一元二次方程(二) ——因式分解法解一元二次方程 1. 用分解因式法解一元二次方程的一般步骤: (1)将方程的右边化为零; (2)将方程的左边分解为两个一次因式的乘积; (3)令每一个因式为零,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解. 2. 数学思想:整体思想和化归思想. 一元二次方程的解法(1) 【教学目标】 ◆1. 理解开平方法解一元二次方程的依据是平方根的意义. ◆2. 会用开平方法解一元二次方程. ◆3. 理解配方法. ◆4. 会用配方法解二次项系数为1的一元二次方程. 【教学重点与难点】 ◆教学重点:开平方法. ◆教学难点:配方法有一个比较复杂的过程,无论从理解和运用上,对学生来说都有一定的难度. 【教学手段】 用多媒体powerpoint和黑板的形式. 【教学过程】 (一)引入新课 问题1: 在修建甬(宁波)金(金华)高速公路时,遇到高山,需要开掘隧道,为了预计这座山隧道的长度,工程人员测量了山的高度约AB=3千米,坡面的长度约AC=5千米.请你估算开掘这座山的隧道约有多少千米 从甬金高速公路入手引出 型的一元二次方程,体现方程与几何图形性质的应用,对一元二次方程概念的理解,方程根的检验等起着复习巩固的作用. (二)由问题1可得 即 再利用因式分解法得出方程的根. 如果把 变形为 ,进而可以理解为x是16的平方根,引出求这种方程的根可以用两边直接开方的方法进行,再得出开平方法的概念. 通过让学生观察体会得出开平方法的两个特征:1,它适合于什么样的方程 (左边是一个关于x的完全平方,右边为一个非负常数即 ).2:用什么样的方法来解 (方程的两边直接开平方的方法) 然后通过一系列,连续的例题来巩固用开平方法解一元二次方程,既突出本节课的重点,又比较自然的过渡到用配方法解一元二次方程. 例1, (1 ) (2) (3) (4) 通过第4个例题的讲解学生已经了解到,如果左边不是一个直接的完全平方,那么通过观察,变形,把它配成完全平方,就可以用开平方法来解一元二次方程. (三),问题2: 把方程变形:左边是一个含有x的式子的完全平方,而右边是一个非负数. 1:先移项:含有未知数的项移到左边,含有常数的项移到右边. 2:方程两边同加上一个合适的数. 3:左边是一个完全平方,右边是一个非负常数. 4:最后用开平方法来解 即可引出配方法的概念.像这样,把一元二次方程的左边配成一个完全平方式,右边为一个非负常数,然后用开平方法求解,这种解一元二次方程的方法叫做配方法. 然后让学生回答:用配方法解一元二次方程关键在哪里 (就是如何在方程左,右两边同加上一个合适的数使左边配成一个完全平方.) 为了弄清楚在方程的左右两边究竟应加上一个什么样的合适的数,可以通过专门的3个练习来得出.即突破本节课的难点. (1) (2) (3) 最后让学生得出结论:1:加上一次项系数一半的平方; 2:前提条件:二次项系数为1 例2, (1) (2) 再次总结:形如 (二次项系数为1时),可以用配方法来解一元二次方程. 具体的步骤有: 第一:移项. 第二:等式两边同加上一次项系数一半的平方. 第三:再用开平方法来解方程. (四)提出挑战题:当二次项系数不是1时,怎么办 为下节课的教学打下了基础. 例3, 课堂小结 让学生回答1:用开平方法,配方法解一元二次方程的概念.2:用这两种方法解方程时,方程的特点.3:用这两种方法解方程时的步骤.4:让学生回答在解方程过程中应注意的事项. 六,布置作业. 一元二次方程和解法(2) 【教学目标】 ◆1. 巩固用配方法解一元二次方程的基本步骤. ◆2. 会用配方法解二次项系数的绝对值不为1的一元二次方程. 【教学重点与难点】 ◆教学重点:用配方法解二次项的系数的绝对值不是1的一元二次方程. ◆教学难点:当二次项系数为小数或分数时,用配方法解一元二次方程. 【教学过程】 一.复习旧知 用适当的方法解下列方程: 1,(x-2)2=3 2, x2+3x+1=0 请学生上来板演,老师点评归纳. 二.新课讲授 1.出示引例:用配方法解方程5x2=10x+1 提出问题:当一元二次方程的二次项系数的绝对值不是1时,怎样用配方法来解 经学生讨论后,指定一名学生(中等程度)回答. 教师总结:对于二次项系数的绝对值不是1的一元二次方程,只要将方程的两边都除以二次项系数,就转化为我们已经能解决的问题.即用配方法解二次项系数是1的一元二次方程. 2.讲解例题 例3:用配方法解下列一元二次方程 (1)2x2+4x-3=0 (2) 3x2-8x-3=0 评注(1)本例讲解可由上一课时的复习来引入,先给出方程x2+2x-1=0,让学生解答,并板书过程,同时解答方程3x2+6x-3=0,让学生作比较,学生容易发现,两个方程同解.再把6x改成4x,并提出问题:方程3x2+4x-3=0又应该如何解 从而把问题化归. (2)本例中两个小题的解法是相通的,在讲解时,需要让学生明确配上去的值到底应该是多少,即解决的一半是多少这一问题,常用的解决方法是把该数乘以. 教师总结:1:用配方法解系数为1的一元二次方程x2+px+q=0时,一般步骤为: (1)x2+px=-q(移); (2)x2+px+() 2=-q+() 2(配); (3)(x+)2= (化); (4)解得x=- (解) 2,当二次项系数不为1时,则在 "移"之前先要有个"除",即两边同除以二次项系数,使二次项系数为1. 练习:用配方法解下列方程 练习: 一个长方形牧场的面积为8100平方米,长比宽多19米.这个牧场的周长是多少米 三:小结 本课时的重点用配方法解答各种一元二次方程. 本课时的难点是对二次项系数的处理. 四:布置作业 课本""作业本"及习题精选中对应的练习. 一元二次方程的解法(3) 【教学目标】 ◆知识教学点:理解一元二次方程求根公式的推导,会运用公式法解一元二次方程. ◆能力训练点:1.通过求根公式的推导,培养学生数学推理的严密性及严谨性. 2.培养学生快速而准确的计算能力. ◆德育渗透点:1.通过公式的引入,培养学生寻求简便方法的探索精神及创新意识. 2.让学生体验到所有一元二次方程都能运用公式法去解,形成全面解决问题的积极情感,感受公式的对称美,简洁美,产生热爱数学的情感. 【教学重点与难点】 ◆教学重点:求根公式的推导及用公式法解一元二次方程. ◆教学难点:对求根公式推导过程中依据的理论的深刻理解. 【教学过程】 (一)复习引入 1.用配方法解下列方程. (1)x2-7x+11=0,(2)9x2=12x+14. (通过两题练习,使学生复习用配方法解一元二次方程的思路和步骤,为本节课求根公式的推导做第一次铺垫.) 2.用配方法解关于x的方程 x2+2px+q=0. 解:移项,得x2+2px=-q 配方,得x2+2px+p2=-q+p2 即(x+p)2=p2-q. (教师板书,学生回答,此题为求根公式的推导做第二次铺垫.)3.用配方法推导出一元二次方程ax2+bx+c=0(a≠0)的根. 解:因为a≠0,所以方程的两边同除以a, ∵ a≠0, ∴4a2>0 当b2-4ac≥0时. 从上面的结论可以发现: (1)一元二次方程a2+bx+c=0(a≠0)的根是由一元二次方程的系数a,b,c确定的. (2)在解一元二次方程时,可先把方程化为一般形式,然后在b2-4ac≥0的前提下,把a,b,c的值代入上式中,可求得方程的两个根. 的求根公式,用此公式解一元二次方程的方法叫做公式法. (二)师生互动,应用新知 互动1 师:一元二次方程ax2+bx+c=0(a≠0)的求根公式中,要求b2-4ac ≥0 , 那么b2-4ac<0时会怎样呢 生:当b2-4ac<0时,没有意义,此时一元二次方程ax2+bx+c=0(a≠0)无实数解. 明确: b2-4ac≥0是公式的一个重要组成部分,是求根公式成立的前提条件,这一点是解一元二次方程的一个隐藏条件.当b2-4ac0, ∴ x1=2,x2=1. 在教师的引导下,学生回答,教师板书,提醒学生一定要先"代"后"算".不要边代边算.引导学生总结步骤 1.确定a,b,c的值.2.算出b2-4ac的值.3.代入求根公式求出方程的根. 例2不是一般形式,所以在利用公式法之前应先化成一般形式,另外注意例2中的b2-4ac=0,方程有两个相同的实数根,应写成x1= 例3用公式法解一元二次方程: (1)X(x-1)=(X-2)2; (2) x2+x+1=0 其中第一题要先化简成一般形式,如系数是分数或小数,可以直接代公式,也可以先把系数化成整系数后再代公式,视实际清况而定.第二题b2-4ac<0,方程无实数根. 明确:运用公式法解一元二次方程的步骤:( 1) 把方程化为一般形式, 确定a,b,c的值;(2)求出b2-4ac的值;(3)若b2-4ac≥0,把a,b,c及b2-4ac的值代入一元二次方程的求根公式,求出方程的根;若b2-4ac<0,此时方程无解. 练习:课内练习1.熟悉公式法的步骤,训练快速准确的计算能力. 互动3 请同学们根据学习体会,小结一下解一元二次方程的几种方法,通常你是如何选择的 请同学们交流,教师鼓励发言. 明确: 解一元二次方程一般有以下四种方法:直接开平方法,因式分解法,配方法,求根公式法.(1)当方程形如(x-a)2=b(b≥0)时,可用直接开平方法;(2) 当方程左边可以直接简单因式分解时,可选用因式分解法;(3) 配方法是一种重要的解法,尤其要熟悉配方法的整个过程,但解一般方程不选用这种解法;(4) 公式法是一元二次方程最重要的,最常用的解法,任何一元二次方程都可以选用这种解法,我们有时也称它为万能公式. 练习:课内练习2.合理选择解法. (三)达标反馈,深化新知 (1)用公式法解方程4x2+12x+3=0,得到 (A) (2)关于x的一元二次方程x2-2x+2+K=0有两个实数根,则k的取值范围是 (3)不解方程,你能说出下列方程解的个数吗: x2-2x-2=0 4x2-4x+1=0 2x2-x+2=0, (四)总结及布置作业 引导学生从以下几个方面总结: ≥0). (2)利用公式法求一元二次方程的解的步骤:①化方程为一般式.②确定a,b,c的值.③算出b2-4ac的值.④代入求根公式求根.公式法与配方法都是通法,前者较之后者简单. 2.求根公式是指在b2-4ac≥0对方程的解,如果b2-4ac<0时,则在实数范围内无实数解.渗透一种分类的思想. 一元二次方程的应用(2) 【教学目标】 ◆1. 继续探索一元二次方程的实际应用,进一步体验列一元二次方程解应用题的应用价值. ◆2. 进一步掌握列一元二次方程解应用题的方法和技能. 【教学重点与难点】 ◆教学重点:本节教学的重点是继续探索一元二次方程的应用. ◆教学难点:"合作学习"的问题教为复杂,计算量大,是本节的难点. 【教学过程】 1.复习提问, (1)列方程解应用题的基本步骤 答: ①审题; ②找出题中的量,分清有哪些已知量,哪些未知量,哪些是要求的未知量; ③找出所涉及的基本数量关系; ④列方程; ⑤解方程; ⑥检验. 2.新课讲解, 列一元儿次方程解应用题在初中阶段主要有三类问题:(1)变化率问题;(2)市场营销中单价,销量,销售额以及利润之间的相互关系问题;(3)根据图形中的线段长度,面积之间的相互关系建立方程的问题.而我们今天要解决的就是根据图形中的线段长度,面积之间的相互关系建立方程的问题. 如图2-4,有一张长40cm,宽25cm的长方形硬纸片,裁去角上四个小正方形之后,折成如图2-5那样的无盖纸盒.若纸盒的底面积是450cm,那么纸盒的高是多少 分析 设纸盒的高为x (cm),那么裁去的四个小正方形的边长也是x(cm),这样就可以用关于x的代数式表示纸盒底面长方形的长和宽,根据纸盒的底面积是450cm,就可以列出方程. 解 设纸盒的高为x(cm),则纸盒底面长方形的长和宽分别为(40-2x)cm,(25-2x)cm.由题意,得 化简,整理,得 解这个方程,得 (不合题意,舍去) 答:纸盒的高为5cm. 接下来,同学们来做一下课内练习题1. 围绕长方形公园的栅栏长280m.已知该公园的面积为4800㎡,求这个公园的长与宽. 解: 设公园的一边长为x(m),则另一边长为(140-x)m,由题意,得 化简,整理,得 解这个方程,得 答:略. 合作学习: 一轮船一30km/h的速度由西向东航行(如图2-6),在途中接到台风警报,台风中心正以20km/h的速度由南向北移动.已知距台风中心200km的区域(包括边界)都属于受台风影响区.当轮船接到台风警报时,测得BC=500km,BA=300km. 如果轮船不改变航向,轮船会不会进入台风影响区 你采用什么方法来判断 如果你认为轮船会进入台风影响区,那么从接到报警开始,经过多少时间就进入台风影响区 建议: ①假设经过t时后,轮船和台风中心分别在cb位置; ②运用数形结合的方法寻找相等关系,并列出方程; ③通过相互交流,检查列方程,计算等过程是否正确; ④讨论:如果把航速改为10km/h,结果该怎样 提示:①几何画版给出演示; ②若从接到台风警报开始,经过t时,轮船到达C'点,台风中心到达B'点,那么船是否受到台风影响与什么有关 ③当B'C'符合什么条件时船受到台风影响 ④你能用关于t的代数式表示B',C'两点之间的距离吗 ⑤你能用一元二次方程表示船开始受台风影响的条件吗 解答(略) 练习 练习:P40——课内练习2 补充练习:P40---作业题5 课堂小结: 体会如何根据图形中的线段长度,面积之间的相互关系建立方程的问题.从中学到了什么

函数方程的解法毕业论文

在一篇数学 教育 论文中,题目是论文的要件之首,它不同于一般 文章 的题目,我们要重视题目的重要性。以下是我为大家精心准备的数学教育论文题目,欢迎阅读!数学教育论文题目(一) 1、浅谈中学数学中的反证法 2、数学选择题的利和弊 3、浅谈计算机辅助数学教学 4、数学研究性学习 5、谈发展数学思维的 学习 方法 6、关于整系数多项式有理根的几个定理及求解方法 7、数学教学中课堂提问的误区与对策 8、中学数学教学中的创造性思维的培养 9、浅谈数学教学中的“问题情境” 0、市场经济中的蛛网模型 11、中学数学教学设计前期分析的研究 12、数学课堂差异教学 13、浅谈线性变换的对角化问题 14、圆锥曲线的性质及推广应用 15、经济问题中的概率统计模型及应用 数学教育论文题目(二) 1、二阶变系数齐次微分方程的求解问题 2、一种函数方程的解法 3、微分中值定理的再讨论 4、学生数学学习的障碍研究; 5、中学数学教育中的素质教育的内涵; 6、数学中的美; 7、数学的和谐和统一----谈论数学中的美; 8、推测和猜想在数学中的应用; 9、款买房问题的决策; 10、线性回归在经济中的应用; 11、数学规划在管理中的应用; 12、初等数学解题策略; 13、浅谈数学CAI中的不足与对策; 14、数学创新教育的课堂设计; 15、中学数学教学与学生应用意识培养; 16、关于培养和提高中学生数学学习能力的探究; 17、运用多媒体培养学生 18、高等数学课件的开发 19、 广告 效益预测模型; 数学教育论文题目(三) 1、浅谈菲波纳契数列的内涵和应用价值 2、一道排列组合题的解法探讨及延伸 3、整除与竞赛 4、足彩优化 5、向量的几件法宝在几何中的应用 6、递推关系的应用 7、坐标方法在中学数学中的应用 8、小议问题情境的创设 9、数学概念探索启发式教学 10、柯西不等式的推广与应用 11、关于几个特殊不等式的几种巧妙证法及其推广应用 12、一道高考题的 反思 13、数学中的研究性学习 15、数字危机 16、数学中的化归方法 17、高斯分布的启示 18、 的变形推广及应用 19、网络优化 20、泰勒公式及其应用 猜你喜欢: 1. 数学教育教学论文参考范文 2. 关于数学专业毕业论文题目参考 3. 数学教育专业毕业论文 4. 有关数学教育的论文范文 5. 数学教育专业毕业论文参考

你要中国知网上看看,那里论文挺多的。

毕业论文主要目的是培养学生综合运用所学知识和技能,理论联系实际,独立分析,解决实际问题的能力,你知道本科数学论文题目都有哪些吗?接下来我为你推荐本科数学毕业论文题目,仅供参考。

本科数学毕业论文题目

★浅谈奥数竟赛的利与弊

★浅谈中学数学中数形结合的思想

★浅谈高等数学与中学数学的联系,如何运用高等数学于中学数学教学中 ★浅谈中学数学中不等式的教学

★中数教学研究

★XXX课程网上教学系统分析与设计

★数学CAI课件开发研究

★中等职业学校数学教学改革研究与探讨

★中等职业学校数学教学设计研究

★中等职业学校中外数学教学的比较研究

★中等职业学校数学教材研究

★关于数学学科案例教学法的探讨

★中外著名数学家学术思想探讨

★试论数学美

★数学中的研究性学习

★数字危机

★中学数学中的化归方法

★高斯分布的启示

★a二+b二≧二ab的变形推广及应用

★网络优化

★泰勒公式及其应用

★浅谈中学数学中的反证法

★数学选择题的利和弊

★浅谈计算机辅助数学教学

★论研究性学习

★浅谈发展数学思维的学习方法

★关于整系数多项式有理根的几个定理及求解方法

★数学教学中课堂提问的误区与对策

★怎样发掘数学题中的隐含条件

★数学概念探索式教学

★从一个实际问题谈概率统计教学

★教学媒体在数学教学中的作用

★数学问题解决及其教学

★数学概念课的特征及教学原则

★数学美与解题

★创造性思维能力的培养和数学教学

★教材顺序的教学过程设计创新

★排列组合问题的探讨

★浅谈初中数学教材的思考

★整除在数学应用中的探索

★浅谈协作机制在数学教学中的运用

★课堂标准与数学课堂教学的研究与实践

★浅谈研究性学习在数学教学中的渗透与实践

★关于现代中学数学教育的思考

★在中学数学教学中教材的使用

★情境教学的认识与实践

★浅谈初中代数中的二次函数

★略论数学教育创新与数学素质提高

★高中数学“分层教学”的初探与实践

★在中学数学课堂教学中如何培养学生的创新思维

★中小学数学的教学衔接与教法初探

★如何在初中数学教学中进行思想方法的渗透

★培养学生创新思维全面推进课程改革

★数学问题解决活动中的反思

★数学:让我们合理猜想

★如何优化数学课堂教学

★中学数学教学中的创造性思维的培养

★浅谈数学教学中的“问题情境”

★市场经济中的蛛网模型

★中学数学教学设计前期分析的研究

★数学课堂差异教学

★一种函数方程的解法

★浅析数学教学与创新教育

★数学文化的核心—数学思想与数学方法

★漫话探究性问题之解法

★浅论数学教学的策略

★当前初中数学教学存在的问题及其对策

★例谈用“构造法”证明不等式

★数学研究性学习的探索与实践

★数学教学中创新思维的培养

★数学教育中的科学人文精神

★教学媒体在数学教学中的应用

★“三角形的积化和差”课例大家评

★谈谈类比法

★直觉思维在解题中的应用

★数学几种课型的问题设计

★数学教学中的情境创设

★在探索中发展学生的创新思维

★精心设计习题提高教学质量

★对数学教育现状的分析与建议

★创设情景教学生猜想

★反思教学中的一题多解

★在不等式教学中培养学生的探究思维能力

★浅谈数学学法指导

★中学生数学能力的培养

★数学探究性活动的内容形式及教学设计

★浅谈数学学习兴趣的培养

★浅谈课堂教学的师生互动

★新世纪对初中数学的教材的思考

★数学教学的现代研究

★关于学生数学能力培养的几点设想

★在数学教学中培养学生创新能力的尝试

★积分中值定理的再讨论

★二阶变系数齐次微分方程的求解问题

★浅谈培养学生的空间想象能力

★培养数学能力的重要性和基本途径 ★课堂改革与数学中的创新教育

★如何实施中学数学教学中的素质教育 ★数学思想方法在初中数学教学中的渗透 ★浅谈数学课程的设计

★培养学生学习数学的兴趣

★课堂教学与素质教育探讨

★数学教学要着重培养学生的读书能力 ★数学基础知识的教学和基本能力的培养 ★初中数学创新教育的实施

★浅谈数学教学中培养学生的数学思维能力 ★谈数学教学中差生的转化问题

★谈中学数学概念教学中如何实施探索式教学 ★把握学生心理激发数学学习兴趣

★数学教学中探究性学习策略

★论数学课堂教学的语言艺术

★数学概念的教与学

★优化课堂教学推进素质教育

★数学教学中的情商因素

★浅谈创新教育

★培养学生的数学兴趣的实施途径

★论数学学法指导

★学生能力在数学教学中的培养

★浅论数学直觉思维及培养

★论数学学法指导

★优化课堂教学焕发课堂活力

★浅谈高初中数学教学衔接

★如何搞好数学教育教学研究

★浅谈线性变换的对角化问题

本科数学毕业论文范文:高等数学教学中体现数学建模思想的方法

生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,以下是我搜集整理的一篇探究高等数学教学中体现数学建模思想的方法的范文,欢迎阅读参考。

1数学建模在煤矿安全生产中的意义

在瓦斯系统的研究过程中,应用数学建模的手段为矿井瓦斯构建数学模型,可以为采煤方案的设计和通风系统的建设提供很大的帮助;尤其是对于我国众多的中小型煤矿而言,因为资金有限而导致安全设施不完善,有的更是没有安全项目的投入,仅仅建设了极为少量的给风设备,通风系统并不完善。这些煤矿试图依靠通风量来对瓦斯体积分数进行调控,这是十分困难的,对瓦斯体积分数进行预测更是不可能的。很多小煤矿使用的仍旧是十分原始的采煤方法,没有相关的规划;当瓦斯等有害气体体积分数升高之后就停止挖掘,体积分数下降之后又继续进行开采。这种开采方式的工作效率十分低下。

只要设计一个充分合理的通风系统的通风量,与采煤速度处于一个动态的平衡状态,就可以在不延误煤炭开采的同时将矿井内的瓦斯气体体积分数控制在一个安全的范围之内。这样不仅可以保障工人的安全,还可以保证煤炭的开采效率,每个矿井都会存在着这样的一个平衡点,这就对矿井瓦斯涌出量判断的准确性提出更高的要求。

2煤矿生产计划的优化方法

生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,涉及到的约束因素很多,条理性很差。为了成功解决这个复杂的问题,现将常用的生产计划分为两个大类。

基于数学模型的方法

(1)数学规划方法这个规划方法设计了很多种各具特点的手段,根据生产计划做出一个虚拟的模型,在这里主要讨论的是处于静止状态下所产生的问题。从目前取得的效果来看,研究的方向正在逐渐从小系统向大系统推进,从过去的单个层次转换到多个层次。

(2)最优控制方法这种方式应用理论上的控制方法对生产计划进行了研究,而在这里主要是针对其在动态情况下的问题进行探讨。

基于人工智能方法

(1)专家系统方法专家系统是一种将知识作为基础的为计算机编程的系统,对于某个领域的繁复问题给出一个专家级别的解决方案。而建立一个专家系统的关键之处在于,要预先将相关专家的知识等组成一个资料库。其由专家系统知识库、数据库和推理机制构成。

(2)专家系统与数学模型相结合的方法常见的有以下几种类型:①根据不同情况建立不同的数学模型,而后由专家系统来进行求解;②将复杂的问题拆分为多个简单的子问题,而后针对建模的子问题进行建模,对于难以进行建模的问题则使用专家系统来进行处理。在整体系统中两者可以进行串行工作。

3煤矿安全生产中数学模型的优化建立

根据相关数据资料来进行模拟,而后再使用系统分析来得出适合建立哪种数学模型。取几个具有明显特征的采矿点进行研究。在煤矿挖掘的过程中瓦斯体积分数每时每刻都在变化,可以通过通风量以及煤炭采集速度来保证矿中瓦斯体积分数处在一个安全的范围之内。假设矿井分为地面、地下一层与地下二层工作面,取地下一层两个矿井分别为矿井A、矿井B,地下二层分别为矿井C、矿井D.然后对其进行分析。

建立简化模型

模型构建表达工作面A瓦斯体积分数x·1=a1x1+b1u1-c1w1-d1w2(1)式中x1---A工作面瓦斯体积分数;u1---A工作面采煤进度;w1---A矿井所对应的空气流速;w2---相邻B工作面的空气流速;a1、b1、c1、d1---未知量系数。

很明显A工作面的通风量对自身瓦斯体积分数所产生的影响要显着大于B工作面的风量,从数学模型上反映出来就是要求c1>d1.同样的B工作面(x·2)和工作面A所在的位置很相似,也就应该具有与之接近的数学关系式

式中x2---B工作面瓦斯体积分数;

u2---B工作面采煤进度;

w1---B矿井所对应的空气流速;

w2---相邻A工作面的空气流速;

a2、b2、c2、d2---未知量系数。

CD工作面(x·3、x·4)都位于B2层的位置,其工作面瓦斯体积分数不只受到自身开采进度情况的影响,还受到上层AB通风口开阔度的影响。在这里,C、D工作面瓦斯体积分数就应该和各个通风口的通风量有着密不可分的联系;于是C、D工作面瓦斯体积分数可以表示为【3】

式中x3、x4---C、D工作面的瓦斯体积分数;

e1、e2---A、B工作面的瓦斯体积分数;

a3、b3、c3、d3---未知量系数:

f1、f2---A、B工作面的瓦斯绝对涌出量。

系统简化模型的辨识这个简化模型其实就是对于参数的最为初步的求解,也就是在一段时间内的实际测量所得数据作为流通量,对上面方程组进行求解操作。而后得到数学模型,将实际数据和预测数据进行多次较量,再加入相关人员的长期经验(经验公式)。修正之后的模型依旧使用上述的方法来进行求解,因为A、B工作面基本不会受C、D工作面的影响。

模型的转型及其离散化

因为这个项目是一个矿井安全模拟系统,要对数学模型进行离散型研究,这是使用随机数字进行试数求解的关键步骤。离散化之后的模型为【1】

在使用原始数据来对数学模型进行辨识的过程中,ui表示开采进度,以t/d为单位,相关风速单位是m/s,k为工作面固定系数,h为4个工作面平均深度。为了便于将该系统转化为计算机语言,把开采进度ui从初始的0~1000t/d范围,转变为0~1,那么在数字化采煤中进度单位1即表示1000t/d,如果ui=就表示每日产煤量500t.诸如此类,工作面空气流通速度wi的原始取值范围是0~4m/s,对其进行数字化,其新数值依旧是0~1,也就表示这wi取1时表示风速为4m/s,若表示通风口的开通程度是,也就是通风口打开一半(2m/s),wi如果取1则表示通风口开到最大。

依照上述分析来进行数字化转换,数据都会产生变化,经过计算之后可以得到新的参数数据,在计算的过程之中使用0~1的数据是为了方便和计算机语言的转换,在进行仿真录入时在0~1之间的一个有效数字就会方便很多。开采进度ui的取值范围0~1表示的是每日产煤数量区间是0~1000t,而风速wi取值0~1所表示的是风速取值在0~4m/s这个区间之内。

模型的应用效果及降低瓦斯体积分数的措施

以上对煤矿生产中的常见问题进行了相关分析,发现伴随着时间的不断增长瓦斯涌体积分数等都会逐渐衰减,一段时间后就会变得微乎其微,这就表明这类资料存在着一个衰减周期,经过长期观测发现衰减周期T≈18h.而后,又研究了会对瓦斯涌出量产生影响的其他因素,发现在使用炮采这种方式时瓦斯体积分数会以几何数字的速度衰减,使用割煤手段进行采矿时瓦斯会大量涌出,其余工艺在采煤时并不会导致瓦斯体积分数产生剧烈波动。瓦斯的涌出量伴随着挖掘进度而提升,近乎于成正比,而又和通风量成反比关系。因为新矿的瓦斯体积分数比较大,所以要及时将煤运出,尽量缩短在煤矿中滞留的时间,从而减小瓦斯涌出总量。

综上所述,降低工作面瓦斯体积分数常用手段有以下几种:①将采得的煤快速运出,使其在井中停留的时间最短;②增大工作面的通风量;③控制采煤进度,同时也可以控制瓦斯的涌出量。

4结语

应用数学建模的手段对矿井在采矿过程中涌出的瓦斯体积分数进行了模拟及预测,为精确预测矿井瓦斯体积分数提供了一个新的思路,对煤矿安全高效生产提供了帮助,有着重要的现实意义。

参考文献:

[1]陈荣强,姚建辉,孟祥龙.基于芯片控制的煤矿数控液压站的设计与仿真[J].科技通报,2012,28(8):103-106.

[2]陈红,刘静,龙如银.基于行为安全的煤矿安全管理制度有效性分析[J].辽宁工程技术大学学报:自然科学版,2009,28(5):813-816.

[3]李莉娜,胡新颜,刘春峰.煤矿电网谐波分析与治理研究[J].煤矿机械,2011,32(6):235-237.

是大学论文么?图书馆里有很多求非线性微分方程解析解的老书,很有趣。 建议楼主去那些书里找下灵感。

数学毕业论文的写法

数学与应用数学专业毕业论文(设计)大纲先修课程:数学与应用数学专业主要课程、教育类课程等适用专业:数学与应用数学(本科、师范)一、目的培养和提高学生综合运用所学知识分析、解决问题的能力(包括数学理论研究和应用研究的能力、教学研究能力、文献检索、科技论文的写作能力)。使学生获得科学、教学研究方法的初步训练。培养学生的独立研究能力和重视开发学生的创新能力。二、论文选题论文选题应贯彻为我国社会主义物质文明和精神文明建设服务的方针,在基础数学、应用数学和数学教育等学科的以下几个方面加以考虑:1.结合自己所学的专业知识,进行某一专业方向上的学术探讨;2.结合自己所学的专业知识,进行教学研究方面的专题研究或专题综合;3.结合自己所学的专业知识,联系实际解决一些应用问题;4.对中学有关数学课程的教材、教学方法进行专题研究;5.结合本人所教数学课程,对中等教育的教育理论和教育实践进行探讨;6.对新课程改革的理论与实践进行探讨。论文课题不宜过大,难易程度要适当。两名或两名以上学生选做同一课题论文时,各人的内容应有较大区别。学生选定课题后,应填写《毕业论文任务书》,经指导教师同意,方可进行论文工作。三、对毕业论文的基本要求1.立论、观点要符合马克思主义基本原理;2.对学术的探讨要符合科学性和逻辑性;3.对论述的主要问题要正确地运用所学专业、基础理论、基本知识和基本方法;4.论证严谨,结论明确。所运用的研究方法基本正确,所收集的数据资料完整、充分,所设计的实验方法、步骤、正确可行,所提出的观点正确;5.文字通顺,表达确切,书写规范,独立完成;6.论文一般以3000字到6000字为宜,每篇论文的正文前应有300字左右的论文摘要(概括论文的中心论题以及基本观点、方法、结论)3到5个关键词。论文中所引用的定义、定理、论述都要注明出处。论文后应附有作者在写论文时所阅读的文献、参考书目录以及页码;7.论文应包括英文名、英文摘要和英文关键词;8.论文要按照统一格式进行排版(见江苏大学学报自然科学版)。四、毕业论文成绩评定1.学生毕业论文成绩的评定采取指导教师和毕业论文答辩小组分别单独评分,按比例综合评定,最后由毕业论文答辩委员会综合平衡审定。2.成绩分5个等级:优秀、良好、中等、及格、不及格。毕业生毕业论文统一格式要求一、论文用纸:B5纸打印。二、论文标题:1、主标题:用小二号黑体字,置于首页第一行,居中。2、正文采用四级标题,分别以“一、(一)、1、(1)”标明。其中一级标题用黑体字,二级标题用楷体,三、四级标题与正文字体相同。三、论文正文:1、字体:用四号仿宋体。2、段落:行距为24磅。3、页码:居中。四、年级、专业与姓名:四号宋体,置于主标题与正文之间,居中,上下各空一行。五、注释:如有注释,皆在正文之后注明。

应该先选一个题目做研究,有了研究成果,才可能产生论文。论文不是随心所欲编出来的。

数学及应用数学毕业论文应该怎么写?首先写数学及应用数学得一些特性,然后学习说说自己学习的心得方法体会,最后告诉人们数学及应用数学的一个方向。

一、内容要求 毕业设计报告正文要求: (一)理、工科类专业毕业设计报告正文内容应包括:问题的提出;设计的指导思想;方案的选择和比较论证;根据任务书指出的内容和指标要求写出设计过程、课题所涉及元件结构和相关参数的设计计算,有关基本原理的说明与理论分析;给出所设计课题实际运行的数据或参数,并与理论设计参数进行比较和分析,说明产生误差的原因。最后要对所设计课题实用价值做出评估说明;设计过程中存在的问题,改进意见或其它更好的方案设想及未能采纳的原因等。 (二)经济、管理类专业毕业设计报告或论文正文应包括:问题的提出、设计的指导思想;设计方案提出的依据,设计方案的选择和比较;设计过程;所运用的技术经济分析指标和方法;数学模型及其依据,数据计算方法;对设计方案的实用性和经济效益等方面做出评估;对设计实施过程中存在的问题 ( 或可能发生的问题 ) 提出合理化建议。毕业论文的基本论点、主要论据;根据国家有关方针、政策及规定联系实际展开理论分析。 (三)文科类专业毕业设计报告或论文正文应包括:问题的提出、解决问题的指导思想;解决方案提出的依据,解决方案的选择和比较,结论。 二、论文印装 毕业论文用毕业设计专用纸打印。正文用宋体小四号字,行间距为24磅;版面页边距上3cm,下、左,右2cm。 三、论文结构、装订顺序及要求 毕业论文由以下部分组成: (一)封面。论文题目不得超过20个字,要简练、准确,可分为两行。 (二)内容。 1、毕业设计(论文)任务书。任务书由指导教师填写,经系主任、教务部审查签字后生效。 2、毕业设计(论文)开题报告; 3、毕业设计(论文)学生申请答辩表与指导教师毕业设计(论文)评审表; 4、毕业设计(论文)评阅人评审表; 5、毕业设计(论文)答辩表; 6、毕业设计(论文)成绩评定总表; 7、中英文内容摘要和关键词。 (1)摘要是论文内容的简要陈述,应尽量反映论文的主要信息,内容包括研究目的、方法、成果和结论,不含图表,不加注释,具有独立性和完整性。中文摘要一般为200-400字左右,英文摘要应与中文摘要内容完全相同。“摘要”字样位置居中。 (2)关键词是反映毕业设计(论文)主题内容的名词,是供检索使用的。主题词条应为通用技术词汇,不得自造关键词。关键词一般为3-5个,按词条外延层次(学科目录分类),由高至低顺序排列。关键词排在摘要正文部分下方。 (3)中文摘要与关键词在前,英文的在后。 8、目录。 目录按三级标题编写,要求层次清晰,且要与正文标题一致。主要包括绪论、正文主体、结论、致谢、主要参考文献及附录等。 9、正文。论文正文部分包括:绪论(或前言、序言)、论文主体及结论。 (1)绪论。综合评述前人工作,说明论文工作的选题目的和意义,国内外文献综述,以及论文所要研究的内容。 (2)论文主体。论文的主要组成部分,主要包括选题背景、方案论证、过程论述、结果分析、结论或总结等内容。要求层次清楚,文字简练、通顺,重点突出,毕业设计(论文)文字数,一般应不少于8000字(或20个页码)。外文翻译不少于3000字符,外文参考资料阅读量不少于3万字符。 中文论文撰写通行的题序层次采用以下格式: 1 格式是保证文章结构清晰、纲目分明的编辑手段,毕业论文所采用的格式必须符合上表规定,并前后统一,不得混杂使用。格式除题序层次外,还应包括分段、行距、字体和字号等。 第一层次(章)题序和标题居中放置,其余各层次(节、条、款)题序和标题一律沿版面左侧边线顶格安排。第一层次(章)题序和标题距下文双倍行距。段落开始后缩两个字。行与行之间,段落和层次标题以及各段落之间均为24磅行间距。 第一层次(章)题序和标题用小二号黑体字。题序和标题之间空两个字,不加标点,下同。 第二层次(节)题序和标题用小三号黑体字。 第三层次(条)题序和标题用四号黑体字。 第四层次及以下各层次题序及标题一律用小四号黑体字。 (3)结论(或结束语)。作为单独一章排列,但标题前不加“第XXX章”字样。结论是整个论文的总结,应以简练的文字说明论文所做的工作,一般不超过两页。 10、致谢。对导师和给予指导或协助完成毕业设计(论文)工作的组织和个人表示感谢。文字要简洁、实事求是,切忌浮夸和庸俗之词。 11、参考文献及引用资料目录(规范格式见附文)。 12、附录。 13、实验数据表、有关图纸(大于3#图幅时单独装订)。 (三)封底。 附:规范的参考文献格式 参考文献(即引文出处)的类型以单字母方式标识:M——专著,C——论文集,N——报纸文章,J——期刊文章,D——学位论文,R——报告,S——标准,P——专利;对于不属于上述的文献类型,采用字母“Z”标识。 参考文献一律置于文末。

高中数学指数函数毕业论文

去CNKI中搜索去

一、函数内容处理方式的分析在整个中学阶段,函数的学习始于义务教育阶段,而系统的学习则集中在高中的起始年级。与以往相比,课程标准关于函数内容的要求发生了比较大的变化。 1. 强调函数背景及对其本质的理解无论是引入函数概念,还是学习三类函数模型,课程标准都要求充分展现函数的背景,从具体实例进入知识的学习。以往教材中,将函数作为一种特殊的映射,学生对于函数概念的理解建立在对映射概念理解的基础上。学生既要面对同时出现的几个抽象概念:对应、映射、函数,还要理清它们之间的关系。实践表明,在高中学生的认知发展水平上,理解这些抽象概念及其相互之间的关系存在很大困难。而从函数的现实背景实例出发,加强概念的概括过程,更有利于学生建立函数概念。一方面,丰富的实例既是概念的背景又是理解抽象概念的具体例证;另一方面,在实例营造的问题情境下,学生能充分经历抽象概括的过程,理解概念内涵。2.加强函数思想方法的应用函数是刻画现实世界变化规律的重要数学模型。因此,函数在现实世界中有着广泛的应用。加强函数的应用,既突出函数模型的思想,又提供了更多的应用载体,使抽象的函数概念有更多的具体内容支撑。比如,新增加的内容“不同函数模型的增长”和“二分法”,前者通过比较函数模型的增长差异,使学生能够更深刻地把握不同函数模型的特点,在面对简单实际问题时,能根据它们的特点选择或建立恰当的函数模型反映实际问题中变量间的依赖关系;后者充分体现了函数与方程之间的联系,它是运用函数观点解决方程近似解问题的方法之一,通过二分法的学习,能使学生加深对函数概念本质的理解,学会用函数的观点看待和解决问题,逐渐形成在不同知识间建立联系的意识。二、函数内容编写的基本想法函数的内容包括:函数概念及其性质,基本初等函数(Ⅰ),函数与方程,函数模型及其应用。以理解函数概念本质为线索,既可以将这些内容有机地组织为一个整体,又可以让学生以它们为载体,逐步深入地理解函数概念1.内容组织的线索:函数概念本质的理解函数概念并非直接给出,而是从背景实例出发采用归纳式的教材组织形式引入。由于函数概念的高度抽象性,学生真正理解函数概念需要一个漫长的过程,需要在不同层次上、从不同角度给学生提供理解和巩固函数概念的机会。首先,在分析典型实例的共同特征的基础上概括出函数定义后,通过讨论函数的表示、基本性质初步理解函数。它们分别是从函数的表现形式和变化规律两个方面丰富对函数概念的认识。然后,以三类基本初等函数为载体巩固函数概念,在学习了函数定义、基本性质之后,从一般概念的讨论进入到具体函数的学习。指数函数、对数函数和幂函数的概念及其性质都是一般函数概念及性质的具体化。以一类具体函数为载体,在一般函数概念的指导下对其性质进行研究,体现了“具体──抽象──具体”的过程,是函数概念理解的深化。最后,从应用的角度再一次巩固并提升对函数的理解。对一个概念真正理解的一个判断标准就是看看是否可以运用概念解决问题。教材最后安排函数的应用,包括二分法、不同函数模型的增长差异以及建立函数模型解决实际问题,就是期望学生能在“用”的过程中提高对函数概念的理解。2.突破难点的主要方法:显化过程,加强联系函数概念的理解贯穿了函数内容学习的始终,同时它也是教与学的一个难点,在教材编写中应采用什么方法突破这个难点,帮助学生更好地理解函数概念?对于形成函数这样抽象的概念,应该让学生充分经历概括的过程。概括就是把对象或关系的某些共同属性区分和固定下来。这就要求我们在编写教材时充分展示概括过程,并要充分调动学生的理性思维,引导他们积极主动地观察、分析和概括。教材选择了三个有一定代表性的实例,先运用集合与对应的语言详细地分析前两个实例中变量间的依赖关系,给学生以如何分析函数关系的示范,然后要求学生仿照着自己给出第三个实例的分析,最后通过“思考”提出问题,引导学生概括三个实例的共同属性,建立函数的概念。在这样一个从具体(背景实例)到抽象(函数定义)的过程中,学生通过自己的思考从分析单个实例上升到概括一类实例具有的共同特征,更能理解概念内涵。作为中学数学的核心概念,函数与中学数学的许多概念都有内在联系,这种联系性为理解函数概念提供了众多的角度和机会,因此加强函数与其他数学知识的联系是函数概念教学的内在要求。例如,函数有多种表示方法,加强不同表示法之间的联系和转换,使学生学会在面临一个具体问题时能根据问题的特点灵活选择表示的方法,就是促进理解的一个手段。教材通过例题给出高一某班三位同学在六次测试中的成绩及相应的班平均分的数据,要求分析三位同学的学习情况。解决这个问题的关键就是根据函数的表格表示法与图象表示法的特点,将表格表示转化为图象表示。又如,函数与现实生活有着密切的联系,所以在编写教材时注重加强函数与现实生活的联系,像由背景实例引入概念,在例题和习题中安排一定量的应用问题(碳14的衰减,地震震级,溶液的酸度等)都体现了函数与实际生活的外部联系。再如,从运用函数观点解决方程问题的角度介绍二分法,体现出函数与方程间的联系等等。三、函数内容编写中的几个关键问题1.实例如何选择无论是加强概念背景,还是突出知识的联系与应用,能达到很好效果的重要因素就是要选择合适的实例。那么,如何选择实例才能有助于学生的学习呢?对于起到不同作用的背景实例和应用实例,标准并不完全相同。但总的来说,一是实例的背景知识应该尽量简单,这样可以避免因背景的复杂性而影响对数学知识本身的理解;二是实例应丰富,这样有利于全面、准确地理解知识,不会产生偏差;三是实例应贴近学生生活、具有一定的时代性,这样才会引起学生的共鸣,激发学习的兴趣。比如,介绍函数概念时,教材选择了用解析式表示炮弹飞行的问题、用图象表示南极臭氧空洞的问题、用表格表示恩格尔系数的问题,第一个问题是学生在物理中就很熟悉的,后两个问题是日常生活中经常提及的,背景相对来说比较简单,学生就不会因为需要了解过多的背景知识而冲淡对函数概念的学习。而且重要的是,这样的三个问题包括了不同的函数表现形式,利用它们概括函数概念,就可以消除初中学习中可能存在的一些认识偏差,使学生认识到无论表示形式如何,只要对于每一个x,都有一个y与之对应,就是函数,而这正是函数的本质特征。再如,根据汽车票价制定规则写出票价和里程间的解析式,并利用解析式为售票员制作出我们在汽车上经常看到的“阶梯形票价表”这类问题,贴近学生生活并具有现实的应用价值,能引发学生的兴趣和学习的积极性。2.概念如何展开对于突破函数概念这个难点,可以在整段函数内容的学习中采用显化过程、加强联系的方法。那么具体地,在从三个方向巩固函数概念理解时,如何展开像函数的单调性、二分法这些概念,才能让学生掌握它们,从而达到巩固理解函数概念的目的呢?函数的性质就是研究函数的变化规律,这种规律最直观的获得来自于图象,图象的上升、下降就是单调性。问题在于如何帮助学生从几何直观上升到严格的数学定义。同样地,二分法也需要经历一个由直观认识到数学定义的过程。为此,就需要将直观到严格数学定义的过程划分成几个层次,为学生搭建认识的台阶,使他们逐步地获得概念。比如,介绍函数单调性时,首先给出一次函数和二次函数的图象,观察它们的图象特征,即上升或下降;然后用问题“如何描述函数图象的‘上升’‘下降’呢”引导学生用自然语言描述出图象特征;最后思考“如何利用解析式f(x)=x2描述‘随着x的增大,相应的f(x)随着减小’……”,将自然语言的描述转化成数学符号语言的描述,并一般化得到单调性的数学定义。通过这样的三步,利用数形结合的方法展开单调性的概念,既有助于学生通过自己的努力获得概念,而且也从数和形两个方面理解了概念。3.函数内容中使用信息技术的点及方式在数学课程中使用信息技术已经毋庸置疑,同样地,信息技术的使用也是教材编写中最为关注的问题之一。那么,在函数中有哪些适合使用信息技术的内容,如何使用,以及在教材中使用的方式是怎样的?信息技术具有强大的图象功能、数据处理功能和良好的交互环境,利用这些优势,在函数这部分内容中可以使用信息技术的点主要有:求函数值、做函数图象、研究函数性质、拟和函数等。运用常见的一些软件,如excel、几何画板等就可以轻松地作出函数图象,这在讨论不同函数模型增长差异时发挥很大作用,从几幅图就能直观发现增长的差异;运用计算器可以解决二分法中计算量大的问题,从而将更多精力关注到二分法的思想上,认识到函数和方程间的联系;而计算机的交互环境则为学生的自主探究提供了强有力的平台,丰富了学习方式,如讨论指数、对数函数性质时,可以充分演示出图象的动态变化过程,这样就能在变化中寻求“不变性”,发现函数具有的性质。教材编写时一方面在适合使用信息技术的地方给予提示,如“可以用计算机……”等;另一方面通过拓展栏目详细地介绍一些信息技术应用的专题,如“用计算机绘制函数图象”重点介绍使用常用软件做函数图象的方法,“借助信息技术探究指数函数的性质”给出探究的情境,要求学生亲自利用信息技术发现规律,“收集数据并建立函数模型”介绍了如何用信息技术拟合函数,等等。通过这些方式,可以为教师和学生提供使用信息技术的机会和空间。

数学论文范文参考

数学论文范文参考,说到论文相信大家都不陌生,在生活中或多或少都有接触过一些论文,很多时候论文的撰写是不容易的,写一份论文要参考很多的文献,接下来我和大家分享数学论文范文参考。

论文题目: 学生自主学习能力培养提升小学数学课堂教学效果

摘要: 在新课程理念的指引下,小学数学课堂呈现充满教育契机的、富有挑战性的新气象,在注重小学生全面发展的能力培养下,对小学生自主学习能力、交流合作能力和创新思维能力的培养成为教育重点,这要求教师具有教学的智慧,对学生有深入的了解,在这样的教育氛围之下,才可以培养出学生的创意想象和创造性、探究性思维,在自主学习的过程中增强知识性的体验,创设出最佳的课堂效果。

关键词: 自主学习能力;创新思维;小学数学

在全新的教育理念下,教育视角由原来的“要我学习”转为了“学会学习”,教师在对小学生能力培养的过程中,注重小学生全面素质的培养,包括自主学习能力和创新思维能力,使小学数学的教学课堂展现出主动参与的学习过程,数学课堂在学生的主体行为下显露出智慧的光芒,这就需要教师在教学过程中要采用适合小学生的方式和策略,注重学生学习的过程,而不是学习的结果,发挥出小学生自主探索和自由发现的天性,促进学生健康全面的发展。

一、小学数学教学中的现状及反思

小学生由于其年龄特点和个性特征,呈现出对新异、生动的事物有强烈好奇的兴趣,而且大多数小学生都有强烈的求知欲、自尊心和好胜心。教师在教学过程中要根据小学生的年龄特点和个性,培养学生的自主学习能力,但是,目前小学数学教学尚存在些许不足,需要我们加以反思。

(一)情境教学中过多地引入情境,丧失了教学目标

一些数学教师在课堂引入时,过多地运用了情境,而分散了小学生的注意力。如:在课堂导入时,教师突发奇想,要用“喜羊羊与灰太狼”作为课堂导入情境,学生睁大眼睛,竖起耳朵,开展了斗智斗勇的想象,却忘记了教师是在上数学课。又如:在一年级《加减混合》的数学计算中,教师想用“春游”作为情境导入数学课堂,可是在运用情境时过多地介绍了风景,使学生沉溺于风景的想象中而偏离了数学课堂的传授目标,缺失了数学教学目的。

(二)成人化的想象对小学生缺乏新奇的吸引性

数学教师在进行教学课堂的情境创设时,用成人的眼光和视角去进行设想,忽视了童趣和纯真的眼睛,简单的情境创设平淡无奇,缺乏挑战性。例如:在小学数学教学中《7的乘法口诀》一课,教师用“一个星期有几天”来进行问题式的课堂导入,这对于学生而言缺乏新奇,对乘法口诀也缺乏记忆。

(三)课堂教学中“数学味”的弱化和缺失

在小学数学的教学课堂中,教师利用各种情境创设导入教学,却没有及时地将情境引入到数学知识的学习当中,弱化了数学学科所应有的“数学味”,使学生自主性学习的兴趣降低。如:在《统计》的数学知识教学中,教师通过分组教学的形式,让学生开展讨论和记录,可是学生们却停留在小组成员间体重的比较讨论等内容,而没有真正进入到数学统计知识的学习之中来。

二、自主学习的概念及其重要性

在小学数学的教学中,学生要通过能动的创造性活动,在教师的指导为前提下实现以学生为主体的良性发展。学生可以通过多种途径和手段,自主地有选择地学习,并创造性对所学的知识进行整合和内化,从而达到自主学习能力水平。小学生进行自主学习的重要性主要体现在以下几方面。

(一)提高数学知识吸收的质量

自主学习的方式是积极主动的方式,是小学生进行自主习惯的培养方式,它在激起求知欲望的前提下,转化为认知的内驱力,激发出学习的内在动机,并将之内化为学习习惯,真正提高数学知识吸收的主动性。

(二)为后续的数学知识学习奠定基础

小学阶段是数学知识学习的起始阶段,在这一关键阶段中,要培养学生的自主学习习惯,用他们自发的数学学习兴趣和自主发现的能力,掌握学习数学知识的策略,为后续数学更高层次的学习奠定基础。

(三)自主发现和自主学习能力的培养

小学生多数都有一双好奇的眼睛,他们对周围的世界很好奇,也拥有自主发现的能力,在这一过程中,对其自主发现的能力挖掘越多,那么,学生自主学习的能力就越强,自主学习的习惯就容易产生知识性的迁移。

三、自主性学习的小学数学课堂教学策略

小学数学的自主性学习课堂教学充分发挥了学生的主体性,以学生的自主探究和实践能力和创新思维能力为宗旨,在良好的教学氛围和自主参与的环境下,实现多种形式的自主性学习,在不同的活动中获取数学知识,掌握小学数学知识学习的一般规律和学习方法。

(一)数学课堂有效导入,激发学生的自主参与性

合适而有效的数学情境导入,是进行高效数学课堂的有效方法和途径,要在课堂导入的过程中创造良好的氛围,用宽松、愉悦、智慧的方式激发学生对数学知识的自主性学习过程,其具体方法如下。

1、以生活为教学情境进行数学知识的迁移。生活是无痕的,生活对学生的体验是最深刻的体验,而“生活中的数学”与“数学中的生活”又是紧密相联和息息相关的,学生在生活的体验中感知到数学的价值,可以在身临其境的体会中感受到数学的奥妙,数学情境的生活度越高,学生内在的生活体验越容易被激活,数学知识掌握的程度就越深。例如:在“人民币的认识”教学中,让学生们进行分组进行人民币的购买情境,把不同的物品贴上不同的价格标签,再由分组的学生进行不同面值的假人民币的购买情境,使学生在购买的过程中体会到数字的变换。[1]

2、 以游戏为教学情境激发学生的自主性参与意识。游戏环节是小学生最乐于参与和互动的环节,数学教学可以适当地引入游戏环节,使小学生增强对数学知识的学习兴趣,感受到数学探索的成功体验。如:在小学50以内的加法练习中,不是单纯让学生进行数字的相加,而可以采用“邮递员送信”游戏的形式,增添学生的学习自主性,教师可以事先准备好标有不同两位数的信箱,并准备不同加法练习题的信封,选择几名学生作“送信邮差”,将这些信封和信箱匹配,学生在争先恐后的选择中掌握了数学知识,它犹如一块无形的磁石,深深地吸引着小学生的数学知识的注意力,增强了趣味性和主动性。

3、以故事导入引导学生进行自主性的学习。小学生都酷爱故事,因此教学中可以利用故事增加数学的趣味性,引导学生用创意的思维想象,进行自主性的学习。例如:在一年级的数学“10以内的数字”的教学中,为了让学生建立起数字的相关概念的学习,可以引入故事进行形象的学习:在0~9的数字王国里,数字9发现自己是最大的,于是就很神气和骄傲,它对其他数字说:“你们都是小不点儿,都比我小,所以你们都要听我的。”其他的数字为了消灭它的嚣张气焰,商量好让数字1和0组成一个新的两位数,数字9看到后低下了头,意识到了自己的错误,于是,再也不狂妄自大了,和大家成为了好朋友。学生们在教师故事的讲述中,也展开了对数字的思维和想象,认识到了10以内数字的基数、序数意义,进行自主性的认知学习。[2]

作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。

一、高等数学教学的现状

( 一) 教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

( 二) 教学方法传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施

( 一) 在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

( 二) 讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

( 三) 组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

参考文献:

〔1〕 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想〔J〕. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.

〔2〕 李薇. 在高等数学教学中融入数学建模思想的探索与实践〔J〕. 教育实践与改革,2012 ( 04) : 177 -178,189.

〔3〕 杨四香. 浅析高等数学教学中数学建模思想的渗透 〔J〕.长春教育学院学报,2014 ( 30) : 89,95.

〔4〕 刘合财. 在高等数学教学中融入数学建模思想 〔J〕. 贵阳学院学报,2013 ( 03) : 63 -65.

浅谈高中数学文化的传播途径

一、结合数学史,举办文化讲座

数学史教育对于了解数学这一门学科起着重要作用、数学史不仅仅是单纯的数学成就的编年记录,因为数学的发展绝不是一帆风顺的,在更多的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临危机;数学史也是数学家们克服困难和战胜危机的斗争记录,讲座中介绍重要的数学思想,优秀的数学成果,相关人事,使学生了解数学发展中每一步艰辛的历程,有助于培养学生坚忍不拔、不懈努力的意志和正直诚实的品质、比如,通过举办文化讲座向学生介绍“数学历史上三次危机”、“百牛定理”的来历、“哥德巴赫猜想与进展”、“数学悖论产生的原因及解决”、杨辉三角及中国古代数学成就、概率的发展、数学思想方法史等;向学生介绍一些数学大奖、数学界的名题,如数学界的“诺贝尔奖”———菲尔兹奖、沃尔夫奖、华罗庚数学奖、波利亚数学奖、高斯数学奖等,这种润物细无声的教育将激励学生个人的发展愿望、此外,介绍数学史上的重大事件,如无理数的产生引起的争论及代价、无穷小量是零非零的争论、康托尔集合论的论争等等,启发学生体会到,坚持学术争论有利于促进科学理论的完善与发展、

二、结合教学内容,穿插数学故事

数学故事引人入胜,能激起学生的某种情感、兴趣,激励学生积极向上、教师平时应注意收集与数学内容有关的数学故事,在讲到相关内容时,穿插到课堂教学中,通过向学生展现数学知识产生的背景、数学的思想方法、数学家追求真理的科学精神,让数学文化走进课堂,不失时机地通过数学家的故事来启迪学生、激励学生,对学生进行人文价值教育;在新课引入中,可以从概念、定理、公式的发展和完善过程,数学名人趣闻轶事,概念的起源,定理的发现,历史上数学进展中的曲折历程,以及提供一些历史的、现实的真实“问题”引入新课,一个精彩的引入不仅能够活跃课堂气氛,激发学生的学习情趣,降低数学学习的难度,还可以拓宽学生的视野,培养学生全方位的思维能力和思考弹性,使数学成为一门不再是枯燥呆板,而是生动有趣的学科、例如在讲欧拉公式时,介绍欧拉传奇的一生,欧拉解决该问题时的奇思妙想,特别是其双目失明后的贡献,用数学大师的人格魅力感染学生;讲解析几何时介绍“笛卡尔和费马”两位数学家在创立这门学科过程中的主要贡献,学生可以从中了解解析几何学产生的历史背景,数学家的成长经历,感受数学名人的执着信念,汲取宝贵的数学精神;在讲到相关内容时,介绍华罗庚、陈景润、苏步青、杨乐、陈省身、丘成桐等中国近现代数学家的奋斗历程和数学成就,让学生在感受数学家艰辛劳动的同时激发起民族自豪感、

三、结合生活实际,例解数学问题

作为工具学科的数学与日常生活息息相关,数学教师必须考虑数学与生活之间的联系,要把数学与现实生活联系在一起,将某个生活中的问题数学化,才能使数学知识的运用得到升华,帮助学生获得富有生命力的数学知识,引导学生用数学的眼光观察世界,进而使学生认识到学习数学的重要性和必要性、教学活动中可以引用贴近学生生活的事例,创设接近学生的认知水平和生活实际的数学问题情境,让学生认识到数学就在我们身边,在我们的生活中、例如,在讲等比数列求和公式时,可以列举其在贷款购房中的应用;从“条形码”、“指纹”等学生熟悉的`生活实例深入浅出地解释抽象的映射概念,同时引导学生寻找生活中的映射,钥匙对应锁、学号对应学生等;在讲概率时,列举其在彩票方面的应用等;在讲“指数函数”时让学生了解考古学家是怎样利用合金的比例来测量青铜器的年代;在讲“双曲线方程”时,可结合工业生产中的双曲线型冷却塔、北京市修建的双曲线型通道和法国标志性建筑埃菲尔铁塔,让学生体验双曲线方程的应用价值;另外,分期付款问题、数学成绩与近视眼镜片度数的关系、银行存款与购买保险哪个收益更高、住房按揭、股市走势图、价格分析表等与人们的生活密切相关的问题,通过对这些问题的解答,使学生感受到数学是有用的,它源于生活用于生活,学会用数学的眼光看待生活中的问题,用数学的头脑分析生活中的问题、

四、结合其他学科,共享文化精华

科技发展迎来了各学科间的相互渗透、交叉与融合,尤其在当代,数学的影响已经遍及人类活动的各个领域、数学教师要注重数学和其他学科的联系,在教学活动中,努力寻找数学与其他学科的结合点,实现数学领域向非数学领域的迁移,最大限度地达到文化共享、可以通过以人物为线索、以数学题材为线索、以史料书籍为线索、以数学符号为线索、以现实生活为线索等多种途径挖掘数学文化资源;可以将封闭的教材内容开放化,把封闭的概念、公式、法则等分解成若干“小板块”,设计一些开放性的问题让学生探索,将书本知识拓宽到书外,与其他文化知识融为一体、实践证明,当老师讲些“活数学”或者把数学与哲学、美学、经济以及其他文化艺术相联系时,学生就表现出极大的兴趣和热情、例如,讲“统计”时,可结合遗传学和法庭依据DNA、指纹印或性格分析等;讲解三角函数内容时,可以介绍三角学的起源与发展,说明对航海、历法推算以及天文观测等实践活动的作用;讲反证法时,向学生详细讲述伽利略是如何更正延续了1800多年的亚里士多德关于物体下落运动的错误断言;在理解仰角、俯角的概念时,可与“举头望明月,低头思故乡”联系;在理解直线与圆的位置关系时,可与“大漠孤烟直,长河落日圆”相联系;讲三视图的概念时,可与“横看成岭侧成峰,远近高低各不同、不识庐山真面目,只缘身在此山中”相联系;在理解随机事件、必然事件和不可能事件时,可与成语相联系(“守株待兔、滴水成冰、飞来横祸”是随机事件,“种瓜得瓜、种豆得豆、黑白分明、瓮中捉鳖”是必然事件,“水中捞月、海枯石烂、画饼充饥”是不可能事件),使学生体会到数学与其他学科的密切联系、

五、结合课外活动,小组合作探究

由于课堂时间有限而数学文化的内容包罗万象,单靠课堂时间进行数学文化教学是不足够的,课外活动也要凸显数学文化、要充分利用课外、校外的自然资源和社会资源,利用网络、报刊等各种渠道了解丰富的数学文化内容,以某种形式拓展到学生的课余生活中、可以通过举办数学文化知识竞赛,推荐与数学相关的有价值的作品,供学生课外阅读,拓宽他们的数学视野,再通过撰写读后感、数学作文并组织学生交流等多种形式,使数学文化的点点滴滴如春风化雨,滋润学生的心田、书籍类有美国数学家西奥妮帕帕斯写的《数学的奇妙》,陈诗谷、葛孟曾著的《数学大师启示录》,李心灿等著的《当代数学精英(菲尔兹奖得主及其建树与见解)》,张景中院士著的《数学家的眼光》《新概念几何》《漫话数学》《数学与哲学》等这些作品通俗易懂,都是传播数学文化,教学展现数学魅力的好书、还可以将学生分成小组,教师就某块内容或专题提供一些参考文献或选题,让学生利用课余时间从课外读物、因特网查找古今中外数学家的事迹,了解他们的成才过程、对数学的贡献及他们严谨治学、勇攀科学高峰的事迹,然后将收集到的故事编印后分发给学生交流,体会数学文化、例如就“多面体欧拉公式的发现”这一专题,由“直观———验证———猜想———证明———应用”层层推进,步步深入,追随着大数学家欧拉的足迹进行探索研究,不仅能掌握关于多面体的欧拉公式的来龙去脉,了解欧拉传奇的一生,还可以体会发现的艰辛,学习治学的态度,掌握研究的方法,提升学生的人文素质、这样,学生在小组合作中增长了数学文化知识,体验合作探究的乐趣,让数学充满智慧与生命、

六、结合教学评价,纳入数学考试

虽然高中数学教材已经进一步改进,更大程度上体现数学文化内容,实验教材在每一章节或模块的始尾都有数学文化方面的介绍,但还都是阅读材料,教师认为学生能看明白,而学生认为考试不考,在教学中,往往是“考什么,教什么,学什么”,师生对此部分内容都未给予足够重视、平时注重的是对掌握知识、技能方面的情况进行考核和评价,呈现重数学知识,轻文化素养;重显性知识,轻隐性知识;重结果,轻过程等弊端、要让师生切实地感受到数学文化的重要性,应该以评价的方式促进高中数学文化的教学,可以把数学文化的相关内容根植于高考的试题之中,常规的考试中适当涉及常识性的数学文化内容、这样,高中教师在教学的同时就会自觉地将数学文化的内容尽可能与高中各模块的内容相结合,逐步地、系统地进行数学文化的传授、高中数学课程标准要求我们不仅要注重对学生数学知识的传递,还要重视数学文化内涵的传播,要树立数学文化观:充分发挥数学教育的两个功能即科学技术教育功能和文化教育功能、与数学知识和技能的教学不同,数学文化在数学教学中的体现形式应更为多样化和灵活化,这关键在于教师、首先,教师要提高自身的数学文化素养;其次,挖掘数学的文化内涵,努力营造数学文化氛围;再次,提升数学文化品位,在整合资源和优化课堂与活动方面下功夫、教师要善于在各个教学环节中合适而巧妙地渗透和传播数学文化,让数学文化走进课堂,努力使学生在学习数学过程中真正受到文化熏陶,让学生不但是一个科学人,还是一个文化人,形成和发展数学品质,全面提高学生的数学素养。

相关百科

热门百科

首页
发表服务