首页

毕业论文

首页 毕业论文 问题

关于整流器的毕业论文

发布时间:

关于整流器的毕业论文

能提供低成本风电的新型风力机 - 【摘要】第一代商用扩散体增强型风力机(DAWT)在新西兰刚开始两年试运行,如果开发者的预期结果得以实现,这种新设计的风力机可促使风电成本大幅度降低。 在距新西兰奥克兰南约100km的Waikaretu的一座小山顶上,一台革命性的新型风力机正在进行为期两年的试运行。这座风力机的外观与常规风力机相比完全不同,其高度为17m,很象一巨物蹲在山顶上,而常规风力机则为一细长体,高高地矗立在山顶上。 这是投入运行的第一代商用扩散体增强型风力机(DAWT: diffuser augmented wind turbine),如果开发者的预期结果得以实现,将导致风力发电成本大幅度降低。在试验新的风力机技术的同时,也可以试验扩散体环罩的新材料、高强钢丝纤维加强的钢筋混凝土。此种风力机在当地被称为"混凝土风力机"。在商业上,它被称为Vortec7型风力机,因为它有一个7m直径的转子。 风力机由近100家小型投资商组建的私人公司-Vortec能源有限公司负责设计和建设,该公司筹集了350万美元开发原型机。Vortec能源有限公司目前正在进一步筹集约700万美元,拟建设两台转子直径为20m的机组。其中一台新机组将在高风速地区试验,很可能在新西兰的惠灵顿附近,另一台在平均风速区。南澳大利亚州政府已对设计表示了很大的兴趣并将在Adelaide附近加速安装平均风速机组,因为州政府认为风力是一种少有的可再生能源,需要从技术上突破来带动州内占优势的较低平均风速资源的开发。 两台新型的转子直径20m的机组成功地运行后,Vortec能源有限公司将考虑在Nasdaq股票交易所上市的可能性。Vortec7机组的性能数据表明,转子直径20m的设计能够以低于美元/kWh的价格上网,它将使风力发电可与新西兰现有的电厂相竞争,与其它新的发电方式相比,更具竞争力。如果Vortec型风力机能以这种价格水平发电,在风电开发中它将迅速成为一股强大的新生力量。 Vortec能源有限公司的后盾是企业家Robin Johannink,他成功地经营着一系列业务,也是Pacific Lithium公司(一家从海水中提取锂的公司)的后盾。Johannink先生讲Vortec技术是一项国际产品,但该技术在新西兰股票市场上所获得的认可和重视还不太高,难以在此上市。因此Vortec能源有限公司正在考虑在纽约的Nasdaq交易所上市,很可能在1999年实现。 1 扩散体技术 美国的航天巨头Grumman空间公司(现在的Northrop Grumman公司)花费了8年时间开发扩散体技术并拥有扩散体增强型风力机技术的专利。它进行了扩散体流体动力学的详细分析,并使用一5m的模型在风洞中证实了分析结果。扩散体位于风力机转子的下游,其作用就象一个机翼,在转子后部产生低压部位。这种"抽吸效应"有效地使转子周围的风速成倍增加。常规的风力机只能有效地利用转子周围风速的60%左右。<图01>示出了扩散体的流态。 扩散体经济性的关键在于以最低成本获得最大的尺寸。风洞研究表明在45度扩散体结构中,内壁附面流可由两级风槽射流所维持。在该原型中,扩散体的总尺寸进一步减少,通过采用总长与出口直径比为30%的弧形结构,环罩硬度增强。使已选择的设计以最低的材料用量获得了最大的扩散体尺寸。 Vortec能源有限公司获得了Northrop Grumman公司颁发的拥有扩散体技术、为期20年的全球专利权及此后20年专利更新权的许可证。Northrop Grumman公司保留了它们自己内部使用扩散体增强技术而不用于风能商业市场的权利。Kenneth Foreman,原Grumman空间公司研究小组的领导者,为Vortec Energy公司的技术咨询,Vortec能源有限公司获得了Grumman空间公司研究小组8年研究的所有记录、试验报告及专利。 2 材料技术 Grumman空间研究小组在开发扩散体增强技术中所遇到的一个问题是商业规模风力机材料必须具有强度高、寿命长、成本低的特点。曾对铝、玻璃纤维、钢和传统钢筋混凝土进行过评估和核算,但都不能满足风力机经济开发的要求。在所有评估的材料中,最可取的是钢筋混凝土,但使用传统的钢筋混凝土,扩散体尺寸使风力机额定出力只能达到70kW。由于机组规模太小无法对扩散体增强技术进行商业开发。 新西兰在使用钢筋混凝土建造水塔和远洋快艇之类设备方面有悠久历史。在此基础上,结构工程师Alexander和Associates在20年中开发了一种新型的产品-高强钢丝纤维加强的钢筋混凝土。这种新材料的抗弯强度是低碳钢的3倍,基本上不需要维修。这种新材料可以经济地建造较大的扩散体,从而使风力机有足够的出力和常规风力机相竞争。 原型机转子直径为7m,高度为17m,最高出力为1MW。将要建设的两台机组使用20m直径的转子,高52m,出力为3MW。 扩散体使用两层3m×1m×30mm的高强钢丝纤维加强的钢筋混凝土板复合而成。第一层板沿着复杂的框架弯成所需的双向曲面,并固定就位。第二层板放在顶部,弯曲成形,然后在基础板上灌浆锁定双向曲面。再将这些曲面板粘结到一起,并对其边缘进行硬化处理构成扩散体扇形段。完整的扩散体装配好之前,在奥克兰大学工程院对单块板和装配好的扩散体扇形段样品进行了应力测试。 3 设备平衡 除了扩散体增强技术和材料技术外,风力机全部是常规的。转子配备有定节距的4个叶片,该叶片内为焊接钢架构,表面材料为玻璃纤维。转子通过一David Brown升速变速箱驱动一常规的1 200min-1、400V的ABB公司生产的同步发电机,发电机变频运行。转子、变速箱和发电机(<图02>)由美国的新世界电力公司(New World Power)提供。 变频交流电先整流成直流电,然后逆变为50Hz的交流电,经升压变压器送入当地电力公司的11kV电网。整流器/换流器设备由奥克兰公司Santon技术有限公司设计和制造,该公司对电池充电器和变速驱动器的制造有多年经验。 考虑到扩散体的尺寸,需要一大型稳定的地基防止在大风载荷下和地震时倒伏。设备被安装到一大直径环行轨道上,风力机可以沿它旋转360度,轨道上的旋转装置装有迎风控制系统的电动装置(<图03>)。这种布置提供了稳定的基础。 由于该种风力机可以避开大风且扩散体罩具有保护转子不受大风影响的能力,因而转子设计简单不需要控制叶片节距。这使得该种风力机非常适合在大风地区使用,且维修量很小。 4 设计的优点 扩散体增强型风力机与常规风力机相比有许多优点,包括: 噪音低。常规风力机噪音来自速度最高的转子顶部,并通过叶片传向支柱。在Vortec机组中,转子被一种高密度材料所覆盖(扩散体),它防止了噪音从转子末端向外辐射,因此没有像用常规设备时大的支柱产生的噪音。 用地少。就同样的能源输出而言,Vortec机组与常规风力机相比需要较少的用地,减少了土地购置和租用费用。 不影响景观。Vortec机组很容易地涂上各种颜色,当从远距离观看时能与各种背景相融合,设备蹲坐的外形与起伏的山村很协调。 可衰减阵风。扩散体在增加出力的同时,也作为阻风门,衰减阵风的峰值,因而减少了转子所承受的转距波动和驱动器上的应力。 鸟类撞击少。尽管风力机能涂上不同的颜色降低了视觉影响,但对于飞到附近的鸟类却很醒目,不会出现鸟类撞击快速旋转的风力机叶片的事故。 基建费用和发电成本低。风力机使用了非常简单的定节距叶片,不需要节距控制制动器或控制系统。这将大幅度降低维修费用,特别是在新西兰的大风地区,并将确保很高的设备可用率。 5 发展前景 转子直径为7m的原型风力机将要进行6个月的试运行,对控制系统进行仔细调试并验证设计参数。初步测量数据表明,风力机转子风速增强了约倍,这与Grumman空间公司研究小组的计算和它们在模型上进行的风洞试验结果相吻合。 Vortec Energy公司已获得新西兰科学与技术研究基金业务发展部的资助约350000美元,用以支付6个月试验期的费用。 监视和试验方案的技术支持由工业研究有限公司(Industrial Research Ltd.)和奥克兰大学咨询小组(Auckland Uniservices)提供,另外还邀请了英国国际风能咨询专家Garrad Hassan独立检验和监督Vortec7机组的试运行计划。 表1给出了Vortec机组未来的开发方案。 如果试验方案产生的结果与预期的相吻合,将来扩散体增强型风力机将成为全球风电开发方案的一个主要部分,可广泛用于其它待开发的地区。支持该技术的投资者虽承受高风险,但它可能获得高的回报。

现代电力电子技术浅探电力电子技术是研究采用电力电子器件实现对电能的控制和变换的科学,是介于电气工程三大主要领域--电力、电子和控制之间的交叉学科,在电力、工业、交通、航空航天等领域具有广泛的应用。电力电子技术的应用已经深入到工业生产和社会生活的各个方面,成为传统产业和高新技术领域不可缺少的关键技术,可以有效地节约能源。一、电力电子技术的发展现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。1、整流器时代大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。2、逆变器时代七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。3、变频器时代进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。二、电力电子技术的应用1、一般工业工业中大量应用各种交直流电动机。直流电动机有良好的调速性能,给其供电的可控整流电源或直流斩波电源都是电力电子装置。近年来,由于电力电子变频技术的迅速发展,使得交流电机的调速性能可与直流电机相媲美,交流调速技术大量应用并占据主导地位。大至数千kW的各种轧钢机,小到几百W的数控机床的伺服电机,以及矿山牵引等场合都广泛采用电力电子交直流调速技术。一些对调速性能要求不高的大型鼓风机等近年来也采用了变频装置,以达到节能的目的。还有些不调速的电机为了避免起动时的电流冲击而采用了软起动装置,这种软起动装置也是电力电子装置。电化学工业大量使用直流电源,电解铝、电解食盐水等都需要大容量整流电源。电镀装置也需要整流电源。电力电子技术还大量用于冶金工业中的高频、中频感应加热电源、淬火电源及直流电弧炉电源等场合。2、交通运输电气化铁道中广泛采用电力电子技术。电气机车中的直流机车中采用整流装置,交流机车采用变频装置。直流斩波器也广泛用于铁道车辆。在未来的磁悬浮列车中,电力电子技术更是一项关键技术。除牵引电机传动外,车辆中的各种辅助电源也都离不开电力电子技术。电动汽车的电机靠电力电子装置进行电力变换和驱动控制,其蓄电池的充电也离不开电力电子装置。一台高级汽车中需要许多控制电机,它们也要靠变频器和斩波器驱动并控制。飞机、船舶需要很多不同要求的电源,因此航空和航海都离不开电力电子技术。如果把电梯也算做交通运输,那么它也需要电力电子技术。以前的电梯大都采用直流调速系统,而近年来交流变频调速已成为主流。3、电力系统电力电子技术在电力系统中有着非常广泛的应用。据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。电力系统在通向现代化的进程中,电力电子技术是关键技术之一。可以毫不夸张地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。直流输电在长距离、大容量输电时有很大的优势,其送电端的整流阀和受电端的逆变阀都采用晶闸管变流装置。近年发展起来的柔性交流输电(FACTS)也是依靠电力电子装置才得以实现的。无功补偿和谐波抑制对电力系统有重要的意义。晶闸管控制电抗器(TCR)、晶闸管投切电容器(TSC)都是重要的无功补偿装置。近年来出现的静止无功发生器(SVG)、有源电力滤波器(APF)等新型电力电子装置具有更为优越的无功功率和谐波补偿的性能。在配电网系统,电力电子装置还可用于防止电网瞬时停电、瞬时电压跌落、闪变等,以进行电能质量控制,改善供电质量。在变电所中,给操作系统提供可靠的交直流操作电源,给蓄电池充电等都需要电力电子装置。4、电子装置用电源各种电子装置一般都需要不同电压等级的直流电源供电。通信设备中的程控交换机所用的直流电源以前用晶闸管整流电源,现在已改为采用全控型器件的高频开关电源。大型计算机所需的工作电源、微型计算机内部的电源现在也都采用高频开关电源。在各种电子装置中,以前大量采用线性稳压电源供电,由于高频开关电源体积小、重量轻、效率高,现在已逐渐取代了线性电源。因为各种信息技术装置都需要电力电子装置提供电源,所以可以说信息电子技术离不开电力电子技术。5、家用电器照明在家用电器中占有十分突出的地位。由于电力电子照明电源体积小、发光效率高、可节省大量能源,通常被称为“节能灯”,它正在逐步取代传统的白炽灯和日光灯。变频空调器是家用电器中应用电力电子技术的典型例子。电视机、音响设备、家用计算机等电子设备的电源部分也都需要电力电子技术。此外,有些洗衣机、电冰箱、微波炉等电器也应用了电力电子技术。电力电子技术广泛用于家用电器使得它和我们的生活变得十分贴近。6、其他不间断电源(UPS)在现代社会中的作用越来越重要,用量也越来越大,在电力电子产品中已占有相当大的份额。航天飞行器中的各种电子仪器需要电源,载人航天器中为了人的生存和工作,也离不开各种电源,这些都必需采用电力电子技术。传统的发电方式是火力发电、水力发电以及后来兴起的核能发电。能源危机后,各种新能源、可再生能源及新型发电方式越来越受到重视。其中太阳能发电、风力发电的发展较快,燃料电池更是备受关注。太阳能发电和风力发电受环境的制约,发出的电力质量较差,常需要储能装置缓冲,需要改善电能质量,这就需要电力电子技术。当需要和电力系统联网时,也离不开电力电子技术。为了合理地利用水力发电资源,近年来抽水储能发电站受到重视。其中的大型电动机的起动和调速都需要电力电子技术。超导储能是未来的一种储能方式,它需要强大的直流电源供电,这也离不开电力电子技术。核聚变反应堆在产生强大磁场和注入能量时,需要大容量的脉冲电源,这种电源就是电力电子装置。科学实验或某些特殊场合,常常需要一些特种电源,这也是电力电子技术的用武之地。以前电力电子技术的应用偏重于中、大功率。现在,在1kW以下,甚至几十W以下的功率范围内,电力电子技术的应用也越来越广,其地位也越来越重要。这已成为一个重要的发展趋势,值得引起人们的注意。总之,电力电子技术的应用范围十分广泛。从人类对宇宙和大自然的探索,到国民经济的各个领域,再到我们的衣食住行,到处都能感受到电力电子技术的存在和巨大魅力。这也激发了一代又一代的学者和工程技术人员学习、研究电力电子技术并使其飞速发展。电力电子装置提供给负载的是各种不同的直流电源、恒频交流电源和变频交流电源,因此也可以说,电力电子技术研究的也就是电源技术。电力电子技术对节省电能有重要意义。特别在大型风机、水泵采用变频调速方面,在使用量十分庞大的照明电源等方面,电力电子技术的节能效果十分显著,因此它也被称为是节能技术。

论文题目:PLC和变频技术在恒压供水系统中的应用 PLC和变频技术在恒压供水系统中的应用WwWWW 摘要: 本文是针对节能和提高供水质量问题而提出的恒压供水系统设计和应用的研究.文中分析了旧系统存在的问题,介绍了水位自动检测技术及保护措施,阐述了采用变频技术、PLC技术及自动控制技术相结合来实现的恒压供水控制的系统总体设计方案和软件设计。通过实践证明.该系统具有较强的功能.对供水质量、节约能源和运行可靠性具有较好的改善。关键词:变频技术;PLC技术;恒压供水;自启动1 引言随着各住宅小区的宿舍楼等一座座高楼拔地而起,相应的生活用水量也大幅度增加。人们对提高供水质量的要求越来越高,另外人们的节能意识及对运行的可靠性的要求越来越强。采用变频器及PLC技术实现的无塔恒压供水系统,不仅能提高供水质量,而且在节约能源和运行可靠性具有较好的改善。其中,采用变频调速的主要目的是通过调速来恒定用水管道的压力以达到节能的目的,恒压供水则是为了满足用户对流量的要求。应用PLC技术是为了实现系统的软启动,减少手动操作或抚慰操作,同时替代部分继电器减少机械触点的故障,增强可靠性。下面笔者根据这方面的工作经验谈谈在恒压供水系统设计和实践过程中的一些思路和做法。2 变频器的工作原理在恒压供水控制系统中,关键技术主要是变频技术。目前效率最高、性能最好的系统是变压变频调速控制系统。2.1变频器的基本构成变频器的基本构成如图1所示,由主回路(包括整流器、滤波器、逆变器)和控制电路组成。 整流器的作用是把三相交流整流成直流。滤波器是用来缓冲直流环节和负载之间的无功能量。逆变器最常见的结构形式是利用六个半导体器件开关组成的三相桥式逆变电路,有规律地控制逆变器中主开关的通与断,可以得到任意频率的三相交流输出。控制电路主要是完成对逆变器的开关控制、对整流器的电压控制以及完成各种保护功能等。2.2变频器基本原理 变频器的基本原理是利用逆变器中的开关元件,由控制电路按一定的规律控制开关元件的通断,从而在逆变器的输出端获得一系列等幅而不等宽的矩形脉冲波形,来近似等效于正弦电压波。图2所示出正弦波的正半周,并将其分为n等分(n=12)。每一等分的正弦曲线与横轴所包围的面积都用一个与此面积相等的等幅矩形所代替。这样,由n个等幅而不等宽的矩形脉冲所组成的波形与正弦波的正半周等效。正弦波的负半周也可以用相同的方法来等效。可采用正弦波与三角波相交的方案来确定各分段矩形脉冲的宽度。当逆变器输出端需要升高电压时,只要增大正弦波相对三角波的幅值,这时逆变器的输出的矩形脉冲幅值不变而宽度相应增大,达到了调压的要求。当逆变器的输出端需要变频时,只要改变正弦波的频率就可以了。3 控制系统总体设计过去的供水控制系统投资多,采用的模式为多台小功率水泵供水。在运行实践中暴露出主控电路设计不合理和逻辑控制设计不合理的现象。新系统总体设计方案如图3所示。在该供水系统的控制电路中除采用了变频器(VVVF),还采用一些先进控制装置如数字调节器(PID)、可编程控制器(PLC)等,这些装置都是以电脑芯片为内核完成各自不同的控制功能。为简化控制电路,根据负荷需要,使用一台18.5KW大容量水泵供水。为提高使用的安全系数,选用一台日本富士22.5KW变频器进行水泵调速,该变频器内置PID调节功能,但不具备参数监视功能。为能有效监视调节工况,特选数字显示调节器进行监视和控制,以备实现串级PID控制。鉴于外部I/O可控点数不多,可编程控制器PLC选用20点即可满足控制要求。4 水位检测电路设计4.1水位检测开关考虑到水位检测装置要求故障率少,运行可靠,为简化检测环节,设计中采用结构简单的浮子式水位检测开关,但为防止信号串扰,另外增加了一个隔离转换装置。该装置内选用了干簧继电器用以提高开关接点的可靠性和使用寿命。4.2水位检测逻辑控制水位检测逻辑控制功能如前所述完全由可编程控制器PLc编程实现,减少了硬件配置,提高了运行的可靠性和应用的灵活性。PLC的I/O地址分配见图4(a)所示,简化梯形图如图4(b)所示。其逻辑电路主要完成如下功能,见图4(b)所示。(1)水位信号保持功能水位开关检测分别由PLC的常开接点实现。由于水位由于簧管的常开接点来检测,只有在水面越过该点时闭合,低于该点即断开,因此信号需由PLC保持。(2)水位信号显示、报警、保护功能水位正常时01002动作,使输出绿灯亮。水位低时01003动作,使输出红灯亮,且通过其常闭接点停供水泵。水位高时20000、01000同时启动,使输出黄灯亮(闪光l5秒转平光)且无条件停蓄水泵。 5 操作保护功能设计除了常规保护功能外还增加了人性化操作功能。考虑到泵短时间内的频繁启动对泵运行不利,故设置1分钟内只允许连续启动两次,第三次需延时3分钟后进行,以利泵的散热,延长设备使用寿命,减少功耗。编程时可采用定时器和计数器配合来实现。这项功能在启停调试设备过程中得到检验。6 系统自启动功能设计(1)自启动概述为了方便运行维护人员,有两种情况可以考虑自启动:①系统断电一段时间后恢复供电的自启动,系统在正常运行工况下突然停电时,如果其它检测无异常则来电后可实现自启动,这一点在夜间更为重要,可给维护人员带来方便,此项功能得到了维护人员的认可。②低水位使泵跳闸后水位恢复时的自启动管网用水负荷过大或蓄水水压过低流量减少造成的低水位,会引起供水泵跳闸。在水位恢复正常后可实现自启动。(2)自启功能的实现 如图5所示。图中,“自启动条件”有两个:一是计数器C103接点,二是“水位正常”信号接点。由于计数器C103具有停电记忆特性,所以只要水位恢复正常时01002闭合就可自启动。其过程是:微分继电器20006(13)产生的微分信号由20009继电器保持,再经时间继电器"1"020延时后使其输出的常开接点"1"020(见图4b)接通启动回路,则水泵重新运转。 (3)自启动的预置自启动功能可根据用户需要事先预置,否则,该功能会被屏蔽。设计方案如下:①预置和解除均借用运行状态下的启动按钮。预置时按动启动按钮三下使计数器C103启动,则其常开接点C103闭合。解除自启功能:按住启动按钮1秒,使计数器C103复位或按停止按钮使泵停运的同时也解除了自启动设置。②预置的显示借用水位正常灯(闪光3秒),解除借用高水位报警灯(闪光3秒)。7 结束语上述无塔供水控制系统经投入使用,各项设计功能运行正常,供水质量有了很大提高,单位大功率设备用电量也明显减少。期间,还经历了系统实际异常情况自动处理的考验,如“储水罐满水后的蓄水泵自动跳闸”、“电力网停电来电后的供水泵自启动”、“电源缺相报警”等,这些功能都得到了很好的验证。参考文献[1]张燕宾主编.变频调速应用实践.机械工业出版社,2001.[2]北京四通工控技术有限公司编.FRENIC5000G11S/P11S说明手册.2001.[3]北京鹭岛公司编.OMRON可编程控制器使用手册.2000.[4]高勤主编.电器与PLC控制技术.高等教育出版社,2001. 借鉴一下吧,以前搞了很多,找不到了~不好意思

[电气工程及其自动化]基于内模控制三相三电平PWM整流器不平衡控制策略的研究


摘要
电网不平衡时,基于电网平衡为约束条件设计的三相三电平电压型PWM整流器(以下简称三相VSR)将出现不正

关于器乐的毕业论文

钢琴

声乐

舞蹈

音乐教育

作品分析

其他

一篇音乐欣赏的论文,1500字左右!给你

一、音乐课堂器乐教学基本方法

器乐是音乐的重要表现形式。尽管我们了解到音乐课的器乐教学现状不容乐观,但是随着新一轮课程改革的全面展开,让学生在音乐课上可以获得更多知识和技能已引起广大音乐教师的关注。在近年来的音乐课堂教学中,笔者也进行了一些实践和采取了相应行动,为了最大程度上激发学生的兴趣,把器乐演奏,歌唱和音乐赏析等音乐知识结合起来,逐渐弥补以往的种种不足。以下为笔者在进行器乐教学过程中采取的一些基本教学方法。

(一)激发学生的器乐学习动机,以兴趣为动力

在器乐教学中,教从而激发学生的学习兴趣,使他们主动学习音乐。如在学习竖笛时,如果教师在教学时先示范演奏一曲,然后让学生马上吹,吹不会反复教,直到吹会为止。长此以往,学生日益觉得乏味,失去信心。教师也不能从教学中收获教学的乐趣。而我先调查一下当下学生比较喜欢的曲目,然后吹奏这些他们感兴趣的曲目让他们欣赏,使他们一开始就对这种乐器产生浓厚的兴趣,然后在这个基础上简介竖笛的结构、发声原理、演奏方法和音阶指法,紧接着就可以让学生练习一些简单的基本功,通过这些简单的基本功练习来鼓励学生学习竖笛,给予他们信心。这种方式不但突出学生的主体地位,而且调动了学生的学习兴趣。

(二)精选乐器及练习曲目,使学生享受到学习音乐的快乐

教师应根据学生的年龄特点选用合适的乐器。对于初中生来说首先是培养学生对音乐的学习欲望,最终达到通过演奏来表达情感的教育目的。同时,我们要结合课本但不拘泥于课本,精选接近学生的生活实际和认知水平的练习曲目,这样他们才倍感亲切和真实。还有一些经典名曲如《欢乐颂》《梁祝》《彩云追月》等,通过重新编配也是很受欢迎的。

(三)培养学生良好的学习习惯,根据学生能力进行指导

器乐学习是一个由浅入深、由简到繁循序渐进的过程。因此,我们首先要有一个具体的器乐教学计划,从整体上把握好学习进度与节奏,根据学生的实际能力加以分析,适时调节进度。同时,不同的学习阶段应有不同的'侧重点,使学生逐步吸收各种演奏技巧。再者,培养良好的音乐学习习惯也是非常必要的,例如爱护乐器,轻拿轻放,学会看指挥排练等。

二、音乐课堂器乐教学可行性建议

既然器乐教学存在诸多限制因素,我们是否怀疑它的价值,或将其摈弃呢?答案显然是否定的。器乐进课堂的必要性已得到专家的充分论证,音乐教师该如何应对,如何切实提高器乐课的效率,使学生的综合素质得到提高。笔者认为现应做好以下四个方面的工作。

(一)教师对器乐教学应充满热情及保持积极态度态度决定一切!面对现有困难应态度先行,进而采用正确方法,才可取得良好效果。对器乐教学,教师应时时拥有饱满热情,慢慢感染学生,带动课堂气氛。

(二)灵活运用教材,给器乐教学留有充足时间在传统的器乐教学模式下,教师往往是一种死板生硬的教学方式,不能带动学生的积极性。经过新课程改革的不断变化,对于教师的教学模式起了很大的改变,新课改不仅要求教师参与课程资源的开发,也应适时研究,敢于调整教材,为教学增添更多色彩。当然,这种调整也应在合理范围内,确保相应教学目标的完成。

(三)充分发挥教研组集体智慧,制定规范适用的器乐教学安排目前,器乐教学随意性较严重,即使同一学校,各个音乐教师器乐教学的进度、要求、评价方式也不统一。某些音乐教师在器乐教学上没有计划,这使得器乐教学很大程度上成为一种摆设。这时必须充分发挥教研组的集体智慧,结合本校学生的总体素质和需求等实际情况,统一器乐教学的目标,制定相关教学计划,真正使器乐教学走上统一,切实提高教学效能。

(四)加强学习,注重交流,更新观念,激发学生兴趣音乐教育是一种审美教育,引进器乐教学的真正目的并不在于培养演奏家,而在于提高学生的综合素质,使学生感受到演奏乐器时的快乐和美。因此,在课堂上教师应以学生的兴趣为主,选取更为灵活多样的教学方法,尽量缩短枯燥的练习基本功的时间,留有更多时间相互交流。首先,在学生刚会演奏几个简单音符时,教师可以演奏只包含这几个音符的简单乐曲。这些乐曲可以是现成的,也可是教师自己编创的,从而让学生从一开始就能享受其中的乐趣。其次,把乏味的音阶循环练习改编成有趣味的节奏来进行演奏。最后,在课堂上带动气氛,组织学生进行自编自演的器乐“吹奏”“问答”“接龙”“音乐火车”等游戏。

总之,教师只有积极大胆地寻求并采用各种新颖方法,才能激发学生学习器乐的兴趣,从而取得事半功倍的效果。

半桥整流器毕业论文

整流电路广泛应用于工业中。它可按照以下几种方法分类:1.按组成的器件可分为不可控、半控、全控三种;2.按电路结构可分为桥式电路和零式电路;3.按交流输入相数分为单相电路和多相电路;4.按变压器二次侧电流的方向是单向或双向,又分为单拍电路和双拍电路。一般当整流负载容量较大,或要求直流电压脉动较小时,应采用三相整流电路。三相可控整流电路中,最基本的是三相半波可控整流电路,应用最为广泛的是三相桥式全控整流电路、以及双反星形可控整流电路等。二.方案的经济论证三相可控整流电路的控制量可以很大,输出电压脉动较小,易滤波,控制滞后时间短,因此在工业中几乎都是采用三相可控整流电路。在电子设备中有时也会遇到功率较大的电源,例如几百瓦甚至超过1—2kw的电源,这时为了提高变压器的利用率,减小波纹系数,也常采用三相整流电路。另外由于三相半波可控整流电路的主要缺点在于其变压器二次侧电流中含有直流分量,为此在应用中较少。而采用三相桥式全控整流电路,可以有效的避免直流磁化作用。虽然三相桥式全控整流电路的晶闸管的数目比三相半波可控整流电路的少,但是三相桥式全控整流电路的输出电流波形便得平直,当电感足够大时,负载电流波形可以近似为一条水平线。在实际应用中,特别是小功率场合,较多采用单相可控整流电路。当功率超过4KW时,考虑到三相负载的平衡,因而采用三相桥式全控整流电路。三.整流器件的选择及型号的确定晶闸管SCR为双极型器件,它具有电子和空穴两种载流子的导电功能。晶闸管正常工作时的特性为:(1)当晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。

[电气工程及其自动化]基于内模控制三相三电平PWM整流器不平衡控制策略的研究


摘要
电网不平衡时,基于电网平衡为约束条件设计的三相三电平电压型PWM整流器(以下简称三相VSR)将出现不正

[电气工程及其自动化]基于内模控制三相三电平PWM整流器不平衡控制策略的研究 摘要电网不平衡时,基于电网平衡为约束条件设计的三相三电平电压型PWM整流器(以下简称三相VSR)将出现不正常运行状态,比如三相VSR交流电流中出现负序分量,使交流电流严重不对称;直流电压和交流电流中出现非特征谐波分量,使直流电压和交流电流波形发生严重畸变;三相三电平VSR从电网吸收不平衡的瞬时功率等一系列问题.本论文对三相VSR在电网不平衡情况下进行了详细的建模分析,并在此基础上提出了输入功率平衡控制策略。该控制策略用来实现直流电压非特征谐波消除控制。由于在αβ静止坐标系中,采用比例和比例积分调节器无法实现对时变正弦波信号的无差跟踪控制,本论文把内模控制原理应用到三相三电平VSR电流跟踪控制中,使系统获得了很强的鲁棒性。本论文对基于αβ静止坐标系的功率平衡控制策略进行仿真,可以看出试验结果与仿真结果吻合,证明了结论的正确性。关键词 电网不平衡,三相三电平PWM整流器,功率控制策略,内模控制目 录摘要 IABSTRACT II前言 11 绪论 PWM整流器概况 三相电网不平衡概述 三相VSR不平衡控制研究概述 本论文要完成的工作 本章小结 122 三相三电平VSR的数学模型 三电平整流器的基本工作原理 三电平整流器的数学模型 153 三相三电平VSR不平衡控制策略 功率平衡控制策略 本章小结 264 电网不平衡三相三电平VSR控制系统设计 基于ΑΒ静止坐标系的不平衡控制器设计 电网不平衡时三相VSR主电路参数设计 本章小结 365 三相三电平VSR不平衡控制系统仿真 三相三电平VSR主电路开关函数仿真模型的建立 基于ΑΒ坐标系的控制系统仿真 396 结论 43致谢 44参考文献 45附录 外文资料翻译 内模控制 不稳定系统内模控制方法改进 49

如何提高半波整流电源利用率常见的整流电桥有“半桥”和“全桥”。半波整流后因为丢弃了交流电的一半波形,所以输出电压大致约为原电压的一半,比如输入为24V交流电压,经半波整流后,输出直流电压约为12V。全波整流使交流电的两半周期都得到了利用。其各项整流因数则与半波整流时不同。在半个周期内,电流流过一个整流器件(比如晶体二极管),而在另一个半周内,电流流经第二个整流器件,并且两个整流器件的连接能使流经它们的电流以同一方向流过负载。全波整流整流前后的波形与半波整流所不同的,是在全波整流中利用了交流的两个半波,这就提高了整流器的效率,并使已整电流易于平滑。因此在整流器中广泛地应用着全波整流。

关于逆变器的毕业论文

早上过来的是我们班的吗呢你们俩都没用了吧台主管他们班的德邦总管经理室都没用了吧不她们的歌是不是傻的是谁的错误代码有没有人要买菜做饭了你的好友验证请求帮助别人就是

这些资料估计你都会用到.具体的论文设计你自己弄吧.什么是逆变电源?为什么要逆变? 利用晶闸管电路把直流电转变成交流电,这种对应于整流的逆向过程,定义为逆变。例如:应用晶闸管的电力机车,当下坡时使直流电动机作为发电机制动运行,机车的位能转变成电能,反送到交流电网中去。又如运转着的直流电动机,要使它迅速制动,也可让电动机作发电机运行,把电动机的动能转变为电能,反送到电网中去。 把直流电逆变成交流电的电路称为逆变电路。在特定场合下,同一套晶闸管变流电路既可作整流,又能作逆变。 变流器工作在逆变状态时,如果把变流器的交流侧接到交流电源上,把直流电逆变为同频率的交流电反送到电网去,叫有源逆变。如果变流器的交流侧不与电网联接,而直接接到负载,即把直流电逆变为某一频率或可调频率的交流电供给负载,则叫无源逆变。交流变频调速就是利用这一原理工作的。有源逆变除用于直流可逆调速系统外,还用于交流饶线转子异步电动机的串级调速和高压直流输电等方面。 什么是逆变电源及用途? 逆变电源,一般是指将低压的直流电转变成高压(或低压)的交流电的装置,它可以用蓄电池做电源,输出交流电。具体说,比如用12V的蓄电池是不能为普通电灯或电脑、电视等供电的,而把该蓄电池通过逆变器变成普通的220V交流电再接到这些用电器中,它们就能正常工作。 一般逆变电源中自带蓄电池,电脑城卖的UPS电源就是这样的东西,不过它本身所带的蓄电池较小,只能供电脑工作几分钟到十几分钟,主要是为了在突然停电时,靠它继续为电脑供电,好让你有时间把未保存的文件保存下来,且有时间正常关机。 正弦波逆变电源的用途 逆变器是一种将直流电转换为交流电的装置,它用于无交流电的环境,为交流设备提供电源。它的输出功率从几十瓦到几百千瓦不等;输入直流电压从几伏到几百伏不等。 它主要应用于下列场所: 1.在车、船和飞机上,与交通工具上的直流电源一起,为交流电器提供电源; 2.在无电源的地方,与其它发电设备(太阳能、风能、水能以及各种燃料发电机)一起,为用户提供交流电源; 3.作为通讯、电力系统的不间断电源UPS(Uninterrupted Power Supply); 4.作为消防应急用电源EPS (Emergent Power Supply); 5.利用便携电源,提供临时交流电源等。 逆变电源 逆变电源也称逆变器,是一种DC/AC的转换器,它将电池组的直流电源转化成输出电压和频率稳定的交流电源。 工业一级的逆变器一般均为正弦波输出,同市电的波形一致,如电力逆变器,通信逆变器;另外还有一种输出为方波或阶梯波或修正正弦波的,这一类逆变器一般都是应用于民用场合,如车载逆变器,太阳能家用逆变器,一般为小功率(1KVA以下),1KVA以上一般均做成正弦波的了。 在技术工艺上,人们又把正弦波逆变器区分为高频逆变器和工频逆变器,工频逆变器技术成熟,性能稳定,搞过载能力强,但体积庞大、笨重;高频逆变器是近五六年在市场上的新星,它技术指标优越、效率很高、尤其是体积小、重量轻、高功率密度,都是现代电力电子所倡导的,现在业已抢占了中小功率逆变器一半以上的市场。有些行业领先者的高频逆变器单元已经做到了30KVA,从技术发展和生产成本来看,高频逆变器取代工频逆变器将是大势所趋。 逆变器的输出有单相和三相之分,以适应不同的负载,这同市电的指标一样。 逆变器有很多应用领域,比如在航空工业中利用逆变器提供一个到400Hz频率转换等,这就要用到逆变器了。 何谓逆变器的效率? 逆变器在工作时其本身也要消耗一部分电力,因此,它的输入功率要大于它的输出功率。逆变器的效率即是逆变器输入功率与输出功率之比。如一台逆变器输入了100瓦的直流电,输出了90瓦的交流电,那么,它的效率就是90%。 按输出波形划分,逆变器分为几类? 主要分两类,一类是正弦波逆变器,另一类是方波逆变器。正弦波逆变器输出的是同我们日常使用的电网一样甚至更好的正弦波交流电,因为它不存在电网中的电磁污染。方波逆变器输出的则是质量较差的方波交流电,其正向最大值到负向最大值几乎在同时产生,这样,对负载和逆变器本身造成剧烈的不稳定影响。同时,其负载能力差,仅为额定负载的40-60%,不能带感性负载(详细解释见下条)。如所带的负载过大,方波电流中包含的三次谐波成分将使流入负载中的容性电流增大,严重时会损坏负载的电源滤波电容。针对上述缺点,近年来出现了准正弦波(或称改良正弦波、修正正弦波、模拟正弦波等等)逆变器,其输出波形从正向最大值到负向最大值之间有一个时间间隔,使用效果有所改善,但准正弦波的波形仍然是由折线组成,属于方波范畴,连续性不好。总括来说,正弦波逆变器提供高质量的交流电,能够带动任何种类的负载,但技术要求和成本均高。准正弦波逆变器可以满足我们大部分的用电需求,效率高,噪音小,售价适中,因而成为市场中的主流产品。方波逆变器的制作采用简易的多谐振荡器,其技术属于50年代的水平,将逐渐退出市场。 二极管在逆变器中的应用 高效率和节能是家电应用中首要的问题。三相无刷直流电机因其效率高和尺寸小的优势而被广泛应用在家电设备中以及很多其他应用中。此外,由于采用了电子换向器代替机械换向装置,三相无刷直流电机被认为可靠性更高。 标准的三相功率级(power stage)被用来驱动一个三相无刷直流电机,如图1所示。功率级产生一个电场,为了使电机很好地工作,这个电场必须保持与转子磁场之间的角度接近90°。六步序列控制产生6个定子磁场向量,这些向量必须在一个指定的转子位置下改变。霍尔效应传感器扫描转子的位置。为了向转子提供6个步进电流,功率级利用6个可以按不同的特定序列切换的功率MOSFET。下面解释一个常用的切换模式,可提供6个步进电流。 MOSFET Q1、Q3和Q5高频(HF)切换,Q2、Q4和Q6低频(LF)切换。当一个低频MOSFET处于开状态,而且一个高频MOSFET 处于切换状态时,就会产生一个功率级。 步骤1) 功率级同时给两个相位供电,而对第三个相位未供电。假设供电相位为L1、L2,L3未供电。在这种情况下,MOSFET Q1和Q2处于导通状态,电流流经Q1、L1、L2和Q4。 步骤2)MOSFET Q1关断。因为电感不能突然中断电流,它会产生额外电压,直到体二极管D2被直接偏置,并允许续流电流流过。续流电流的路径为D2、L1、L2和Q4。 步骤3)Q1打开,体二极管D2突然反偏置。Q1上总的电流为供电电流(如步骤1)与二极管D2上的恢复电流之和。 显示出其中的体-漏二极管。在步骤2,电流流入到体-漏二极管D2(见图1),该二极管被正向偏置,少数载流子注入到二极管的区和P区。 当MOSFET Q1导通时,二极管D2被反向偏置, N区的少数载流子进入P+体区,反之亦然。这种快速转移导致大量的电流流经二极管,从N-epi到P+区,即从漏极到源极。电感L1对于流经Q2和Q1的尖峰电流表现出高阻抗。Q1表现出额外的电流尖峰,增加了在导通期间的开关损耗。图4a描述了MOSFET的导通过程。 为改善在这些特殊应用中体二极管的性能,研发人员开发出具有快速体二极管恢复特性MOSFET。当二极管导通后被反向偏置,反向恢复峰值电流Irrm较小。 我们对比测试了标准的MOSFET和快恢复MOSFET。ST推出的STD5NK52ZD(SuperFREDmesh系列)放在Q2(LF)中,如图4b所示。在Q1 MOSFET(HF)的导通工作期间,开关损耗降低了65%。采用STD5NK52ZD时效率和热性能获得很大提升(在不采用散热器的自由流动空气环境下,壳温从60°C降低到50°C)。在这种拓扑中,MOSFET内部的体二极管用作续流二极管,采用具有快速体二极管恢复特性MOSFET更为合适。 SuperFREDmesh技术弥补了现有的FDmesh技术,具有降低导通电阻,齐纳栅保护以及非常高的dv/dt性能,并采用了快速体-漏恢复二极管。N沟道520V、欧姆、 STD5NK52ZD可提供多种封装,包括TO-220、DPAK、I2PAK和IPAK封装。该器件为工程师设计开关应用提供了更大的灵活性。其他优势包括非常高的dv/dt,经过100%雪崩测试,具有非常低的本征电容、良好的可重复制造性,以及改良的ESD性能。此外,与其他可选模块解决方案相比,使用分立解决方案还能在PCB上灵活定位器件,从而实现空间的优化,并获得有效的热管理,因而这是一种具有成本效益的解决方案。 何谓“感性负载”? 通俗地说,即应用电磁感应原理制作的大功率电器产品,如电动机、压缩机、继电器、日光灯等等。这类产品在启动时需要一个比维持正常运转所需电流大得多(大约在3-7倍)的启动电流。例如,一台在正常运转时耗电150瓦左右的电冰箱,其启动功率可高达1000瓦以上。此外,由于感性负载在接通电源或者断开电源的一瞬间,会产生反电动势电压,这种电压的峰值远远大于逆变器所能承受的电压值,很容易引起逆变器的瞬时超载,影响逆变器的使用寿命。因此,这类电器对供电波形的要求较高。如何挑选逆变器产品 车载逆变器是一种工作在大电流、高频率环境下的电源产品,其潜在故障率相当高。因此,消费者在购买时一定要慎重。首先,从逆变器输出波形上选,最好不要低于准正弦波;其次,逆变器要有完备的电路保护功能;第三,厂家要有良好的售后服务承诺;第四,电路和产品经过一段时间的考验。 逆变器,必须是一种逆变装置组成的东西才能那么叫,他和变压器有直接区别,也就是说,他可以实现直流输入,然后输出交流,工作原理和开关电源一样,但震荡频率在一定范围内,比如如果这个频率为50HZ,输出则为交流50HZ。逆变器是可以改变其频率的设备。 变压器一般是指特定频率段的设备,比如工频变压器,就是我们一般见到的那些变压器,他们输入和输出都必须在一定范围内,比如40-60HZ范围内才可以工作。 如何为电瓶配备合适的逆变器? 假如电瓶的规格是12伏50安时,我们用12伏乘以50安时,得出电瓶的输出功率为600瓦。如果逆变器的效率为90%,则我们再用90%乘以600瓦,得出540瓦。这就是说,您的这块电瓶可推动一台输出功率最大为540瓦的逆变器。当然,您也可以采取“一步到位”式的采购办法,即先不管目前自己车上用的电瓶的规格,而买一台输出功率为800瓦的逆变器。然后,先在眼下这块电瓶的允许范围内使用,等将来换了更大的车后再满功率使用。最后,对逆变器的功率要求不高,比如说有100瓦就够了,那您完全可以买个小功率逆变器。此外,在确定逆变器的功率时,还有一个重要原则,即在使用逆变器时,不要长期满载运行,否则会大大缩短逆变器的寿命,同时逆变器的故障率也将显著上升。我们强烈建议用户,最好在不超过额定功率85%的状态下使用逆变器。 如何知道电瓶的容量? 电瓶上印有很多字母和数字,只要找到XXAH的字样就可以知道这是一块多大容量的电瓶。先说AH的含义,A代表安培(amp.),即电流的单位,H代表小时(hour)。两个字母在一起的意思就是"安培小时",即在一小时的时间内可持续输出多少安培的电流。前面的XX通常为两个数字,即安培的数量。举例来讲,45AH代表这块电瓶可以在一个小时的时间内输出 (12伏)45安培的电流。至于这块电瓶可以输出的功率,我们用12伏乘以45安培,得出540瓦,这就是该电瓶的输出功率(理论值)。 什么是持续输出功率?什么是峰值输出功率? 一些使用电动机的电器或工具,如电冰箱、洗衣机、电钻等,在启动的瞬间需要很大的电流来推动,一旦启动成功,则仅需较小的电流来维持其正常运转。因此,对逆变器来说,也就有了持续输出功率和峰值输出功率的概念。持续输出功率即是额定输出功率;一般峰值输出功率为额定输出功率的2倍。必须强调,有些电器,如空调、电冰箱等其启动电流相当于正常工作电流的3-7倍。因此,只有能够满足电器启动峰值功率的逆变器才能正常工作。 使用车载逆变器须要注意些什么? 首先,要严格按照用户手册的规定来使用逆变器;其次,逆变器的输出电压是220伏交流电,而这个220伏电是在一个狭小的空间并处于可移动状态,因此要格外小心。应将其放在较为安全的地方(特别要远离儿童!),以防触电。在不使用时,最好切断其输入电源。第三,不要将逆变器置于太阳直晒或暖风机出口附近。逆变器的工作环境温度不宜超过摄氏40度。第四,逆变器工作时会发热,因此不要在其附近或上面放置物品。第五,逆变器怕水,不要使其淋雨或撒上水。 应该怎样连接逆变器与电源和负载? 使用150瓦以下的电器可直接将150瓦逆变器插头插至点烟器插座后使用。超过150瓦的逆变器通过鳄鱼夹导线直接接到电瓶上,红线接电瓶正极,黑线接电瓶负极(不可接反,切记!)如果用电地点离电瓶较远,逆变器的连线原则是:逆变器同电瓶的连线应尽可能的短,而220伏交流电的输出线长些无妨。

太阳能光伏电源毕业论文设计标签: 太阳能电池逆变器毕业论文校园目录摘要... 1ABSTRACT. 21 绪论.... 32太阳能光伏电源系统的原理及组成... 太阳能电池方阵... 太阳能电池的工作原理... 太阳能电池的种类及区别... 太阳能电池组件... 充放电控制器.... 充放电控制器的功能... 充放电控制器的分类... 充放电控制器的工作原理... 蓄电池组... 太阳能光伏电源系统对蓄电池组的要求.... 铅酸蓄电池组的结构.... 铅酸蓄电池组的工作原理... 直流-交流逆变器.... 逆变器的分类... 太阳能光伏电源系统对逆变器的要求... 逆变器的主要性能指标... 逆变器的功率转换电路的比较... 143太阳能光伏电源系统的设计原理及其影响因素... 太阳能光伏电源系统的设计原理... 太阳能光伏电源系统的软件设计... 太阳能光伏电源系统的硬件设计... 太阳能光伏电源系统的影响因素... 204 总结... 21致谢...参考文献...摘要光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上蓄电池组,充放电控制器,逆变器等部件就形成了光伏发电装置。本文首先介绍了太阳能光伏电源系统的原理及其组成,初步了解了光生伏打效应原理及其模块组成,然后进一步研究各功能模块的工作原理及其在系统中的作用,最后根据理论研究成果,利用硬件和软件相结合的方法设计出太阳能光伏电源系统,以及研究系统的影响因素。关键词:光生伏特效应;太阳能电池组件;蓄电池组;充放电控制器;逆变器Topic:The Design of Photovoltaic PowerAbstractPhotovoltaic power generation is a technology of being energy directly into electrical energy on semiconductor photo-voltaic effect .The key components of this technology is the solar cell. Solar cells in series can be formed after the package to protect a large area of solar cells, together with the battery, charge and discharge controller, inverter and other components to form a photovoltaic device. This paper introduces the principle of solar photovoltaic power system and its components, a preliminary understanding of the principle of photovoltaic effect and its modules, and then further study the working principle of each functional module and its role in the system, the final results of theoretical studies based the use of hardware and software combination designed a solar photovoltaic power systems, and study the impact of system : photo-voltaic effect; Solar cells; batteries; charge and discharge controller; 绪论人类社会进入21世纪,正面临着化石燃料短缺和生态环境污染的严重局面。廉价的石油时代已经结束,逐步改变能源消费结,大力发展可再生能源,走可持续发展的道路,已逐渐成为人们的共识。太阳能光伏发电具有独特的优点,近年来正在飞速发展。太阳能电池的产量年增长率在40%以上,已成为发展最迅速的高新技术产业之一,其应用规模和领域也在不断扩大,从原来只在偏远无电地区和特殊用电场合使用,发展到城市并网系统和大型光伏电站。尽管目前太阳能光伏发电在能源结构中所占比例还微不足道,但是随着社会的发展和技术的进步,其份额将会逐步增加,可以预期,到21世纪末,太阳能发电将成为世界能源供应的主体,一个光辉的太阳能时代将到来。我国的光伏产业发展极不平衡,2007年太阳能电池的产量已经超过日本和欧洲而居世界第一,然而光伏应用市场的发展却非常缓慢,光伏累计安装量大约只占世界的1%,应用技术水平与国外相比还有相当大的差距。光伏产品与一般机电产品不同,必须很据负载的要求和当地的气象、地理条件来决定系统的配置,由于目前光伏发电成本较高,所以应进行优化设计,以达到可靠性和经济性的最佳结合,最大限度的发挥光伏电源的作用。为了提高太阳能的转换效率,获取更多的有效能源,满足人类的能源供应,世界各国在研究太阳能光伏系统中都投入了大量的人力与物力。我国对太阳能光伏电源系统的研究还处于世界低等水平,产品的性能还有待提高,为迎接未来能源短缺带来的严峻挑战,我们应该加大对太阳能光伏系统的研究,以满足人类未来对能源的需求。本文从理论出发,阐述了太阳能光伏电源的原理及其组成结构;结合科研实际,应用硬件和软件结合的方法,设计了简易的太阳能光伏电源模拟系统。根据这个简易系统研究分析了太阳能光伏电源的影响因素,合理优化了系统的配置,以提高系统的性能,最终提高了太阳能的转换效率。

静态转换开关STS(Static Transfer Switch)是实现两个独立电源间的快速转换的无触点电子式开关装置,其最高转换时间可以达到4mS,为数字设备、控制设备或其它对电源供电连续性要求极高的用电设备提供供电保障,当一路电源超限或断电后,迅速地切换至另一路电源,保证设备运行及数据安全。它(STS)是实现所谓“分布式供电”方案的有利工具,可以大大提高机房、PLC、精密仪器等设备供电系统的可靠性。

关于充电器的毕业论文

不要悬赏了,花200RMB去买吧,一分价钱一分货啊,上到大学这点道理都懂??

根据我搜集的一些网站来看,建议看看这个,要做毕业论文以及毕业设计的,推荐一个网站 ,里面的毕业设计什么的全是优秀的,因为精挑细选的,网上很少有,都是相当不错的毕业论文和毕业设计,对毕业论文的写作有很大的参考价值,希望对你有所帮助。别的相关范文很多的,推荐一些比较好的范文写作网站,希望对你有帮助,这些精选的范文网站,里面有大量的范文,也有各种文章写作方法,注意事项,应该有适合你的,自己动手找一下,可不要照搬啊,参考一下,用自己的语言写出来那才是自己的。 如果你不是校园网的话,请在下面的网站找:毕业论文网: 分类很细 栏目很多毕业论文: 毕业设计: 开题报告: 实习论文: 写作指导:

线截面2平方毫

这也找人帮?

相关百科

热门百科

首页
发表服务