首页

毕业论文

首页 毕业论文 问题

极值的求法毕业论文

发布时间:

极值的求法毕业论文

先判断函数的单调性,若函数在定义域内为单调函数,则最大值为极大值,最小值为极小值

2.导数法

(1)、求导数f'(x);

(2)、求方程f'(x)=0的根;

(3)、检查f'(x)在方程的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正那么f(x)在这个根处取得极小值。

特别注意

f'(x)无意义的点也要讨论。即可先求出f'(x)=0的根和f'(x)无意义的点,这些点都称为可疑点,再用定义去判断。

二阶连续偏导数的函数z = f(x,y)的极值的求法叙述如下:

(1)解方程组fx(x,y) = 0,fy(x,y) = 0,求得一切实数解,即可求得一切驻点;

(2)对于每一个驻点(x0,y0),求出二阶偏导数的值A、B和C;

(3)定出AC-B2的符号,按定理2的结论判定f(x0,y0)是否是极值、是极大值还是极小值。

上面介绍的极值必要条件和充分条件都是对函数在极值点可导的情形才有效的。当函数仅在区域D内的某些孤立点(xi, yi)不可导时,这些点当然不是函数的驻点,但这种点有可能是函数的极值点,要注意另行讨论

函数的零点等价于对应方程的根,计算方法主要是解方程。对区间上的可导函数而言,函数的极值点是导函数的变号零点,这时极值点的计算方法是先求导,再求导函数的零点,再讨论零点两侧的导数符号,最后结论。所以要经历求导运算,解方程,解不等式等。对于区间上的不可导函数而言,函数的极值可能存在,因而极值点存在。往往用初等方法。需讨论。例如y=|x|,因为y=|x|≥0,当且仅当x=0时,y min=0.所以极值点x=0.亲,以上是提供,供参考。您可以发散一下,并举些具体例子。必要时把零点和极值点的定义加进去。

如果遇到的是二次函数,可以很简单求出极值,其实用单调性也很好用像基本不等式,一般出的题不会一眼就让你用,都是在解答的某个关键处用来判断的,尤其像均值定理这种重要的不等式,很有用像△>=0这种,在正规考试中不会单纯的给一不等式题要你解答,一般都会与函数相结合,多参数求不等式,这就又与第一种相关联了还有你要掌握数形结合的方法,学会根据图像解题,这样好理解

极值的求法:

(1)求导数f'(x);

(2)求方程f'(x)=0的根;

(3)检查f'(x)在方程的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正那么f(x)在这个根处取得极小值。

极值函数:

若f(a)是函数f(x)的极大值或极小值,则a为函数f(x)的极值点,极大值点与极小值点统称为极值点。极值点是函数图像的某段子区间内上极大值或者极小值点的横坐标。极值点出现在函数的驻点(导数为0的点)或不可导点处(导函数不存在,也可以取得极值,此时驻点不存在)。

设函数f(x)在x。附近有定义,如果对x。的去心邻域,都有f(x) f(x),则f(x)是函数f(x)的一个极小值,对应的极值点就是x。

求极值的若干方法毕业论文

除了求导我不知道有什么办法了比如f(x)=x^2求导以后就是f`(x)=2x当f`(x)=0即x=0时取到极值,当x<0时f`(x)<0(导数小于0时表示单调递减,就是图像一直呈向下的趋势,没有上升的时候),当x<0时,f`(x)>0,所以图像时向下凸出的,那个最低的地方就是极值点,这里为极小值。所以x=0为极小值。不知道求导的话去查查就知道了。

函数的零点等价于对应方程的根,计算方法主要是解方程。对区间上的可导函数而言,函数的极值点是导函数的变号零点,这时极值点的计算方法是先求导,再求导函数的零点,再讨论零点两侧的导数符号,最后结论。所以要经历求导运算,解方程,解不等式等。对于区间上的不可导函数而言,函数的极值可能存在,因而极值点存在。往往用初等方法。需讨论。例如y=|x|,因为y=|x|≥0,当且仅当x=0时,y min=0.所以极值点x=0.亲,以上是提供,供参考。您可以发散一下,并举些具体例子。必要时把零点和极值点的定义加进去。

1、求极大极小值步骤:

求导数f'(x);

求方程f'(x)=0的根;

检查f'(x)在方程的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正那么f(x)在这个根处取得极小值。

f'(x)无意义的点也要讨论。即可先求出f'(x)=0的根和f'(x)无意义的点,再按定义去判别。

2、求极值点步骤:

求出f'(x)=0,f"(x)≠0的x值;

用极值的定义(半径无限小的邻域f(x)值比该点都小或都大的点为极值点),讨论f(x)的间断点。

上述所有点的集合即为极值点集合。

定义:

若函数f(x)在x₀的一个邻域D有定义,且对D中除x₀的所有点,都有f(x)

同理,若对D的所有点,都有f(x)>f(x₀),则称f(x₀)是函数f(x)的一个极小值。

极值的概念来自数学应用中的最大最小值问题。根据极值定律,定义在一个有界闭区域上的每一个连续函数都必定达到它的最大值和最小值,问题在于要确定它在哪些点处达到最大值或最小值。

如果极值点不是边界点,就一定是内点。因此,这里的首要任务是求得一个内点成为一个极值点的必要条件。

百度百科--极值

我知道能函授问题明白道理

函数的极值和最值毕业论文

b^2-ac未定

区别在于二者概念不同。极值是与它的两侧相比,大于两侧是极大值,小于两侧是极小值;最值则是函数在定义域或指定区间内的最大最小值。除特定函数,两者无必然联系。

联系:一些情况下,函数有极值无最值;另一些情况下,函数有最值无极值,还有一些情况下,最值 = 极值。

极值是一个函数的极大值或极小值。如果一个函数在一点的一个邻域内处处都有确定的值,而以该点处的值为最大(小),这函数在该点处的值就是一个极大(小)值。如果它比邻域内其他各点处的函数值都大(小),它就是一个严格极大(小)。该点就相应地称为一个极值点或严格极值点。

我知道能函授问题明白道理

极值不一定是最值,最值也不一定是极值。极值是指在某个邻域内取得了最大或最小,但不等于它在整个定义区间内最大或最小。最值可能在极值点,也可能在定义区间的边界上。

关于极值的毕业论文

我知道能函授问题明白道理

首先你要说下研究函数极值的意义:在很多工程实际中,我们经常需要做一些优化。当然,本人是学飞行器设计的,举个简单的例子:飞机的升力主要由机翼提供,那么机翼的截面到底设计成什么形状,或者机翼的平面投影设计成什么形状,其升力可以达到最大,甚至在保证升力的同时还不能让阻力太大,所以这些都涉及到一个最优的问题。(当然,楼主可以就具体工程实际给出例子),再比如,就拿天气预报来说吧,通过实验测得很多气象数据,那么我们怎么处理这些数据,或者说用什么方法处理这些数据,才能达到预测结果最为准确呢,这其实也是一个广义上的极值问题。还有就是经济学的投资问题,我们知道现在国家搞什么高铁、高速公路的,都是浩大的工程,动不动就几百亿的,如何合理布局(要考虑建设成本、怎么选定线路、建成之后为国民经济带来的效益、运营费用、会不会对环境有影响,那么污染治理费也要考虑),才能让这些公共基础建设的利远大于弊。。。。一般实际问题都是一个或者一组多元函数,那么研究清楚这些问题,对我们的工程实际将有莫大的裨益,对节省能源等等问题都有好处

我觉得LS回答得太随意了,我不是学数学专业的,所有帮不了你!

函数的零点等价于对应方程的根,计算方法主要是解方程。对区间上的可导函数而言,函数的极值点是导函数的变号零点,这时极值点的计算方法是先求导,再求导函数的零点,再讨论零点两侧的导数符号,最后结论。所以要经历求导运算,解方程,解不等式等。对于区间上的不可导函数而言,函数的极值可能存在,因而极值点存在。往往用初等方法。需讨论。例如y=|x|,因为y=|x|≥0,当且仅当x=0时,y min=0.所以极值点x=0.亲,以上是提供,供参考。您可以发散一下,并举些具体例子。必要时把零点和极值点的定义加进去。

毕业论文数列极限的求法

第一种:利用函数连续性:lim f(x) = f(a) x->a

(就是直接将趋向值带出函数自变量中,此时要要求分母不能为0)

第二种:恒等变形

当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:

第一:因式分解,通过约分使分母不会为零。

第二:若分母出现根号,可以配一个因子使根号去除。

第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)

当然还会有其他的变形方式,需要通过练习来熟练。

第三种:通过已知极限

特别是两个重要极限需要牢记。

扩展资料

有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。下面介绍几个常用的判定数列极限的定理。

1.夹逼定理:(1)当x∈U(Xo,r)(这是Xo的去心邻域,有个符号打不出)时,有g(x)≤f(x)≤h(x)成立

(2)g(x)—>Xo=A,h(x)—>Xo=A,那么,f(x)极限存在,且等于A

不但能证明极限存在,还可以求极限,主要用放缩法。

2.单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。

在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。

3.柯西准则

数列收敛的充分必要条件是任给ε>0,存在N(ε),使得当n>N,m>N时,都有|am-an|<ε成立。

如何求数列极限如下:

设 {Xn} 为实数数列,a 为定数.若对任给的正数 ε,总存在正整数N,使得当 n>N 时有∣Xn-a∣<ε 则称数列{Xn} 收敛于a,定数 a 称为数列 {Xn} 的极限。

读作"当 n 趋于无穷大时,{Xn} 的极限等于 或 趋于 a"。

若数列 {Xn} 没有极限,则称 {Xn} 不收敛,或称 {Xn} 为发散数列。

该定义常称为数列极限的 ε-N定义。

对于收敛数列有以下两个基本性质,即收敛数列的唯一性和有界性。

定理1:如果数列{Xn}收敛,则其极限是唯一的。

定理2:如果数列{Xn}收敛,则其一定是有界的。即对于一切n(n=1,2……),总可以找到一个正数M,使|Xn|≤M。

任意性:

不等式|Xn-a|<ε刻划了Xn与a的无限接近程度,ε愈小,表示接近得愈好;而正数ε可以任意地小,说明Xn与a可以接近到任何程度。然而,尽管ε有其任意性,但一经给出正整数N,ε就暂时地被确定下来,以便依靠它来求出ε,又ε既是任意小的正数。

那么ε/2,ε的平方等等同样也是任意小的正数,因此定义中不等式|Xn-a|<ε中的 ε可用ε/2,ε的平方等来代替。同时,正由于ε是任意小正数,我们可限定ε小于一个确定的正数。另外,定义1中的|Xn-a|<ε也可改写成|Xn-a|≦ε。

折叠相应性:

一般说,N随ε的变小而变大,由此常把N写作N(ε),来强调N是依赖于ε的;但这并不意味着N是由ε所唯一确定的,因为对给定的 。

比如当N=100时,能使得当n>N时有|xn-a|<ε,则N=101或更大时此不等式自然也成立.这里重要的是N的存在性,而不在于它的值的大小.另外,定义1中的,n>N也可改写成n≧N。

相关百科

热门百科

首页
发表服务