首页

毕业论文

首页 毕业论文 问题

llc三相电路毕业论文

发布时间:

llc三相电路毕业论文

根据楼主的设计要求,基本可以写出一篇论文了,在这里肯定是说不完的,建议楼主下载三相半控整流电路的学位论文,里面会详细介绍主电路设计,电路元件参数选择,比如负载大小,电感大小,电容大小,及触发电路的设计方式,比如SPWM等。

《数字电路实验与课程设计》实验教学大纲2004版课程名称及性质:数字电路实验与课程设计 必修课英文名称: Digital Circuit Experiment and Course Design课程编号:050223课程类别:技术、专业基础课程总学时:32实验学时:32开设学期:5、6面向专业:电子信息科学与技术第一部分:实验一、实验目的和任务本课程目的是使学生掌握数字电路的基础理论,培养学生设计组合、时序及模数/数模转换电路和设计综合应用电路的能力,并能够在查阅器件手册的基础上,熟悉各类数字电路元件的特点及应用。使学生初步具有数字电路设计、制作、调试能力,并具有数字系统设计的思想。二、实验教学的基本要求学生应掌握数制的概念和转换方法,掌握组合逻辑电路的基本特点与设计方法,掌握时序逻辑电路、脉冲波型产生电路、模数/数模转换电路的基本特点与设计方法以及典型时序逻辑电路的工作原理与分析方法,会使用多种常用的器件手册,了解查找数字电路器件的常用途径,了解常用数字电路器件的分类,了解各类数字电路器件的物理特性,了解器件接口技术,并在此基础上,逐步熟悉常用数字电路器件的特性及应用,掌握数字电路的制作及调试,熟悉常用仪器的使用方法。 能够正确识别常用数字电路器件,能绘制电路原理图,掌握数字电路的布线规则、掌握电路的调试与故障的分析和排除。 三、实验项目基本情况(16学时)序号 实验项目名称 内容提要 实验学时 实验类型 实验地点 1 组合逻辑电路设计与调试 门电路、编码、译码等逻辑电路设计与调试 4 设计 31#375 2 触发时序电路设计与调试 触发器、计数器、移位寄存器应用电路与调试 6 设计 31#375 3 脉冲波形产生电路设计与调试 555时基电路及其应用设计与调试 3 设计 31#375 4 模数/数模转换电路设计与调试 D/A 、A/D转换器 应用设计与调试 3 设计 31#375四、考核方式平时实验表现占该门实验课最终成绩的70%,实验报告成绩占该门实验课最终成绩的30%。平时实验主要考察学生对实验电路的设计难易程度、电路连接调试、问题解决的能力,是否能够达到设计要求;实验报告主要考察学生对实验涉及的理论知识的掌握,对实验得到的结论和现象是否能够正确理解和分析,并能够合理的解释实验中出现的问题,正确判断实验的成功、失败。五、实验教材或实验指导书《数字电路实验与课程设计》 孟宇 主编第二部分:课程设计一、课程设计的性质和目的本课程不仅要求学生获得电子技术方面的理论知识以及掌握理论设计方法,还要培养学生理论联系实际的能力。本课程的课程设计环节,就是通过学生自己设计、搭建和调试电路,使学生对所学的理论知识有更深一步的理解,同时提高学生分析问题和解决问题的能力。二、课程设计的基本要求1.掌握常用中、小规模集成电路芯片(如:逻辑门电路、译码器、数据选择器、计数器、寄存器等)的使用方法。2.掌握逻辑电路的基本设计步骤(包括组合逻辑电路部分与时序逻辑电路部分),以及整体电路的实现方法。3.具有一定的分析、寻找和排除电路常见故障的能力。4.能正确使用常用电子仪器、仪表(如:万用表、示波器、时序信号发生器等)。5.独立写出具有理论分析及设计方案论证的、并通过搭建电路调试验证其设计是正确的课程设计报告。三、设计课题及内容和要求(16学时)1.设计并实现一个数字频率计本课题要求设计并实现一个数字频率计,设计参数自选,用于测量信号的频率,并用十进制数字显示。2.设计并实现自主实验课题该课题要求利用所学数字电路知识,实现自拟课题设计功能并调试成功,设计难度与1设计题目相当。以上题目任选一个。三、课程设计时间安排实验前3周拟定、修改设计报告,第4周开题报告,第5周实验。四、课程设计报告书写规范完成设计任务后,在课程设计的最后阶段,需要总结全部设计工作,写出完整、规范的设计报告,在指定的时间内提交指导教师。课程设计报告要求有完整的格式,具体如下:论文分三部分——前置部分、主体部分和后置部分。(一)前置部分:这一部分包括题目、作者(单位)、摘要、关键词。题目要恰当、准确地反映论文的内容。作者单位要写全校、院(系)名称及班级学号。摘要是论文内容的概括与简述,应包括研究课题的创新思想和创新成果及其理论价值和现实意义。关键词要准确、精练。(二)主体部分:这一部分包括引言、正文、结论,是论文的正式部分。引言作为论文的第一段,要简单说明选题的背景和意义、准备解决的问题及主要工作内容等。正文是论文的主要部分,应包括课题的总体方案设计、方案论证及实现、数据分析处理、实验效果及理论分析等。结论作为论文的最后一段,是对课题研究最终的、总体的评价。结论中应明确本课题研究的创新点及创新成果、技术关键及技术难点、社会经济价值及研究方向的前景等。结论应该准确、完整、精练。说明:论文的主体部分可以设标题(具体格式见附例)。文章的第一段就是引言,最后一段就是结论,中间各段就是正文。不必再加“引言”、“正文”、 “结论”等小标题。(三)后置部分:1、参考文献参考文献作为论文的附录,附在论文的后面。参考文献是指在课题研究和论文撰写过程中对你有所启示和帮助的文献资料,包括著作、论文和网页。参考文献的列写格式如下:[1]作者.著作名.出版地:出版社.出版年月[2]作者.论文名.期刊或杂志名.期号[3]网页(网址)……以上[1]、[2]为文献序号,其中[1]为著作的列写格式,[2]为论文的列写格式。2、心得体会:内容中可以对本综合训练如何开展和进行提出自己的意见和建议。 (四)要求:①个人独立撰写,每人一份, ②字数:主体部分不少于3000字,摘要150—200字,关键词3—6个。③版面安排:按A4纸排版。页边距为:上、下各25mm,左35mm,右30mm;段间距及字间距:标准;行间距:单倍行距;页码:底部居中;作者(单位)占一行,其前、后各空一行(小四号);主体部分与前置部分、后置部分之间各空一行;不做封面,不设页眉、页脚及页边框。④字号选择:(见附例)。五、成绩评定课程设计的考核结果按优秀、良好、中等、及格和不及格来评价。对设计任务理解透彻,能够全面、正确、独立地完成设计内容所规定的任务,得出设计结果,并按时提交准确、完整、规范的设计报告,可评为优秀;按照设计任务要求能够顺利地完成任务,得出结果,按时提交较完整的、符合要求的设计报告,可评定为良好;按照设计要求完成了硬件线路的连接,基本完成了任务要求,提交符合要求的设计报告,可评为中等;基本完成设计目标,但不够完善,可能有若干小的缺陷,在帮助下能够完成任务要求,提交设计报告,可评为及格;不能完成指定的要求和任务,未提交设计报告的,评为不及格。六、参考资料 1.“数字电路实验与课程设计实验指导书” 孟宇编 2.“电子技术基础”(数字版) 康华光编

我也做这个哦 给我发个哦 呵呵QQ271246840

[电气工程及其自动化]基于内模控制三相三电平PWM整流器不平衡控制策略的研究 摘要电网不平衡时,基于电网平衡为约束条件设计的三相三电平电压型PWM整流器(以下简称三相VSR)将出现不正常运行状态,比如三相VSR交流电流中出现负序分量,使交流电流严重不对称;直流电压和交流电流中出现非特征谐波分量,使直流电压和交流电流波形发生严重畸变;三相三电平VSR从电网吸收不平衡的瞬时功率等一系列问题.本论文对三相VSR在电网不平衡情况下进行了详细的建模分析,并在此基础上提出了输入功率平衡控制策略。该控制策略用来实现直流电压非特征谐波消除控制。由于在αβ静止坐标系中,采用比例和比例积分调节器无法实现对时变正弦波信号的无差跟踪控制,本论文把内模控制原理应用到三相三电平VSR电流跟踪控制中,使系统获得了很强的鲁棒性。本论文对基于αβ静止坐标系的功率平衡控制策略进行仿真,可以看出试验结果与仿真结果吻合,证明了结论的正确性。关键词 电网不平衡,三相三电平PWM整流器,功率控制策略,内模控制目 录摘要 IABSTRACT II前言 11 绪论 PWM整流器概况 三相电网不平衡概述 三相VSR不平衡控制研究概述 本论文要完成的工作 本章小结 122 三相三电平VSR的数学模型 三电平整流器的基本工作原理 三电平整流器的数学模型 153 三相三电平VSR不平衡控制策略 功率平衡控制策略 本章小结 264 电网不平衡三相三电平VSR控制系统设计 基于ΑΒ静止坐标系的不平衡控制器设计 电网不平衡时三相VSR主电路参数设计 本章小结 365 三相三电平VSR不平衡控制系统仿真 三相三电平VSR主电路开关函数仿真模型的建立 基于ΑΒ坐标系的控制系统仿真 396 结论 43致谢 44参考文献 45附录 外文资料翻译 内模控制 不稳定系统内模控制方法改进 49

毕业论文三相电

这里有些电机常识:

[电气工程及其自动化]基于内模控制三相三电平PWM整流器不平衡控制策略的研究


摘要
电网不平衡时,基于电网平衡为约束条件设计的三相三电平电压型PWM整流器(以下简称三相VSR)将出现不正

维护的目的是为了减少电机的损耗,使之能更好的工作,因为电动机的维护分机械部分和电路即绕组部分。 机械部分包裹电机壳的保洁--有利于电机散热,温度过高烧坏绕组, 轴承定期添加润滑油---时间长了会死轴,严重绕组烧坏。 等等还有,这是你们学习过的知识。 电路部分 的维护包裹线路和绕组,其目的主要是保护绕组相对就细致一些。 总之是不让绕组受到破坏,因为绕组每烧坏一次电机的定子的磁力线就会损耗一些,这样每一次电机绕组的重新绕制都会使电机的性能及效下 降。

电子式多功能电能表的设计与实现 本文阐述了电子式多功能电能表的设计方法、硬件设计的技术关键和软件设计流程。并以NEC的uPD78F0338单片机为例,实现了一款具有四种费率、六条负荷曲线和两套费率结构的三相四线电子式多功能电能表 电子式多功能电能表主要针对国内市场三相用电的工业用户。随着电力行业改革深入,工业三相用电对多功能电能表的需求大量增加。目前国内多功能表种类少、价格较高、功能不完善,往往仅是针对某些地区的特定要求开发,缺乏通用性,某些产品未能完全达到国标的要求。本文介绍的电子式多功能电能表正是为了适应这种市场需求而设计的。 这是一款智能型高科技电能计量产品,该表可以同时计量正/反向有功电能、正/反向无功电能、四象限无功电能,还具有多费率控制,负荷曲线记录,各相失压、过压、频率超限记录,数据LCD显示等多种功能。主站可以通过RS-485总线或手持红外抄表器对该电表进行查表、设表、抄表等操作。 软件代码全部采用C/C++语言编写,编码效率高,可维护性好,便于实现模块化设计,可根据用户的需求方便地对功能模块进行裁剪。而且代码经过优化,其生成的目标代码大小和执行效率已与汇编代码相差无几。该产品的技术指标全面符合GB/T 17215-1998《1级和2级静止式交流有功电度表》、DL/T614-1997《多功能电能表》和DL/T645—1997《多功能电能表通信规约》的要求。 多功能电能表的总体结构和硬件设计 多功能表总体结构 电子式多功能电能表硬件的核心MCU主控制器,它负责按键输入扫描、工作状态检测,计量数据的读入、计算和存储、电表参数的现场配置以及与外界的通信控制等。其主要功能单元包括MCU主控制器单元、电量计量模块、红外和RS—485通信模块、校表模块、EEPROM存储阵列等;其他辅助模块主要有:时钟日历电路、工作异常报警电路、按键输入电路、复位和看门狗电路、开关电源模块和后备电池电路、大屏幕液晶显示模块和LED显示模块。多功能表总体结构框图如图1所示。 高性能主控制器单元 主控制器采用NEC公司8位单片机中的高档产品uPD78P0338。该款单片机为120脚QFP封装,单片集成有60KBFlash、一个异步通信串行口、40x4段LCD驱动器、高达10MHz的总线时钟和10路10位精度的ADC,并可通过简单的接口进行在系统编程,极大地方便在线调试和软件升级。并且支持高级语言,较好地满足了多功能表任务繁多、数据量庞大、算法较复杂的功能要求。 串口复用通信单元 通信电路模块主要包括TSOPl838红外接收头、红外发射二极管、载波电路、MAX487专用485收发电路、驱动/开关二极管和其他元件。 本电能表为便于用户抄表,设计有红外本地抄表和RS-485集中抄表两种串行抄表方式,因为uPD78F0338仅有一个串口,故通信电路设计时采用串口复用技术。由9012、9014和若干电阻等器件组成互补开关,由MCU的一个I/O口来控制红外和RS-485通信方式的切换,如图2所示。 高精度电量计量模块 计量模块由高精度专用电能计量芯片SA9904,电流互感器和其他外围电路元件组成。SA9904是Sames公司生产的一款三相双向功率/电能计量芯片,可以计量有功/无功功率、电压、频率、相序异常等,可以单独计量每一相的用电信息,符合IEC521/1036标准,可达到1级交流电能表的精度要求,各数据寄存器具有24位精度,可通过三线SPI接口与CPU交换数据。从而可以较好地适应多功能表需要计量多种电量数据的要求。SA9904引脚及其外围电路图如图3所示。 其中,CLK、DO、DI构成与MCU控制器的接口,用于传输控制命令和测得的电量数据,IIps、IIPt、IIPr用来对电流取样,IVPl、IVP2、IVP3用来对电压取样。 时钟日历模块 时钟电路采用EPSON生产的RTC-4553实时时钟芯片。内部集成了的石英晶体振荡器,简化外围电路,并可以根据需要进行自由设置以得到较高的频率;同时集成有时钟和日历计数器,可选择24或12小时显示模式,时钟可通过软件方式进行间隔30秒的调整,并提供或1024Hz的定时脉冲输出,以便于在电能表的外部对时钟精度进行定期检查。RTC-4553引脚及其外围电路图如图4所示。其中,SCK、Sin、Sout与主处理器接口,用于发送控制指令或者传输日期时间数据,本系统日历时钟模块采用电池作后备电源,以确保在停电状态下,日期时间的准确无误。 多功能电能表的软件设计 数据结构设计 多功能电能表涉及的数据类型种类繁多。按字节分包括单字节、双字节、三字节、四字节和六字节等,按表征的意义分有时间、时刻、电压、电流、有功功率、无功功率、有功电能、无功电能、次数、功率因数、门限、状态字、系数、表号等。复杂的数据类型对数据结构的设计提出了较高的要求,本实现方案通过采用多种数据寻址方式和多种类型存储器较好地解决了这一问题。 数据结构设计要点 系统的数据存放方式有:内部ROM、RAM和外挂EEPROM。 内部ROM用来存放大量的常数表格,RAM用于存放临时变量和堆栈,本方案需要左右的RAM,串行EEPROM则存储各种用户电量数据和设表参数,通过12C总线与CPU交换数据,电能表按设计需求的最大要求大约需要250KB的EEPROM,本方案采用8片256位EEPROM通过级联来实现。 数据寻址方式 EEPROM数据访问采用两种方式;直接地址访问,通过数据的EEPROM地址直接读写数据;数据ID寻址,通过数据的编码读写数据。 通信口复用功能设计 红外通信和RS-485共用一个串行口(RxD/TxD)通信,由于串行口通信开始都有一低电平位(0),因此将红外接收端(与485接收端用一三极管隔开)引到一中断引脚INTP1,通过其引发的中断可判断串行口数据是否来自红外。发送时按时应方式发送,使其不互相干扰。由于红外通信和遥控接收用同一接收管,因此在判断红外来源的中断中启动定时器INTTM4检测红外接收端,如果检测到脉冲宽度为9ms或,则判断为红外遥控,并根据定时检测遥控编码;否则判断为红外产生的串行口接收中断,并将定时检测关闭。 红外调制信号由CPU内部分频输出(P05/PCL)。f=fx/27=。 因红外发送字节之间可选有15~20ms的延时,而485通信则不需要延时。数据发送在发送中断中进行,红外通信在发送操作后立即关闭发送中断允许,待延时时间到后再允许发送中断。 多功能表程序流程图 多功能表主程序流程主要包括初始化、数据校验、负荷曲线修补和事务处理等,其流程图如图5所示。 日常事务处理流程集中体现了多功能表的大部分主要功能,包括费率处理、计量数据采集及处理、自动抄表、电能脉冲输出、校表模块和掉电检测及处理模块等,其流程图如图6所示。

llc开关电源毕业论文

开关电源是总体概念,LLC只是电源结构的一种,电源功率范围很广,LLC只适合 几百瓦的

LLC电路,指的是一个电感L,一个电容C,一个变压器L,就是谐振变换器!是通过半桥开关频率的变化来调整输出电压的!电感L和电容C,还有变压器是串联的,当频率变化时,传送到变压器的能量就会发生变化,因为电感和电容的阻抗分别为:wL和1/(wC),二者都与频率有关!根据分压原理,传送到变压器的能量就会随频率的变化而变化。自己看看电路图,就会明白很多!一句话:用半桥开关的开关频率来控制输送到变压器副边的能量。

主要由一个额定功率的变压器,及并联的led灯珠组成(如果闪烁变换还有控制电路)LED灯带一般电压为直流12V,因此需要使用开关电源供电,开关电源输入为交流220v,不分火线、零线,开关电源输出为直流12V,分正、负极。

三相ups电源毕业论文

[电气工程及其自动化]基于内模控制三相三电平PWM整流器不平衡控制策略的研究


摘要
电网不平衡时,基于电网平衡为约束条件设计的三相三电平电压型PWM整流器(以下简称三相VSR)将出现不正

我也做这个哦 给我发个哦 呵呵QQ271246840

整流电路广泛应用于工业中。它可按照以下几种方法分类:1.按组成的器件可分为不可控、半控、全控三种;2.按电路结构可分为桥式电路和零式电路;3.按交流输入相数分为单相电路和多相电路;4.按变压器二次侧电流的方向是单向或双向,又分为单拍电路和双拍电路。一般当整流负载容量较大,或要求直流电压脉动较小时,应采用三相整流电路。三相可控整流电路中,最基本的是三相半波可控整流电路,应用最为广泛的是三相桥式全控整流电路、以及双反星形可控整流电路等。二.方案的经济论证三相可控整流电路的控制量可以很大,输出电压脉动较小,易滤波,控制滞后时间短,因此在工业中几乎都是采用三相可控整流电路。在电子设备中有时也会遇到功率较大的电源,例如几百瓦甚至超过1—2kw的电源,这时为了提高变压器的利用率,减小波纹系数,也常采用三相整流电路。另外由于三相半波可控整流电路的主要缺点在于其变压器二次侧电流中含有直流分量,为此在应用中较少。而采用三相桥式全控整流电路,可以有效的避免直流磁化作用。虽然三相桥式全控整流电路的晶闸管的数目比三相半波可控整流电路的少,但是三相桥式全控整流电路的输出电流波形便得平直,当电感足够大时,负载电流波形可以近似为一条水平线。在实际应用中,特别是小功率场合,较多采用单相可控整流电路。当功率超过4KW时,考虑到三相负载的平衡,因而采用三相桥式全控整流电路。三.整流器件的选择及型号的确定晶闸管SCR为双极型器件,它具有电子和空穴两种载流子的导电功能。晶闸管正常工作时的特性为:(1)当晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。

早上过来的是我们班的吗呢你们俩都没用了吧台主管他们班的德邦总管经理室都没用了吧不她们的歌是不是傻的是谁的错误代码有没有人要买菜做饭了你的好友验证请求帮助别人就是

相敏轨道电路毕业论文

截止到2007年底,中国铁路总营业里程已达到万公里,全国铁路总延展里程达到万公里,复线达到万公里,电气化达到万公里,电化率,并且还将修建更多铁路。目前在电气化铁路上有90%的车站采用25Hz相敏轨道电路,因此该制式成为电气化铁路站内轨道电路的首选。1997年经铁道部鉴定,决定用“97型25Hz相敏轨道电路”替代原“25Hz相敏轨道电路”在全路推广使用。97型25Hz相敏轨道电路具有工作稳定可靠,维修简单和故障率低的优点,具有很高的抗干扰能力,并延长了轨道电路的极限长度(可达1500m),深受现场欢迎。第一节 25Hz轨道电路概述一、25Hz轨道电路设备的基本组成。(一)送电端设备构成:送电扼流变压器BE25、轨道变压器BG25、电阻R0、保险RD1、保险RD2。(二)受电端设备构成:受电扼流变压器BE25、轨道变压器BG25、电阻R0、保险RD1、防雷补偿器FB、防护盒HF、25HZ轨道继电器GJ(JRJC1-70/240)。另外25HZ轨道电路的轨道电源和局部电源分别由独立的轨道分频器和局部分频器给轨道继电器的轨道线圈和局部线圈供电。二、25HZ轨道电路的特点。1.相敏25Hz轨道电路由于采用了二元继电器,其具有可靠的相位选择性和频率选择性,因而对轨端绝缘破损和外界牵引电流或其他频率电流的干扰能可靠的进行防护2. 25Hz轨道电路采用25Hz频率后,与其它工频连续式轨道电路比较,在相同条件下,受道渣电阻变化影响小。3. 25Hz电源是运用分频的原理构成的,由于50Hz工频稳定,所以它也有频率稳定的特性,其频率衡定在50Hz的一半。4. 由于25Hz分频器的固定特性,当两个分频器的输入端反向连接时,则其输出电压相差90°,易于做成局部电源电压恒定超前轨道电源电压90°,因而可以采用其中调相方式。5. 25Hz分频器具有不可逆性,虽然50Hz不平衡牵引电流通过扼流、轨道变压器流入轨道分频器的输出回路,但在其输入端不可能有100Hz电流。同时室内轨道继电器的局部线圈是由局部电源单独供电,他不与钢轨或轨道分频器的输出相连,又不经过室外电缆线路,不受接触网电流产生的50Hz干扰电压的影响。6.“田”字型分频器的两线圈呈90°位置放置,输入线圈的交流产生的刺痛不与谐振线圈完全相交,因而原则上排除了在输入线圈间有局部断路时输入线圈50Hz电流向分频器输出电路的变化,大大降低25Hz输出回路中50Hz成分。7. 分频器具有稳定特性,当输入的50Hz电源电压在220V(+33,-44),负载由空载至满载的范围变化时,分频器的输出电压在220(+,)V范围变化,因而提高了轨道电路工作的稳定性。8. 25Hz轨道电路由于采用了连续方式,从而较为方便的找出其工作的最不利条件和肌线指标,更便于通过计算和实验手段加以验证。三、25Hz轨道电路工作原理25Hz轨道电路的信号电源是由铁磁分频器供给25Hz交流电,以区分50Hz牵引电流,接受器采用二元二位轨道继电器,该继电器的轨道线圈由送电端25Hz轨道电源经轨道传输后供电,局部线圈则由25Hz局部分频器电源供电。轨道继电器工作时,从轨道电路取得较少的功率而大部分功率是通过局部线圈获得局部电源,因而轨道电路的控制距离可以延长,且只有轨道继电器上的轨道线圈电压Ug和局部线圈电压Uj之间的相位角接近或等于90°时,转矩最大,是翼片绕轴旋转,带动接点动作,否则,翼片不能旋转,不能带动接点动作。所以,25Hz轨道电路既有对频率的选择性(区别开电力牵引电流)又有相位的选择性。当轨道线圈和局部线圈电源电压满足规定的相位要求时,GJ吸起,轨道电路处于调整状态,即表示轨道电路空闲。当列车占用时,轨道电路被分路,GJ落下。若频率、相位不对时,GJ也落下。因而,其抗干扰性能较强,广泛应用于交流电力牵引区段。第二节 交流二元继电器25Hz相敏轨道电路的接收器采用交流二元继电器,属于交流感应式继电器,是据电磁所建立的交变磁场与金属转子中感应电流之间相互作用的原理而动作的。JRJC-70/240型继电器由带轴翼板、局部线圈、轨道线圈和接点组四大部分组成,安装在铸铝合金支架内,活动部分来用滚珠轴承双重防护,可靠性更高,便翼板转动灵活,耐久。当通以规定颇率的电流,且局部线图电压超前轨道线圈电压的角度0°<θ<180°时,翼板抬起,使继电器的前接点闭合,当相角差为理想角时,处于最佳收起状态,当局部线圈或轨道线图断电时,依靠翼板和附件的重量使接关处于落下状态,由其动作原理可知,该继电器具有可靠的频率选择性和相位选择性,因而对轨道绝缘破损和外界牵引电流或其他频率的电流干扰可靠地进行防护,满足了轨道电路抗电气化干扰的 第三节 防护盒HF2-25型防护盒用于97型25Hz相敏轨道电路,是由电感线圈和电容组成的L、C串联谐振电路,线圈电感为,电容为12uF。谐振频率为50Hz对50Hz呈串联诣振相当于15Ω电阻,对于干扰电流起着减小轨道线圈上的干扰电压作用。对25Hz信号电流相当于16uf 电容,防护盒的阻抗|Z|=4OOΩ±lOΩ、θ=-90o±20,对其进行补偿。起着减小轨道电路传输衰耗和相移的作用。与相敏轨道继电器并联使用时,使轨道电路负载基本呈纯阻性。一、HF2-25型防护盒主要作用:1.减少JRJC型轨道断电器上50HZ牵引电流的干扰电压。2.对25Hz信号频率的无功分量进行补偿。3.减少25Hz信号在传输中的衰耗和相移、使轨道线圈电压和局部线圈电压产生较好的相位差,保证JRJC型轨道继电器正常工作。减少25Hz信号在传输中的衰耗。为了减少25Hz信号电流在轨道电路传输中的衰耗,在保证轨道电路常工作的条件下,取自轨道电路的功率最小。如轨道线圈并联防护盒呈并联谐振时,则其总电流最小,就能保证正常工作,无疑轨道电路供电端送出电流随之减少,消耗功率以及传输过程中的电压衰耗就减少。因此,并联防护盒对25Hz相敏轨道电路的任何一种类型其作用都是明显的。4.减少25HZ信号在传输中的相移25Hz轨道电源屏已将轨道和局部分频器的输出进行定相,使局部电压超前轨道电压90°。如果轨道电路传输无相移,则加车轨道线圈上的电压与轨道分频器的输出电压同相,使继电器处于理想工作状态,并联防护盒对相移有不同程度减少。5.减少50Hz干扰电压钢轨中50Hz牵引电流对二元继电器轨道线圈上产生的干扰电压可达120V虽不产生固定转矩,但使翼板产生颤动,对二元二位轨道继电器工作不利。并接防盒后,二元轨道继电器上50Hz干扰电压由120V降低到4V左右,这对继电器的工作和25Hz测试影响较小,如轨道电压的25Hz电压为20V,加上50Hz的4V电压后,其合成电压为这是因为防护盒对相当于20Ω的短路线,它起到两个作用:一是该电阻反射扼流变压器的牵引线圈侧的干扰大大减小,对于恒流源性质的牵引电流来说,使输入阻抗减小到只有原来的1/4,感应到信号线圈侧的电压也小到原来的1/4,二是并在二元轨道继电器两端的20Ω电压大大小于前方匹配变压器线圈的有效电阻,使已经减小了的50Hz 电压绝大部分降压有效电阻上,最终加在二元二位轨道继电器两端的电压就所剩无几。二、使用环境1.大气压力不低于 (海拔不超过2500m)2.周围空气温度-40-60℃3.空气相对温度不大于90%(+25℃)4.周围无引起爆--炸危险的有害气体。三、主要技术技性HF-25型防护盒是由电感线圈和电容组成的L、C串联诣振电路,线圈电感为,电容为12uF。而对于25Hz来说,LC串联相当于一个电容:根据测试,防护盒槽路对于50Hz相当于15v电阻。四、使用及维护HFz-25型防护盒由螺栓固定在组合上,其1、3号端子分别连接至JRJC2-70/240型二元轨道继电器的轨道线圈两端。HF2-25型防护盒需对电感线度测试和品质因数测试输入电压,输入频率进行测试,来判别防护盒的性能。第四节 97型25Hz相敏轨道电路特点和技术指标一、选用25Hz的原因及优越性(一) 选择25Hz的原因在电气化区段内的轨道电路除应满足在最不利条件下的基本要求外,还应具有能防护牵引电流干扰分能力,使之调整状态时不会因干扰电流或电压而使轨道继电器错误落下,或者在分路状态时不致因干扰电流或电压而使继电器错误吸起。所以埋在《铁路信号设计规范》第条中规定:“交流电力牵引区段应采用非工频轨道电路,牵引电流纵向不平衡系数不得大于5%因此选用25Hz符合《设规》规定。(二)选择25Hz的优点25Hz相敏轨道电路采用了二元轨道电路,该继电器具有可靠的频率选择性和相位选择性,因此不需要加设滤波器,避免了因滤波器故障而造成行车危及安全。充分满足“故障-安全”要求,因而可以设计成连续供电式轨道电路,做到设备简单,设备简单,工作稳定,应变速度快,便于维修,防雷性能良好。因此具有一定的优越性。25Hz相敏轨道电路分别由独立的25Hz轨道电路分频和局部分频的给轨道电路继电器的轨道线圈和局部线圈供电。在继电器室内的25Hz轨道电源屏中设有专门的局部和轨道电路电压90°,因此,又由于受电端并节防护盒,可大大减少轨道电路传输中的衰耗盒相移,所以经轨道传输后加在继电器上的局部电压和轨道电压(或电流)间的相角,仍可比较接近理想相位角,由于采用集中调相,使轨道电路设计和施工,维修大为简化。二元轨道继电器分别由轨道电源和局部电源供电,工作时仅从轨道电路取得较小功率(),而大部分功率使通过局部线圈取自局部电源(),由于轨道电源消耗的功率较小,再加之25Hz时钢轨阻抗值较低,所以不论功率消耗或轨道电路的传输长度来说,都具有一定的优越性。二、97型25Hz相敏轨道电路的主要特点及技术指标(一)主要特点1.提高绝缘破损防护性能钢轨牵引引接线采用焊接式,减少接触电阻,以提高绝缘破损防护性能。2 .取消不设扼流变压器的送、受电端在运营中发现,不设扼流变压器时,轨道继电器所受的干扰远大于设扼流变压器的区段,同时不易于轨道电路调整。为此全部增设扼流变压器。3.扼流变压器经等阻线与钢轨连接将连向钢轨的一长一短引接线设计成等阻线,降低牵引电流归系统的不平衡系数。4.电源屏的配置每一区段的平均传输功率为20w,每个继电器局部线圈加并电容补偿后的功率为,考虑单受和多受区段的比例。一个车站的轨道区段数和轨道继电器数按1:2计算,这样就相当于轨道分频器和局部分频器供电给每一个轨道电路分别耗电20w和13w,从而能计算出一个车站电源屏的型号配置。5.交流二元继电器97型25Hz相敏轨道电路优化了磁路设计和提高工艺设计水平,返还系数由原来的增至,消除了因翼片碰撞外罩而造成卡阻的可能故障。具有可靠的相位选择性和频率选择性,抗干扰性能强,便于实现电码化。6 .增加扼流变压器的类型由原来的仅400A一种类型增加了600A和800A两种。他们分别供侧线正线和靠近牵引变电所的区段。7.极限长度延长把二元继电器的返还系数由增加到,将送电端极限电阻由Ω增加到Ω,将受电端匹配变压器的变比由原来的降为。将25Hz分频器的输出电压允许波动范围由原来的±5%减少到±3%。通过以上几次改进措施,最终能将极限长度由1200m提高到1500m。8 .系统抗干扰能力大大提高采取综合治理的方式大大提高系统抗冲击干扰分能力,首先设法尽可能减少电流的侵入量,其次在干扰电流侵入后设法使其少起一些干扰作用。另外,侵入分干扰电流若能造成轨道继电器误动,则设法让其误动后果不能影响其他信号设备或电路。(二)主要技术指标1.使用于钢轨连续牵引总电流不大于800A,不平衡电流不大于60A的交流电气化区段的站内和预告区段的轨道电路。2.在频率为50Hz,电源电压为220+40,220-60V范围内,在极限长度范围内,能可靠的满足调整和分路的要求,并能实现一次调整。3.一送一受的轨道电路,以标准的Ω分路电阻在区段内任意点分路时,保证至少有一个轨道继电器可靠落下。4.每段轨道电路最多可设四个扼流变压器(包括空扼流变压器)。5.能实现叠加或预叠加电码化。6.在无迂回回路的条件下,任何故障均可靠的分路检查。7.系统抗不平衡电流冲击干扰由原来的10A提高到60A。轨道电路极限长度由原来的1200m提高到1500m,可适应重载发展的要求。第五节 与机车信号信息相应的电码化机车信号是机车“三大件”之一,对解决铁路行车安全与效益的矛盾和提高行车指挥自动化程度,确保安全运输发挥了重要的作用。站内电码化作为确保铁路行车安全的重要措施,铁道部十分重视。明确规定:车干线及繁忙的支线上、站内正线,到发线股道均应实现由码化股道电码化应逐步过渡到叠加预发码方式,车行车速度大于120KM/h段或机车装有超速防护设备时,应积极推广叠加预发码方式电码化保证电码化信息的速传。目前主要以移频信息的电码化和UM71、zpw-2000电码化,他们都能很好与25Hz 相敏轨道电路实现电码化。由于移频机车信号信息频率在音频的范围之内,电缆电容不容忽视,固此应考虑电缆对发送移频机子信号的影响。由轨道电路的受电端发送机车信号信息时,施加在二元继电器上的机车信息电压不能过高。否则机道继电器的巽板会产生较大的颤动声影响继电器寿命,试验证明当移频电压降至30V以下则不会出现颤动。因此,规定二元继电器上的移频信息电压应压30V以下。第六节 25Hz相敏轨道电路的调整和测试一、调整方法:多年来现场运用情况表明:25Hz相敏轨道电路较易做到一次调整只有少数区段经历一次雨季,要将轨道继电器端电压调整到不低于其最低值,并确认励磁吸起,待晴天后再检查能否确保分路检查,即轨道继电器残压应小于和前接点分离,如分路良好,即能实现一次调整。二、调整注意事项:1.送电端限流电阻的数值以及受电端中继变压器的变压比,应按原现图的规定加以固定,若调小限流电阻,将恶化轨道电路的发路,若改变中继变压器的变比,会使受电端连接器材的阻抗和轨道电路的阻抗匹配条件遇到破坏。相敏轨道电路具有相位选择性,在调整供电变压器电压时应注意不要将同名端接错。3.一送多受的轨道压段,各分支电压应调整至相同或相近电压值。然后,根据其类型按调整表的相应类型来调整轨道电路的供电电压,此时,各轨道继电器上的端电压应在调整表给定的允许电压范围内。4.应检查机车信号的入口电流是否满足机车信号的要求。在电气化区段钢轨内除信号电流外,还可能会有不平衡牵引电流,这会影响测试的准确性。因此,最好选在天窗时间内进行该项测试以确保测试的准确性。5.设有空扼流变压器的轨道电路应对其轨道电路进行补偿。当设有空扼流变压器的轨道电路实施电码化时除对轨道电路进行补偿外,还应对机车信号的电码化信息进行补偿。应机车信号信息的不同所需要的类型也不同,应根据机车信号信息来选择相应类型的补偿器,在规定了补偿器的基础上在按需要调整轨道电路供电电压。6.不在空扼流变压器和无受电分割的一送一受的轨道电路在道渣电阻最高的情况下,用标准分路线在送电端及受电端分路时应有分路检查,对一送多受的轨道电路随道岔布置的不同,分路最不利的地点也不同,故检查分路除应在送电端和所有受电端进行外,尚需在岔尖及其他地点检查分路。如带有无送电分支还应在无受电分支的末端检查。一送多受时轨道电路是将所有送电端轨道继电器的前接点串连再控制轨道继电器以其接点用于信号的各电路中,因而只需保证有一个受电端符合有分路检查的要求。三、相位交叉的检查:25Hz相敏轨道电路特点之一是具有相位选择时,因而实行相位交叉后对钢轨绝缘破损有可靠的防护,所以必须对相位交叉进行严格的测试检查使用万用表测得V1 V2 V3 V41.若V1>V3或V1>V4或V2>V3或V2>V4成立时,有相位交叉。2.若2V>V5或2V1>V6或2V2>V5或2V2>V6成立时,有相位交叉。第七节 工程设计和现场维护为提高97型25Hz相敏轨道电路抗干扰能力将有牵引电流回归的轨道区段原来不设扼流变压器的送受端一律取消,全部采用带扼流类型。除将扼流变压器牵引引接线改为焊接外,还将连向钢轨的一长一短引接线设计成等阻线。将牵引引接线改用焊接方式接向钢轨,以克服应接触电阻,增大而造成绝缘破损防护性能的失效。采用固定抽头型取代原来滑线变阻器,以利于现场轨道电路的调试和维护,400A扼流供侧线区段使用,600A扼流供正线区段使用,800A扼流供牵引变电所区段使用在电气化区段应设有扼流变压器,相邻两段轨道电路扼流变压器的中点相连,使两段轨道电路的另一根轨条通过一定的迂回阻抗相连,造成了轨道电路工作不稳定。一 、轨道电路的本身问题1.调整这两个区段时,改变任一区段供电电压,影响另一区段轨道继电器的电压。2.改变任一区段供电电压极性时,另一区段的继电器电压变化很大。3.任一区段分路时, 另一区段继电器电压也降低,甚至不能保持吸起。二、牵引电流引起的问题1.当有稳定的50Hz牵引电流流过时,这两个区段的熔断器有可能熔断。2.渡线区段空闲时,其他区段有机车升弓,造成瞬间冲击电流,有可能熔断渡线区段的熔断器,或未熔断但轨道继电器瞬间落下妙左右。三、解决的根本办法解决的根本办法是将两处相连,改为只有一处相连。而电气化区段要求牵引电流回归是畅通的,也就是将be间的联系切断,在渡线处加装两处绝缘,使ab两段轨道电路完全隔开加以解决。在一般情况下,按现有轨缝加装绝缘,使区段的长度往往超出不大于5m的规定,为解决此问题,可采用胶接钢轨绝缘接头或玻璃钢包的岔型绝缘组件。再有当死区段内有车辆时,仍有可能出现单轨条流通牵引电流的现象。但在道岔区段不许停留车辆,能构成此现象的机率很少,如果死区段的长度能符合规定,则将不易出现单轨条问题。四、电缆线路的使用1.干线供电时电缆的使用轨道电路一般均采用干线供电方式,有25Hz电源屏输出经电缆线束向各送电端供给25Hz220V电源允许在电缆上的压降为30V。当分频器的输出电压为-30%波动时经电缆传输后轨道电路供电变压器的一次输入允许输入最低电压为180V。每段轨道电路平均消耗功率为20W.。2.室外设备的连接轨道电路的送.受电端及设有空扼流变压器时,扼流变压器与轨道变压器之间的电缆电阻应不大于Ω。3.受电端电缆的使用受电端的一次侧自轨道继电器间的电缆电阻,应不大于150Ω,即当电缆长度不大于公里时可以采用单芯。五、有关设计的其他问题(一)轨道电路的极性交叉设置1.相邻轨道电路间相连轨道电路应有不同的相位配置,如遇某些站厂布置其个别区段与相邻区段无法做到相位交叉时应加装人工交叉绝缘。2.两个站之间当两个站之间有独立的25Hz电源屏供电时,并两车厂间的联络线也采用25Hz相敏轨道电路时或者一个站厂的两个咽喉分别由两个独立的25Hz电源屏供电时,则在衔接处的供电绝缘两侧均应设置送电端,防止在绝缘破损时造成供电继电器错误动作。(二)主付电源倒换注意事项50H主付电源倒换时25Hz分频器会瞬间停震,其启动时间 不大于妙,故25Hz电源可能停电妙,致使供电及其复示继电器瞬间落下。LXJ的缓放时间均大于妙,故在50Hz主付电源切换时不致使其落下。(三) 交流二元继电器的使用1.交流二元继电器是感应式继电器且无附加轴,故交流二元继电器的后接点不的在电气集中或其他信号设备的控制及表示电路中使用。2.供电组合内可设置JRJC1-70/240型继电器3台,及Hf2-25型防护盒3个以及2个防雷补偿器。一个组合架可装9个轨道组合。当在一个组合架上同时安装轨道组合和AX型继电器组合时相邻处应空开一个组合位置。3.设计移频电码化时所需使用的轨道电路条件应取自无缓放的轨道第一复示继电器。六、 现场使用中的一些问题(一)车现场使用中,发现轨道电路导接线如果接触不良就会导致设备故障,相对于移频轨道电路来说25Hz相敏轨道电路对钢轨导接线要求更高必须保证其接触良好,车更换导接线时,应在无车的情况下,否则有可能造成轨道电路红光带影响行车。因此,在曰常维护中必须特别加强对导接线的检查维护。(二)防雷补偿器现实际应用中,发生过石堆短路造成故障。现均有的单位已把石堆拆除。车工务更换钢轨时,曾发生把防雷补偿器烧坏,造成故障。拨掉防雷补偿器后,恢复正常,而室外轨道 箱中的断路器并没有断开,而造成烧坏防雷补偿器。因此存在一是缺陷,如果能在室内加装1A保险,做到提示一做防护,就能解决这一问题。

其抗干扰能力强的原因如下:1、相敏轨道电路采用了差分信号传输方式,即将信号分为正负两路进行传输,这种传输方式可以有效地抵消外界的干扰信号,提高了抗干扰能力。2、相敏轨道电路采用了相位比较器进行信号检测,相位比较器对于信号的幅度变化不敏感,只对信号的相位变化进行检测,因此对于外界的干扰信号可以进行有效的抑制。3、相敏轨道电路采用了锁相环控制技术,可以自动调整信号的相位和频率,使得信号始终保持在稳定的状态,从而提高了抗干扰能力。4、相敏轨道电路在设计时考虑了抗干扰的因素,采用了一系列的抗干扰措施,如屏蔽、滤波、隔离等,从而提高了整个系统的抗干扰能力。

25赫兹轨道电源屏初级两个绕组反向串联,是因为在电路中只有这样接才符合电路接线的规则。

25HZ微电子相敏轨道电路的发送设备与原25H组相敏轨道电路发送设备相同,接收设备由WXJ25型微电子相敏轨道电路接收器替代了远25H组电磁式相敏轨道继电器。25Hz微电子相敏接收器设有红、绿指示灯,便于确认。

扩展资料:

接收器的局部电源、轨道电源、二者相位差、轨道接受阻抗、可靠接受电压、防护和参数等与原相敏轨道继电器完全一致。接收器的局部电源由原来的驱动方式改为采样方式,使电源屏局部电源的输出电流大大减少,增强了电源屏的负载能力。接收器的工作电源为直流24V,每套耗电小于100mA。

接收器的返还系数大于90%,不仅提高了轨道电路传输性能,同时也使轨道电路的分路特性得到了明显改善。

参考资料来源:百度百科-25Hz相敏轨道电路技术与应用

应用电子技术的文章不难的,写创新的即可。之前也不懂,还是学长给的文方网,写的《CMOS掉电检测及保护电路设计》,靠谱的说有射极电阻的基本电路中双极型晶体三极管工作状态的一种判断方法论较大规模数字逻辑电路进化实现有源功率因素校正电路控制方法的研究基于单片机的升压电路设计与仿真基于AT89S52单片机广告灯控制电路设计的教学基于FPGA的无机EL显示模块控制电路设计串联补偿逆变电路的电压累加现象研究辅导材料(二) 学习单元电路的方法和技巧一种新颖的磁耦合式无源无损吸收电路EDA软件在电路设计中的合理应用基于LMH6505直流耦合型可变增益超声接收电路的设计 优先出版基于可编程模拟器件的精密整流电路设计超声波户外散雾传感器电路装置一款无电压比较器的欠压保护电路一体化轨道电路方向继电器应用实例分析DS18B20温度测量电路的设计与仿真三相交流电动转辙机5线制道岔电路模拟试验新方法基于Protel DXP的模拟电路的仿真分析InGaP/GaAs HBT射频功率放大器在片温度补偿电路研究电子电路实验教学模式的探索与实践电路模型的改进及若干相应结果交流伺服电机驱动控制器单元电路的设计分析上海集成电路产业发展整体态势与对策建议25Hz相敏轨道电路的计算调谐区绝缘化无碴轨道对轨道电路传输性能的影响分析稳定静态工作点电路的分析25 Hz相敏轨道电路抗干扰分析及改进方案40MS/s全差分采样-保持电路的设计单通道传输多路监控信号的电路设计电路分析模拟实验演示系统提速道岔转换电路的故障处理基于LabVIEW的舰用空压机控制电路虚拟检测平台设计 优先出版超大规模集成电路设计基础 第一讲 微电子技术概况深圳集成电路设计产业化基地管理中心文件深集管[2005]021号关于召开《2006’(第四届)泛珠三角集成电路业联谊暨市场推介会》的通知简述彩电保护执行电路与保护显示电路(上)跟我学修VCD、SVCD机(九)RF信号处理电路和数字信号处理(DSP)电路变频器的滤波电路设计有源电路和无源电路术语的讨论绝热CMOS与传统CMOS接口电路的设计PCB板中时钟电路的EMC问题探究在电路分析教学中引入Matlab软件浅析数字电路实验的设计ZPW-2000A站内移频电码化N+1 FS电路的改进五线制提速道岔电路技术改进探讨

相关百科

热门百科

首页
发表服务