首页

毕业论文

首页 毕业论文 问题

粒子物理研究生毕业论文

发布时间:

粒子物理研究生毕业论文

物理学概览 物理学是研究宇宙间物质存在的基本形式、性质、运动和转化、内部结构等方面,从而认识这些结构的组成元素及其相互作用、运动和转化的基本规律的科学。 物理学的各分支学科是按物质的不同存在形式和不同运动形式划分的。人对自然界的认识来自于实践,随着实践的扩展和深入,物理学的内容也在不断扩展和深入。 随着物理学各分支学科的发展,人们发现物质的不同存在形式和不同运动形式之间存在着联系,于是各分支学科之间开始互相渗透。物理学也逐步发展成为各分支学科彼此密切联系的统一整体。 物理学家力图寻找一切物理现象的基本规律,从而统一地理解一切物理现象。这种努力虽然逐步有所进展,但现在离实现这—目标还很遥远。看来人们对客观世界的探索、研究是无穷无尽的。经典力学 经典力学是研究宏观物体做低速机械运动的现象和规律的学科。宏观是相对于原子等微观粒子而言的;低速是相对于光速而言的。物体的空间位置随时间变化称为机械运动。人们日常生活直接接触到的并首先加以研究的都是宏观低速的机械运动。                                       自远古以来,由于农业生产需要确定季节,人们就进行天文观察。16世纪后期,人们对行星绕太阳的运动进行了详细、精密的观察。17世纪开普勒从这些观察结果中总结出了行星绕日运动的三条经验规律。差不多在同一时期,伽利略进行了落体和抛物体的实验研究,从而提出关于机械运动现象的初步理论。  牛顿深入研究了这些经验规律和初步的现象性理论,发现了宏观低速机械运动的基本规律,为经典力学奠定了基础。亚当斯根据对天王星的详细天文观察,并根据牛顿的理论,预言了海王星的存在,以后果然在天文观察中发现了海王星。于是牛顿所提出的力学定律和万有引力定律被普遍接受了。  经典力学中的基本物理量是质点的空间坐标和动量:一个力学系统在某一时刻的状态,由它的某一个质点在这一时刻的空间坐标和动量表示。对于一个不受外界影响,也不影响外界,不包含其他运动形式(如热运动、电磁运动等)的力学系统来说,它的总机械能就是每一个质点的空间坐标和动量的函数,其状态随时间的变化由总能量决定。  在经典力学中,力学系统的总能量和总动量有特别重要的意义。物理学的发展表明,任何一个孤立的物理系统,无论怎样变化,其总能量和总动量数值是不变的。这种守恒性质的适用范围已经远远超出了经典力学的范围,现在还没有发现它们的局限性。  早在19世纪,经典力学就已经成为物理学中十分成熟的分支学科,它包含了丰富的内容。例如:质点力学、刚体力学、分析力学、弹性力学、塑性力学、流体力学等。经典力学的应用范围,涉及到能源、航空、航天、机械、建筑、水利、矿山建设直到安全防护等各个领域。当然,工程技术问题常常是综合性的问题,还需要许多学科进行综合研究,才能完全解决。                                         机械运动中,很普遍的一种运动形式就是振动和波动。声学就是研究这种运动的产生、传播、转化和吸收的分支学科。人们通过声波传递信息,有许多物体不易为光波和电磁波透过,却能为声波透过;频率非常低的声波能在大气和海洋中传播到遥远的地方,因此能迅速传递地球上任何地方发生的地震、火山爆发或核爆炸的信息;频率很高的声波和声表面波已经用于固体的研究、微波技术、医疗诊断等领域;非常强的声波已经用于工业加工等。热学、热力学和经典统计力学  热学是研究热的产生和传导,研究物质处于热状态下的性质及其变化的学科。人们很早就有冷热的概念。对于热现象的研究逐步澄清了关于热的一些模糊概念(例如区分了温度和热量),并在此基础上开始探索热现象的本质和普遍规律。关于热现象的普遍规律的研究称为热力学。到19世纪,热力学已趋于成熟。  物体有内部运动,因此就有内部能量。19世纪的系统实验研究证明:热是物体内部无序运动的表现,称为内能,以前称作热能。19世纪中期,焦耳等人用实验确定了热量和功之间的定量关系,从而建立了热力学第一定律:宏观机械运动的能量与内能可以互相转化。就一个孤立的物理系统来说,不论能量形式怎样相互转化,总的能量的数值是不变的,因此热力学第一定律就是能量守恒与转换定律的一种表现。  在卡诺研究结果的基础上,克劳修斯等科学家提出了热力学第二定律,表达了宏观非平衡过程的不可逆性。例如:一个孤立的物体,其内部各处的温度不尽相同,那么热就从温度较高的地方流向温度较低的地方,最后达到各处温度都相同的状态,也就是热平衡的状态。相反的过程是不可能的,即这个孤立的、内部各处温度都相等的物体,不可能自动回到各处温度不相同的状态。应用熵的概念,还可以把热力学第二定律表达为:一个孤立的物理系统的熵不会着时间的流逝而减少,只能增加或保持不变。当熵达到最大值时,物理系统就处于热平衡状态。                                       深入研究热现象的本质,就产生了统计力学。统计力学应用数学中统计分析的方法,研究大量粒子的平均行为。统计力学根据物质的微观组成和相互作用,研究由大量粒子组成的宏观物体的性质和行为的统计规律,是理论物理的一个重要分支。  非平衡统计力学所研究的问题复杂,直到20世纪中期以后才取得了比较大的进展。对于一个包含有大量粒子的宏观物理系统来说,系统处于无序状态的几率超过了处于有序状态的几率。孤立物理系统总是从比较有序的状态趋向比较无序的状态,在热力学中,这就相应于熵的增加。  处于平衡状态附近的非平衡系统的主要趋向是向平衡状态过渡。平衡态附近的主要非平衡过程是弛豫、输运和涨落,这方面的理论逐步发展,已趋于成熟。近20~30年来人们对于远离平衡态的物理系统,如耗散结构等进行了广泛的研究,取得了很大的进展,但还有很多问题等待解决。  在一定时期内,人们对客观世界的认识总是有局限性的,认识到的只是相对的真理,经典力学和以经典力学为基础的经典统计力学也是这样。经典力学应用于原子、分子以及宏观物体的微观结构时,其局限性就显示出来,因而发展了量子力学。与之相应,经典统计力学也发展成为以量子力学为基础的量子统计力学。

这段时间开始仔细阅读现代物理基础丛书中第68本,由肖振军和吕才典编写的《粒子物理学导论》。在此写下读书笔记,本人不才,望各位赐教。 粒子物理学 (particle physics)的研究对象就是物质的基本结构和 基本相互作用 (fundamental interaction)。 1897年,J. J. Thomson测定了 电子 (electron)荷质比 ,1907~1913年,R. A. Millikan发现电子 电荷 (electric charge) 的不连续性。 1901年,Max Plank提出能量量子化假说,1905年,A. Einstain提出光量子化假说。 1911年,Ernest Rutherford提出原子的核式结构,1913年,N. Bohr建立氢原子模型。 1919年,Rutherford发现 质子 (proton)。 1932年,James Chadwick发现 中子 (neutron)。 1932年,C. Anderson发现 正电子 (positron)。 1936年,Anderson和S. H. Neddermeyer发现 轻子(muon),之后发现 介子, 介子, 介子, 介子, 反质子 (antiproton)(1955年), 反中子 (antineutron)(1956年), 介子, 介子, 介子, 介子, 介子等。 1974年,Samuel C. C. Ting(丁肇中)和B. Richter发现 粒子。 1974~1977年,发现 轻子。 1977年,Leon Lederman发现 粒子,证实了底夸克的存在。 1983年,CERN的强子对撞机试验发现 和 中间矢量玻色子。 2012年7月,LHC发现 希格斯玻色子 (Higgs boson)。 目前发现的基本粒子: 轻子 (lepton): , , , , , 。 夸克 (quark): , , ; 矢量玻色子 (vector boson): , , , 。 基本标量粒子: 。 1941~1950年发展起来的描写电磁相互作用的 量子电动力学 (QED); 1972~1974年发展起来的描写强相互作用的 量子色动力学 (QCD); 1964~1971年发展起来的 电弱统一理论 (electroweak interaction); 以及现在正在发展的 大统一理论 (GUT), 超对称理论 (SUSY), 超弦理论 (superstring theory). 我们定义 便得到了普遍的自然单位制。 在 广义相对论 (general relativity)和粒子物理学中引入四维度规: 四维时空矢量和四维能量动量定义为: 四维矢量的乘积定义为: 四维动量能量和四维时空坐标的平方就分别是: 正负电子对撞机:LEP,BEPC,CESR,PEP-II,KEKB,DAφNE。 强子对撞机、轻子-强子对撞机:Tevatron , LHC,HERA。 B介子工厂:美国SLAC加速器中心的PEP-II和BaBar探测器,日本KEK的KEKB和Belle探测器 超高能pp对撞机LHC:ATLAS,CMS,ALICE和LHCb。主要目标为:寻找标准模型中非常重要的Higgs粒子;寻找超对称理论或者其他超出标准模型的新物质理论预言的新粒子。 日本的超级B介子工厂:日本的Belle-II和意大利的Super-B(已被终止) 高速运动的粒子的能量和动量为: 它们满足质壳条件: 在能量和动量组成的四维相空间里,这个等式给出了一个四维相空间中的一个三维曲面的方程,以“壳”来形象地表示这个曲面。 非相对论情况下,自由粒子波函数满足 薛定谔方程 (Schrodinger equation),波函数满足归一化条件。 对于不稳定粒子,Schrodinger方程修改为: 本征波函数为: 归一化条件修正为: 即粒子数在衰变,满足衰变规律: 对于不稳定的粒子的质量有分布函数: 衰变方程: 解: 平均寿命: 有关系: 即:不稳定粒子的衰变宽度等于其衰变寿命的倒数。 对于多衰变道有: 衰变道概率(即分支比): 轨迹长度满足: 假设存在磁单极子,则电荷量子化就是一个自然推论;量子电动力学理论中,电荷量子化和电荷守恒是一个U(1)定域规范对称性的自然推论。 自旋量子数s为半整数的粒子,满足Fermi-Dirac统计,称为 费米子 (Fermion) 自旋量子数s为整数的粒子,满足Bose-Einstain统计,称为 玻色子 (Boson) 对于矢量粒子来说可以定义极化矢量 满足归一化条件: 对于光子满足洛伦兹条件: ,在运动表象里有: 电子的自旋角动量s在电子运动方向上的投影称为螺旋度或叫手征性: 自旋角动量为s的带电粒子有磁矩: 量子场论 (quantum field theory)的基本粒子物理图像: 1 每种粒子对应一种场,场没有不可入性,对应各种不同粒子的场在空间中互相重叠地充满全空间。场的激发表现为粒子,场的不同激发状态表现为粒子的数目和运动状态不同。 2 场用复量描写,场的激发也用复量描写,互为复共轭的两种激发状态表现为粒子和反粒子互换的两种状态。如果场用实量描写,场的激发也用实量描写,这时复共轭就是它自身,粒子就是它自身的反粒子。 3 所有场都处于基态时为物理真空。 1 相互作用存在于场之间,无论是处于基态还是激发态的场都同样与其他场相互作用。 2 粒子是场处于激发状态的表现,因此粒子间的相互作用来自场之间的相互作用。场之间的相互作用是粒子转化的原因。 1 强子 ( hadron ):直接参与强相互作用的粒子。 介子 ( meson ):自旋为整数,重子数为0的强子,有 , , , , , , , , , ……; 重子 ( baryon ):自旋为半整数,重子数为1的强子,有 , , , , , , 。 2轻子:不直接参与强相互作用的粒子 3 规范玻色子:传递相互作用的媒介子 4 Higgs玻色子:自旋为0的标量粒子 不能通过强相互作用衰变的粒子称为稳定粒子,可以通过强相互作用衰变的粒子称为共振态 1 规范玻色子 2 费米子:轻子和夸克 轻子分正反粒子,夸克分正反粒子12种 味道 (flavor)有不同的三种 颜色 (color) 3 Higgs粒子:在实现电弱对称性的自发破缺,是规范玻色子和费米子获得质量方面起着非常重要的作用。根据最小超对称原理,至少有5个Higgs粒子: 从轻子—夸克层次粒子的分类来看,自然界已知存在的基本粒子数目为: 补充:不久前,四位物理学家Guillermo Ballesteros、Javier Redondo、Andreas Ringwald和Carlo Tamarit提出一个新理论,论文已经通过同行审议,于2月15日发表在 《物理评论快报》 ( PRL )。这个新理论被称作 SMASH (全称为“Standard Model Axion See-saw Higgs portal inflation”)。 SM为 标准模型 (standard model),包含本文提到的所有基本粒子;A为 轴子 (axion),用于解释 暗物质 (dark matter)和强核力的不寻常对称性;S为跷跷板机制(see-saw mechanism),用于解释宇宙中物质—反物质不对称性;H为预言ρ粒子的存在,用于解释中微子质量,并且和Higgs粒子协作驱使宇宙暴胀。

下面链接之中有好多文章,应该是比较符合你的要求的。

物理学研究宇宙间物质存在的各种主要的基本形式,它们的性质、运动和转化以及内部结构;从而认识这些结构的组元及其相互作用、运动和转化的基本规律。地学和生命科学都是自然科学的重要方面,有重要的社会作用,但是像地球这样有生物的行星在宇宙中却是少见的,所以地学和生命科学不属于物理学范围。当然,物理学所发现的基本规律,即使在地球现象和生命现象中,也起着重要作用。 物理学的各分支学科是按物质的不同存在形式和不同运动形式划分的。人对自然界的认识来源于实践,而实践的广度和深度有着历史的局限性。随着实践的扩展和深入,物理学的内容也不断扩展和深入。新的分支学科陆续形成;已有的分支学科日趋成熟,应用也日益广泛。早在古代就形成的天文学和起源于古代炼金术的化学,始终保持着独立的地位,没有被纳入物理学的范围。在天文学和物理学之间、化学和物理学之间存在着密切的联系,物理学所发现的基本规律在天文现象和化学现象中也起着日益深刻的作用。 客观世界是一个内部存在着普遍联系的统一体。随着物理学各分支科学的发展,人们发现物质的不同存在形式和不同运动形式之间存在着联系,于是各分支学科之间开始互相渗透。物理学逐步发展成为各分支学科彼此密切联系的统一整体。物理学家力图寻找一切物理现象的基本规律,从而去统一地理解一切物理现象。这种努力虽然逐步有所进展,使得这一目标有时显得很接近;但与此同时,新的物理现象又不断出现,使这一目标又变得更遥远。看来人们对客观世界的探索、研究是无穷无尽的。以下大体按照物理学的历史发展过程来叙述物理学的发展及其内容。物理学是研究自然界基本规律的科学.它的英文词physics来源于希腊文,原义是自然,而中文的含义是“物”(物质的结构、性质)和“理”(物质的运动、变化规律).中文含义与现代观点颇为吻合.现代观点认为物理学主要研究:物质和运动,或物质世界及其各部分之间的相互作用,或物质的基本组成及它们的相互作用.物质可以小至微观粒子——分子、原子以至“基本”粒子(elementaryparticles).所谓基本粒子,顾名思义是物质的基本组成成分,本身没有结构.然而基本与否与人们的认识水平以及科学技术水平有关,因此对“基本”的理解有阶段性.有鉴于此,物理学家简单地称之为“粒子”.有时为了表达认识的层次,我们仍然可以说:“现阶段的基本粒子为……”.当前我们认为基本粒子有轻于(lepton)、夸克(quark)、光子(photon)和胶子(gluon)等等.科学家们正在努力寻找自由夸克.此外,分数电荷、磁单极也在寻找之列.我们周围的物体是物质的聚集状态.人们可以用自己的感官感知大多数聚集状态的物质,并称它们为宏观(macroscopic)物质以区别前面所说的微观(microscopic)粒子.居间的尺度是介观(mesoscopic),而更大的尺度是宇观(cosmological).场(field)传递相互作用,电磁场和引力场就是例子.在物理学的范围内,物质的运动是指机械运动、热运动、微观粒子的运动、原子核和粒子间的反应等等.运动总是发生在一定的时间和空间.时间和空间首先是作为物质运动的舞台,但最后也成了物理学研究的对象.现在知道物质之间的相互作用有四种,即万有引力、弱相互作用、电磁相互作用和强相互作用.爱因斯坦(,1879—1955)生前曾致力于统一场论的工作,试图用统一的理论来描述各种相互作用.在60年代,走向统一有了突破性的进展.格拉肖()、温伯格()和萨拉姆()等人发现弱相互作用和电磁相互作用可以统一,用弱电相互作用(electroweak)来描述.鲁比亚(1983[1],)等提供了实验支持.大统一理论(Grand Unification Theory,GUT)试图将强相互作用也统一进去,而超对称理论更企图将引力也纳入其中.还有人在寻求其他的相互作用.对此,在Physics Teacher期刊上曾有一篇文章题为“存在第五种基本力吗?”专门讨论这一命题[6].在高级的理论中,相互作用只不过是交换物质,如电磁作用交换光子、强作用交换胶子.物理学的一个永恒主题是寻找各种序(orders)、对称性(symmetry)和对称破缺(symmetry-breaking)[10]、守恒律(conservation laws)或不变性(invariance).物质的有序状态比我们想象的要广泛得多.除了排列整齐的位置序以外,还可以有指向序.超导态也是一种有序状态.对称性通常指静止的空间几何对称,如太极图、八卦、晶体中的平移和旋转对称.实际上,对称性还可以是动态的,可以是时间反演对称、物质—反物质对称以及更为抽象的规范对称等等.就物理学和其他科学的关系而言,我们可以说:·物理学是最基本的科学.·物理学是最古老、发展最快的科学.·物理学提供最多、最基本的科学研究手段.最基本的体现是在天文学、地学、化学、生命科学中都包含着物理过程或现象.在这些学科中用到不少物理学概念和术语是很自然的.最基本还意味着任何理论都不能和物理学的定律相抵触.例如,如果某种理论破坏能量守恒定律,那么这一理论就很成问题.当然,某些物理理论本身或一些阶段性的工作本身也是在不断地完善.19世纪中叶之前,物理学曾是完完全全的实验科学.力学中的理论问题被认为是数学家的事.19世纪末,在当时处于世界物理学中心的德国的大学里,开始设置理论物理学教授的席位.此后,随着人类的认识能力逐步深入,逐步深入到不能靠直觉把握的微观、高速、宇观现象,20世纪初建立了狭义和广义相对论,以及量子力学这些深刻的物理理论.到了20世纪中叶,物理学已经成为实验和理论紧密结合的科学.20世纪后半叶由于电子计算机的发展,既改变了理论物理的工作方式,也扩大了实验的涵义.目前物理学已经成为实验物理、理论物理、计算物理三足鼎立的科学.实验提供的条件比自然界出现的更富变化和更灵活可控,而物理理论则给出了对自然界的数学描述.计算物理学是重要的新分支,有自己独特的研究方法.计算机实验可以提供比通常的实验更为变化丰富和灵活控制的条件.不过通常需要用到超级计算机.物理学中最重大的基本理论有下面5个:·牛顿力学或经典力学(Mechanics)研究物体的机械运动;·热力学(Thermodynamics)研究温度、热、能量守恒以及熵原理等等;·电磁学(Electromagnetism)研究电、磁以及电磁辐射等等;·相对论(Relativity)研究高速运动、引力、时间和空间等等;·量子力学(Quantum mechanics)研究微观世界.后两个理论主要是在20世纪发展起来的,通常认为是现代物理学的核心.以上理论中没有一个被完全推翻过,也没有一个是永远正确的.例如,牛顿力学在高速情形下,应该用狭义相对论来代替;而对于强引力,它又偏离于广义相对论,但在它的适用范围内仍然是精确的.科学的理论总是要发展的,需要根据新发现的事实进行修正.在教科书中只介绍一种版本的做法很可能导致“理论是唯一的”这样的观念.事实上,理论决不是唯一的.科学理论往往在美学上令人赏心悦目,在数学上优雅而普适,但是仅仅有这些是决不可能流传下来的.理论和思想必须经受实验的检验和验证.物理学中的理论和实验在相互促进和丰富中得到发展.一个没有思想的实验工作者可以发现无穷无尽的事实,不过毫无用处.理论家如果不受实验检验这一约束也可能产生出极其丰富的思想,不过与大自然毫无关系而已.通常的科学研究方法是:·通过观测、实验、计算机模拟得到事实和数据;·用已知的可用的原理分析这些事实和数据;·形成假说和理论以解释事实;·预言新的事实和结果;·用新的事例修改和更新理论.上述的后3步都是关于理论的.以上所说的科学研究的步骤是常规的.有时候,有的人可能并不遵循这样的过程.常常直觉(intuition)或者预感(premonition)会起相当的作用.有时候,机遇(运气或偶然)对于成功也会起作用,使你获得一则重要的信息或发现一个特别简单的解.要学会在恰当的时机提出恰当的问题,并找到问题的答案.有时还必须忽略一些“事实”,原因是这些并不是真正的事实或者它们无关紧要、自相矛盾;或者是由于它们掩盖了更重要的事实或考虑它们使问题过于复杂化.据说,有一次有人问爱因斯坦:如果迈克耳孙-莫雷(Michelson-Morley)实验并不导致光速不变你怎么办?他说:他将忽略那些实验结果,他已经得到了结论,光速必须被认为是不变的.关于爱因斯坦1905年提出狭义相对论时是否知道迈克耳孙-莫雷实验,曾发生过长时间的争论.有人认为爱因斯坦在他的著作中没有留下他知道迈克耳孙-莫雷实验的丝毫痕迹,他可能纯粹通过理论推理和他们(迈克耳孙与莫雷)得出了相同的结论.爱因斯坦的首席传记作家培斯(Abraham Pais)筛选了许多历史记载,得出结论说,爱因斯坦确实知道这一实验.新近有一篇爱因斯坦在1922年的演说的英文翻译稿刊登在Physics Today上[8].此文是根据原来的德语演讲的日文记录整理、翻译的[见第九章参考文献(13)].译者让爱因斯坦“本人”表示,他知道这一实验.在大学物理的学习中,除了学习事实、定律、方程和解题技巧外,还必须努力从整体上掌握物理学.要了解各分支间的相互联系.现代观点认为,应该从整体上逻辑地、协调地来把握物理学.学习中,对于基本物理定律的优美、简洁、和谐以及辉煌应该有所体会,要学会鉴赏其普适程度,了解其适用范围.还要学会区别理论和应用,物理思想和数学工具,一般规律和特殊事实,主要和次要效应,传统的和现代的推理方式等等.

粒子物理毕业论文方向

应用物理学专业的毕业生主要在物理学或相关的科学技术领域中从事科研、教学、技术开发和相关的管理工作。科研工作包括物理前沿问题的研究和应用,技术开 发工作包括新特性物理应用材料如半导体等,应用仪器的研制如医学仪器、生物仪器、科研仪器等。应用物理专业的就业范围涵盖了整个物理和工程领域,融物理理 论和实践于一体,并与多门学科相互渗透。 此外,出国和考研的毕业生比例一般也会占到毕业总人数的一半左右。

物理系毕业的本科生直接参加工作的很少,将来可以从事研究工作,在大学或者研究所里,具有物理背景的学生,思维能力很强,可以从事金融经济方面的工作,现在华尔街上有许多北大物理系的校友,你还可以从事生物产业,电子,计算机,数学等许多行业,总之,物理系的毕业生将来就业的前景十分广阔,大大强于工科学生。呵呵我也是物理系的.

物理和数学一样,应用面很广,特别以后从事科研工作

物理学概览 物理学是研究宇宙间物质存在的基本形式、性质、运动和转化、内部结构等方面,从而认识这些结构的组成元素及其相互作用、运动和转化的基本规律的科学。 物理学的各分支学科是按物质的不同存在形式和不同运动形式划分的。人对自然界的认识来自于实践,随着实践的扩展和深入,物理学的内容也在不断扩展和深入。 随着物理学各分支学科的发展,人们发现物质的不同存在形式和不同运动形式之间存在着联系,于是各分支学科之间开始互相渗透。物理学也逐步发展成为各分支学科彼此密切联系的统一整体。 物理学家力图寻找一切物理现象的基本规律,从而统一地理解一切物理现象。这种努力虽然逐步有所进展,但现在离实现这—目标还很遥远。看来人们对客观世界的探索、研究是无穷无尽的。经典力学 经典力学是研究宏观物体做低速机械运动的现象和规律的学科。宏观是相对于原子等微观粒子而言的;低速是相对于光速而言的。物体的空间位置随时间变化称为机械运动。人们日常生活直接接触到的并首先加以研究的都是宏观低速的机械运动。                                       自远古以来,由于农业生产需要确定季节,人们就进行天文观察。16世纪后期,人们对行星绕太阳的运动进行了详细、精密的观察。17世纪开普勒从这些观察结果中总结出了行星绕日运动的三条经验规律。差不多在同一时期,伽利略进行了落体和抛物体的实验研究,从而提出关于机械运动现象的初步理论。  牛顿深入研究了这些经验规律和初步的现象性理论,发现了宏观低速机械运动的基本规律,为经典力学奠定了基础。亚当斯根据对天王星的详细天文观察,并根据牛顿的理论,预言了海王星的存在,以后果然在天文观察中发现了海王星。于是牛顿所提出的力学定律和万有引力定律被普遍接受了。  经典力学中的基本物理量是质点的空间坐标和动量:一个力学系统在某一时刻的状态,由它的某一个质点在这一时刻的空间坐标和动量表示。对于一个不受外界影响,也不影响外界,不包含其他运动形式(如热运动、电磁运动等)的力学系统来说,它的总机械能就是每一个质点的空间坐标和动量的函数,其状态随时间的变化由总能量决定。  在经典力学中,力学系统的总能量和总动量有特别重要的意义。物理学的发展表明,任何一个孤立的物理系统,无论怎样变化,其总能量和总动量数值是不变的。这种守恒性质的适用范围已经远远超出了经典力学的范围,现在还没有发现它们的局限性。  早在19世纪,经典力学就已经成为物理学中十分成熟的分支学科,它包含了丰富的内容。例如:质点力学、刚体力学、分析力学、弹性力学、塑性力学、流体力学等。经典力学的应用范围,涉及到能源、航空、航天、机械、建筑、水利、矿山建设直到安全防护等各个领域。当然,工程技术问题常常是综合性的问题,还需要许多学科进行综合研究,才能完全解决。                                         机械运动中,很普遍的一种运动形式就是振动和波动。声学就是研究这种运动的产生、传播、转化和吸收的分支学科。人们通过声波传递信息,有许多物体不易为光波和电磁波透过,却能为声波透过;频率非常低的声波能在大气和海洋中传播到遥远的地方,因此能迅速传递地球上任何地方发生的地震、火山爆发或核爆炸的信息;频率很高的声波和声表面波已经用于固体的研究、微波技术、医疗诊断等领域;非常强的声波已经用于工业加工等。热学、热力学和经典统计力学  热学是研究热的产生和传导,研究物质处于热状态下的性质及其变化的学科。人们很早就有冷热的概念。对于热现象的研究逐步澄清了关于热的一些模糊概念(例如区分了温度和热量),并在此基础上开始探索热现象的本质和普遍规律。关于热现象的普遍规律的研究称为热力学。到19世纪,热力学已趋于成熟。  物体有内部运动,因此就有内部能量。19世纪的系统实验研究证明:热是物体内部无序运动的表现,称为内能,以前称作热能。19世纪中期,焦耳等人用实验确定了热量和功之间的定量关系,从而建立了热力学第一定律:宏观机械运动的能量与内能可以互相转化。就一个孤立的物理系统来说,不论能量形式怎样相互转化,总的能量的数值是不变的,因此热力学第一定律就是能量守恒与转换定律的一种表现。  在卡诺研究结果的基础上,克劳修斯等科学家提出了热力学第二定律,表达了宏观非平衡过程的不可逆性。例如:一个孤立的物体,其内部各处的温度不尽相同,那么热就从温度较高的地方流向温度较低的地方,最后达到各处温度都相同的状态,也就是热平衡的状态。相反的过程是不可能的,即这个孤立的、内部各处温度都相等的物体,不可能自动回到各处温度不相同的状态。应用熵的概念,还可以把热力学第二定律表达为:一个孤立的物理系统的熵不会着时间的流逝而减少,只能增加或保持不变。当熵达到最大值时,物理系统就处于热平衡状态。                                       深入研究热现象的本质,就产生了统计力学。统计力学应用数学中统计分析的方法,研究大量粒子的平均行为。统计力学根据物质的微观组成和相互作用,研究由大量粒子组成的宏观物体的性质和行为的统计规律,是理论物理的一个重要分支。  非平衡统计力学所研究的问题复杂,直到20世纪中期以后才取得了比较大的进展。对于一个包含有大量粒子的宏观物理系统来说,系统处于无序状态的几率超过了处于有序状态的几率。孤立物理系统总是从比较有序的状态趋向比较无序的状态,在热力学中,这就相应于熵的增加。  处于平衡状态附近的非平衡系统的主要趋向是向平衡状态过渡。平衡态附近的主要非平衡过程是弛豫、输运和涨落,这方面的理论逐步发展,已趋于成熟。近20~30年来人们对于远离平衡态的物理系统,如耗散结构等进行了广泛的研究,取得了很大的进展,但还有很多问题等待解决。  在一定时期内,人们对客观世界的认识总是有局限性的,认识到的只是相对的真理,经典力学和以经典力学为基础的经典统计力学也是这样。经典力学应用于原子、分子以及宏观物体的微观结构时,其局限性就显示出来,因而发展了量子力学。与之相应,经典统计力学也发展成为以量子力学为基础的量子统计力学。

粒子物理毕业论文题目

从物理学专业本科毕业论文所涉及的研究领域来看,又可以将其分为物理学理论、电子技术、计算机和应用物理四大类。A、物理学理论方向的毕业论文内容:力学、声学、数学物理、物理学与交叉学科、引力与天体物理、原子与分子和团簇物理、凝聚态物理、量子物理、场论与粒子物理、等离子体物理、光学、核物理、化学物理、统计物理、物理学史、综合等。B、电子技术:物理实验、电路的设计、传感器、C、计算机技术:多媒体技术、数据库等。D、应用物理:①材料科学:纳米材料技术、生物医学材料、薄膜材料以及新型高性能结构材料等;材料的先进合成、制造、加工的理论与新方法,材料组分、结构与性能的设计理论;结构、性能控制、材料的环境效应和寿命的评价理论;分子、纳米及微观尺度下的材料科学理论。②信息科学:高速信息网络体系结构与安全性的基础理论;微(纳)米电子学与分子电子学基础与半导体集成系统;光子、光电子集成与光子学基础;以感觉系统、神经系统、免疫系统以及系统生物学仿生和建模的生物信息系统。从分子层次着手设计的具有半导体、超导、吸氢、吸波、非线性光学等特殊功能的光、电、磁和力学纳米功能材料。③传感器技术。④测量与仪器。

1976年诺贝尔物理学奖授予美国加利福尼亚州斯坦福直线加速器中心的里克特(Burton Richter,1931—)和美国马萨诸塞州坎伯利基麻省理工学院的丁肇中(,1936—),以表彰他们在发现一种新型的重的基本粒子中所作的先驱性工作。粒子物理学的发端可以从1932年正电子的发现说起,到了50年代,陆续发现了反质子、π介子、反Λ粒子等等三十多种新粒子,其中稳定的有七种。寿命大多长于10-16秒。后来又发现了许多寿命更短的粒子,这些粒子也叫做强子共振态,是通过强相互作用衰变的。盖尔曼的夸克模型理论,解释了这些强子共振态,其预言的Ω-粒子又被实验证实。这时粒子物理学似乎已经达到了顶峰,没有什么事情可做了。然而,正是在这一短暂的沉静时期,1974年同时有两个实验小组,宣布发现了一种寿命特别长,质量特别大的粒子。这项发现的宣布,打破了沉闷的空气,使物理学家大为惊讶,推动粒子物理学迈向新的台阶。这项新的发现就是由里克特领导的SLAC-LBL合作组所发现的ψ粒子和由丁肇中领导的MIT小组所发现的J粒子。人们统称之为J/ψ粒子。SLAC是斯坦福直线加速器中心的简称,LBL是劳伦斯伯克利实验室的简称。两家共同组成一个合作组,为SLAC正负电子对撞机(SPEAR)配制了一台取名为MarkI的磁探测器,目的是探测4GeV的正负电子束对撞后生成的新粒子,探测范围可从直到。这是当时能量最高的电子对撞机。1974年初,里克特小组发现在处截面比反常,比邻近约高30%,当时并未引起注意。同年10月,又发现在处有一反常。后来还陆续有高出3~5倍的截面。这促使他们下决心把机器调回到附近进行精确测量,11月9日终于取得了在处存在狭共振的确切证据,并命名为ψ粒子。接着,又在处发现了ψ粒子的姐妹态,ψ'粒子。里克特1931年3月22日出生于纽约。1948年进入麻省理工学院,大三时曾参加正电子素实验,开始接触到电子-正电子系统。大学的毕业论文题为“氢的二次塞曼效应”,成绩优异。研究生期间,里克特测量了水银同位素位移及其超精细结构。他在工作中要用到回旋加速器,让短寿命的Hg197同位素和氚核束轰击金。因此更加激发了对核物理和粒子物理以及所使用的加速器的兴趣。他的博士论文题目是“由氢光生π介子”。然后他在斯坦福高能物理实验室找到工作。他在这里和同事们合作,建造了一台碰撞束机器,并于1965年开始实验,结果使量子电动力学的适用性延展至小于10~11cm。在这之前,里克特就在考虑高能电子-正电子碰撞束机器能用来做些什么。他特别想研究强相互作用粒子的结构。1963年里克特来到SLAC,在SLAC主任潘诺夫斯基的鼓励下,里克特组织了一个小组制定高能电子-正电子机器的最后设计。1964年完成了初步设计,1965年向美国原子能委员会提交了一份经费申请报告,当然这只是申请经费的漫长过程的第一步,以后还为之作过多次奋斗,直到1970年才得到经费。在这期间,他和小组成员又做了其它实验,设计并制造了大型磁谱仪的整套装置的一部分,并利用它进行了一系列π介子和K介子的光生实验。里克特为了以后制作存储环作准备,下了很大力气以求保住已经成立的小组。有了经费之后,工程立即上马,着手制作大型磁探测器。1973年开始做实验,终于得到了满意的成果。如果说里克特和他的小组是以他们的执著追求精神取得了引人注目的成绩,那么,丁肇中和他的小组更是以其严谨踏实、一丝不苟的作风得到了科学上的回报。丁肇中是华裔美籍科学家,1936年1月27日出生于美国密执安州安亚柏市,父亲丁观海是工程学教授,母亲王隽英是心理学教授,他们在访美期间,生下了丁肇中,于是丁肇中从小就成了美国公民。出生后两个月,与母亲一起回到中国。由于战争的原因,直到十二岁才受到传统的教育。1956年丁肇中得奖学金入美国密执安大学,三年后获得了数学和物理学位,1962年获得物理博士学位。关于丁肇中的经历,请读他的自述:“当我20岁时,我决定到美国去接受较好的教育,我父母的朋友、密执安大学工程学院的院长.布朗,告诉我父母他很欢迎我去那儿,并到他家住宿。当时我只懂一点儿英语,而且对在美国的生活费用毫不了解,在中国,我通过看书了解到美国许多学生是通过自己劳动挣钱进入大学的,于是,我对父母说我也要这么做。1956年9月6日,我到达了美国底特律机场,身边带了100美元,当时好像已很富裕了。我感到有些害怕,因我不认识任何人,而且通信也很困难。”“由于我是靠得奖学金入学的,故我不得不努力学习以继续取得奖学金。我在三年内使自己在密执安大学获得了数学和物理学位,在1962年,在琼斯和泊尔博士指导下获得物理学博士学位。”“我作为一个福特基金会的研究员到了欧洲核子研究中心(CERN)。在那儿我很荣幸能跟柯可尼教授一起搞质子同步加速器,从他那儿学到许多物理知识。他能以简单的方法对待一个复杂的问题,做实验相当仔细,这些都给我留下了深刻的印象。”“1965年春天,我回到美国,在哥伦比亚大学任教。在那些年月里,哥伦比亚大学的物理系是一个很有刺激性的地方,我有机会观察到如:莱德曼、李政道、拉比、施瓦茨、斯坦博格、吴健雄以及其他教授的工作。他们在物理学上都具有各自的风格和相当突出的鉴别力。我在哥伦比亚短暂的几年,收益很大。”“在我到达哥伦比亚大学的第二年,在坎伯利基电子加速器上进行一项由光子同核靶碰撞产生电子正电子对的实验。看来好像有点违反量子电动力学。于是我仔细地研究了该项实验,决定重做一次。我与搞西德电子同步加速器的韦伯教授和杰茨凯商量是否可在汉堡进行正负电子对产生的实验。他们都很热情地鼓励我马上就开始实验,1966年3月,我离开了哥伦比亚大学到汉堡去进行这个实验。自那时起,我以全部精力投入到电子对及μ介子对物理、研究量子电动力学和类光粒子的产生和衰变、寻找能衰变成电子对或μ介子对的新粒子。这类实验的特点是需要高强度入射通量,需要绝对排除大量不需要的背景条件,同时又需要质量分辨率高的探测器。”“为了寻找较大质量的新粒子,我于1972年带了实验小组回到了美国,在布鲁克海文国立实验室进行实验。1974年秋,我们发现了一种新的、完全出乎意料的重粒子——J粒子的证据。自那以后,找到了整族新粒子。”关于电子-正电子实验的缘起,丁肇中在领诺贝尔奖的演说词中作了如下说明:“1957年夏天,我是纽约暑期班的学生,偶然得到了赫兹堡的经典著作《原子光谱和原子结构》(1937年),从书中我第一次了解到光量子的概念和它在原子物理学中的作用,大学毕业前夕,我收到父亲送给我的圣诞礼物:阿希耶泽和贝律茨基合著的《量子电动力学》(1957年)一书的英译本。在密执安大学学习期间,我仔细读了这本书,并自己推导了书中的某些公式,后来我在哥伦比亚大学任教的年代,很有兴趣地读了特雷尔1958年的一篇论文。他指出用高能电子加速器在短距离上对量子电动力学(QED)所做的各种检验的含义。对于怎样把某一类费因曼图从3μ介子的μ介子产生中分离出来,我同布洛茨基合作进行了理论计算。”为此丁肇中和布洛茨基联名于1966年发表了一篇论文。1965年10月,丁肇中受德国汉堡德意志电子同步加速器研究中心(DESY)主任詹希克的邀请,做了e+e-对产生的第一个实验。他和他的小组使用的探测器具有如下特性:1.能利用负载循环2%~3%的10-11/s的入射光子流;2.接受度很大,不被磁铁的边缘或屏蔽物所限制,仅受闪烁计数器决定;3.所有的计数器并不直接面对靶体;4.为了排除强子对,切连科夫计数器为磁铁所分隔,使π介子与第一对计数器中的气体辐射源相互作用而放出的电子被磁铁排除,不进入第二对计数器。从第二对计数器放出的低能电子则被簇射计数器排除。这个实验的结果表示出量子电动力学正确地描述了粒子对产生过程直到10-14cm。然后,丁肇中小组转动谱仪的磁铁,使最大的粒子对质量接受区的中心在750MeV附近,他们观察到e+e-对的数量有很大的上升,明显地破坏QED。这种对QED的偏离,事实上是由强作用对e+e-产生的贡献增加而引起的。这时入射的光子产生重的类光粒子ρ介子,它再衰变为e+e-。它的衰变几率为α2的量级,为了证明情况确实是这样,他们做了另外一个实验,增加e+e-的张角,发现与QED的偏离更大。这是可以预计到的,因为当增加e+e-的张角时,QED过程比强作用过程减少得更快。约为5MeV,因此丁肇中小组研制了一个质量分辨率约为5MeV的探测器。丁肇中小组的成员们面对的是极其单调的测量工作,可是这不是一般的测量,请继续听丁肇中教授的回忆:“在有些测量中,事件率低,特别在研究大于ρ和ω介子质量范围的e+e-质谱的实验里,当加速器全负载时,e+e-对的产额约为每天一个事件。这就是说,整个实验室大约有半年光景一直专门只做这个实验,每天一个事件的事件率还意味着,往往2、3天没有事件,而在另外的日子里我们却得到2、3个事件。正是在这个实验的过程中,我们形成了每30分钟把全部电压检查一遍和每24小时通过测量QED产额来校准一次谱仪的传统。为了确保探测器工作稳定,我们还建立了物理学家跟班的惯例,甚至当加速器关机维修时也跟班,我们还从不切断电源。这样做的最终效果是,我们的计数室多年来有着与实验室的其它部分不同的基础体制。”“我们经过多年的工作后,学会了怎样操纵具有负载循环2%~3%,每秒约1011γ的高强度粒子束。同时采用具有大的质量接受度和好的质量分辨率△M≈5MeV的探测器,它能以>>108的倍数将ππ从e+e-中辨别出来。”“我们现在可以提出一个简单的问题:有多少重光子存在?它们的性质怎样?对我来说,不能想像只有三种重光子,而且它们的质量都是1GeV左右,为了解答这些问题,我同小组成员反复讨论了怎样进行实验。最后我决定1971年在布洛克海文国立实验室的30GeV质子加速器上首先做一个大型实验,把探测质量提高到5GeV,探测重光子的e+e-衰变来寻找更多的重光子。”在诺贝尔奖演说词中,丁肇中这样形容准备阶段的工作:“在建造我们的谱仪过程,及整个实验过程中,我受到很多的批评。问题在于为了达到良好的分辨率,必须要造一个非常昂贵的谱仪。一位有名望的物理学家批评说:这种谱仪只适用于寻找窄共振——但并不存在窄共振。尽管这样,我还是决定按我们原来的设计创造,因为我一般不太相信理论论证。”“1974年4月我们完成了实验的布置工作,并开始引入强大的质子束流到实验区。我们立刻发现,我们计数室里的辐射强度达每小时伦琴。这就是说,我们的物理学家24小时内将要受到最大允许的辐射年剂量。我们花了二、三个星期艰苦地寻找原因,大家为能否继续进行这项实验而担忧。”“一天,自1966年以来一直同我共事的贝克尔博士带着盖革计数器在踱步时,突然发现,辐射的大部分来自屏蔽区的一个特定的地方。经过仔细研究后,发现即使我们已经用了10000吨混凝土屏蔽块,但最重要的区域——束流制动器的顶部——却仍然根本没有被屏蔽!经此纠正之后,辐射强度降到了一个安全值,这样我们就可以进行实验了。“从4月到8月,我们做了例行的调节工作,探测器工作性能符合设计要求。我们能够利用每秒1012个质子,小型电子对谱仪也工作正常,这使我们能用纯电子束来校正探测器。”经过严格认真的反复核对,奇迹终于出现了。丁肇中回忆说:“1974年初夏,我们在4Gev~5GeV的大质量区域里测定了一些数据。然而,对这些数据所做的分析表明,只存在极少的电子-正电子对。”“在8月底,我们调整了磁铁使它能接受~4GeV的有效质量。我们立即看到了干净的、真正的电子对。”“最令人惊奇的是,大部分e+e-对在处形成一个狭峰。更详细的分析表明,它的宽度小于5MeV。”经过多方核对后,丁肇中小组确认他们发现了一个当时质量最大的新粒子。后来得知,里克特小组也发现了这一粒子。他们的实验各有特点。里克特小组是让e+e-对湮没以形成矢量介子,是一种形成实验,而丁肇中小组是利用质子束轰击铍靶,产生矢量介子,然后测量矢量介子的衰变产物,则是一种产生实验。里克特小组和丁肇中小组用不同的设备、经不同的反应过程几乎同时地发现了同一粒子,使物理学界大为惊喜。他们的发现把高能物理学带到了新的境界,因此,两年后里克特和丁肇中就分获诺贝尔物理学奖。

随着理论和实验的不断发展,物理学家逐步建立了粒子物理的“ 标准模型 ”。

在这个模型下,整个宇宙的基本粒子分为4类,分别是 夸克 、 轻子 、 矢量玻色子 和 标量希格斯粒子 。

其中,矢量玻色子是相互作用的 媒介子 ,通过规范作用传递着基本粒子之间的强相互作用、弱相互作用和电磁相互作用。

所有的基本粒子通过和希格斯子发生 相互作用 而获得质量。随着2012年希格斯粒子 在实验中发现 ,粒子物理标准模型完成最后一块“拼图”,证明了标准模型的巨大成功。

但是目前宇宙中仍然有许多标准模型解释不了的问题,表明 粒子物理标准模型并不是“终极”理论 ,而是电弱能标下的“有效”理论,仍然有超出标准模型的新物理亟待去发掘,这也是当前粒子物理学界的主要研究内容。

暗物质研究

暗物质超出了粒子物理标准模型,是当今物理学和天文学亟待解决的重大问题,在 实验中探测到暗物质并研究其物理属性 ,将是物理学的重大突破。

暗物质实验探测有3个主要方向—— 直接探测 、 间接探测 和 对撞机探测 。

国际新一代暗物质直接探测实验 PandaX-4T 4t级液氙实验 率先投入运行,取得大质量暗物质世界最强的限制。

间接探测包括暗物质粒子探测( DAMPE )和 AMS-02空间实验 积累了更多数据,给出更加精确的测量。

欧洲核子研究中心大型强子对撞机 LHC 上的暗物质寻找不断深入更加复杂的参数空间,并为即将开始的Run-3阶段取数做准备。

中国锦屏地下实验室(CJPL) 是世界上最深的实验室,有效屏蔽了来自宇宙线的干扰,提供了极其优越的实验环境,中国开展了 PandaX液氙实验 和 CDEX高纯锗实验 直接探测暗物质。

>>>

近20年来,位于意大利的 DAMA/LIBRA实验 一直宣称观测到暗物质在NaI(Tl)晶体中产生的 年调制信号 ,然而相应的暗物质信号参数被各种类型的直接探测实验所排除。

为了更加确切地检验这个疑似信号,国际上试图用同样的低本底NaI(Tl)晶体开展实验。

2021年5月,西班牙 Canfrac地下实验室 采用 kg的低本底NaI(Tl)晶体探测器的ANAIS实验公布了3年曝光量的探测结果,并 没有发现显著年调制现象 。预计到2022年底,该实验将有超过3倍标准偏差灵敏的曝光量,可以给出更加确切的结论。

另一个采用106 kg低本底NaI(Tl)晶体的 COSINE-100实验 ,在韩国Yangyang地下实验室 a曝光量的数据,也 没有发现显著的年调制现象 。

>>>

2020年,位于意大利Gran Sasso地下实验室的 XENON1T液氙实验 在 t·a曝光量的低能量电子反冲数据中,观测到了 大于3倍标准偏差的疑似信号 ,引起了暗物质理论和实验研究领域的广泛关注,亟需 同类型实验的进一步检验 。

中国 PandaX-II二期580 kg级液氙实验 积累了100 t·d的曝光量数据,直接从刻度数据中获取了 氙中主要的放射性杂质本底的特征谱 ,进而根据这些高可靠性的本底特征谱对电子反冲数据进行分析。

PandaX-II的结果显示,XENON1T观测的疑似信号 和当前数据并不矛盾 ,还需要提高数据统计量和探测灵敏度以给出确定性结论。

PandaX-II实验对轴子暗物质耦合常数(a)和中微子反常磁矩(b)的排除限,和XENON1T的疑似信号并不矛盾

国际上开展了多种类型暗物质探测的实验升级和研发,3个以液氙作为靶物质的实验,位于中国的PandaX-4T、欧洲的XENONnT和美国的LZ实验,将探测体量提升到了多吨级,预期能够 将探测灵敏度比之前提升1个数量级以上 。

其中, PandaX-4T液氙实验 在2020年底完成安装和调试,成为国际上首个投入运行的 多吨级液氙探测实验 ,在2021年上半年试运行的曝光量达到 t·a。

PandaX-4T探测器中应用了一系列新技术:研制了 新一代超大尺寸高透光的时间投影室探测器 ,大幅提高了探测器电场的均匀性和电子信号放大率,实现高分辨率的信号重建;采用了 无触发数据读出方式 ,有效降低了微弱信号的探测阈值;研制了 新型低温精馏氙系统 ,成功提纯6 t原料氙,将放射性杂质氪85的含量降低到PandaX-II时的1/20;有效利用液氙自屏蔽并结合多种放射性测量方法和表面清洗工艺,将单位探测靶中放射性本底降低到1/20,放射性杂质氡222的含量降低到1/6。

PandaX-4T首批数据的探测灵敏度较PandaX-II 提升了倍 ,给出了大质量暗物质和原子核自旋无关散射截面世界最强的限制。

PandaX-4T首批数据

对暗物质自旋无关散射截面的排除限

黄色区域为“中微子地板”,即探测灵敏度可以探测到太阳或大气中微子在探测器中的信号贡献

这批数据也显示,在暗物质质量10 GeV/ c 2附近区域,PandaX-4T实验开始触碰到所谓的“ 中微子地板 ”,即有可能探测到太阳中核聚变产生的硼8中微子同氙原子核的 相干散射信号 ,这种散射将是未来探测中微子的一个重要途径。

与此同时,国际上开始计划 几十吨级“终极”液氙探测实验 ,其中一个目标是将暗物质探测灵敏度推进到“中微子地板”。PandaX实验团队已经开展了相应的关键技术研发。

以液氩为靶物质 的探测器对大质量暗物质也有独特的探测灵敏度,几十吨级的低本底氩探测器的研发也在持续推进中。

>>>

中国CDEX实验利用 点电极高纯锗探测器 ,可实现 低能量阈值的探测 ,对轻质量暗物质具有高灵敏度。

2021年CDEX实验公布了利用 kg·d曝光量的数据寻找有效场暗物质信号的结果。

直接探测实验中,暗物质和靶物质相互作用转移动量小,可以 用有效场算符的形式系统地研究 ,从而实现较为全面的覆盖多种可能的暗物质理论模型。

在分析中,CDEX实验将探测阈值降低到160 eV,针对小质量暗物质,系统性地给出了 非相对论下 多种类型有效场模型的耦合常数上限。

同时,利用 手征有效场理论 ,获得了6 GeV/ c 2质量以下世界最强的WIMP与pion介子散射截面的排除限。

目前CDEX实验正在开展50 kg级高纯锗探测阵列实验的研发,预期将探测灵敏度 提高2个数量级以上 。

>>>

针对 小质量暗物质 ,直接探测实验也尝试不同探测方案来突破探测阈值的限制。

液氙探测实验 通过独立电离电子信号(S2-only)、Migdal或韧致辐射等次级效应来寻找小质量暗物质。

如 PandaX实验 在2021年初发表的S2-only数据分析结果,寻找暗物质和电子散射信号,在15~30 MeV/ c 2暗物质质量区间给出世界最强的 散射截面限制 。

SENSEI实验 采用了约2 g的高阻抗Skipper-CCD,在2020年底发表了24 d运行数据的结果,给出 MeV/ c 2质量的暗物质和电子散射信号世界最强的限制,以及 eV/ c 2质量的暗光子世界最强的限制。

SENSEI实验正在组装测试100 g探测模块,将 大幅度提升该质量范围的暗物质探测灵敏度 。

>>>

在 暗物质间接探测 方面,中国暗物质探测卫星 DAMPE实验 和位于国际空间站的 AMS-02实验 继续积累数据。

2021年发表了AMS-02实验运行7 a以来的物理数据,给出 更加精确 的反电子、反质子等测量结果。

>>>

在 对撞机探测 方面, 大型强子对撞机LHC 上的 ATLAS 和 CMS 实验不断深入分析Run-2运行时期的全部数据,寻找 暗物质产生过程 以及 中间传播子信号 。

对撞机探测不受原子核自旋大小的压制,通过寻找夸克或者胶子湮灭产生暗物质的过程,以及通过双喷注共振峰直接寻找轴矢量中间传播子,在一定的耦合常数下,可以 有效补充直接探测实验的结果 。

对撞机实验同时在寻找一些 复杂过程的暗物质模型 ,其中, 暗希格斯子模型 认为暗物质的质量起源有可能也存在类似希格斯子的破缺机制——暗希格斯子,暗希格斯子可以有和希格斯子类似的衰变过程。

ATLAS实验在2021年发表了 首个暗希格斯子衰变到2个矢量玻色子最终态的寻找结果 ,对中间传播子和暗希格斯子质量给出了限制。

LHC第三期取数Run-3即将开始,将累计更多的数据量进一步扫描多种暗物质产生模型。

中微子和粒子天体物理研究

粒子天体物理和粒子物理研究紧密联系, 宇宙线 具有地球上人造加速器无法达到的高能量,为我们认识极端高能物理过程、寻找新物理提供了宝贵的物质样本。

>>>

2021年粒子天体物理领域最显著的成果来自中国国家重大 科技 基础设施—— 高海拔宇宙线观测站LHAASO 。

LHAASO于2021年完成建设并顺利通过工艺验收,正式进入科学运行阶段,以前所未有的灵敏度开展 伽马射线、宇宙线巡天观测 。

在建设期间,基于1/2阵列数据,LHAASO合作组发布了首批观测结果:发现 银河系中大量超高能宇宙加速器 ,为寻找河内宇宙线起源做出了重要推进;记录到 能量达 PeV的伽马射线光子 ,这是人类迄今为止观测到的最高能量光子,开创了超高能伽马射线这一崭新的天文窗口。

蟹状星云 是首批发现的12个超高能伽马射线源之一,一直作为伽马射线天文学的“标准烛光”,LHAASO的最新结果为此“标准烛光” 在超高能波段设定了亮度标准 。

LHAASO观测到来自蟹状星云方向的 PeV伽马射线光子

这些超高能伽马射线辐射产生PeV以上能段的电子,接近经典电动力学和理想磁流体力学理论所允许的加速极限, 对现有的粒子加速理论提出了严峻挑战 。

未来几年,LHAASO将持续对北天区开展巡天观测,扫描伽马射线源并精确测量“膝”区宇宙线能谱, 冲击宇宙线起源的世纪之谜 。

>>>

另一种来自宇宙深处的重要物质样本是 高能中微子 。

2021年,位于南极冰层中的冰立方中微子天文台公布了首个 格拉肖共振事件 ——格拉肖预言,反电子中微子可与电子相互作用生成W-玻色子。产生格拉肖共振的中微子峰值能量为 PeV,可 从极端天体环境中得到 。

冰立方在此次簇射事例中测得 PeV的能量,考虑到簇射中的不可见能量,中微子能量被修正为约 PeV;事例中测到次级缪子的信号预示着 W-玻色子的强子衰变过程 ,为格拉肖共振提供了进一步证据。

冰立方的格拉肖共振事件再次验证了粒子物理标准模型, 揭示了天体反电子中微子的存在 。

对格拉肖共振事件的观测有望对天体中微子的产生机制做出限制。

未来几年是中微子天文学发展的关键时刻,国内外多个实验组提出了冰层、海洋、湖泊中的多种 下一代中微子望远镜方案 ,结合伽马射线、宇宙线、引力波的观测数据开展多信使天文学研究。

>>>

在 超出标准三味中微子模型的新物理寻找 方面,位于美国费米国家加速实验室的MicroBooNE实验发布了新的测量结果,没有找到惰性中微子存在的迹象。

此前,LSND、MiniBooNE等 短基线实验 相继发现中微子的数量异常,引入第四种中微子—— 惰性中微子 。

MicroBooNE实验没有找到惰性中微子,表明其中的差异还需要进一步研究,中微子数量异常仍然是未解之谜。

>>>

2021年,国际 无中微子双贝塔衰变实验 方向发展势头迅猛。

大型实验 中,CUORE和Kam⁃LAND-ZEN实验分别继续取数,GERDA的继任实验LEGEND-200即将开始运行。

国内无中微子双贝塔衰变实验在最近几年蓬勃发展,多个实验组提出了多种不同的实验方案,再次彰显了 马约拉纳中微子 这一问题的重要性和显著度。

>>>

2021年, 中国江门中微子实验 的建设进展顺利,预期2023年开始取数,剑指中微子质量顺序、中微子混合参数的精确测量,有望率先获得具有国际竞争力的实验成果。

明天将介绍缪子反常磁矩研究、重味与强子物理研究、高能量前沿希格斯物理、电弱物理与新物理寻找这3个领域的进展,敬请关注!

论文全文发表于《 科技 导报》2022年第1期,原标题为《2021年粒子物理学热点回眸》,本文有删减,欢迎订阅查看。

物理学研究宇宙间物质存在的各种主要的基本形式,它们的性质、运动和转化以及内部结构;从而认识这些结构的组元及其相互作用、运动和转化的基本规律。地学和生命科学都是自然科学的重要方面,有重要的社会作用,但是像地球这样有生物的行星在宇宙中却是少见的,所以地学和生命科学不属于物理学范围。当然,物理学所发现的基本规律,即使在地球现象和生命现象中,也起着重要作用。 物理学的各分支学科是按物质的不同存在形式和不同运动形式划分的。人对自然界的认识来源于实践,而实践的广度和深度有着历史的局限性。随着实践的扩展和深入,物理学的内容也不断扩展和深入。新的分支学科陆续形成;已有的分支学科日趋成熟,应用也日益广泛。早在古代就形成的天文学和起源于古代炼金术的化学,始终保持着独立的地位,没有被纳入物理学的范围。在天文学和物理学之间、化学和物理学之间存在着密切的联系,物理学所发现的基本规律在天文现象和化学现象中也起着日益深刻的作用。 客观世界是一个内部存在着普遍联系的统一体。随着物理学各分支科学的发展,人们发现物质的不同存在形式和不同运动形式之间存在着联系,于是各分支学科之间开始互相渗透。物理学逐步发展成为各分支学科彼此密切联系的统一整体。物理学家力图寻找一切物理现象的基本规律,从而去统一地理解一切物理现象。这种努力虽然逐步有所进展,使得这一目标有时显得很接近;但与此同时,新的物理现象又不断出现,使这一目标又变得更遥远。看来人们对客观世界的探索、研究是无穷无尽的。以下大体按照物理学的历史发展过程来叙述物理学的发展及其内容。物理学是研究自然界基本规律的科学.它的英文词physics来源于希腊文,原义是自然,而中文的含义是“物”(物质的结构、性质)和“理”(物质的运动、变化规律).中文含义与现代观点颇为吻合.现代观点认为物理学主要研究:物质和运动,或物质世界及其各部分之间的相互作用,或物质的基本组成及它们的相互作用.物质可以小至微观粒子——分子、原子以至“基本”粒子(elementaryparticles).所谓基本粒子,顾名思义是物质的基本组成成分,本身没有结构.然而基本与否与人们的认识水平以及科学技术水平有关,因此对“基本”的理解有阶段性.有鉴于此,物理学家简单地称之为“粒子”.有时为了表达认识的层次,我们仍然可以说:“现阶段的基本粒子为……”.当前我们认为基本粒子有轻于(lepton)、夸克(quark)、光子(photon)和胶子(gluon)等等.科学家们正在努力寻找自由夸克.此外,分数电荷、磁单极也在寻找之列.我们周围的物体是物质的聚集状态.人们可以用自己的感官感知大多数聚集状态的物质,并称它们为宏观(macroscopic)物质以区别前面所说的微观(microscopic)粒子.居间的尺度是介观(mesoscopic),而更大的尺度是宇观(cosmological).场(field)传递相互作用,电磁场和引力场就是例子.在物理学的范围内,物质的运动是指机械运动、热运动、微观粒子的运动、原子核和粒子间的反应等等.运动总是发生在一定的时间和空间.时间和空间首先是作为物质运动的舞台,但最后也成了物理学研究的对象.现在知道物质之间的相互作用有四种,即万有引力、弱相互作用、电磁相互作用和强相互作用.爱因斯坦(,1879—1955)生前曾致力于统一场论的工作,试图用统一的理论来描述各种相互作用.在60年代,走向统一有了突破性的进展.格拉肖()、温伯格()和萨拉姆()等人发现弱相互作用和电磁相互作用可以统一,用弱电相互作用(electroweak)来描述.鲁比亚(1983[1],)等提供了实验支持.大统一理论(Grand Unification Theory,GUT)试图将强相互作用也统一进去,而超对称理论更企图将引力也纳入其中.还有人在寻求其他的相互作用.对此,在Physics Teacher期刊上曾有一篇文章题为“存在第五种基本力吗?”专门讨论这一命题[6].在高级的理论中,相互作用只不过是交换物质,如电磁作用交换光子、强作用交换胶子.物理学的一个永恒主题是寻找各种序(orders)、对称性(symmetry)和对称破缺(symmetry-breaking)[10]、守恒律(conservation laws)或不变性(invariance).物质的有序状态比我们想象的要广泛得多.除了排列整齐的位置序以外,还可以有指向序.超导态也是一种有序状态.对称性通常指静止的空间几何对称,如太极图、八卦、晶体中的平移和旋转对称.实际上,对称性还可以是动态的,可以是时间反演对称、物质—反物质对称以及更为抽象的规范对称等等.就物理学和其他科学的关系而言,我们可以说:·物理学是最基本的科学.·物理学是最古老、发展最快的科学.·物理学提供最多、最基本的科学研究手段.最基本的体现是在天文学、地学、化学、生命科学中都包含着物理过程或现象.在这些学科中用到不少物理学概念和术语是很自然的.最基本还意味着任何理论都不能和物理学的定律相抵触.例如,如果某种理论破坏能量守恒定律,那么这一理论就很成问题.当然,某些物理理论本身或一些阶段性的工作本身也是在不断地完善.19世纪中叶之前,物理学曾是完完全全的实验科学.力学中的理论问题被认为是数学家的事.19世纪末,在当时处于世界物理学中心的德国的大学里,开始设置理论物理学教授的席位.此后,随着人类的认识能力逐步深入,逐步深入到不能靠直觉把握的微观、高速、宇观现象,20世纪初建立了狭义和广义相对论,以及量子力学这些深刻的物理理论.到了20世纪中叶,物理学已经成为实验和理论紧密结合的科学.20世纪后半叶由于电子计算机的发展,既改变了理论物理的工作方式,也扩大了实验的涵义.目前物理学已经成为实验物理、理论物理、计算物理三足鼎立的科学.实验提供的条件比自然界出现的更富变化和更灵活可控,而物理理论则给出了对自然界的数学描述.计算物理学是重要的新分支,有自己独特的研究方法.计算机实验可以提供比通常的实验更为变化丰富和灵活控制的条件.不过通常需要用到超级计算机.物理学中最重大的基本理论有下面5个:·牛顿力学或经典力学(Mechanics)研究物体的机械运动;·热力学(Thermodynamics)研究温度、热、能量守恒以及熵原理等等;·电磁学(Electromagnetism)研究电、磁以及电磁辐射等等;·相对论(Relativity)研究高速运动、引力、时间和空间等等;·量子力学(Quantum mechanics)研究微观世界.后两个理论主要是在20世纪发展起来的,通常认为是现代物理学的核心.以上理论中没有一个被完全推翻过,也没有一个是永远正确的.例如,牛顿力学在高速情形下,应该用狭义相对论来代替;而对于强引力,它又偏离于广义相对论,但在它的适用范围内仍然是精确的.科学的理论总是要发展的,需要根据新发现的事实进行修正.在教科书中只介绍一种版本的做法很可能导致“理论是唯一的”这样的观念.事实上,理论决不是唯一的.科学理论往往在美学上令人赏心悦目,在数学上优雅而普适,但是仅仅有这些是决不可能流传下来的.理论和思想必须经受实验的检验和验证.物理学中的理论和实验在相互促进和丰富中得到发展.一个没有思想的实验工作者可以发现无穷无尽的事实,不过毫无用处.理论家如果不受实验检验这一约束也可能产生出极其丰富的思想,不过与大自然毫无关系而已.通常的科学研究方法是:·通过观测、实验、计算机模拟得到事实和数据;·用已知的可用的原理分析这些事实和数据;·形成假说和理论以解释事实;·预言新的事实和结果;·用新的事例修改和更新理论.上述的后3步都是关于理论的.以上所说的科学研究的步骤是常规的.有时候,有的人可能并不遵循这样的过程.常常直觉(intuition)或者预感(premonition)会起相当的作用.有时候,机遇(运气或偶然)对于成功也会起作用,使你获得一则重要的信息或发现一个特别简单的解.要学会在恰当的时机提出恰当的问题,并找到问题的答案.有时还必须忽略一些“事实”,原因是这些并不是真正的事实或者它们无关紧要、自相矛盾;或者是由于它们掩盖了更重要的事实或考虑它们使问题过于复杂化.据说,有一次有人问爱因斯坦:如果迈克耳孙-莫雷(Michelson-Morley)实验并不导致光速不变你怎么办?他说:他将忽略那些实验结果,他已经得到了结论,光速必须被认为是不变的.关于爱因斯坦1905年提出狭义相对论时是否知道迈克耳孙-莫雷实验,曾发生过长时间的争论.有人认为爱因斯坦在他的著作中没有留下他知道迈克耳孙-莫雷实验的丝毫痕迹,他可能纯粹通过理论推理和他们(迈克耳孙与莫雷)得出了相同的结论.爱因斯坦的首席传记作家培斯(Abraham Pais)筛选了许多历史记载,得出结论说,爱因斯坦确实知道这一实验.新近有一篇爱因斯坦在1922年的演说的英文翻译稿刊登在Physics Today上[8].此文是根据原来的德语演讲的日文记录整理、翻译的[见第九章参考文献(13)].译者让爱因斯坦“本人”表示,他知道这一实验.在大学物理的学习中,除了学习事实、定律、方程和解题技巧外,还必须努力从整体上掌握物理学.要了解各分支间的相互联系.现代观点认为,应该从整体上逻辑地、协调地来把握物理学.学习中,对于基本物理定律的优美、简洁、和谐以及辉煌应该有所体会,要学会鉴赏其普适程度,了解其适用范围.还要学会区别理论和应用,物理思想和数学工具,一般规律和特殊事实,主要和次要效应,传统的和现代的推理方式等等.

研究生理论物理毕业论文

需要给你做吗

1.确定自己的主题2.根据自己的主题,搜集大量的有用的材料3.了解论文的格式附:论文格式广义来说,凡属论述科学技术内容的作品,都称作科学著述,如原始论著、简报、综合报告、进展报告、文献综述、述评、专著、汇编、教科书和科普读物等。但其中只有原始论著及其简报是原始的、主要的、第一性的、涉及到创造发明等知识产权的。其它的当然也很重要,但都是加工的、发展的、为特定应用目的和对象而撰写的。下面仅就原始论著的撰写谈一些体会,同时对如何做好学术报告也谈一些经验。在讨论原始论著写作时也不准备谈有关稿件撰写的各种规定及细则。我主要谈的是写作中容易发生的问题和经验,是写作道德和书写内容的规范问题。 论文写作的要求 下面按文章结构的顺序依次叙述。 (一)题目 科学论文都有题目,不能“无题”。题目一般20字左右。题目大小应与内容符合,尽量不设副题,不用第l报、第2报之类。题目都用直叙口气,不用惊叹号或问号,也不能将科学论文题目写成广告语或新闻报道用语。 (二)署名 科学论文应该署真名和真实的工作单位。主要体现责任、成果归属并便于后人追踪研究。严格意义上的作者是指对选题、论证、查阅文献、方案设计、建立方法、实验操作、整理资料、归纳总结、撰写成文等全过程负责的人,应该是能解答文章的有关问题者。现在往往把参加工作的人全部列上,那就应该以贡献大小依次排列。署名应征得本人同意。学术指导人根据实际情况既可以列为作者,也可以一般致谢。行政领导人一般不署名。 (三)引言 是引人入胜之言,很重要,要写好。一段好的引言常能使读者明白你这份工作的发展历程和在这一研究方向中的位置。要写出立题依据、基础、背景、研究目的。要复习必要的文献,写明问题的发展,文字要简练。 (四)材料与方法 按规定如实写出实验对象、器材、动物和试剂及其规格,写出实验方法、指标、判断标准等,写出实验设计、分组、统计处理方法等。这些按杂志规定办即可。 (五)实验结果 应高度归纳,精心分析,合乎逻辑地铺叙。应该去粗取精,去伪存真,但不能因不符合自己的意图而主观取舍,更不能弄虚作假。只有在技术不熟练或仪器不稳定时期所取得的数据,在技术故障或操作错误时所得的数据和不符合实验条件时所得的数据才能废弃不用。而且必须在发现问题当时就在原始记录上注明原因,不能在总结处理时因不合常态而任意剔除。废弃这类数据时应将在同样条件下,同一时期的实验数据一并废弃,不能只废弃不合己意者。 实验结果的整理应紧扣主题,删繁就简,有些数据不一定适合于这一篇论文,可留作它用,不要硬行拼凑到一篇中。行文应尽量采用专业术语。能用表的不要用图,可以不用图表的最好不要用图表,以免多占篇幅,增加排版困难。文、表、图互不重复。实验中的偶然现象和意外变故等特殊情况应作必要的交代,不要随意丢弃。 (六)讨论 是论文中比较重要,也是比较难写的一部分。应统观全局,抓住主要的有争议问题,从感性认识提高到理性认识进行论说。要对实验结果作出分析、推理,而不要重复叙述实验结果。应着重对国内外相关文献中的结果与观点作出讨论,表明白己的观点,尤其不应回避相对立的观点。讨论中可以提出假设,提出本题的发展设想,但分寸应该恰当,不能写成“科幻”或“畅想”。 (七)结语或结论 应写出明确可靠的结果,写出确凿的结论。文字应简洁,可逐条写出。不要用“小结”之类含糊其辞的词。 (八)参考文献 这是论文中很重要、也是存在问题较多的一部分。列出参考文献的目的是让读者了解研究命题的来龙去脉,便于查找,同时也是尊重前人劳动,对自己的工作有准 确的定位。因此这里既有技术问题,也有科学道德问题。 一篇论文中几乎自始至终都有需要引用参考文献之处。如引言中应引上对本题最重要、最直接有关的文献;在方法中应引上所采用或借鉴的方法;在结果中有时要引上与文献对比的资料;在讨论中更应引上与本文有关的各种支持的或有矛盾的结果与观点等。 一切粗心大意,不查文献;故意不引,自鸣创新;贬低别人,抬高自己;避重就轻,故作姿态的做法都是错误的。而这种现象现在在很多文章中还是时有所见的,这应该看成是科研工作者的大忌。其中,不查文献、漏掉重要文献、故意不引别人文献或有意贬损别人工作等错误是比较明显、容易发现的。有些做法则比较隐蔽,如将该引在引言中的,把它引到讨论中。这就将原本是你论文的基础或先导,放到和你论文平起平坐的位置。又如科研工作总是逐渐深入发展的,你的工作总是在前人工作基础上发展起来做成的。正确的写法应是,某年某人对本题做出了什么结果,某年某人在这基础上又做出了什么结果,现在我在他们基础上完成了这一研究。这是实事求是的态度,这样表述丝毫无损于你的贡献。有些作者却不这样表述,而是说,某年某人做过本题没有做成,某年某人又做过本题仍没有做成,现在我做成了。这就不是实事求是的态度。这样有时可以糊弄一些不明真相的外行人,但只需内行人一戳,纸老虎就破,结果弄巧成拙,丧失信誉。这种现象在现实生活中还是不少见的。 下面我举一个自己的经历。我在苏联做研究生时,发现可卡因引起的中枢阵挛性痉厥与大脑皮层的成熟有关。在兔胎儿期和新生兔期都没有这个反应,而是出生后才逐渐出现这个反应的,要到出生后21天,相当于性成熟期,才能与成年兔一样出现典型的阵挛性痉厥。这一发现当然很有意义。我的导师很高兴,说这一发现已足够作为你副博士论文的基础了。但不久,我在一本1940年德文的药理教科书中看到一段文字,记载着一位德国作者发现过与我观察到的同样现象,说明着同样的问题。我不加思索地拿着书给导师看。导师认真地从头看到底,突然拍着我的肩膀大声说:“好小伙子!我相信你一定能成才!但现在你必须从头再找新的发现。”待我又做了不少工作,论文答辩通过后,导师将那本德文书送给了我,说:“留下做纪念吧!为了你的诚实、勇敢和信心。”“诚实”是我当时就明白的,“勇敢”和“信心”是后来逐渐明白的。勇于否定自己的“发现”,有信心自己还会有新的发现,不图一时侥幸成功,尊重前人的工作,哪怕可能是无人知晓的记载,这些确实是成才必要的品德。文化大革命中,我被抄过家、毁过书、下放过五七干校,后来又多次搬迁,但这本书我一直留在身边。我不敢忘记导师对我的期望。 (九)致谢 指导者、技术协作者、提供特殊试剂或器材者、经费资助者和提出过重要建议者都属致谢对象。致谢应是真诚的、实在的、不要庸俗化。不要泛泛地致谢,不要只致谢教授不谢旁人。写致谢前要征得被致谢者的同意,不能拉大旗作虎皮。 (十)摘要或提要 以200字左右简要地概括全文。常放篇首。要精心撰写,有吸引力。要让读者看了摘要就像看到了全文的缩影,或者看了摘要就想继续看全文的有关部分。此外,还应给出几个关键词,关键词应写出真正关键的学术词汇,不要硬凑一般性用词。

我指点的,你先按想要的。

没有问题的泥。、

物理研究生毕业论文价格

本科毕业论文查重价格。

不同平台价格不一样,知网论文查重是198元每篇每次,除知网以外还有paperfree、papertime等平台有首篇免费的体验,第二次查重是按字数来收费的,一般是元每千字。在选择平台的时候千万要注意平台的正规性,否则会造成论文泄露。

资料扩展:

什么是保底价?保底价是指每篇论文成交后的最低价格,如果论文最后定价≤保底价,那么论文最终价格按照保底价收取。例如一篇2000字的专科文科类论文,按照标准收费应该为160元,但实际收费遵循保底原则,实际收取费用为300元,其他论文类推。

为什么要实行保底价?保底价是为了保护网站及写手的利益,因为一篇论文从客服与客户联系到安排写手、写手准备、写作、交稿、审稿、发送、修改,其间涉及诸多环节和人员,需要成本维护。实行保底价看起来有损客户利益,但客户如果站在写手和网站成本的角度考虑,加之一篇论文的形成过程,也便不难理解了。实际上本站所确定的保底价非常低,一般论文都不会低于保底价。

代笔有风险,投资需谨慎。一般代写网站上的写手都有共同的套路,也有可能落得人财两空的下场,所以找代笔时最好找到专业机构。

你是学生吧,快毕业了在毕业论文方面想寻求帮助是吧?其实每年都有很多大学生在毕业论文方面感到迷茫,自己又写不了,或者说写不出一篇好的毕业论文就难以毕业,跟你说说这方面的走势和相关的价格吧,希望可以帮到你。严格来说,写论文是一个持续“折腾”大半年的过程。比如本科毕业论文,从开题到一审,到查重,到提交,再到最后的答辩,绝不是两三天就能搞定的。题目、字数、重复率、时间要求、学校级别,是否外审。不同的论文价位不等,硕士论文一般都最低两万字,要价基本6000元以上(即千字300元起)。而本科论文要价要低一些,千字在120-200元左右。某省级期刊,2300字符/版,900或者1450元;某国家级期刊,1版2200字符/版,1000或者1400元;核心期刊费用很高,都是8000元以上,不过周期长,审稿严格,未必能成功发表。一、什么是毕业(学位)论文毕业论文是毕业生提交的一份有一定学术价值的文章。它是学生完成学业的标志性作业,是对学习成果的综合性总结和检阅,是研究生从事科学研究的书面总结。二、写毕业论文的目的主要有两个方面:一是对学生的理论知识与能力进行一次全面的考核。二是对学生进行科学研究基本功的训练总结。本内容转载于三、毕业论文的种类和规格从文体上看,毕业论文归属于议论文中学术论文的种类。即它是一种证明自已观点正确的文章。就其内容来讲,毕业论文可以是解决学科中某一问题的,用自己的研究成果加以回答;也可以是只提出学科中某一问题,综合别人已有的结论,指明进一步探讨的方向;再一种是对所提出的学科中某一问题,用自己的研究成果,给予部分的回答。毕业论文注重对客观事物作理性分析,指出其本质,提出个人的学术见解和解决某一问题的方法和意见。就其形式来讲,毕业论文具有议论文所共有的一般属性特征,即论点、论据、论证是文章构成的三大要素。文章主要以逻辑思维的方式为展开的依据,强调在事实的基础上,展示严谨的推理过程,得出令人信服的科学结论。(一)毕业论文的种类1、 按内容性质和研究方法的不同可以把毕业论文分为理论性论文与描述性论文。理论性论文具体又可分成两种:一种是以纯粹的抽象理论为研究对象,研究方法是严密的理论推导和数学运算,有的也涉及实验与观测,用以验证论点的正确性。另一种是以对客观事物和现象的调查、考察所得观测资料以及有关文献资料数据为研究对象,研究方法是对有关资料进行分析、综合、概括、抽象,通过归纳、演绎、类比,提出某种新的理论和新的见解。2、按议论的性质不同可以把毕业论文分为立论文和驳论文。立论性的毕业论文是指从正面阐述和论证自己的观点和主张。立论文要求论点鲜明,论据充分,论证严密,以理和事实服人。驳论性毕业论文是指通过反驳别人的论点来树立自己的论点和主张。3、按研究问题的大小不同可以把毕业论文分为宏观论文和微观论文。凡届国家全局性、带有普遍性并对局部工作有一定指导意义的论文,称为宏观论文。它研究的面比较宽广,具有较大范围的影响。反之,研究局部性、具体问题的论文,是微观论文。它对具体工作有指导意义,影响的面窄一些。4、 另外还有一种综合型的分类方法,即把毕业论文分为专题型、论辩型、综述型和综合型四大类:1)专题型论文。这是分析前人研究成果的基础上,以直接论述的形式发表见解,从正面提出某学科中某一学术问题的一种论文。2)论辩型论文。这是针对他人在某学科中某一学术问题的见解,凭借充分的论据,着重揭露其不足或错误之处,通过论辩形式来发表见解的一种论文。3)综述型论文。这是在归纳、总结前人或今人对某学科中某一学术问题已有研究成果的基础上,加以介绍或评论,从而发表自己见解的一种论文。4)综合型论文。这是一种将综述型和论辩型两种形式有机结合起来写成的一种论文。(二)毕业论文的规格即毕业论文的标准层次。一篇硕士生毕业论文需要有2万字以上。其学术水平比学士论文要高。它必须能够反映出作者所掌握知识的深度,有作者自己的较新见解。国家学位条例第五条规定,高等院校和科学研究机构的研究生,或具有研究生毕业同等学历的人员,只有在本学科上掌握坚实的基础理论和比较系统的专门知识,具有从事科研工作和专门技术工作的独立能力者,才可通过论文答辩,取得硕士学位。这就是说,硕士论文强调作者在学术问题上应有自己的较新见解和独创性,其篇幅一般要长一些,撰写前应阅读较多的有关重要文献。(三)语言表达的基本要求简捷、明快、形象、生动、准确、科学。

写毕业论文的收费如下:

1、专科毕业论文收费标准一般在80元/每千字。

2、本科毕业论文文史类收费标准一般在100元/每千字。

3、硕士毕业论文收费标准一般在200元/每千字。

除此之外,自考毕业论文写作都需要缴纳指导费用。

自考答辩,需要缴纳指导费用或者论文答辩评审费,无论是在学校报考参加还是通过培训机构,大多数省份是180-240元之间。如果是你要缴纳的答辩费用为指导费,那么这个费用可能是助学自考里的学校收费。除了论文答辩指导费用,有些院校将还将答辩费一般是200元——600元之间,具体收费根据学院来决定。

毕业论文(graduation study),按一门课程计,是普通中等专业学校、高等专科学校、本科院校、高等教育自学考试本科及研究生学历专业教育学业的最后一个环节,为对本专业学生集中进行科学研究训练而要求学生在毕业前总结性独立作业、撰写的论文。

从文体而言,它也是对某一专业领域的现实问题或理论问题进行 科学研究探索的具有一定意义的论文。一般安排在修业的最后一学年(学期)进行。学生须在教师指导下,选定课题进行研究,撰写并提交论文。目的在于培养学生的科学研究能力;加强综合运用所学知识、理论和技能解决实际问题的训练;从总体上考查学生学习所达到的学业水平。

相关百科

热门百科

首页
发表服务