首页

毕业论文

首页 毕业论文 问题

积分上限函数应用毕业论文

发布时间:

积分上限函数应用毕业论文

这样求导:在换元2x-t=u中,t是原积分变量,u是换元后的新积分变量,u是t的函数,u不是x的函数。换元后的第一个积分相当于∫〔a到2a〕【2af(u)】du。先把f中左边的x换成y,把等号左边换成关于x的全导,最后再把y赋值为x......如果不用一些办法写出步骤的话这个式子可以被认为是理所当然的,就一步,并没有神马过程可言......丝毫没有严格证明意识的物理系学生是会这样想的。变限积分的求导法则是先将积分限带入积分函数,再对积分限进行求导,如果积分函数带有自变量,想办法将其弄到积分号外面来。积分上限函数,设函数在区间上连续,并且设为上的一点,考察定积分。积分上限函数(或变上限定积分) 的自变量是上限变量 ,在求导时,是关于 x 求导,但在求积分时,则把 x 看作常数,积分变量 t 在积分区间 上变动。积分上限函数对 x 求导后的结果为 f(x)。

1、在定义分布函数F(x)的时候,由密度函数p(x)积分时用到了变上限积分;2、同样在定义联合分布函数F(x,y)的时候,由密度函数积分时也用到了变上限积分;3、在证明连续场合的卷积公式时也用到了变上限积分;暂时记起来...

积分上下限的范围需要变,换元要换限,例如,t=2x,x的范围是(1,2)此时t的范围需要在原范围乘以2即t的范围是(2,4)

sin函数是周期为2π的函数

sin(2kπ+x)=sinx

题目中的积分上下限是k的函数

为了确定上下限,方便计算

所以用2kπ的周期进行换元

扩展资料:

使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量取值范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例中的t>0和sinα∈[-1,1 ]。

可以先观察算式,可发现这种需换元法之算式中总含有相同的式子,然后把它们用一个字母替换,推演出答案,然后若在答案中有此字母,即将该式带入其中,遂可算出。

积分变换应用毕业论文

积分变换可以把微分方程变换为初等方程,求解方便。另外求线性系统的响应,用积分变换不用考虑初始状态,非常方便。可以实现时域和频域的变换,方便对谐波进行分析计算。使用复频域的状态变量解法可以方便的用计算机对系统进行求解。以上是复变函数,积分变换在电气工程方面最基本的一些应用。

通过拉普拉斯变换主要用于求解线性微分方程(或积分方程)。经过变换,原来函数所遵从的微分(或积分)方程变成了像函数所遵从的代数方程,代数方程比较容易求解,从而化难为易,本论文将介绍通过三步求解线性微分(或)积分方程。 拉普拉斯变换是工程数学中常用的一种积分变换,又名拉氏变换。拉氏变换是一个线性变换,可将一个有参数实数t(t≥ 0)的函数转换为一个参数为复数s的函数。拉普拉斯变换在许多工程技术和科学研究领域中有着广泛的应用,特别是在力学系统、电学系统、自动控制系统、可靠性系统以及随机服务系统等系统科学中都起着重要作用。

头疼啊,考试都是应用题

函数应用毕业论文

数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.本文以Mathematic软件为例子介绍了其在高等数学课程教学中的几点应用,即用符号运算和可视化的功能辅助教学研究.不仅可以激发学生学习的兴趣,提高课堂效率,而且能提高学生分析和解决问题的能力,可以培养学生的动手能力和创新能力. 【关键词】Mathematic;符号运算;图形处理;高等数学 一、引 言 随着现代科学技术的迅猛发展和教育改革的不断深入,新的知识不断涌现,社会对现在的大学生的要求也越来越高,不仅要求他们具有扎实的理论基础,而且要求他们具有较强的动手能力和一定的创新能力,传统的高等数学教学内容和教学方法不断受到冲击.为了适应这种发展的需要,高校教师就需要不断地对教学内容和教学手段进行改革:如何运用现代信息技术提高课堂教学的质量和效率,不仅教给他们理论知识,而且要教给他们处理实际问题的工具和方法. 而数学软件正是这样一个必备的工具.目前,数学软件有很多,较流行的有四种:Maple、Matlab、MathCAD、Mathematica,这几种数学软件各有所长,难以分出伯仲.Maple与Mathematica以符号计算见长,Matlab以数值计算为强,而MathCAD则具有简洁的图形界面和可视化功能,本文以Mathematica在高等数学中的应用进行介绍.Mathematica是由位于美国伊利诺州的伊利诺大学Champaign分校附近的Wolfram Research公司开发的一个专门进行数学计算的软件. 从1988年问世至今,已广泛地应用到工程、应用数学、计算机科学、财经、生物、医学、生命科学以及太空科学等领域,深受科学家、学生、教授、研究人员及工程师的喜爱.很多论文、科学报告、期刊杂志、图书资料、计算机绘图等都是Mathematica的杰作.Mathematica的基本系统主要由C语言开发而成,因而可以比较容易地移植到各种平台上,其功能主要是强大的符号运算和强大的图形处理,使你能够进行公式推导,处理多项式的各种运算、矩阵的一般运算, 求有理方程和超越方程的(近似)解,函数的微分、积分,解微分方程,统计,可以方便地画出一元和二元函数的图形,甚至可以制作电脑动画及音效等等.我们努力追求的目标是如何将数学软件(如Mathematica)与高等数学教学有机地结合起来,起到促进教学改革和提高教学质量的作用. 二、Mathematica在教学中的作用 Mathematica语言非常简单,很容易学会并熟练掌握,在教学中有以下两个作用: 1.利用Mathematica符号运算功能辅助教学,提高学生的学习兴趣和运算能力 学习数学主要是基本概念和基本运算的掌握.要想掌握基本运算,传统的做法是让学生做大量的习题,数学中基本运算的学习导致脑力和体力的高强度消耗,很容易让学生失去学习兴趣,Mathematica软件中的符号运算功能是学生喜欢的一大功能,利用它可以求一些比较复杂的导数、积分等,学生很容易尝试比较困难的习题的解决,可以提高学生的学习兴趣,牢固地掌握一种行之有效的计算方法. 例1利用符号运算求导数. 利用Mathematica还可以解决求函数导数和偏导数、一元函数定积分和不定积分、常微分方程的解等.由于输入的语言和数学的自然语言非常近似,所以很容易掌握且不容易遗忘.Mathematica不仅是一种计算工具和计算方法,而且是一种验证工具,充分利用Mathematica这个工具进行验证,可以使得学生轻松地理解和接受在高等数学的教学中遇到的难理解的概念和结论.另外,在教学中会遇到难度比较大的习题,利用Mathematica可以验证我们作出的结果是否正确. 2.利用Mathematica可视化功能辅助教学,提高学生分析和解决问题的能力 利用Mathematica可视化功能辅助教学,可以很方便地描绘出函数的二维和三维图形,还可以用动画形式来演示函数图形连续变化的过程,图形具有直观性的特点,可以激发学生的兴趣,是教师吸引学生眼球,展示数学“美”的一种有效的教学手段,可以达到很好的教学效果. 在高等数学的教学中遇到的学生难理解的概念和结论,如果充分利用Mathematica这个工具进行验证,就可以让学生比较轻松地理解和接受. 在空间解析几何和多元函数微积分这两章内容中,涉及许多三维的函数图形,三维函数图形用人工的方法很难作出,要掌握二元函数的性质就需要学生较强的空间想象能力,这对一部分学生来说非常困难.利用Mathematica软件可以作出比较直观的三维图形,学生利用Mathematica软件就比较容易掌握这两章内容. 总之,高等数学中引入数学软件教学,在很多方面正改变着高等数学教学的现状,能给传统的教学注入新的活力,在教学中要充分发挥数学软件(如Mathematica)的作用,培养学生学习高等数学的兴趣,突出他们在学习中的主体地位,提高他们分析解决问题的能力,培养他们的创新意识. 三、结束语 本文探讨了在高等数学的课堂教学中,如何利用Mathematica软件的符号运算功能与可视化功能激发学生学习知识的动力,优化教学效果,提高课堂效率.在教学过程中,适当地运用数学软件,可将抽象的数学公式可视化、具体化,便于学生理解和掌握,最终起到化难为易、 化繁为简的作用.总之,高校教师在教学过程中,若能充分运用数学软件技术与多媒体技术辅助课堂教学,发挥新技术的优势,发掘新技术的潜力,必能提高教学的质量和效果. 【参考文献】 [1]郭运瑞,刘群,庄中文.高等数学(上)[M] .北京:人民出版社,2008. [2]郭运瑞,彭跃飞.高等数学(下)[M] .北京:人民出版社,2008. [3] (美)D尤金(著).Mathematica使用指南(全美经典学习指导系列) [M].邓建松,彭冉冉译.北京:科学出版社,2002. 猜你喜欢: 1. 数学与应用数学毕业论文范文 2. 应用数学教学论文 3. 应用数学系毕业论文 4. 本科数学系毕业论文 5. 数学专业本科毕业论文 6. 数学与应用数学毕业论文

写数学函数论文还是比较简单的。首先你看看你对哪一块的函数最熟悉,简单的一次二次,超越函数,复变函数,幂函数等等都是可以拿来写的,其实真正函数在生活中用到的极为有限,都是搞科研做课题才会用到,而且用起来也都是套套公式之流,算不得复杂。要是有能力的话,尝试写论文讨论下函数的建模问题,各类函数分别对应哪种建模,优势在哪里,不行在哪里,这个比较有营养,写的好了会特别出彩哦。

数学作为一门工具性的学科,是高中数学最基础的课程。相应的,数学课程的教学也是教育界一直在关注的重点内容。下文是我为大家搜集整理的关于数学毕业论文参考范文下载的内容,欢迎大家阅读参考! 数学毕业论文参考范文下载篇1 浅析高中数学二次函数的教学方法 摘要:二次函数的学习是高中数学学习的重点,也是难点。师生要一起研究学习二次函数的基本方法,掌握其学习思路和规律,这样才能学好二次函数。 关键词:高中数学;二次函数;教学方法 在高中数学教学过程中,二次函数是非常重要的教学内容。随着教学改革的不断推进,初中阶段的二次函数因为是理解内容,没有纳入到考试内容中去,使高中学生在学习二次函数时有难度。因此,教师在教学这部分内容时,必须注重巩固和复习初中二次函数的内容和知识点,同时采取有效的方法合理地进行二次函数教学,确保获得较高的效率和质量,达到提高高中生数学成绩的目的。 一、加强对二次函数定义的认识和理解 高中数学的二次函数教学主要建立在初中二次函数的知识和定义基础上。在定义和解释二次函数的内容和知识过程中,教师主要利用集合之间相互对应的关系来解释二次函数的定义。因此,高中数学的二次函数教学与初中二次函数教学之间存在本质区别,这就造成了在二次函数教学过程中,学生很难适应和接受二次函数的定义。在高中数学的二次函数教学过程中,教师要根据初中二次函数的内容和定义,引导学生全面透彻地理解二次函数的定义和相关知识,这样才能确保学生学习和掌握更多的函数知识。在二次函数教学的过程中,教师要注重引导学生复习和回顾初中阶段掌握的二次函数知识点以及相关定义,并且与高中数学的二次函数内容相比较,这样学生就能对二次函数的定义、定义域、对应关系以及值域等有更深入的认识和理解。例如,在讲解例题:f(x)=x2+1,求解f(2)、f(a)、f(x+1)的过程中,若学生对于二次函数的定义以及概念有比较清晰的认识和理解,学生就可以看出该题是一个比较简单的代换问题,学生只需要将自变量进行替换,就能求解出问题的答案。但是,在解答这类问题的过程中,教师需要正确引导学生对二次函数的定义和概念加以认识和理解,如在f(x+1)=x2+2x+2中,学生需要认识到该函数值的自变量是x+1,而不是x=x+1。 二、采用数形结合的方式进行二次函数教学 在高中数学的二次函数教学过程中,一种常见的教学方法就是数形结合教学法。在二次函数教学过程中,采用数形结合的教学方法,不仅能够帮助学生更好地理解和掌握二次函数的性质以及图象,同时还有利于解决各种各样的二次函数问题,从而达到培养学生的思维能力以及提高二次函数教学效率的目的。采用数形结合的方式进行二次函数教学,所运用到的图像既能将二次函数的性质变化、奇偶性、对称性、最值问题以及变化趋势很好地反映出来,同时也是学习二次函数解题方法以及有效开展教学的重要载体。所以,教师在二次函数的教学过程中,需采用由浅至深的方式进行教学,合理把握和控制教学的难易程度,在学生了解和熟悉二次函数图像的前提下,帮助学生总结和认识其性质变化,从而达到顺利开展二次函数教学的目的。例如,教师在引导学生绘制二次函数图像的过程中,可以采用循序渐进的方式,通过绘制简单的二次函数图像,帮助学生学习和理解图像性质。如采用描点法绘制二次函数图像f(x)=-x2、f(x)=x2、f(x)=x2+2x+1等。在学习绘制函数图像的过程中,教师还可以设置一些例题,如“假设函数f(x)=x2-2x-1,在区间[a,+∞]中,呈单调递增的变化,求解实数a的取值范围”,或者“已知函数f(x)=2x2-4x+1,且-2 三、采用开发式的教学方式,培养学生的思维能力 在高中数学的二次函数教学过程中,涉及的内容范围广,所占的比例也相对较大。因此,教师在开展二次函数教学的过程中,其涉及的教学方法以及教学思路也非常多,教师需要合理选用教学思路和方法,这样才能有效培养和提升学生的数学能力以及思维能力。例如,在二次函数教学过程中,教师可以通过引导学生求解下列例题,让学生进一步理解和掌握二次函数的定义以及外延,并思考和总结出求解二次函数的思路和方法,以培养和提升学生的数学思维能力。如已知函数y=mx2+nx+c,其中a>0,且f(x)-x=0的两个根,x1与x2满足0 参考文献: [1]高红霞.高中数学二次函数教学方法的探讨[J].数理化解题研究,2015(11). [2]郗红梅.例析求二次函数解析式的方法[J].甘肃教育,2015(19). 数学毕业论文参考范文下载篇2 浅谈高中数学教学对信息技术的应用 摘要:为了提高高中数学的教学质量与丰富数学教学内容,将原有的知识点进行整合,使得学生更容易接受相关知识,文章提出了信息技术在高中数学教学中的应用策略:以信息技术为基础,丰富课堂教学内容;以信息技术为支点,优化教学过程;利用信息技术,让学生养成探索的习惯。 关键词:信息技术;高中数学;教学 信息技术在当下社会的发展给教学带来了许多改变,不仅使得教学变得更为高效,同时还令教学的内容变得丰富多彩。因此,随着信息技术在教学中的应用越来越广泛,教师就要对于这种教学模式进行探究,让教材与信息技术可以在进行授课的时候有效结合。只要是做好了以上的内容,就可以将高中数学与信息技术有机地结合到一起,以此推动数学教学的全面发展。从另一方面来说,信息技术也从另一个角度丰富了课堂内容,让学生可以从更多的方面来接触并了解数学中相关的知识与内容。从而使得学生可以养成多方面思考的习惯,让创新精神在他们的心底萌芽。 一、以信息技术为基础,丰富课堂教学内容 学习是一件非常枯燥的事情,驱使学生进行学习的动力是对于未知事物探索的兴趣。高中数学尤为如此,因为数学是一门理论性的学科,因此在学习的过程中,肯定会涉及到一些比较抽象的知识。对于这些抽象的知识,学生在学习起来多少都会有点困难,并且会影响学生的学习积极性。那么面对高中数学的学习,教师如何缓解并改变这一现状呢?目前比较好的办法就是将数学教学与信息技术进行结合,利用信息技术的多样化以及对丰富内容的获取能力,来为学生提供更多、更好的信息内容,供学生理解与学习。多媒体可以将声音、图片、甚至是视频都集中整合起来,立体直观地将数学中的抽象知识展现给学生。并且以此来激发学生的学习兴趣,除此之外,教师利用信息技术可以让课程变得更有层次感,让学生在学习的过程中减少疲劳的感觉。比如,教师在讲解各种函数曲线及其特性的时候,就可以利用多媒体动画的方式,向学生展现相关的函数知识。通过直观的表现,学生可以轻松地理解各种函数对应的图像以及相关的变化,在今后的学习过程中,会更为熟练地运用这些知识。 二、以信息技术为支点,优化教学过程 数学是一门自然科学,它的理论都是源自我们身边的生活。因此,在教学的过程中,教师要根据知识不断地引入实例,让学生可以更好地了解所学的知识。在高中的教材中,对于知识来说,理论知识已经非常丰富,但是对于实例的列举就显得不足。那么学生在学习的时候,理解起这些枯燥的定理与公式就显得非常吃力。这就是因为教材忽略学生的学习能力,编写得太过于理论化,因此就需要教师利用多媒体的优势,来为学生搜集一些关于实际应用数学知识的例子,来让学生了解并掌握其中的规律。这样有利于培养学生的思维与抽象能力,有助于他们今后解决问题时具有明确的思路。比如,在学习概率这一部分的知识时,学生很难联想到生活中相关的事情,教师可以搜集一些类似于老虎机、彩票甚至是其他的一些生活中博彩类性质的事情让学生进行了解。然后带领学生根据其规则进行计算,让学生了解到概率知识在生活中的运用,使学生认识到赌博的坏处。 三、利用信息技术,让学生养成探索的习惯 学习对于学生来说,不是教师的任务,而是每个人自己的事情。学生作为学习的主人,应当对学习具有一定的主导性。在日常的学习中,由于枯燥的内容以及过于逻辑性的思考,会使得学生丧失对于学习的乐趣与动力。正确的教学应当是教师进行适当的引导,让学生可以在他们的好奇心以及兴趣的驱使下自由地进行学习,充分地满足他们的爱好。只有这样,才能最大程度地发挥他们的主观能动性。而将信息技术应用于高中数学,正是给学生搭建了一个这样的平台,让学生可以更好地接触到大量的数学知识以及数学理念。同时,在网络上,各种优质的教学录像比比皆是,学生如果对于某个知识点有疑问,可以随时在网络上进行查看。这对于知识的探索与掌握有着很大的帮助。此外,利用信息技术与网络的优势,还可以让学生在进行资料与问题查询的过程中,养成良好的动手与动脑习惯,不再单单地依靠教师来进行解答,而是学会尝试用自己的方式来找到答案,这对学生的自主探究能力产生了一种提升作用。同时,由于结论是学生自己得到的,那么印象自然非常深刻。总之,信息技术在高中数学教学中的应用,是一件一举多得的事情,不仅可以改变高中数学枯燥的教学环境,而且能充分调动学生的学习积极性,让学生在学习的同时还能了解到更为广泛的信息与其他知识,并且可以激励学生对于疑难问题进行自主探索,提高了他们动手动脑的能力,并且也提高了教学质量。 参考文献: [1]唐冬梅,陈志伟.信息技术在高中数学学科教学中的应用研究文献综述[J].电脑知识与技术,2016(18):106-108. [2]傅焕霞,张鑫.浅议信息技术与高中数学教学有效整合的必要性[J].科技创新导报,2011(35):163. [3]王继春.跨越时空整合资源:信息技术与高中数学教学的有效整合[J].中国教育技术装备,2011(31):135-136. [4]崔志.浅析新课程标准的背景下信息技术在高中数学教学中的应用[J].中国校外教育,2014(10):93. 猜你喜欢: 1. 关于数学的论文范文免费下载 2. 数学系毕业论文范文 3. 数学本科毕业论文范文 4. 数学文化的论文免费下载 5. 大学数学毕业论文范文

定积分计算与应用毕业论文

数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.本文以Mathematic软件为例子介绍了其在高等数学课程教学中的几点应用,即用符号运算和可视化的功能辅助教学研究.不仅可以激发学生学习的兴趣,提高课堂效率,而且能提高学生分析和解决问题的能力,可以培养学生的动手能力和创新能力. 【关键词】Mathematic;符号运算;图形处理;高等数学 一、引 言 随着现代科学技术的迅猛发展和教育改革的不断深入,新的知识不断涌现,社会对现在的大学生的要求也越来越高,不仅要求他们具有扎实的理论基础,而且要求他们具有较强的动手能力和一定的创新能力,传统的高等数学教学内容和教学方法不断受到冲击.为了适应这种发展的需要,高校教师就需要不断地对教学内容和教学手段进行改革:如何运用现代信息技术提高课堂教学的质量和效率,不仅教给他们理论知识,而且要教给他们处理实际问题的工具和方法. 而数学软件正是这样一个必备的工具.目前,数学软件有很多,较流行的有四种:Maple、Matlab、MathCAD、Mathematica,这几种数学软件各有所长,难以分出伯仲.Maple与Mathematica以符号计算见长,Matlab以数值计算为强,而MathCAD则具有简洁的图形界面和可视化功能,本文以Mathematica在高等数学中的应用进行介绍.Mathematica是由位于美国伊利诺州的伊利诺大学Champaign分校附近的Wolfram Research公司开发的一个专门进行数学计算的软件. 从1988年问世至今,已广泛地应用到工程、应用数学、计算机科学、财经、生物、医学、生命科学以及太空科学等领域,深受科学家、学生、教授、研究人员及工程师的喜爱.很多论文、科学报告、期刊杂志、图书资料、计算机绘图等都是Mathematica的杰作.Mathematica的基本系统主要由C语言开发而成,因而可以比较容易地移植到各种平台上,其功能主要是强大的符号运算和强大的图形处理,使你能够进行公式推导,处理多项式的各种运算、矩阵的一般运算, 求有理方程和超越方程的(近似)解,函数的微分、积分,解微分方程,统计,可以方便地画出一元和二元函数的图形,甚至可以制作电脑动画及音效等等.我们努力追求的目标是如何将数学软件(如Mathematica)与高等数学教学有机地结合起来,起到促进教学改革和提高教学质量的作用. 二、Mathematica在教学中的作用 Mathematica语言非常简单,很容易学会并熟练掌握,在教学中有以下两个作用: 1.利用Mathematica符号运算功能辅助教学,提高学生的学习兴趣和运算能力 学习数学主要是基本概念和基本运算的掌握.要想掌握基本运算,传统的做法是让学生做大量的习题,数学中基本运算的学习导致脑力和体力的高强度消耗,很容易让学生失去学习兴趣,Mathematica软件中的符号运算功能是学生喜欢的一大功能,利用它可以求一些比较复杂的导数、积分等,学生很容易尝试比较困难的习题的解决,可以提高学生的学习兴趣,牢固地掌握一种行之有效的计算方法. 例1利用符号运算求导数. 利用Mathematica还可以解决求函数导数和偏导数、一元函数定积分和不定积分、常微分方程的解等.由于输入的语言和数学的自然语言非常近似,所以很容易掌握且不容易遗忘.Mathematica不仅是一种计算工具和计算方法,而且是一种验证工具,充分利用Mathematica这个工具进行验证,可以使得学生轻松地理解和接受在高等数学的教学中遇到的难理解的概念和结论.另外,在教学中会遇到难度比较大的习题,利用Mathematica可以验证我们作出的结果是否正确. 2.利用Mathematica可视化功能辅助教学,提高学生分析和解决问题的能力 利用Mathematica可视化功能辅助教学,可以很方便地描绘出函数的二维和三维图形,还可以用动画形式来演示函数图形连续变化的过程,图形具有直观性的特点,可以激发学生的兴趣,是教师吸引学生眼球,展示数学“美”的一种有效的教学手段,可以达到很好的教学效果. 在高等数学的教学中遇到的学生难理解的概念和结论,如果充分利用Mathematica这个工具进行验证,就可以让学生比较轻松地理解和接受. 在空间解析几何和多元函数微积分这两章内容中,涉及许多三维的函数图形,三维函数图形用人工的方法很难作出,要掌握二元函数的性质就需要学生较强的空间想象能力,这对一部分学生来说非常困难.利用Mathematica软件可以作出比较直观的三维图形,学生利用Mathematica软件就比较容易掌握这两章内容. 总之,高等数学中引入数学软件教学,在很多方面正改变着高等数学教学的现状,能给传统的教学注入新的活力,在教学中要充分发挥数学软件(如Mathematica)的作用,培养学生学习高等数学的兴趣,突出他们在学习中的主体地位,提高他们分析解决问题的能力,培养他们的创新意识. 三、结束语 本文探讨了在高等数学的课堂教学中,如何利用Mathematica软件的符号运算功能与可视化功能激发学生学习知识的动力,优化教学效果,提高课堂效率.在教学过程中,适当地运用数学软件,可将抽象的数学公式可视化、具体化,便于学生理解和掌握,最终起到化难为易、 化繁为简的作用.总之,高校教师在教学过程中,若能充分运用数学软件技术与多媒体技术辅助课堂教学,发挥新技术的优势,发掘新技术的潜力,必能提高教学的质量和效果. 【参考文献】 [1]郭运瑞,刘群,庄中文.高等数学(上)[M] .北京:人民出版社,2008. [2]郭运瑞,彭跃飞.高等数学(下)[M] .北京:人民出版社,2008. [3] (美)D尤金(著).Mathematica使用指南(全美经典学习指导系列) [M].邓建松,彭冉冉译.北京:科学出版社,2002. 猜你喜欢: 1. 数学与应用数学毕业论文范文 2. 应用数学教学论文 3. 应用数学系毕业论文 4. 本科数学系毕业论文 5. 数学专业本科毕业论文 6. 数学与应用数学毕业论文

定积分的应用:几何应用,物理应用。

1、平面图形的面积。

2、旋转体的体积问题。

3、曲线的弧长。

4、旋转体的侧面积。

定积分是积分的一种,是函数f(x)在区间a到b上的积分和的极限。

这里应注意定积分与不定积分之间的关系,若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系。

一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。

总结定积分的计算方法:换元积分法和分部积分法。

积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。

积分的一个严格的数学定义由波恩哈德·黎曼给出(参见条目“黎曼积分”)。黎曼的定义运用了极限的概念,把曲边梯形设想为一系列矩形组合的极限。

从十九世纪起,更高级的积分定义逐渐出现,有了对各种积分域上的各种类型的函数的积分。

比如说,路径积分是多元函数的积分,积分的区间不再是一条线段(区间[a,b]),而是一条平面上或空间中的曲线段;在面积积分中,曲线被三维空间中的一个曲面代替。对微分形式的积分是微分几何中的基本概念。

积分发展的动力源自实际应用中的需求。实际操作中,有时候可以用粗略的方式进行估算一些未知量,但随着科技的发展,很多时候需要知道精确的数值。要求简单几何形体的面积或体积,可以套用已知的公式。

比如一个长方体状的游泳池的容积可以用长×宽×高求出。但如果游泳池是卵形、抛物型或更加不规则的形状,就需要用积分来求出容积。物理学中,常常需要知道一个物理量(比如位移)对另一个物理量(比如力)的累积效果,这时也需要用到积分。

求解不规则图形面积、物体做功等。

实际生活中许多问题都可以用定积分来解决,例如求解不规则图形面积、物体做功等。本文给出了定积分在经济中以及几何方面的几个简单的应用。定积分在经济中的一个应用工厂定期订购原材料,存入仓库以备生产所用等。

由定积分定义知道,它的本质是连续函数的求和。在解决物理问题中适当地渗透定积分的“分割、近似、求和、取极限”的方法,将物理问题化成求定积分的问题,有助于提高物理问题计算的精确度,以变力做功和液体压力等问题为例,介绍定积分在物理中的应用。

扩展资料:

定积分的分析:

1、若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式。

2、函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。

3、求函数f(X)在区间[a,b]中的图像包围的面积。即由 y=0,x=a,x=b,y=f(X)所围成图形的面积。

参考资料来源:中国知网-例析定积分在生活中的重要作用

参考资料来源:中国知网-浅谈定积分近似计算在生活中的应用

凸函数的应用毕业论文

关于数学论文范文2000字

现如今,大家或多或少都会接触过论文吧,论文是我们对某个问题进行深入研究的文章。如何写一篇有思想、有文采的论文呢?下面是我整理的数学论文范文2000字,供大家参考借鉴,希望可以帮助到有需要的朋友。

论文题目: 学生自主学习能力培养提升小学数学课堂教学效果

摘要: 在新课程理念的指引下,小学数学课堂呈现充满教育契机的、富有挑战性的新气象,在注重小学生全面发展的能力培养下,对小学生自主学习能力、交流合作能力和创新思维能力的培养成为教育重点,这要求教师具有教学的智慧,对学生有深入的了解,在这样的教育氛围之下,才可以培养出学生的创意想象和创造性、探究性思维,在自主学习的过程中增强知识性的体验,创设出最佳的课堂效果。

关键词: 自主学习能力;创新思维;小学数学

在全新的教育理念下,教育视角由原来的“要我学习”转为了“学会学习”,教师在对小学生能力培养的过程中,注重小学生全面素质的培养,包括自主学习能力和创新思维能力,使小学数学的教学课堂展现出主动参与的学习过程,数学课堂在学生的主体行为下显露出智慧的光芒,这就需要教师在教学过程中要采用适合小学生的方式和策略,注重学生学习的过程,而不是学习的结果,发挥出小学生自主探索和自由发现的天性,促进学生健康全面的发展。

一、小学数学教学中的现状及反思

小学生由于其年龄特点和个性特征,呈现出对新异、生动的事物有强烈好奇的兴趣,而且大多数小学生都有强烈的求知欲、自尊心和好胜心。教师在教学过程中要根据小学生的年龄特点和个性,培养学生的自主学习能力,但是,目前小学数学教学尚存在些许不足,需要我们加以反思。

(一)情境教学中过多地引入情境,丧失了教学目标

一些数学教师在课堂引入时,过多地运用了情境,而分散了小学生的注意力。如:在课堂导入时,教师突发奇想,要用“喜羊羊与灰太狼”作为课堂导入情境,学生睁大眼睛,竖起耳朵,开展了斗智斗勇的想象,却忘记了教师是在上数学课。又如:在一年级《加减混合》的数学计算中,教师想用“春游”作为情境导入数学课堂,可是在运用情境时过多地介绍了风景,使学生沉溺于风景的想象中而偏离了数学课堂的传授目标,缺失了数学教学目的。

(二)成人化的想象对小学生缺乏新奇的吸引性

数学教师在进行教学课堂的情境创设时,用成人的眼光和视角去进行设想,忽视了童趣和纯真的眼睛,简单的情境创设平淡无奇,缺乏挑战性。例如:在小学数学教学中《7的乘法口诀》一课,教师用“一个星期有几天”来进行问题式的课堂导入,这对于学生而言缺乏新奇,对乘法口诀也缺乏记忆。

(三)课堂教学中“数学味”的弱化和缺失

在小学数学的教学课堂中,教师利用各种情境创设导入教学,却没有及时地将情境引入到数学知识的学习当中,弱化了数学学科所应有的“数学味”,使学生自主性学习的兴趣降低。如:在《统计》的数学知识教学中,教师通过分组教学的形式,让学生开展讨论和记录,可是学生们却停留在小组成员间体重的比较讨论等内容,而没有真正进入到数学统计知识的学习之中来。

二、自主学习的概念及其重要性

在小学数学的教学中,学生要通过能动的创造性活动,在教师的指导为前提下实现以学生为主体的良性发展。学生可以通过多种途径和手段,自主地有选择地学习,并创造性对所学的知识进行整合和内化,从而达到自主学习能力水平。小学生进行自主学习的重要性主要体现在以下几方面。

(一)提高数学知识吸收的质量

自主学习的方式是积极主动的方式,是小学生进行自主习惯的培养方式,它在激起求知欲望的前提下,转化为认知的内驱力,激发出学习的内在动机,并将之内化为学习习惯,真正提高数学知识吸收的主动性。

(二)为后续的数学知识学习奠定基础

小学阶段是数学知识学习的起始阶段,在这一关键阶段中,要培养学生的自主学习习惯,用他们自发的数学学习兴趣和自主发现的能力,掌握学习数学知识的策略,为后续数学更高层次的学习奠定基础。

(三)自主发现和自主学习能力的培养

小学生多数都有一双好奇的眼睛,他们对周围的世界很好奇,也拥有自主发现的能力,在这一过程中,对其自主发现的能力挖掘越多,那么,学生自主学习的能力就越强,自主学习的习惯就容易产生知识性的迁移。

三、自主性学习的小学数学课堂教学策略

小学数学的自主性学习课堂教学充分发挥了学生的主体性,以学生的自主探究和实践能力和创新思维能力为宗旨,在良好的教学氛围和自主参与的环境下,实现多种形式的自主性学习,在不同的活动中获取数学知识,掌握小学数学知识学习的一般规律和学习方法。

(一)数学课堂有效导入,激发学生的自主参与性

合适而有效的数学情境导入,是进行高效数学课堂的有效方法和途径,要在课堂导入的过程中创造良好的氛围,用宽松、愉悦、智慧的方式激发学生对数学知识的自主性学习过程,其具体方法如下。

1.以生活为教学情境进行数学知识的迁移。生活是无痕的,生活对学生的体验是最深刻的体验,而“生活中的数学”与“数学中的生活”又是紧密相联和息息相关的,学生在生活的体验中感知到数学的价值,可以在身临其境的体会中感受到数学的奥妙,数学情境的生活度越高,学生内在的生活体验越容易被激活,数学知识掌握的程度就越深。例如:在“人民币的认识”教学中,让学生们进行分组进行人民币的购买情境,把不同的物品贴上不同的价格标签,再由分组的学生进行不同面值的假人民币的购买情境,使学生在购买的过程中体会到数字的变换。[1]

2. 以游戏为教学情境激发学生的自主性参与意识。游戏环节是小学生最乐于参与和互动的环节,数学教学可以适当地引入游戏环节,使小学生增强对数学知识的学习兴趣,感受到数学探索的成功体验。如:在小学50以内的加法练习中,不是单纯让学生进行数字的相加,而可以采用“邮递员送信”游戏的形式,增添学生的学习自主性,教师可以事先准备好标有不同两位数的信箱,并准备不同加法练习题的信封,选择几名学生作“送信邮差”,将这些信封和信箱匹配,学生在争先恐后的选择中掌握了数学知识,它犹如一块无形的磁石,深深地吸引着小学生的数学知识的注意力,增强了趣味性和主动性。

3.以故事导入引导学生进行自主性的学习。小学生都酷爱故事,因此教学中可以利用故事增加数学的趣味性,引导学生用创意的思维想象,进行自主性的学习。例如:在一年级的数学“10以内的数字”的教学中,为了让学生建立起数字的相关概念的学习,可以引入故事进行形象的学习:在0~9的数字王国里,数字9发现自己是最大的,于是就很神气和骄傲,它对其他数字说:“你们都是小不点儿,都比我小,所以你们都要听我的。”其他的数字为了消灭它的嚣张气焰,商量好让数字1和0组成一个新的两位数,数字9看到后低下了头,意识到了自己的错误,于是,再也不狂妄自大了,和大家成为了好朋友。学生们在教师故事的讲述中,也展开了对数字的思维和想象,认识到了10以内数字的基数、序数意义,进行自主性的认知学习。[2]

4.用数学问题引导学生进行自主性的学习。问题可以调动学生的积极性,让学生在带着困惑、怀疑和探索的心理,进行数学知识的自主性学习,这也是教学引入策略之一。在问题设置的数学教学中,要注意问题提出的难易程度,要根据学生的思维层次进行问题的导入,逐渐进入数学知识的学习,而不能以深奥、难解的问题来给教学设置障碍,使学生缺乏探究的动力和兴趣。

(二)师生共学———尝试自主参与的探究学习过程

教师对学生的教育,流传着一句名言:告诉的知识,容易忘记;分析出来的知识,可以记住;自主参与的知识,就会真正理解。这意味着只有让学生自己动手、动脑自主参与,才能在动手实践、自主探索、合作交流的过程中,掌握数学知识的内化,培养自主学习能力。

1.引导学生进行自主性的探索学习。在数学“认识钟表”一课中,为了让学生对其有数学性的认知,需要引导学生进行对实物钟表的观察、触摸与参与,让小学生在观察的过程中注意到长针和短针的区别,并观察相邻两个数字之间的大小相等的格,学生在对钟表的触摸、观察和实践操作的过程中,完成了对数学知识的认知。

2.根据学生层次进行小组合作式自主式学习。小组合作必须在教师的指导和辅导之下完成,要引导学生仔细观察、对比,如在“长方形”的认知中,要各小组进行分组比赛,寻找出最多的长方形者获胜,在大家踊跃参与的过程中,教师要引导学生注意观察长方形和正方形的区别,通过对比、测量等不同手段,了解对生活中“长方形”的认知,如:课本、长方形的长桌、黑板的形状等,大家在分组合作的过程中掌握了数学知识的规律,并主动性地获取了相应的知识。

(三)数学知识的应用———巩固数学知识的自主性探索

小学生在教学的过程中掌握了基本的数学概念和规律,教师还要将数学知识进行巩固和运用,要充分利用“温故而知新”的记忆特点,对数学知识进行巩固和实际应用。例如:在数学“做一做”的课后练习中,可以组织学生进行同桌互检式的巩固,还可以进行板演练习、课堂评价的方式进行巩固,这样可以激励学生自主进行数学知识的实践性的巩固和运用,将更多的数学知识转化为内在的知识。在知识的巩固过程中要灵活加以整合和运用,如小学生学习完了图形这一课,对三角形、圆形、长方形、正方形、平行四边形等进行准确的认知后,就要进行灵活多变的图形拼板练习,让学生通过对不同图形的修剪和粘贴,进行图形自由空间的想象和布局,增强数学知识的应用能力。

四、结束语

小学数学教学的重点在于培养学生的自主学习能力,根据小学生的年龄特点和思维层次,进行动手、动脑的习惯培养,在生活引入、故事引入、游戏引入、情境引入的教学策略之下,用自主性、参与性、积极性进行数学知识的感知,并在自主探索、交流合作的过程中增加对数学知识的学习和巩固,提升小学数学的课堂教学效果。

参考文献:

[1]牟瑛.营造充满探索的数学课堂环境[J].商业文化(学术版),2010,(08).

[2]张大明.引导自主探究促进主动发展[J].成功(教育),2010,(04).

[3]周波儿.数学教学中如何捕捉和利用“动态生成”[J].山西师范大学学报(自然科学版),2010,(S1).

随着科技的进步和社会的发展,数学这一基础学科已与其他学科相结合,且应用愈来愈广,已渗透到生产和生活的各个方面。我国从1992年开始举办大学生数学建模竞赛。近年来,大学生数学建模竞赛迅猛发展,为高等数学的应用型教学指引了方向,同时也激发了大学生的创新思维,锻炼了大学生的实践能力,受到了社会各界人士的关注和好评。

一、数学建模和大学生数学建模竞赛

何为数学建模?有人认为,数学模型即以现实世界为目的而做的抽象、简化的数学结构;也有人认为,数学模型就是将现实事物通过数学语言来转化为常见的数学体系。事实上,数学建模是运用数学知识从实际课题中抽象、提炼出数学模型的过程,主要方法是通过合理假设、引进自变量、借助各种数学工具实现对现实事物的数字化转变,进而描述或解决实际问题。

那么,受广大高校师生青睐的大学生数学建模竞赛又是什么呢?数学建模竞赛是全国大学生参与规模最大的课外科技活动,从一个侧面反映一个学校学生的综合能力,为学生提供了展示才华的舞台。大学生数学建模竞赛具有一定的开放性和应用性,同时兼具一定的综合性和挑战性。成果以一篇论文的形式上交,要求必须包含完整的建模步骤,包括问题的提出、模型的假设、变量的引入、建模过程、模型求解与分析、模型检验及应用。

二、大学生数学建模竞赛与课程教学培训中存在的问题

通过对山西工商学院历年来参加大学生数学建模竞赛的选手及其相关指导老师进行调查、走访,并考察其他高校的'情况,笔者发现,相比往年的成绩,各大高校在近几年的竞赛成绩上有了飞速的提高,在学校的组织和鼓励下,参赛人数逐年递增,数学建模教学每年都在不断改革,同时除了参加竞赛,还在课堂外实践了数学与生产实际的结合过程。然而,通过参阅文献和访谈笔录资料,笔者也总结了近几年来大学生数学建模竞赛及竞赛培训教学中存在的相关问题。

第一,参赛学生的学习能力和综合素质有待提高。在思想品质方面,数学建模的参赛过程极其艰苦,需要学生具备意志力、求知欲、团队意识。我们的队员往往在此三方面表现一般。同时,在数学能力方面,学生的数学基础知识储备不足,软件处理的方法单一,实际问题转化为数学结构的创新思维并不能良好地展现。

第二,根据上述学生所表现出的问题不难发现,教师团队在数学建模培训教学过程中,教学观念滞后,创新能力有待提高,教学模式亟待突破,数学建模的教师团队应当做好学生的表率,要吃苦耐劳,要通力合作。

第三,正因为上述问题,数学建模培训也出现了弊端。培训方式单一,培训只讲求深入而不探索广度,培训时间安排不合理,培训的内容与建模竞赛不对接。

第四,经过调查发现,部分高校对组织数学建模竞赛的前期工作没有给予足够的重视,少数高校在竞赛的组织和开展中急功近利。另外,大多数高校在数学建模教学教育的过程中缺乏完整的制度和保障体系。

三、大学生数学建模课程教学培训策略

大学生建模竞赛除了能为部分大学生及其指导老师和高校获得荣誉外,更能培养大学生综合运用所学专业的意识,提升大学生的创新思维和抽象思维,以及自主学习能力和团队协作能力。因此,在数学建模课程教学培训中,应做好如下工作。

(一)教师层面

首先,数学建模课程教学培训应当以创新为起点。建模不是凭空而来的,教师要引导学生从生活实际中抽象出数学模型,真正在选题上下功夫,培养学生的创新思维。

其次,数学建模课程教学培训应当以数学知识体系为基础。教师不能仅仅将自己的专业知识传授给学生,数学博大精深,自身要不断涉猎新知识,不仅要注重数学学习的深度,更应当拓展数学学习的广度,为数学建模竞赛打下坚实的基础。

最后,数学建模课程教学培训应当回归实践。建模的目的是为了解决实际问题,无论多么复杂的数学模型,最后都要落到解决后的结果中。因此,教师既要教会学生建模,又要教会学生将建模的方法真正应用于解决实际问题,做到学以致用。

(二)学校层面

首先,制定系统的数学建模课程体系,包括合理的学时、学制,保证学生的学习,不能在竞赛前急抓一批学生现学现用。

其次,学校要做好数学建模竞赛的宣传和指导工作,尽量保证每位学生都能于在校期间参加比赛,获得锻炼。

最后,学校要时刻以学生为主,不能一味地为了获奖而出现教师代替学生的现象。

参考文献:

[1]刘建州.实用数学建模教程[M].武汉:武汉理工大学出版社,2004.

[2]李尚志.数学建模竞赛教程[M].南京:江苏教育出版社,1996.

[3]赫孝良.数学建模竞赛赛题简析与论文点评[M].西安:西安交通大学出版社,2002.

摘要:随着我国基础教育的不断改革和完善,创新形势下的课程标准已经逐渐落实,相比于以往的教育机制,新课程标准更加关注学生的发展能力,鼓励教师根据学生的特点开展教育活动,进而全面提高我国的教育质量和教学效率。新课程标准要求教师在制定教学计划时要准确定位自己和学生之间的关系,以便于开展更加高效的课堂教育。

关键词:小学数学;高效课堂;教学策略

数学是一门逻辑思维较强的学科,因此数学基础教育质量极其重要。高效的小学数学课堂不仅可以让学生的成绩得到有效提高,还能让学生在生活中体会到数学的魅力,加强学生对于理性思维的拓展和延伸,同时还能将学生对数学的兴趣调动起来。

1重视学生对数学概念的理解

学生开始接受小学教育的年龄在6周岁左右,该年龄阶段的孩子对故事的兴趣比公式的兴趣大的多,因此,教师可以在数学课程开始之前让学生先了解该节课程涉及到的历史故事,让学生不要认为数学是很难理解的课程,让学生在更加放松的心态中去完成教学任务。传统教育中,数学教师都会给学生大量的题目来巩固知识点和公式,部分学生在还没有完全理解课堂内容时就开始做题,答案准确率肯定很难得到保障。因此,教师应当重视学生对数学概念的理解程度,让学生先理解数与数之间的关系再开始做习题。同时,教师应当在课堂上为学生留出提问和解疑的时间,教师在和学生的问答互动中拉近彼此之间的距离,提高学生对数学的认知度和敏感度。

2积极开展数学情境教学模式

数学课程的开展必须要有严谨的逻辑性作为支持,如果教师只用数字的形式为学生讲解无实物情境下的运算知识,很难让学生理解这个运算在生活中的价值,而且单纯的思维计算会对小学生产生很大的困扰,小学生更倾向于涉及到生活经验的数学情境模式。教师在开展运算知识点授课的过程中,可以使用不同种类的水果来创建情境教学的条件,将水果的价格和数量制定好,让学生随意取用一部分水果来计算这些水果的总价格。学生在计算水果价格的时候会减轻对数学的抵触,把思维的重点放在水果的种类和形状上,教师可以在学生分组计算的同时查看学生对于价格结果的讨论情况,发现公式以及口诀上的问题及时提出并解决,让学生在不知不觉中牢记乘法和加法的运算规律,减轻公式记忆法的枯燥和乏味,促进小学数学高效课堂教学质量的提高。

3培养学生课前预习的好习惯

数学是一门实践性质很强的学科,解题过程中需要对课题内容及运算方式进行思考,而这个过程需要学生在课前预习环节中掌握,教师应提前告诉学生即将学习的单元和知识点,让学生在有准备的情况下,更有信心的参与到数学课堂中来。教师可以鼓励学生在陪同家长购物时关注买卖运算的方式,然后在课堂上将自己的理解和发现的问题进行阐述,教师可以在与家长互动之后将学生反馈的问题一一解答,并就超市买卖中遇到的问题和课本上的知识点有效结合,让学生了解到数学在生活中的作用,学生在预习的过程中也会加深对运算公式的印象,进而提高学生对数学的兴趣和学习效率,让小学数学教学质量更加高效。

4鼓励学生从多角度解决问题

数学并非一种固定思维的学科,很多数和图形的运算都不止一种解题方式,虽然正确的答案只有一个,但是其过程有着很灵活的多变性,因此,教师应当在数学课堂上鼓励学生以不同的形式来解决问题。教师在发现学生的答案与标准答案不同时,应该首先询问学生的解题思路,而不是直接否定学生的答案,否则很容易打消学生对于数学学习的积极性。在教学条件允许的情况下,教师应当尽量使用解题方式不唯一的例题,让学生了解到集思广益的效果,在之后的课堂小组讨论中也能更加用心,有助于活跃教学气氛和教学效果,做到高效的小学数学课堂教学。综上所述,学生对于科目的兴趣和能力都不是与生俱来的,教师的引导和鼓励会使学生在课堂上的表现更加优秀。在开展小学数学课程的过程中,教师应当注重数学概念、课堂情境、课前预习以及思维扩展带来的高效影响,为学生探索欲和求知欲的提高做出贡献。

参考文献

[1]杨小生.小学数学高效课堂教学的“三三”策略[J].现代中小学教育,2011(11):21~23.

[2]潘海燕.探究小学数学数与代数的高效课堂教学策略[J].中国校外教育,2015(02):72.

[3]王粉粉.新课程背景下小学数学高效课堂教学策略探究[D].延安:延安大学,2016.

数学类论文参考1.论文题目:自然数的平方和公式推导关键词: 解题策略;自然数平方和;高中数学摘要: 解题是数学学习的一个核心内容和一种最基本的活动形式。罗增儒教授曾指出“数学教育中真正发生数学的地方都无一例外地有数学解题活动”。因此数学教学应“以解决问题为导向”,解决问题的过程是学习新知识、发展智力和提高能力的过程,而“一题多解”恰恰是解题教学中最常用、最有效的一种教学手段与技术。本文针对解题灵活性的要求,通过“自然数的平方和公式推导”的一题多解,完善学生数学知识框架,提升思维的发散性和系统性。让学生感受到学习数学的乐趣,从而进一步提高学生数形结合能力以及代数运算的能力以及空间解析能力等,激发学生学习数学的兴趣。文章引用:张昱晗. 自然数的平方和公式推导[J]. 理论数学, 2023, 13(5): 1234-1245. .论文题目:几类闭凸曲线的曲率积分不等式关键词: 凸函数;Green-Osher不等式;Steiner多项式摘要: Green-Osher不等式是一般严格凸函数的曲率积分不等式,本文则考虑一些常见的特殊凸函数在Green-Osher不等式中得到的曲率积分不等式,本文通过在Green-Osher不等式中,取平面闭凸曲线四类凸函数,得到了关于这些凸函数在曲率积分的精确下界,这些下界仅与弧长和面积有关。文章引用:张泽源, 赵会文. 几类闭凸曲线的曲率积分不等式[J]. 理论数学, 2023, 13(4): 1056-1061.

(1)文献研究法根据所要研究内容 ,通过查阅相关文献获得充足的资料,从而全面地了解所研究课题的背景、历史、现状以及前景。(2)研究项目分析法在进行理论的搜集与分析之后,根据现有的研究项目对宠物进化模型,宠物行为模型模型的整体系统进行分析与设计,实现理论与实践的相结合,使理论有理有据,设计更合理。

有人做过跟你一样的毕业论文,你提的问题太多了,一下也回答不完,你可以看看别人已经做完的论文。

相关百科

热门百科

首页
发表服务