首页

毕业论文

首页 毕业论文 问题

贝叶斯逆概率毕业论文

发布时间:

贝叶斯逆概率毕业论文

(一)客观贝叶斯分析(objective Bayesian analysis)将贝叶斯分析当做主观的理论是一种普遍的观点,但这无论在历史上,还是在实际中都不是非常准确的。第一个贝叶斯学家,贝叶斯学派的创始人托马斯·贝斯和拉普莱斯进行贝叶斯分析时,对未知参数使用常数先验分布。事实上,在统计学的发展中,这种被称为“逆概率”(inverse probability)的方法在19世纪非常具有代表性,而且对19世纪初的统计学产生了巨大的影响。对使用常数先验分布的批评,使得杰弗里斯(Jeffreys)对贝叶斯理论进行了具有非常重大意义的改进。伯杰(Berger,1999)认为,大多数贝叶斯应用研究学者都受过拉普莱斯一杰弗里斯(Laplace-Jefferys)贝叶斯分析客观学派的影响,当然在具体应用上也可能会对其进行现代意义下的改进。许多贝叶斯学者的目的是想给自己贴上“客观贝叶斯”的标签,这种将经典统计分析方法当做真正客观的观点是不正确的。对此,伯杰(1999)认为,虽然在哲学层面上同意上述观点,但他觉得这里还包含很多实践和社会学中的原因,使得人们不得已使用这个标签。他强调,统计学家们应该克服那种用一些吸引人的名字来对自己所做的工作大加赞赏的不良习惯。客观贝叶斯学派的主要内容是使用无信息先验分布(noninformativeor default prior distribution)。其中大多数又是使用杰弗里斯先验分布。最大嫡先验分布(maximumentropy priors)是另一种常用的无信息先验分布(虽然客观贝叶斯学派也常常使用一些待分析总体的已知信息,如均值或方差等)。在最近的统计文献中经常强调的是参照先验分布(reference priors)(Bernardo 1979;Yang and Bergen 1997),这种先验分布无论从贝叶斯的观点,还是从非贝叶斯的观点进行评判,都取得了显著的成功。客观贝叶斯学派研究的另一个完全不同的领域是研究对“默认”模型(defaultmodel)的选择和假设检验。这个领域有着许多成功的进展(Berger,1999),而且,当对一些问题优先选择默认模型时,还有许多值得进一步探讨的问题。经常使用非正常先验分布(improper priordistribution)也是客观贝叶斯学派面临的主要问题,这不能满足贝叶斯分析所要求的一致性(coherency)。同样,一个选择不适当的非正常先验分布可能会导致一个非正常的后验分布,这就要求贝叶斯分析过程中特别要对此类问题加以重视,以避免上述问题的产生。同样,客观贝叶斯学派也经常从非贝叶斯的角度进行分析,而且得出的结果也非常有效。

贝叶斯概率公式:

贝叶斯概率公式由英国数学家贝叶斯 ( Thomas Bayes 1702-1761 ) 发展,用来描述两个条件概率之间的关系,比如 P(A|B) 和 P(B|A)。按照乘法法则,可以立刻导出:P(A∩B) = P(A)*P(B|A)=P(B)*P(A|B)。如上公式也可变形为:P(A|B)=P(B|A)*P(A)/P(B)。

作为一个规范的原理,贝叶斯法则对于所有概率的解释是有效的;然而,频率主义者和贝叶斯主义者对于在应用中概率如何被赋值有着不同的看法:频率主义者根据随机事件发生的频率,或者总体样本里面的个数来赋值概率;贝叶斯主义者要根据未知的命题来赋值概率。

一个结果就是,贝叶斯主义者有更多的机会使用贝叶斯法则。贝叶斯法则是关于随机事件A和B的条件概率和边缘概率的。

贝叶斯公式,是指当分析样本大到接近总体数时,样本中事件发生的概率将接近于总体中事件发生的概率。但行为经济学家发现,人们在决策过程中往往并不遵循贝叶斯规律,而是给予最近发生的事件和最新的经验以更多的权值,在决策和做出判断时过分看重近期的事件。

了解贝叶斯定律快一年了,从开始的只记住概念,到现在能慢慢的熟练应用。 使用贝叶斯概率的时候,虽然用词不一样,但是思路差不多是一样的,在对一件事情不了解的时候,不要随便下结论,根据已有的信息赋一个初始值,然后根据新的信息不断的调整,逐渐拼凑出出接近于问题的真相;阅读了《统计学关我什么事》之后,可以用数学的定义来了解贝叶斯定律了,比如初始值被称为先验概率,拼凑信息的条件称为条件概率,接近于问题真相的概率称之为后验概率 阅读《统计学关我什么事》最大的收获是知道了贝叶斯逆概率?什么意思呢,就是把算出来的后验概率的相加之和调整为1,比如一个可能发生的事件概率和不可能发生的概率的值是与,通过标准化条件之后,这个事件发生的概率是2/9,即,不发生的概率是7/9,即;根据重新调整,是他们的比值为1,这就是贝叶斯逆概率 那么贝叶斯概率在生活中怎么应用呢? 前几天,我认识了一个朋友,他说他干羊肉泡馍干了三四年,自己也开过羊肉泡馍店,若是不用贝叶斯概率,我们会倾向于认为这个人做羊肉泡馍的技术很厉害,但是如果使用贝叶斯概率,通过这些信息,我们会根据这些信息赋一个初始概率,他做好羊肉泡馍的可能性大些,做不好羊肉泡馍的可能性小些,因为没有吃过,所以无法辨别他这个能力的大小,只有在吃过之后,才能判断出他的能力,然后根据他做出来的泡馍推测他的能力;如果做的味道不好,一般人会说他行,或者不行,作为一个贝叶斯人格特质,不会这么考虑问题,他会考虑是因为进入了一个新环境,第一次不熟悉情况,或者是在其他流程的问题上出问题了,通过多次的实验,确保熟悉了环境、流程,等等一系列因素之后,给出一个合理的概率比值,而不是给出好或者不好这样的评语 关于男女的例子,书中的例子有,大驰也讲了,所以我就不过多赘述了 贝叶斯最大的特点在于它是动态的,是变化的,环境变了,条件变了,结论也跟着变了,用大驰的话说,就是用动态的发展用动态的眼光看待问题;在生活中,常常被误解的是,你说的话怎么又变了,跟个变色龙似的,如果你一解释,ta们就会说,正话反话都让你说了,把你搞的哑口无言, 所以有一句话叫做不与夏虫与冰,不与井蛙谈海;因为你要一个没见过鬼的人,去相信这个世界上有鬼是很难的,先不考虑这个世界上到底有没有鬼,能否让对方相信,取决于你的认知和表达,看,一般人给出的结论是有或者没有,而贝叶斯概率者给出的结论是有或者没有,这也是贝叶斯概率的应用 再来看一个职场的例子,一个人过往履历光鲜,面对新的工作,ta就一定能干好嘛,多数人的回答是,但在贝叶斯者看来,这个人干好的可能性大些,干不好的可能行小些;但也可能是干不好的可能性大些,干好的可能性小些,什么时候出现这种情况呢,就是这个人换的新工作和ta过往的工作没有关系;这就是贝叶斯在生活中的应用

贝叶斯理论毕业论文

之前看过一些贝叶斯的论文后,发现很多细节不理解,对贝叶斯在各个领域的应用也不清楚,便想着找本偏科普的书来看看,于是开始阅读贝叶斯思维(Think Bayes)这本书。很薄的一本。 贝叶斯的基本理论都是源于条件概率模型,作者用一个很有意思的例子来解释了条件概率。注意:不是抓球那种老掉牙的例子。 作者希望知道自己得FCA的概率(某种心脏病,具体病名叫First Coronary Attack),根据已有的统计报告,美国每年大概有785000人次患FCA。因为美国的人口是亿,因此可以得出一个美国人患上FCA的概率是。但作者觉得这种算法不够准确,因为他并不是一个随机抽取的美国人,平均值并不能代表他的值,某个具体人患上FCA的概率需要考虑很多其他因素,例如年龄,性别等。 作者男性,45岁,这些因素增加了他患FCA的概率;而他是低血压却减低了他患FCA的概率。综合这些因素,作者算出他下年患上FCA的概率是,低于平均值。而这种考虑多种因素后算出的概率被称为条件概率。而条件概率的定义就是大家所熟知的p(A|B):B发生的时候,发生A的概率。结合作者的例子来解释就是:A代表作者患上FCA的概率,B是作者列出的影响因素的集合(年龄,性别,血压等)。 联合概率用来描述两个事件A和B同时发生的概率,记做p(A and B)=p(A)p(B)。用抛硬币来举例,第一次抛硬币正面朝上的概率记做p(A),第二次抛硬币正面朝上的概率记做p(B),那么两次都朝上的概率是p(A)p(B)=。需要注意的是,p(A and B)=p(A)p(B)并不是什么时候都成立,要求事件A和B要彼此独立,也就是p(B|A)=p(B),直白点的解释就是B发生的概率与A发生与否没有关系。抛硬币的事件就满足这个条件。 再举一个事件不相互独立的例子。假设A代表今天下雨,B代表明天下雨。通常,如果今天下雨,明天下雨的概率会比较大,因此可以得出p(B|A)>p(B)。因此呢,p(A and B)写成p(A)p(B|A)会比较准确。 综上所述,联合概率的公式可以写成:p(A and B)=p(A)p(B|A)

贝叶斯定理太有用了,不管是在投资领域,还是机器学习,或是日常生活中高手几乎都在用到它。 生命科学家用贝叶斯定理研究基因是如何被控制的;教育学家突然意识到,学生的学习过程其实就是贝叶斯法则的运用;基金经理用贝叶斯法则找到投资策 略;Google用贝叶斯定理改进搜索功能,帮助用户过滤垃圾邮件;无人驾驶汽车接收车顶传感器收集到的路况和交通数据,运用贝叶斯定理更新从地图上获得 的信息;人工智能、机器翻译中大量用到贝叶斯定理。 我将从以下4个角度来科普贝叶斯定理及其背后的思维: 1.贝叶斯定理有什么用? 2.什么是贝叶斯定理? 3.贝叶斯定理的应用案例 4.生活中的贝叶斯思维 1.贝叶斯定理有什么用? 英国数学家托马斯·贝叶斯(Thomas Bayes)在1763年发表的一篇论文中,首先提出了这个定理。而这篇论文是在他死后才由他的一位朋友发表出来的。 (ps:贝叶斯定理其实就是下面图片中的概率公式,这里先不讲这个公式,而是重点关注它的使用价值,因为只有理解了它的使用意义,你才会更有兴趣去学习它。) 在这篇论文中,他为了解决一个“逆概率”问题,而提出了贝叶斯定理。 在贝叶斯写这篇文章之前,人们已经能够计算“正向概率”,比如杜蕾斯举办了一个抽奖,抽奖桶里有10个球,其中2个白球,8个黑球,抽到白球就算你中奖。你伸手进去随便摸出1颗球,摸出中奖球的概率是多大。 根据频率概率的计算公式,你可以轻松的知道中奖的概率是2/10 如果还不懂怎么算出来的,可以看我之前写的科普概率的回答: 猴子:如何理解条件概率? 而贝叶斯在他的文章中是为了解决一个“逆概率”的问题。比如上面的例子我们并不知道抽奖桶里有什么,而是摸出一个球,通过观察这个球的颜色,来预测这个桶里里白色球和黑色球的比例。 这个预测其实就可以用贝叶斯定理来做。贝叶斯当时的论文只是对“逆概率”这个问题的一个直接的求解尝试,这哥们当时并不清楚这里面这里面包含着的深刻思想。 然而后来,贝叶斯定理席卷了概率论,并将应用延伸到各个问题领域。可以说,所有需要作出概率预测的地方都可以见到贝叶斯定理的影子,特别地,贝叶斯是机器学习的核心方法之一。 为什么贝叶斯定理在现实生活中这么有用呢? 这是因为现实生活中的问题,大部分都是像上面的“逆概率”问题。生活中绝大多数决策面临的信息都是不全的,我们手中只有有限的信息。既然无法得到全面的信息,我们就在信息有限的情况下,尽可能做出一个好的预测。 比如天气预报说,明天降雨的概率是30%,这是什么意思呢? 我们无法像计算频率概率那样,重复地把明天过上100次,然后计算出大约有30次会下雨。 而是只能利用有限的信息(过去天气的测量数据),用贝叶斯定理来预测出明天下雨的概率是多少。 同样的,在现实世界中,我们每个人都需要预测。想要深入分析未来、思考是否买股票、政策给自己带来哪些机遇、提出新产品构想,或者只是计划一周的饭菜。 贝叶斯定理就是为了解决这些问题而诞生的,它可以根据过去的数据来预测出概率。 贝叶斯定理的思考方式为我们提供了明显有效的方法来帮助我们提供能力,以便更好地预测未来的商业、金融、以及日常生活。 总结下第1部分:贝叶斯定理有什么用? 在有限的信息下,能够帮助我们预测出概率。 所有需要作出概率预测的地方都可以见到贝叶斯定理的影子,特别地,贝叶斯是机器学习的核心方法之一。例如垃圾邮件过滤,中文分词,艾滋病检查,肝癌检查等。 2.什么是贝叶斯定理? 贝叶斯定理长这样: 到这来,你可能会说:猴子,说人话,我一看到公式就头大啊。 其实,我和你一样,不喜欢公式。我们还是从一个例子开始聊起。 我的朋友小鹿说,他的女神每次看到他的时候都冲他笑,他想知道女神是不是喜欢他呢? 谁让我学过统计概率知识呢,下面我们一起用贝叶斯帮小鹿预测下女神喜欢他的概率有多大,这样小鹿就可以根据概率的大小来决定是否要表白女神。 首先,我分析了给定的已知信息和未知信息: 1)要求解的问题:女神喜欢你,记为A事件 2)已知条件:女神经常冲你笑,记为B事件 所以说,P(A|B)是女神经常冲你笑这个事件(B)发生后,女神喜欢你(A)的概率。 从公式来看,我们需要知道这么3个事情: 1)先验概率 我 们把P(A)称为'先验概率'(Prior probability),即在不知道B事件的前提下,我们对A事件概率的一个主观判断。这个例子里就是在不知道女神经常对你笑的前提下,来主观判断出女 神喜欢一个人的概率,这里我们假设是50%,也就是不能喜欢你,可能不喜欢还你的概率都是一半。 2)可能性函数 P(B|A)/P(B)称为'可能性函数'(Likelyhood),这是一个调整因子,即新信息B带来的调整,作用是使得先验概率更接近真实概率。 可 能性函数你可以理解为新信息过来后,对先验概率的一个调整。比如我们刚开始看到“人工智能”这个信息,你有自己的理解(先验概率/主观判断),但是当你学 习了一些数据分析,或者看了些这方面的书后(新的信息),然后你根据掌握的最新信息优化了自己之前的理解(可能性函数/调整因子),最后重新理解了“人工 智能”这个信息(后验概率) 如果'可能性函数'P(B|A)/P(B)>1,意味着'先验概率'被增强,事件A的发生的可能性变大; 如果'可能性函数'=1,意味着B事件无助于判断事件A的可能性; 如果"可能性函数"<1,意味着"先验概率"被削弱,事件A的可能性变小 还是刚才的例子,根据女神经常冲你笑这个新的信息,我调查走访了女神的闺蜜,最后发现女神平日比较高冷,很少对人笑。所以我估计出'可能性函数'P(B|A)/P(B)=(具体如何估计,省去1万字,后面会有更详细科学的例子) 3)后验概率 P(A|B)称为'后验概率'(Posterior probability),即在B事件发生之后,我们对A事件概率的重新评估。这个例子里就是在女神冲你笑后,对女神喜欢你的概率重新预测。 带入贝叶斯公式计算出P(A|B)=P(A)* P(B|A)/P(B)=50% * 因此,女神经常冲你笑,喜欢上你的概率是75%。这说明,女神经常冲你笑这个新信息的推断能力很强,将50%的'先验概率'一下子提高到了75%的'后验概率'。 在得到预测概率后,小鹿自信满满的发了下面的表白微博:无图 稍后,果然收到了女神的回复。预测成功。无图 现在我们再看一遍贝叶斯公式,你现在就能明白这个公式背后的最关键思想了: 我们先根据以往的经验预估一个'先验概率'P(A),然后加入新的信息(实验结果B),这样有了新的信息后,我们对事件A的预测就更加准确。 因此,贝叶斯定理可以理解成下面的式子: 后验概率(新信息出现后的A概率)=先验概率(A概率) x 可能性函数(新信息带来的调整) 贝叶斯的底层思想就是: 如果我能掌握一个事情的全部信息,我当然能计算出一个客观概率(古典概率)。 可是生活中绝大多数决策面临的信息都是不全的,我们手中只有有限的信息。既然无法得到全面的信息,我们就在信息有限的情况下,尽可能做出一个好的预测。也就是,在主观判断的基础上,你可以先估计一个值(先验概率),然后根据观察的新信息不断修正(可能性函数)。 如果用图形表示就是这样的: 其实阿尔法狗也是这么战胜人类的,简单来说,阿尔法狗会在下每一步棋的时候,都可以计算自己赢棋的最大概率,就是说在每走一步之后,他都可以完全客观冷静的更新自己的信念值,完全不受其他环境影响。 3.贝叶斯定理的应用案例 前面我们介绍了贝叶斯定理公式,及其背后的思想。现在我们来举个应用案例,你会更加熟悉这个牛瓣的工具。 为了后面的案例计算,我们需要先补充下面这个知识。 1.全概率公式 这个公式的作用是计算贝叶斯定理中的P(B)。 假定样本空间S,由两个事件A与A'组成的和。例如下图中,红色部分是事件A,绿色部分是事件A',它们共同构成了样本空间S。 这时候来了个事件B,如下图: 全概率公式: 它的含义是,如果A和A'构成一个问题的全部(全部的样本空间),那么事件B的概率,就等于A和A'的概率分别乘以B对这两个事件的条件概率之和。 看到这么复杂的公式,记不住没关系,因为我也记不住,下面用的时候翻到这里来看下就可以了。 案例1:贝叶斯定理在做判断上的应用 有两个一模一样的碗,1号碗里有30个巧克力和10个水果糖,2号碗里有20个巧克力和20个水果糖。 然后把碗盖住。随机选择一个碗,从里面摸出一个巧克力。 问题:这颗巧克力来自1号碗的概率是多少? 好了,下面我就用套路来解决这个问题,到最后我会给出这个套路。 第1步,分解问题 1)要求解的问题:取出的巧克力,来自1号碗的概率是多少? 来自1号碗记为事件A1,来自2号碗记为事件A2 取出的是巧克力,记为事件B, 那么要求的问题就是P(A1|B),即取出的是巧克力,来自1号碗的概率 2)已知信息: 1号碗里有30个巧克力和10个水果糖 2号碗里有20个巧克力和20个水果糖 取出的是巧克力 第2步,应用贝叶斯定理 1)求先验概率 由于两个碗是一样的,所以在得到新信息(取出是巧克力之前),这两个碗被选中的概率相同,因此P(A1)=P(A2)=,(其中A1表示来自1号碗,A2表示来自2号碗) 这个概率就是'先验概率',即没有做实验之前,来自一号碗、二号碗的概率都是。 2)求可能性函数 P(B|A1)/P(B) 其中,P(B|A1)表示从一号碗中(A1)取出巧克力(B)的概率。 因为1号碗里有30个水果糖和10个巧克力,所以P(B|A1)=30/(30+10)=75% 现在只有求出P(B)就可以得到答案。根据全概率公式,可以求得P(B)如下图: 图中P(B|A1)是1号碗中巧克力的概率,我们根据前面的已知条件,很容易求出。 同样的,P(B|A2)是2号碗中巧克力的概率,也很容易求出(图中已给出)。 而P(A1)=P(A2)= 将这些数值带入公式中就是小学生也可以算出来的事情了。最后P(B)= 所以,可能性函数P(A1|B)/P(B)=75%/ 可能性函数>1.表示新信息B对事情A1的可能性增强了。 3)带入贝叶斯公式求后验概率 将上述计算结果,带入贝叶斯定理,即可算出P(A1|B)=60% 这个例子中我们需要关注的是约束条件:抓出的是巧克力。如果没有这个约束条件在,来自一号碗这件事的概率就是50%了,因为巧克力的分布不均把概率从50%提升到60%。 现在,我总结下刚才的贝叶斯定理应用的套路,你就更清楚了,会发现像小学生做应用题一样简单: 第1步. 分解问题 简单来说就像做应用题的感觉,先列出解决这个问题所需要的一些条件,然后记清楚哪些是已知的,哪些是未知的。 1)要求解的问题是什么? 识别出哪个是贝叶斯中的事件A(一般是想要知道的问题),哪个是事件B(一般是新的信息,或者实验结果) 2)已知条件是什么? 第2步.应用贝叶斯定理 第3步,求贝叶斯公式中的2个指标 1)求先验概率 2)求可能性函数 3)带入贝叶斯公式求后验概率

贝叶斯统计的毕业论文

贝叶斯公式直接的应用就是学习,啥意思,就是根据经验对新发生的事物进行判断。抽象地说就是这样。应用的原因就是为了预测未来,规避风险。就和你知道很多鸟都是黑色的,但是其中乌鸦是黑色的可能性最大,于是当你再看到一只黑色的鸟的时候,你就会想着这只鸟是不是乌鸦。包括你学习贝叶斯也是这样的,别人都说贝叶斯很厉害[先验],然后你找了很多案例,最后想看看贝叶斯成功的概率是多少[后验],其本质就是这个

在精算学专业学习,学生将使用高级微积分、代数、概率和统计学来提高学生的数学技能和统计推理能力。同时,学生将学习经济学,金融学和会计学,发展学生对精算工作更广泛背景的理解。留学生精算专业相关课程包括:基础与微积分概率与统计导论会计概论多变量微积分和矩阵商业经济学金融基础概率和马尔可夫链精算数学企业融资统计推断和线性模型精算建模使用 R 进行财务建模数理金融I决策理论和贝叶斯统计精算科学的进一步统计数理金融二

作为一名英国论文辅导老师,我可以为留学生提供精算专业的辅导。首先,精算专业是一门运用数学、统计学和金融学知识对风险进行评估和管理的学科。由于其专业性和技术性,精算学科在英国和其他国家都备受重视。对于留学生来说,他们往往面临语言和文化上的挑战。针对这些挑战,我可以为留学生提供以下辅导:1. 语言和文化方面的辅导:我可以帮助留学生加强英语听、说、读、写的基础技能,以及了解英国的文化背景和行业习俗。2. 学科知识方面的辅导:我可以为留学生讲解精算学科的基础知识,如概率论、统计学和金融学等相关理论。我们也可以一起进行案例研究和实践操作,帮助留学生将理论知识应用到实际问题中。3. 毕业论文方面的辅导:我可以为留学生提供毕业论文的指导和支持。我会帮助留学生制定合适的研究计划和方法,协助留学生完成论文写作,并提供精细的论文润色和修改服务。总之,我可以根据留学生的需求,提供全方位、具有个性化的辅导服务,帮助他们更好地理解和掌握精算学科。

贝叶斯定律:假设H[,1],H[,2]…互斥且构成一个完全事件,已知它们的概率P(H[,i],i=1,2,…,现观察到某事件A与H[,1],H[,2]…相伴随而出现,且已知条件概率P(A/H[,i]),求P(H[,i]/A)。

心理学研究中常被引用的例子

参加常规检查的40岁的妇女患乳腺癌的概率是1%。如果一个妇女有乳腺癌,则她有80%的概率将接受早期胸部肿瘤X射线检查。

如果一个妇女没有患乳腺癌,也有的概率将接受早期胸部肿瘤X射线测定法检查。在这一年龄群的常规检查中某妇女接受了早期胸部肿瘤X射线测定法检查。问她实际患乳腺癌的概率是多大?设H[,1]=乳腺癌,H[,2]=非乳腺癌。

A=早期胸部肿瘤X射线检查(以下简称“X射线检查”),已知P(H[,1])=1%,P(H[,2])=99%,P(A/H[,1])=80%,P(A/H[,2])=,求P(H[,1]/A)。根据贝叶斯定理,P(H[,1]/A)=(1%)(80%)/[(1%)(80%)+(99%)()]=。

心理学家所关心的是,一个不懂贝叶斯原理的人对上述问题进行直觉推理时的情形是怎样的,并将他们的判断结果与贝叶斯公式计算的结果做比较来研究推理过程的规律。因此有关这类问题的推理被称为贝叶斯推理。

贝叶斯

出生于伦敦,毕业于爱丁堡大学,英国数学家。贝叶斯做过神甫,1742年成为英国皇家学会会员,1761年4月7日逝世,贝叶斯在数学方面主要研究概率论,他首先将归纳推理法用于概率论基础理论,并创立了贝叶斯统计理论。

基于贝叶斯的应用毕业论文

贝叶斯决策理论是主观贝叶斯派归纳理论的重要组成部分。贝叶斯决策就是在不完全情报下,对部分未知的状态用主观概率估计,然后用贝叶斯公式对发生概率进行修正,最后再利用期望值和修正概率做出最优决策。贝叶斯决策理论方法是统计模型决策中的一个基本方法,其基本思想是:1、已知类条件概率密度参数表达式和先验概率。2、利用贝叶斯公式转换成后验概率。3、根据后验概率大小进行决策分类。他对统计推理的主要贡献是使用了"逆概率"这个概念,并把它作为一种普遍的推理方法提出来。贝叶斯定理原本是概率论中的一个定理,这一定理可用一个数学公式来表达,这个公式就是著名的贝叶斯公式。 贝叶斯公式是他在1763年提出来的:假定B1,B2,……是某个过程的若干可能的前提,则P(Bi)是人们事先对各前提条件出现可能性大小的估计,称之为先验概率。如果这个过程得到了一个结果A,那么贝叶斯公式提供了我们根据A的出现而对前提条件做出新评价的方法。P(Bi∣A)既是对以A为前提下Bi的出现概率的重新认识,称 P(Bi∣A)为后验概率。经过多年的发展与完善,贝叶斯公式以及由此发展起来的一整套理论与方法,已经成为概率统计中的一个冠以“贝叶斯”名字的学派,在自然科学及国民经济的许多领域中有着广泛应用。公式:设D1,D2,……,Dn为样本空间S的一个划分,如果以P(Di)表示事件Di发生的概率,且P(Di)>0(i=1,2,…,n)。对于任一事件x,P(x)>0,则有: nP(Dj/x)=p(x/Dj)P(Dj)/∑P(X/Di)P(Di)i=1( )贝叶斯预测模型在矿物含量预测中的应用 贝叶斯预测模型在气温变化预测中的应用 贝叶斯学习原理及其在预测未来地震危险中的应用 基于稀疏贝叶斯分类器的汽车车型识别 信号估计中的贝叶斯方法及应用 贝叶斯神经网络在生物序列分析中的应用 基于贝叶斯网络的海上目标识别 贝叶斯原理在发动机标定中的应用 贝叶斯法在继电器可靠性评估中的应用 相关书籍: Arnold Zellner 《Bayesian Econometrics: Past, Present and Future》 Springer 《贝叶斯决策》 黄晓榕 《经济信息价格评估以及贝叶斯方法的应用》 张丽 , 闫善文 , 刘亚东 《全概率公式与贝叶斯公式的应用及推广》 周丽琴 《贝叶斯均衡的应用》 王辉 , 张剑飞 , 王双成 《基于预测能力的贝叶斯网络结构学习》 张旭东 , 陈锋 , 高隽 , 方廷健 《稀疏贝叶斯及其在时间序列预测中的应用》 邹林全 《贝叶斯方法在会计决策中的应用》 周丽华 《市场预测中的贝叶斯公式应用》 夏敏轶 , 张焱 《贝叶斯公式在风险决策中的应用》 臧玉卫 , 王萍 , 吴育华 《贝叶斯网络在股指期货风险预警中的应用》 党佳瑞 , 胡杉杉 , 蓝伯雄 《基于贝叶斯决策方法的证券历史数据有效性分析》 肖玉山 , 王海东 《无偏预测理论在经验贝叶斯分析中的应用》 严惠云 , 师义民 《Linex损失下股票投资的贝叶斯预测》 卜祥志 , 王绍绵 , 陈文斌 , 余贻鑫 , 岳顺民 《贝叶斯拍卖定价方法在配电市场定价中的应用》 刘嘉焜 , 范贻昌 , 刘波 《分整模型在商品价格预测中的应用》 《Bayes方法在经营决策中的应用》 《决策有用性的信息观》 《统计预测和决策课件》 《贝叶斯经济时间序列预测模型及其应用研究》 《贝叶斯统计推断》 《决策分析理论与实务》

网页链接

写作话题: 贝叶斯预测模型在矿物含量预测中的应用贝叶斯预测模型在气温变化预测中的应用贝叶斯学习原理及其在预测未来地震危险中的应用基于稀疏贝叶斯分类器的汽车车型识别信号估计中的贝叶斯方法及应用贝叶斯神经网络在生物序列分析中的应用基于贝叶斯网络的海上目标识别贝叶斯原理在发动机标定中的应用贝叶斯法在继电器可靠性评估中的应用相关书籍: Arnold Zellner 《Bayesian Econometrics: Past, Present and Future》Springer 《贝叶斯决策》黄晓榕 《经济信息价格评估以及贝叶斯方法的应用》张丽 , 闫善文 , 刘亚东 《全概率公式与贝叶斯公式的应用及推广》周丽琴 《贝叶斯均衡的应用》王辉 , 张剑飞 , 王双成 《基于预测能力的贝叶斯网络结构学习》张旭东 , 陈锋 , 高隽 , 方廷健 《稀疏贝叶斯及其在时间序列预测中的应用》邹林全 《贝叶斯方法在会计决策中的应用》周丽华 《市场预测中的贝叶斯公式应用》夏敏轶 , 张焱 《贝叶斯公式在风险决策中的应用》臧玉卫 , 王萍 , 吴育华 《贝叶斯网络在股指期货风险预警中的应用》党佳瑞 , 胡杉杉 , 蓝伯雄 《基于贝叶斯决策方法的证券历史数据有效性分析》肖玉山 , 王海东 《无偏预测理论在经验贝叶斯分析中的应用》严惠云 , 师义民 《Linex损失下股票投资的贝叶斯预测》卜祥志 , 王绍绵 , 陈文斌 , 余贻鑫 , 岳顺民 《贝叶斯拍卖定价方法在配电市场定价中的应用》刘嘉焜 , 范贻昌 , 刘波 《分整模型在商品价格预测中的应用》《Bayes方法在经营决策中的应用》《决策有用性的信息观》《统计预测和决策课件》《贝叶斯经济时间序列预测模型及其应用研究》《贝叶斯统计推断》《决策分析理论与实务》

观点应该跟着事实不断修订。坚定不移不对,听风就是雨也不对——科学的修订,就是贝叶斯方法。贝叶斯公式在概率论与数理统计中必学的概念,要真正的达到应用这个概念还得稍微理解一下公式: 贝叶斯公式完全是建立在一个等式P(A)*P(B|A) = P(B) * P(A|B)之上,而P(A)*P(B|A)和P(B)*P(A|B)的结果都是P(AB),意思是事件A和事件B同时发生的概率。等式中P(A|B)指的是条件概率,即在B已经发生的情况下,A发生的概率,如果B代表下雨的概率,A代表一个人出门带伞的概率,那P(A|B)本质上还是带伞的概率,不过是下雨天的情况下一个人出门带伞的概率。根据经验可以得出,P(A|B)应该是大于P(A)的。平时我们对存在外星人(记作事件A)这一观点的相信的概率可以用P(A)来表示,一般而言咱都不怎么相信外星人存在的,P(A)应该无限趋于0,可是突然有一天一个正儿八经的专家说证明确实有外星人存在(记为事件B),那此时,我们相信外星人存在的概率已经不是P(A)了,而是P(A|B),而这个值可能就要比0大不少了。要是某一天,大半个地球的人都说看到了外星人(记为C),那我们此时相信外星人存在的概率P(A|C)可能就要提高到1,也就是几乎确定就是有外星人存在。 对上面的等式稍微一变形,就可以得到贝叶斯公式 : P(A|B) = P(A) * P(B|A) / P(B) ,其中P(A)是我们原来对一件事的原有的判断,叫做先验概率;P(A|B)就代表了我们在得到一些证据B之后对原来事物的概率,叫做后验概率。别看公式形式比较复杂,但是有个简单的理解方法:我们把等式右边 P(B|A) / P(B) 看作一个整体,称之为似然比(可以简单理解成证据的有效程度),那么整个公式便可以简单理解成P(你后来的观点)= 似然比 * P(你一开始的观点)。当有新的证据出现之后,别忙着不变,也别忙着立马推翻自己的态度,看看证据的有效性如何,如果真的有效,那就多调整一点自己的态度,如果证据的力度不大,那就少调整一点。卡尔·萨根说过一句话:“超乎寻常的论断需要超乎寻常的证据”,在贝叶斯看来这句话的意思不过是,要想从根本上说服我,你必须拿出唬得住我的东西来。而佛说:哪有什么一定之论,在我眼里,全是概率。 如果只想知道哲学上的东西,看官可就此打住,可如果看知道贝叶斯的具体威力,我们不妨来搞一下数学。在狼来了的故事中,我们用A表示小孩可信,B表示小孩说谎。不妨设我们过去对小孩子的印象为P(A)=,P(~A)=。现在我们来计算P(A|B),即小孩说了一次慌滞后的可信程度。在公式中P(B)表示在任何条件下小孩子说谎的概率,可以拆分为P(A)*P(B|A)和P(~A)*P(B|~A),P(B|A)和P(B|~A)分别表示在我们相信他时他说谎的概率和我们不相信他时他说谎的概率,分为设之为和。有一天小孩是说狼来了,80%的可能性狼来了,我们想吃狼肉,于是我们第一次上山打狼,发现狼没有来,即小孩子说了谎。此时P(A|B) = P(A) * P(B|A) / P(B) = * / (* + *) = ,表明我们上一次当之后对这个小孩的可信程度从下降到了。在此基础之上,有一天小孩又说狼来了,有的可能性狼来了,本来不想去的,但是上次没吃到狼肉心里痒痒,于是我们又上山打狼,结果小孩又对我们撒了一次谎,狼没有来。我们对他的可信程度P(A|B) =* /(* +*) = ,我们上了这小孩两次当,对小孩的可信程度由原来的下降到了。第三次小孩又喊狼来了,我们把小孩子吃了。 有时候明明可以很快用贝叶斯公式解决问题谋得巨大财富,结果我们却迟迟不动,很多时候,并不是贝叶斯公式太难,只不过是我们不知道贝叶斯公式使用的时机。贝叶斯的应用领域极其广泛,语音识别、垃圾邮件过滤、油井钻探、FDA批准新药、Xbox给你的游戏水平打分……各种你想到和想不到的应用,都在使用贝叶斯方法。但是扯这些东西和我们有点儿远,我们的市井生活中什么时候该用贝叶斯公式呢?很简单: 只要还没得到最终结果,就可以请贝叶斯爸爸出场帮你作弊。 你和两位猥琐而胆小的基友在操场上看到了一位身材火辣的性感女神,决定写纸条抽签选一人去要联系方式。每人抽到一个签,中彩概率都是1/3,很公平。你抽到了一张签,觉得自己不会那么背中彩,刚准备看,突然一个基友摊出了自己的纸条,哈哈大笑说:“看不是我,你们两个其中之一中彩了。”此时,天真的你觉得那有啥,反正大家中彩的概率 依旧 还是1/3,而且我运气好,不可能是我。在准备亮出你的纸条的一刹那见,你虎躯一震,隐隐约约感到有些不对劲: 三个人只有一个出了结果,还没有得到最终结果,我可以叫贝叶斯爸爸来帮忙算一下概率 。 贝叶斯看了,笑了,说:我们记你中彩为事件A,P(A)=1/3,那个已经摊出纸条的基友没有中彩为事件B,P(B)=2/3,傻子,你现在中彩的概率P(A|B)=P(A) * P(B|A) / P(B) = (1/3) * 1 /(2/3)= 1/2。心中暗自骂到:卧槽,他看了一眼他自己的纸条,我的gay率就由1/3变成1/2了,还好发现得早。于是机智的你抢过另一个基友还没看的纸条,把它和你的纸条一起吃掉,说:“我太饿了,我们重新抽签吧。“

郭贝贝毕业论文

《白夜追凶》、《人民的名义》、《琅琊榜》、《你迟到的许多年》、《古董局中局》。以上五部电视剧堪称良心,都是老戏骨出演,剧情上也非常严谨。

1、《白夜追凶》:电视剧《白夜追凶》是由王伟导演拍摄的一部悬疑推理剧。这部电视剧是中国首部硬汉派悬疑推理剧。剧情主打硬汉派画风,是一部探讨人性的电视剧。潘粤明一人饰演两个角色,演技炸裂,剧情逻辑严谨。

2、《人民的名义》:这部电视剧是由李璐导演拍摄的,是一部当代的反腐电视连续剧。故事主要围绕检察官侯亮平的调查展开叙述。抛却中后期的注水剧情,这部电视剧还是非常的好看的,尤其是吴刚饰演的达康书记贡献了不少表情包。

3、《琅琊榜》:《琅琊榜》是由李雪孔笙联合导演拍摄的一部架空历史题材的古装剧。讲述了麒麟才子梅长苏纵横捭阖,智博奸佞,最后为自己平反多年冤屈辅助靖王当上帝王的故事。这是一部情节非常的吸引人,改编自同名小说的电视剧。

4、《你迟到的许多年》:这部剧不是什么网文改编、流量作品,讲述的是改革开放浪潮下转业军人沐建峰在商海中沉浮、在情场中辗转,在成长的路上寻找迷失的自我、回归初心的故事。听着就是一点花头没有、踏踏实实讲故事的剧。

5、《古董局中局》:《古董局中局》以古董的鉴别收藏为切入点,讲述一个家族一千多年来,守护国宝历程。该剧由夏雨和乔振宇主演,还有王刚出演,看着有几分意思。剧中科普了大量的古董常识,以及对于人性的探索。

近三年好看的良心剧有:《琅琊榜》、《知否知否应是绿肥红瘦》、《人民的名义》、《我们与恶的距离》《长安十二时辰》。

1、《琅琊榜》

《琅琊榜》由孔笙、李雪执导,胡歌、刘涛、王凯、黄维德、陈龙、吴磊、高鑫等主演的古装剧。

该剧根据海宴同名网络小说改编,以平反冤案、扶持明君、振兴山河为主线,讲述了“麒麟才子”梅长苏才冠绝伦、以病弱之躯拨开重重迷雾、智博奸佞,为昭雪多年冤案、扶持新君所进行的一系列斗争。

2、《知否知否应是绿肥红瘦》

《知否知否应是绿肥红瘦》是由侯鸿亮担任制片人,张开宙执导,曾璐、吴桐编剧,赵丽颖、冯绍峰领衔主演,朱一龙、施诗、张佳宁、曹翠芬、刘钧、刘琳、高露、王仁君、李依晓、王鹤润、张晓谦、李洪涛主演,王一楠、陈瑾、张棪琰、邓莎特别出演的古代社会家庭题材剧。

该剧改编自关心则乱同名小说,通过北宋官宦家庭少女明兰的成长、爱情、婚姻故事,展开了一幅由闺阁少女到侯门主母的生活画卷,讲述一个家宅的兴荣,古代礼教制度下的女性奋斗传奇。

3、《人民的名义》

《人民的名义》是由陆毅、张丰毅、吴刚、许亚军、张志坚、柯蓝、胡静、张凯丽、赵子琪、白志迪、李建义、王丽云、高亚麟、丁海峰、冯雷、李光复、陶慧敏、张晞临等联袂主演的检察反腐电视剧。

该剧以检察官侯亮平的调查行动为叙事主线,讲述了当代检察官维护公平正义和法制统一、查办贪腐案件的故事。

4、《我们与恶的距离》

《我们与恶的距离》是由林君阳执导,贾静雯、吴慷仁主演的电视剧,于2019年3月24日在台湾公视首播。该片讲述的是一起精神病患随机杀人事件之后,受害者家属、加害者家属、辩护律师及其家属、一般的精神病患及其家属、公共媒体以及精神病院如何面对伤痕、重建生活的故事。

5、《长安十二时辰》

《长安十二时辰》是由曹盾执导,雷佳音、易烊千玺领衔主演的古装悬疑剧。该剧改编自马伯庸的同名小说,讲述了唐朝上元节前夕,长安城陷入危局,长安死囚张小敬临危受命,与李必携手在十二时辰内拯救长安的故事。

1、《大秦帝国之崛起》。

这部剧是大秦帝国三部曲的最后一部,有前两部珠玉在前,第三部依旧精彩,是央视爸爸的砸钱大作,不过事实证明这钱花得值。无论从演员的表演还是服化道上的用心,或是引人入胜的剧情,都吊打很多其他打着历史剧的名号却粗制滥造的古装偶像剧,值得一看再看。

2、《人民的名义》

先说演员阵容,这部剧戏骨众多,多到啥程度呢?主演陆毅被指责演技差,其实像这种反腐剧,正面角色并不好塑造,难为陆毅了。

而这部剧是知名官场作品编剧周梅森写的,尺度很大,要不是这几年刚好国家大力打击腐败,根本就过不了审查。这部剧很切合官场实际,而且是一部爆款电视剧。所以被称为中国版纸牌屋,对官场外的大众来说是一部官场教育普及的百科全书。

3、《大军师司马懿》

作为一部三国IP题材古装剧,故事有松有驰,制作精良,质感好,演员演技好。第一部于和伟饰演的曹操,中年时霸气外露,老年时英雄迟暮,圈了不少粉粉。到了第二部又让我们看到一个作为普通人的诸葛亮,野心明更大,少了儿女情长,多了军事战场,这是要朝着权谋战争史诗去拍。

4、《你好,旧时光》

改编得比较良心的青春剧,青春终于被普通化了,回归到了平淡而朴素的成长过程和日常的小情愫,林杨小太阳和女侠余周周磕磕绊绊的相伴相知令我们倍感温暖。这部剧从演员的台词演技都没得挑,剧组对小细节的处理也值得点赞。

相关百科

热门百科

首页
发表服务