首页

毕业论文

首页 毕业论文 问题

以数据挖掘为主的毕业论文

发布时间:

以数据挖掘为主的毕业论文

数据挖掘的算法及技术的应用的研究论文

摘要: 数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。任何有数据管理和知识发现需求的地方都可以借助数据挖掘技术来解决问题。本文对数据挖掘的算法以及数据挖掘技术的应用展开研究, 论文对数据挖掘技术的应用做了有益的研究。

关键词: 数据挖掘; 技术; 应用;

引言: 数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的, 然后发展到可对数据库进行查询和访问, 进而发展到对数据库的即时遍历。数据挖掘使数据库技术进入了一个更高级的阶段, 它不仅能对过去的数据进行查询和遍历, 并且能够找出过去数据之间的潜在联系, 从而促进信息的传递。

一、数据挖掘概述

数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。

二、数据挖掘的基本过程

(1) 数据选择:选择与目标相关的数据进行数据挖掘。根据不同的数据挖掘目标, 对数据进行处理, 不仅可以排除不必要的数据干扰, 还可以极大地提高数据挖掘的效率。 (2) 数据预处理:主要进行数据清理、数据集成和变换、数据归约、离散化和概念分层生成。 (3) 模式发现:从数据中发现用户感兴趣的模式的过程.是知识发现的主要的处理过程。 (4) 模式评估:通过某种度量得出真正代表知识的模式。一般来说企业进行数据挖掘主要遵循以下流程——准备数据, 即收集数据并进行积累, 此时企业就需要知道其所需要的是什么样的数据, 并通过分类、编辑、清洗、预处理得到客观明确的目标数据。数据挖掘这是最为关键的步骤, 主要是针对预处理后的数据进行进一步的挖掘, 取得更加客观准确的数据, 方能引入决策之中, 不同的企业可能采取的数据挖掘技术不同, 但在当前来看暂时脱离不了上述的挖掘方法。当然随着技术的进步, 大数据必定会进一步成为企业的立身之本, 在当前已经在很多领域得以应用。如市场营销, 这是数据挖掘应用最早的领域, 旨在挖掘用户消费习惯, 分析用户消费特征进而进行精准营销。就以令人深恶痛绝的弹窗广告来说, 当消费者有网购习惯并在网络上搜索喜爱的产品, 当再一次进行搜索时, 就会弹出很多针对消费者消费习惯的商品。

三、数据挖掘方法

1、聚集发现。

聚集是把整个数据库分成不同的群组。它的目的是要群与群之间差别很明显.而同一个群之间的数据尽量相似.聚集在电子商务上的典型应用是帮助市场分析人员从客户基本库中发现不同的客户群, 并且用购买模式来刻画不同客户群的特征。此外聚类分析可以作为其它算法 (如特征和分类等) 的预处理步骤, 这些算法再在生成的簇上进行处理。与分类不同, 在开始聚集之前你不知道要把数据分成几组, 也不知道怎么分 (依照哪几个变量) .因此在聚集之后要有一个对业务很熟悉的人来解释这样分群的意义。很多情况下一次聚集你得到的分群对你的业务来说可能并不好, 这时你需要删除或增加变量以影响分群的方式, 经过几次反复之后才能最终得到一个理想的结果.聚类方法主要有两类, 包括统计方法和神经网络方法.自组织神经网络方法和K-均值是比较常用的`聚集算法。

2、决策树。

这在解决归类与预测上能力极强, 通过一系列的问题组成法则并表达出来, 然后经过不断询问问题导出所需的结果。典型的决策树顶端是一个树根, 底部拥有许多树叶, 记录分解成不同的子集, 每个子集可能包含一个简单法则。

四、数据挖掘的应用领域

市场营销

市场销售数据采掘在销售业上的应用可分为两类:数据库销售和篮子数据分析。前者的任务是通过交互式查询、数据分割和模型预测等方法来选择潜在的顾客以便向它们推销产品, 而不是像以前那样盲目地选择顾客推销;后者的任务是分析市场销售数据以识别顾客的购买行为模式, 从而帮助确定商店货架的布局排放以促销某些商品。

金融投资

典型的金融分析领域有投资评估和股票交易市场预测, 分析方法一般采用模型预测法。这方面的系统有Fidelity Stock Selector, LBS Capital Management。前者的任务是使用神经网络模型选择投资, 后者则使用了专家系统、神经网络和基因算法技术辅助管理多达6亿美元的有价证券。

结论:数据挖掘是一种新兴的智能信息处理技术。随着相关信息技术的迅猛发展, 数据挖掘的应用领域不断地拓宽和深入, 特别是在电信、军事、生物工程和商业智能等方面的应用将成为新的研究热点。同时, 数据挖掘应用也面临着许多技术上的挑战, 如何对复杂类型的数据进行挖掘, 数据挖掘与数据库、数据仓库和Web技术等技术的集成问题, 以及数据挖掘的可视化和数据质量等问题都有待于进一步研究和探索。

参考文献

[1]孟强, 李海晨.Web数据挖掘技术及应用研究[J].电脑与信息技术, 2017, 25 (1) :59-62.

[2]高海峰.智能交通系统中数据挖掘技术的应用研究[J].数字技术与应用, 2016 (5) :108-108.

寿险行业数据挖掘应用分析寿险是保险行业的一个重要分支,具有巨大的市场发展空间,因此,随着寿险市场的开放、外资公司的介入,竞争逐步升级,群雄逐鹿已成定局。如何保持自身的核心竞争力,使自己始终立于不败之地,是每个企业必须面对的问题。信息技术的应用无疑是提高企业竞争力的有效手段之一。寿险信息系统经过了多年的发展,已逐步成熟完善,并积累了相当数量的数据资源,为数据挖掘提供了坚实的基础,而通过数据挖掘发现知识,并用于科学决策越来越普遍受到寿险公司的重视。数据挖掘数据挖掘(Data Mining,DM)是指从大量不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、有用的信息和知识的过程。其表现形式为概念(Concepts)、规则(Rules)、模式(Patterns)等形式。目前业内已有很多成熟的数据挖掘方法论,为实际应用提供了理想的指导模型。CRISP-DM(Cross-Industry Standard Process for Data Mining)就是公认的、较有影响的方法论之一。CRISP-DM强调,DM不单是数据的组织或者呈现,也不仅是数据分析和统计建模,而是一个从理解业务需求、寻求解决方案到接受实践检验的完整过程。CRISP-DM将整个挖掘过程分为以下六个阶段:商业理解(Business Understanding),数据理解(Data Understanding),数据准备(Data Preparation),建模(Modeling),评估(Evaluation)和发布(Deployment)。商业理解就是对企业运作、业务流程和行业背景的了解;数据理解是对现有企业应用系统的了解;数据准备就是从企业大量数据中取出一个与要探索问题相关的样板数据子集。建模是根据对业务问题的理解,在数据准备的基础上,选择一种更为实用的挖掘模型,形成挖掘的结论。评估就是在实际中检验挖掘的结论,如果达到了预期的效果,就可将结论发布。在实际项目中,CRISP-DM模型中的数据理解、数据准备、建模、评估并不是单向运作的,而是一个多次反复、多次调整、不断修订完善的过程。行业数据挖掘经过多年的系统运营,寿险公司已积累了相当可观的保单信息、客户信息、交易信息、财务信息等,也出现了超大规模的数据库系统。同时,数据集中为原有业务水平的提升以及新业务的拓展提供了条件,也为数据挖掘提供了丰厚的土壤。根据CRISP-DM模型,数据挖掘首先应该做的是对业务的理解、寻找数据挖掘的目标和问题。这些问题包括:代理人的甄选、欺诈识别以及市场细分等,其中市场细分对企业制定经营战略具有极高的指导意义,它是关系到企业能否生存与发展、企业市场营销战略制定与实现的首要问题。针对寿险经营的特点,我们可以从不同的角度对客户群体进行分类归纳,从而形成各种客户分布统计,作为管理人员决策的依据。从寿险产品入手,分析客户对不同险种的偏好程度,指导代理人进行重点推广,是比较容易实现的挖掘思路。由于国内经济发展状况不同,各省差异较大,因此必须限定在一个经济水平相当的区域进行分析数据的采样。同时,市场波动也是必须要考虑的问题,一个模型从建立到废弃有一个生命周期,周期根据模型的适应性和命中率确定,因此模型需要不断修订。挖掘系统架构挖掘系统包括规则生成子系统和应用评估子系统两个部分。规则生成子系统主要完成根据数据仓库提供的保单历史数据,统计并产生相关规律,并输出相关结果。具体包括数据抽取转换、挖掘数据库建立、建模(其中包括了参数设置)、模型评估、结果发布。发布的对象是高层决策者,同时将模型提交给应用评估子系统.根据效果每月动态生成新的模型。应用评估子系统可以理解为生产系统中的挖掘代理程序,根据生成子系统产生的规则按照一定的策略对保单数据进行非类预测。通过系统的任务计划对生产数据产生评估指标。具体包括核心业务系统数据自动转入数据平台、规则实时评估、评估结果动态显示、实际效果评估。规则评估子系统根据规则进行检测。经过一段时间的检测,可利用规则生成子系统重新学习,获得新的规则,不断地更新规则库,直到规则库稳定。目前比较常用的分析指标有: 险种、交费年期、被保人职业、被保人年收入、被保人年龄段、被保人性别、被保人婚姻状况等。实践中,可结合实际数据状况,对各要素进行适当的取舍,并做不同程度的概括,以形成较为满意的判定树,产生可解释的结论成果。

浅谈数据挖掘技术在企业客户关系管理的应用论文

摘 要:高度开放的中国金融市场,特别是中国银行业市场受到日趋激烈的国外银行冲击和挑战,大多数银行企业都在构建以客户为中心的客户关系管理体系,这一经营体系理念的构建,不仅仅能提高企业的知名度和顾客的满意度,而且能提高企业的经济效益。但是,随着网络技

关键词:客户关系管理毕业论文

高度开放的中国金融市场,特别是中国银行业市场受到日趋激烈的国外银行冲击和挑战,大多数银行企业都在构建以客户为中心的客户关系管理体系,这一经营体系理念的构建,不仅仅能提高企业的知名度和顾客的满意度,而且能提高企业的经济效益。但是,随着网络技术和信息技术的发展,客户关系管理如何能结合数据挖掘技术和数据仓库技术,增强企业的核心竞争力已经成为企业亟待解决的问题。因为,企业的数据挖掘技术的运用能够解决客户的矛盾,为客户设计独立的、拥有个性化的数据产品和数据服务,能够真正意义上以客户为核心,防范企业风险,创造企业财富。

关键词:客户关系管理毕业论文

一、数据挖掘技术与客户关系管理两者的联系

随着时代的发展,银行客户关系管理的发展已经越来越依赖数据挖掘技术,而数据挖掘技术是在数据仓库技术的基础上应运而生的,两者有机的.结合能够收集和处理大量的客户数据,通过数据类型与数据特征,进行整合,挖掘具有特殊意义的潜在客户和消费群体,能够观察市场变化趋势,这样的技术在国外的银行业的客户关系管理广泛使用。而作为国内的银行企业,受到国外银行业市场的大幅度冲击,显得有些捉襟见肘,面对大量的数据与快速发展的互联网金融体系的冲击,银行业缺乏数据分析和存储功能,往往造成数据的流逝,特别是在数据的智能预测与客户关系管理还处于初步阶段。我国的银行业如何能更完善的建立客户关系管理体系与数据挖掘技术相互融合,这样才能使得企业获得更强的企业核心竞争力。

二、数据挖掘技术在企业客户关系管理实行中存在的问题

现今,我国的金融业发展存在着数据数量大,数据信息混乱等问题,无法结合客户关系管理的需要,建立统一而行之有效的数据归纳,并以客户为中心实行客户关系管理。

1.客户信息不健全

在如今的银行企业,虽然已经实行实名制户籍管理制度,但由于实行的年头比较短,特别是以前的数据匮乏。重点体现在,银行的客户信息采集主要是姓名和身份证号码,而对于客户的职业、学历等相关信息一概不知,极大的影响了客户关系管理体系的构建。另外,数据还不能统一和兼容,每个系统都是独立的系统,比如:信贷系统、储蓄系统全部分离。这样存在交叉、就不能掌握出到底拥有多少客户,特别是那些需要服务的目标客户,无法享受到银行给予的高质量的优质服务。

2.数据集中带来的差异化的忧虑

以客户为中心的客户关系管理体系,是建立在客户差异化服务的基础上的,而作为银行大多数以数据集中,全部有总行分配,这样不仅不利于企业的差异化服务,给顾客提供优质得到个性化业务,同时,分行也很难对挖掘潜在客户和分析客户成分提供一手的数据,损失客户的利益,做到数据集中,往往是不明智的选择。

3.经营管理存在弊端

从组织结构上,我国的银行体系设置机构庞杂,管理人员与生产服务人员脱节现象极其普遍,管理人员不懂业务,只是一味的抓市场,而没有有效的营销手段,更别说以市场为导向,以客户为核心,建立客户关系管理体系。大多数的人完全是靠关系而非真正意义上靠能力,另外,业务流程繁琐,不利于客户享受更多的星级待遇,这与数据发掘的运用背道而驰,很难体现出客户关系管理的价值。

三、数据挖掘技术在企业的应用和实施

如何能更好的利用数据挖掘技术与客户关系管理进行合理的搭配和结合是现今我们面临的最大问题。所有我们对客户信息进行分析,利用模糊聚类分析方法对客户进行分类,通过建立个性化的信息服务体系,真正意义的提高客户的价值。

1.优化客户服务

以客户为中心提高服务质量是银行发展的根源。要利用数据挖掘技术的优势,发现信贷趋势,及时掌握客户的需求,为客户提高网上服务,网上交易,网上查询等功能,高度体现互联网的作用,动态挖掘数据,通过智能化的信贷服务,拓宽银行业务水平,保证客户的满意度。

2.利用数据挖掘技术建立多渠道客户服务系统

利用数据挖掘技术整合银行业务和营销环节为客户提供综合性的服务。采用不同的渠道实现信息共享,针对目标客户推荐银行新产品,拓宽新领域,告别传统的柜台服务体系,实行互联网与柜台体系相结合的多渠道服务媒介体系。优化客户关系管理理念,推进营销战略的执行。提高企业的美誉度。

四、数据挖掘技术是银行企业客户关系管理体系构建的基础

随着信息技术的不断发展,网络技术的快速推进,客户关系管理体系要紧跟时代潮流,紧密围绕客户为中心,利用信息优势,自动获取客户需求,打造出更多的个性化、差异化客户服务理念,使得为企业核心竞争能力得到真正意义的提高。

中医以数据挖掘为毕业论文

题目的拟定对于一篇医学论文来说至关重要,选题有意义,写出来的 文章 才有学术价值,如果选定的题目毫无意义或过于偏狭,也毫无价值可言。下面我给大家带来2021医学专业的 毕业 论文题目有哪些,希望能帮助到大家!

医学影像技术论文题目

[1]培养医学影像学生审美能力提高《医学影像检查技术》教学效果

[2]大学教材《医学影像成像原理》出版发行

[3]_版中国科技期刊引证 报告 相关数据——《中国医学影像技术》

[4]《中国医学影像技术》被数据库收录情况

[5]肺结节人工智能技术在医学影像学专业实习生教学中的初步应用

[6]基于网络资源“探究式-理实一体化”教学在超声诊断学中的应用

[7]医学物理学开放性实验教学模式探索

[8]角色扮演教学法在医学影像检查技术学临床示教中应用的研究

[9]中国超声医学的发展与展望

[10]《中国医学影像技术》被数据库收录情况

[11]医学影像实训教学大型设备拆移、软件处理探讨

[12]现代医学影像科核磁机房施工技术分析——以江苏省妇幼保健院为例[

[13]医学影像技术专业在核医学科实习过程中的问题分析及应对

[14]高职高专医学影像实训基地的建设与研究

[15]医学影像技术学中CT与MR教学分析

[16]SPOC在医学影像检查技术学教学中的应用与实践

[17]全数字化_线影像技术在医学影像科的应用价值

[18]医学影像技术专业建设初探

[19]放射测量与防护教材的改革策略

[20]OBE教学理念在《断层解剖学》课程教学改革中的研究与探索

[21]数据挖掘技术在医学影像信息系统中的应用

[22]“以赛促学、以赛促教”全面提升我校医学影像技术专业育人质量

[23]本科医学影像技术专业多维度毕业考核模式的设计与实践

[24]医学影像检查技术教学与技能大赛结合的实践

[25]医学影像技术专业CT科室实习带教 方法 探讨

[26]对医学影像技术技能大赛选手辅导的体会

[27]PBL-LBL教学模式在医学影像检查技术学上的应用探索

[28]医学影像技术专业实习生在普通放射科DR摄影的带教心得

[29]基于TBL与CBL教学法的医学影像检查技术教学研究

[30]以“器官系统为中心”的中医院校医学影像学教学探讨

[31]医学影像技术在影像临床诊断中的应用探析

[32]基于FPGA的Micro-CT采集控制系统设计

[33]医用模拟人在医学影像技术专业实训中的应用效果

[34]医学影像技术专业学生毕业实习教学模式分析

[35]基于云课堂的混合式学习在医学影像技术课程 教育 中的应用——以《盆部影像检查技术》为例

[36]20_版中国科技期刊引证报告相关数据——《中国医学影像技术》

[37]《中国医学影像技术》被数据库收录情况

[38]PBL教学法在MRI检查技术实习带教中的效果

[39]微信辅助改良式PBL教学法在医学影像学实习带教中的应用

[40]医学影像技术高素质人才的培养方式研究

[41]医学影像技术在慢性肾脏病早期肾功能评估中的研究与应用进展

[42]基于“医、教、研、赛”四维协同平台的医学影像技术专业人才培养体系建设实践

[43]基于计算机的医学影像后处理技术定位癫痫致痫灶研究进展

[44]图像增强技术在数字x射线医学影像中的应用分析

[45]基于视觉优化的医学影像数据可视化技术研究

[46]医学影像学导航技术在穿支皮瓣的应用进展

[47]安徽省职业教育先进单位 安徽省淮北卫生学校

[48]基于深度学习的医学图像分割研究进展

[49]《中国医学影像技术》被数据库收录情况

[50]20__版中国科技期刊引证报告相关数据——《中国医学影像技术》

中医论文题目

[1]胁痛中医临床实践指南

[2]发生学视角下中医肝藏实质探溯

[3]口疮中医临床实践指南

[4]基于数据挖掘中医古籍中肺热病症状及证型分布规律分析

[5]基于数据挖掘中医古籍治疗肺热病遣方用药分析[

[6]“冲气”观与中医学

[7]基于现代文献的膝骨关节炎中医证型与证素分布规律研究

[8]肝硬化腹水的中医药治疗现状

[9]疏肝健脾法治疗肝郁脾虚型卒中后抑郁的疗效meta分析

[10]基于中医传承辅助系统的脊髓损伤内治处方分析

[11]中医治未病·血管性轻度认知障碍专家共识

[12]氟骨症的中医治疗研究进展

[13]三子养亲汤加减对肺气虚型尘肺病患者中医证候的影响

[14]现代信息技术在中医四诊中的应用研究

[15]热敏灸对腰椎间盘突出症患者预后的影响观察

[16]中医综合护理在功能性消化不良患者中的应用分析

[17]基于“脾肾相关”论治疗骨质疏松症的研究进展

[18]无症状颈动脉狭窄人群认知功能障碍与中医体质分布特点研究

[19]基于数据挖掘对中医治疗慢性肾衰竭组方规律的分析

[20]温脾散穴位敷贴联合理中复元方对脾虚痰瘀型慢性萎缩性胃炎患者的临床疗效

[21]中成药在子宫腺肌病治疗中的应用研究进展

[22]中药复方治疗老年性骨质疏松症疗效Meta分析及用药规律分析

[23]基于中医传承辅助平台探讨沈舒文教授治疗慢性胃炎的用药规律

[24]中药膏方联合穴位埋线治疗支气管哮喘缓解期临床观察

[25]温阳通络方对急性心肌梗死经皮冠状动脉介入治疗术后患者心室重构和血管内皮功能的影响

[26]原发性支气管肺癌中医体质和中医证型调查研究

[27]慢性非萎缩性胃炎中医证型与幽门螺杆菌感染、胃镜像及病理表现相关性分析

[28]透刺配合热补针法治疗风寒湿阻型膝关节滑膜炎疗效及对红细胞沉降率、C反应蛋白、前列腺素E_2和滑膜动脉血流指数的影响

[29]运用中医治未病思想防治克罗恩病

[30]循证医学与中医学的 反思

[31]艾灸治疗肛肠术后尿潴留研究进展

[32]基于中医理论的智能养生餐厅探析

[33]基于文献研究与专家共识法的原发性痛经中医证候研究

[34]基于虚实辨证的补泻平衡手法治疗膝骨关节炎临床研究

[35]从“胃不和则卧不安”理论探讨失眠的辨证论治

[36]郭志华运用桔梗治疗心衰 经验

[37]谢林运用风药治疗椎动脉型颈椎病

[38]基于病历数据的中医临床能力数字化评价体系研究

[39]基于临床调查的冠心病心绞痛气虚证症状组成的文献分析

[40]安胃汤治疗功能性消化不良寒热错杂证的临床观察

医学检验免疫毕业论文题目

1、基于纳米颗粒的分子展示应用于超灵敏检测

2、SLE患者中几种新型自身抗体的检测及其临床诊断价值的探讨

3、多肽酶检测和细胞表面荧光标记的新方法研究

4、区域检验服务协同平台的设计与实现

5、胶体金喷膜仪的设计与开发

6、重庆市乡镇卫生院医疗资源的调查研究

7、基于氧化石墨烯和硫化铅纳米颗粒的荧光生物传感器研究

8、产气荚膜梭菌α毒素快速诊断金标试纸条的研制及初步应用

9、纳米粒子免疫层析法在检测异位妊娠和膀胱癌中的应用

10、现代医院检验科模块化设计研究

11、酶免工作站监控系统的设计与实现

12、乙型肝炎表面抗原胶体金免疫层析法血清快速测定的性能评估

13、基于微型压电与光谱生化分析系统的POCT新技术研究

14、长江三角洲地区犬猫皮肤真菌病调查及体外药敏试验

15、我国医学检验本科专业人才培养的问题与对策研究

16、基于电化学分子信标基因传感技术的HIV-1核酸检测新方法研究

17、Free β-hCG和PAPPA光激化学发光免疫分析试剂的研制

18、乙肝快速分析仪的研究与开发

19、阿托伐他汀对动脉粥样硬化患者外周血中PPAR γ的作用研究及相关炎症因子与动脉粥样硬化关系的建模分析

20、综合性医院医学检验资源优化管理研究

21、全自动多功能免疫检验过程关键问题的优化研究

22、HMGB1通过NF-κB激活TGF-β1诱导特发性肺纤维化发病机制的研究

23、若干病毒感染模型的动力学分析

24、现代综合医院检验中心空间设计研究

25、大型公立医院创建医学独立实验室可行性研究

26、高血压病证型与血清褪黑色素水平的相关性研究

27、医用臭氧与α-干扰素对照治疗慢性乙型病毒性肝炎

28、网织血小板在系统性红斑狼疮患者的临床应用

29、G公司第三方独立医学实验室服务营销策略研究

30、临床毛细管电泳的研究

31、基于光电检测与信息处理技术的纳米金免疫层析试条定量测试的研究

32、贫铀长期作用后的吸收分布特点及其主要蓄积器官的损伤效应研究

33、基于磁性微球的PMMA微流控免疫分析芯片系统的研究

34、hr HPV、L1壳蛋白、p16蛋白与宫颈病变的关系及诊断价值研究

35、76例急性白血病的MICM分型及预后

36、国产化学发光法诊断系统检测乙肝表面抗原的评价

37、蛋白A-藻蓝蛋白β亚基双功能蛋白的性质及其在免疫检测中的应用

38、上海市社区卫生服务中心检验开展现状及检验项目合理化设置研究

39、__ 医学检验集团发展战略研究

40、胃肠肿瘤标志物诊断大肠癌之检验医学实践

41、广州KM公司分析前流程优化方案制定

42、医学高职院校人文教育现状与对策研究

43、脑脊液中ADA、LA、CRP、LDH的检测在小儿颅内感染诊断中的价值

44、MiR210和Stat3全脑缺血大鼠脑组织的表达通过HIF-1α通路对神经元凋亡的影响

45、医学检验器材智能化物流系统的设计与运营

46、上海市嘉定区医疗机构临床实验室检验质量管理现状及对策研究

47、六西格玛管理在临床检验流程中的应用研究

48、基于纳米材料修饰的新型生物传感器检测D-二聚体

49、新城疫快速诊断金标试纸条的研制及初步应用

50、肾上腺脑白质营养不良蛋白的原核表达和肾上腺脑白质营养不良的分子诊断研究

医学专业的毕业论文题目有哪些相关文章:

★ 临床医学专业的毕业论文

临床医学专业毕业论文5000字(2)

★ 临床医学专业毕业论文5000字

大专临床医学毕业论文(2)

★ 医学的毕业论文

★ 临床医学生毕业论文(2)

★ 临床医学内科毕业论文(2)

★ 临床医学毕业论文范文大全

★ 本科临床医学专业毕业论文范文

★ 关于医学生的毕业论文3000字怎么写(2)

数据挖掘不能作为硕士毕业论文的。写纯粹的数据挖掘算法类的论文是不行的,不过可以将数据挖掘应用到某一个系统中,写数据挖掘的应用,这个应该是可以的。

毕业论文数据挖掘选题

统计学毕业论文选题

毕业论文的题目是开始写作的关键,先选好题,再下笔。下面是我整理的统计学毕业论文选题,希望大家喜欢。

统计学毕业论文选题

1、具有预测能力的呼叫中心系统的设计与实现

2、PVAR模型在研究经济增长与能源消费关系中的应用

3、基于有限元的深基坑组合型围护结构可靠度分析

4、一些带有偏序结构的完全码

5、Stein方法在复合泊松分布近似中的应用

6、各类分布产生的背景

7、保险金融中的计数过程的若干渐近性

8、高中概率教学的现状、问题及对策研究

9、随机变量序列的极限定理

10、Cayley树上非对称马氏链及任意相依随机变量序列强极限定理的若干研究

11、一类混合随机序列的概率极限定理

12、保证齿轮质量的结构和工艺措施研究

13、道路施工机群资源配置和计划调度沥青混凝土路面机械化施工系统状态分析与技术经济评价研究

14、高速公路服务区合理规模与布局研究

15、基于图像区域统计特征的隐写分析技术研究

16、统计收敛的测度理论

17、关于φ-混合随机变量序列的矩完全收敛性的研究

18、混合相依随机变量序列极限理论的若干结果

19、两两NQD列的一些收敛性质

20、电力市场环境下的电能质量评估研究

21、本科概率论试验课程设计初探

22、基于随机模拟试验的稳健优化设计方法研究

23、随机变量序列部分和乘积的几乎处处中心极限定理

24、AQSI序列的强极限定理

25、几类相依混合随机变量列的大数律和L~r收敛性

26、现代经济计量学建立简史

27、任意随机变量序列的相关定理

28、新建电气化铁路电能质量影响预测研究

29、鞅差与相依随机变量序列部分和精确渐近性

30、ND序列若干收敛性质的研究

31、证券组合投资决策的均匀试验设计优化研究

32、相依随机变量序列部分和收敛速度

33、行为两两NQD随机变量阵列加权和的收敛性

34、数值计算的统计确认研究与初步应用

35、基于证据理论的足球比赛结果预测方法

36、城市工业用地集约利用评价与潜力挖掘

37、节理化岩体边坡稳定性研究

38、随机变分不等式及其应用

39、基于模糊综合评价的靶场实时光测数据质量评估

40、基于路径的加权地域通信网可靠性研究

41、LNQD样本近邻估计的大样本性质

42、20CrMoH齿轮弯曲疲劳强度研究

43、我国股票市场与宏观经济之间的协整分析

44、一类Copula函数及其相关问题研究

45、乐透型彩票N选M中奖号码的概率分析

46、协整理论在汽车发动机系统故障诊断中的应用

47、2010年上海世博会会展中断风险分析和保险建议

48、贝儿康有限公司激励设计研究

49、云模型在系统可靠性中的应用研究

50、离散更新模型破产概率及赤字的上下界估计

51、输电线微风振动与疲劳寿命

52、电器产品模糊可靠性分析中模糊可靠度的研究

53、变分不等式及变分包含解的存在性与算法

54、隧道测量误差控制方案的'研究

55、塔式起重机臂架可靠性分析软件开发

56、分布式认证跳表及其在P2P分布式存储系统中的应用

57、房地产行业企业所得税纳税评估实证研究

58、天然气管道断裂事故分析

59、粗集理论及其在数据预处理过程中的应用

60、集装箱码头后方堆场荷载统计分析和概率模型

61、多工序制造过程计算机辅助误差诊断控制系统

62、实(复)值统计型测度的表示理论及其它在统计收敛上的应用

63、应用统计教育部重点实验室程序库建设

64、基于个体的捕食系统模型

65、相依样本下移动平均过程的矩完全收敛

66、基坑变形监测分析及单撑—排桩墙支护结构抗倾覆可靠度研究

67、基于综合的交通冲突技术的城市道路交叉口安全评价方法研究

68、暗挖地铁车站下穿对既有结构安全性影响分析

69、随机变量阵列的强收敛性

70、基于随机有限元的疲劳断裂可靠性研究

71、高中数学教学概率统计部分浅析

72、敏感问题二阶段抽样调查的统计方法及应用

73、三大重要分布及其性质的进一步研究

74、随机变量的统计收敛性及统计收敛在数据处理方面的应用

75、多变量密度函数小波估计的一致中心极限定理

76、混合Copula构造及相关性应用

77、数学职前教师对正态分布的理解水平的研究

78、煤矿事故系统脆性模型的建立与仿真

79、基于贝叶斯网络的客户信用风险评估及系统设计

80、河北北方学院学生成绩关联分析及预测

81、房地产项目现金流管理研究

82、高压电磁感应信号的采集及处理算法的研究

83、基于神经网络的逆变电源可靠性研究

84、跳频序列的局部随机性与线性复杂度分析

85、金川二矿区中段平面运输系统数据分析与模拟模型研究

86、房地产投资风险定量评价与规避策略研究

87、审计统计抽样技术方法研究与设计运行

88、几种概率统计滤波法在重磁数据处理中的研究及应用

89、模糊随机变量序列的极限定理

90、数据挖掘的若干新方法及其在我国证券市场中应用

91、城市道路交通流特征参数研究

92、辽宁红沿河核电厂可能最大风暴潮的估算

93、潜油电泵轴的可靠性分析与设计

94、起重机金属结构极限状态法设计研究

95、相依随机变量极限理论的若干结果

96、局部次高斯随机序列的强极限定理

97、基于自然风险度量的农业保险定价及其财政补贴研究

98、NA和(ρ|~)混合序列的某些收敛性质

99、可交换随机变量序列的极限理论

100、一类相依重尾随机序列的强极限定理及其应用

python数据挖掘技术及应用论文选题如下:1、基于关键词的文本知识的挖掘系统的设计与实现。2、基于MapReduce的气候数据的分析。3、基于概率图模型的蛋白质功能预测。4、基于第三方库的人脸识别系统的设计与实现。5、基于hbase搜索引擎的设计与实现。6、基于Spark-Streaming的黑名单实时过滤系统的设计与实现。7、客户潜在价值评估系统的设计与实现。8、基于神经网络的文本分类的设计与实现。

硕士数据挖掘毕业论文

寿险行业数据挖掘应用分析寿险是保险行业的一个重要分支,具有巨大的市场发展空间,因此,随着寿险市场的开放、外资公司的介入,竞争逐步升级,群雄逐鹿已成定局。如何保持自身的核心竞争力,使自己始终立于不败之地,是每个企业必须面对的问题。信息技术的应用无疑是提高企业竞争力的有效手段之一。寿险信息系统经过了多年的发展,已逐步成熟完善,并积累了相当数量的数据资源,为数据挖掘提供了坚实的基础,而通过数据挖掘发现知识,并用于科学决策越来越普遍受到寿险公司的重视。数据挖掘数据挖掘(Data Mining,DM)是指从大量不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、有用的信息和知识的过程。其表现形式为概念(Concepts)、规则(Rules)、模式(Patterns)等形式。目前业内已有很多成熟的数据挖掘方法论,为实际应用提供了理想的指导模型。CRISP-DM(Cross-Industry Standard Process for Data Mining)就是公认的、较有影响的方法论之一。CRISP-DM强调,DM不单是数据的组织或者呈现,也不仅是数据分析和统计建模,而是一个从理解业务需求、寻求解决方案到接受实践检验的完整过程。CRISP-DM将整个挖掘过程分为以下六个阶段:商业理解(Business Understanding),数据理解(Data Understanding),数据准备(Data Preparation),建模(Modeling),评估(Evaluation)和发布(Deployment)。商业理解就是对企业运作、业务流程和行业背景的了解;数据理解是对现有企业应用系统的了解;数据准备就是从企业大量数据中取出一个与要探索问题相关的样板数据子集。建模是根据对业务问题的理解,在数据准备的基础上,选择一种更为实用的挖掘模型,形成挖掘的结论。评估就是在实际中检验挖掘的结论,如果达到了预期的效果,就可将结论发布。在实际项目中,CRISP-DM模型中的数据理解、数据准备、建模、评估并不是单向运作的,而是一个多次反复、多次调整、不断修订完善的过程。行业数据挖掘经过多年的系统运营,寿险公司已积累了相当可观的保单信息、客户信息、交易信息、财务信息等,也出现了超大规模的数据库系统。同时,数据集中为原有业务水平的提升以及新业务的拓展提供了条件,也为数据挖掘提供了丰厚的土壤。根据CRISP-DM模型,数据挖掘首先应该做的是对业务的理解、寻找数据挖掘的目标和问题。这些问题包括:代理人的甄选、欺诈识别以及市场细分等,其中市场细分对企业制定经营战略具有极高的指导意义,它是关系到企业能否生存与发展、企业市场营销战略制定与实现的首要问题。针对寿险经营的特点,我们可以从不同的角度对客户群体进行分类归纳,从而形成各种客户分布统计,作为管理人员决策的依据。从寿险产品入手,分析客户对不同险种的偏好程度,指导代理人进行重点推广,是比较容易实现的挖掘思路。由于国内经济发展状况不同,各省差异较大,因此必须限定在一个经济水平相当的区域进行分析数据的采样。同时,市场波动也是必须要考虑的问题,一个模型从建立到废弃有一个生命周期,周期根据模型的适应性和命中率确定,因此模型需要不断修订。挖掘系统架构挖掘系统包括规则生成子系统和应用评估子系统两个部分。规则生成子系统主要完成根据数据仓库提供的保单历史数据,统计并产生相关规律,并输出相关结果。具体包括数据抽取转换、挖掘数据库建立、建模(其中包括了参数设置)、模型评估、结果发布。发布的对象是高层决策者,同时将模型提交给应用评估子系统.根据效果每月动态生成新的模型。应用评估子系统可以理解为生产系统中的挖掘代理程序,根据生成子系统产生的规则按照一定的策略对保单数据进行非类预测。通过系统的任务计划对生产数据产生评估指标。具体包括核心业务系统数据自动转入数据平台、规则实时评估、评估结果动态显示、实际效果评估。规则评估子系统根据规则进行检测。经过一段时间的检测,可利用规则生成子系统重新学习,获得新的规则,不断地更新规则库,直到规则库稳定。目前比较常用的分析指标有: 险种、交费年期、被保人职业、被保人年收入、被保人年龄段、被保人性别、被保人婚姻状况等。实践中,可结合实际数据状况,对各要素进行适当的取舍,并做不同程度的概括,以形成较为满意的判定树,产生可解释的结论成果。

社交网络是一个很大的问题。我觉得对于这类问题,首先你要搞清楚人才价值怎么衡量,用哪些方面来衡量。基于java算法,其实就是网络分析算法。比如对于有向图节点计算各种度,这些其实不算很难,网上都能找到源代码,所以怎么实现不用担心。最难的还是关于价值衡量这块,只有你确定了标准,你才可以行动。可以 IEEE找找NetWork Analysis这样的内容,我看过通过微博或者推特进行网络分析的论文。总之,毕业论文我觉得是大学最有意思的事情了,自己学学总是很开心的。

可以用新浪微博api爬虫下新浪微博数据 做微博的传播分析 其实也就是做图的分析

数据挖掘在软件工程技术中的应用毕业论文

【 摘要 】计算机技术在发展,软件也发展的越来越复杂,而系统开发工作也显得更加重要。信息技术的广泛应用会产生大量数据,通过对数据进行挖掘,分析其存在的规律,对实现数据资源的有效利用意义重大。本文就数据挖掘技术在软件工程中的应用作简要阐述。

【 关键词 】数据挖掘技术;软件工程中;应用软件技术

随着信息技术发展而快速发展,但是其可控性并不是特别强。软件在应用过程中会产生大量数据,数据作为一种宝贵的资源,有效的利用可以带来价值增值。作为软件开发行业,数据挖掘技术应用则实现了数据资源的有效利用,通过对其中规律进行研究,为软件工程提供相应指导,并且对于系统故障能够有效处理,成本评估的有效性也能够提升。

1数据挖掘技术应用存在的问题

信息数据自身存在的复杂性

软件工程所包含的数据可以分为两个类别,结构化与非结构化。在非结构化数据中软件代码发挥着重要作用。而对结构化数据产生影响的则是软件版本信息。结构与非结构化数据二者之间联系非常密切。实现数据有效利用就需要通过一定技术找出其中的规律。数据挖掘技术则刚好满足需求。利用该技术对结构与非结构化数据进行整合,提升其使用的有效性。

在评价标准方面缺乏一致性

数据挖掘技术在生活中的应用比较广泛,通过该技术应用能够更好的对实际情况进行评价,从而对结果进行优化。但是由于没有统一标准,导致了软件信息复杂。而在表述方式方面自身又存有差异性。信息获取者无法有效的对信息进行应用及对比。而信息缺乏统一标准的原因就在于评价方式不一致。

2数据挖掘技术在软件工程中的应用

数据挖掘执行记录

执行记录挖掘主要是对主程序的路径进行分析,从而发现程序代码存有的相关关系。其实质是通过对相关执行路径进行分析,并进行逆向建模,最终达到目的。作用在于验证,维护,了解程序。记录挖掘的过程通常是对被分析的系统进行初步插装,之后是记录过程,该过程在执行上一步程序后,对应用编程接口,系统,模块的状态变量记录,最后是对所得到的信息进行约简,过滤,聚类。最终得到的模型能够表达系统的特征。

漏洞检测

系统或是软件自身都会存在漏洞,漏洞自身具一定的隐蔽性,由于人的思维存在某些盲区,无法发现漏洞的存在,就需要借助于某些软件。检测漏洞的目的就在于找出软件中存在的漏洞及错误,并对其进行修复,从而保证软件质量与安全。将数据挖掘技术应用于软件检测,首先要确定测试项目,结合到用户需要,对测试内容进行规划,从而确定测试方法,并制定出具体方案。测试工作环节主要是对数据进行清理与转换,其基础在于漏洞数据收集,通过对收集与采集的信息进行清理,将与软件数据有关联同时存在缺陷的数据筛选出来,而将剩余无数据清理,对丢失项目采取相应措施补充,将其属性转换为数值表示。之后是选择适当的'模型进行训练与验证,该环节要结合到项目实际的需要选择挖掘方式,通过对不同数据结果进行分析与比较找到最适合的方式。之后则是重复应用上述方法,对软件存在的漏洞进行定位与检测。并将与之对应的数据收集于软件库,在对漏洞进行描述的基础上分类,最后将通过挖掘得到的知识应用到测试的项目中.

开源软件

对于开源软件的管理由于其自身的开放,动态与全局性,需要与传统管理软件进行区别对待,一般情况下,成熟的开源软件对于软件应用记录较为完整,参与的内容包括了错误报告,开发者活动。参与开发的工作人员会处在动态变化之中,存在动态变化的原因就在于软件的开放性。同时对于软件中动态性特征的挖掘,可达到对开源软件进行优质管理的目标。

版本控制信息

为了保证参与项目人员所共同编辑内容的统一性,就需要对系统应用进行控制。软件开发工程应用中,开发工作管理与保护都会通过版本控制系统来实施。并且其应用方式主要是对变更数据挖掘,找出不同模块及系统存在关系,并对程序中可能会存在的漏洞进行检测。此类技术的应用,使得系统后期维护成本被有效的降低,而对后期变更产生的漏洞也有一定的规避作用。

3数据挖掘在软件工程中的应用

关联法

该方法作用在于寻找数据中存在的相关联系与有趣关联。而体现的关联规则有两个明显的特征。①支持度;②信度。前者表示在某个事物集中,两个子集出现的概率是相同的。而后者则表明了某事物在事物集中出现的概率,而另一事物也会出现。

分类方法

该方法主要是应用于分类标号与离散值的操作。该方法的操作步骤是,首先要建立相应的模型,对数据进行描述,并利用模型对其进行分类。在分类方法选择方面,常用的有判定树法,贝叶斯法,支持项量机法等。判定树法应用的基础是贪心算法。

聚类方法

该方法常用的有划分方法,基于密度,模型,网格的方法与层次方法。聚类分析输入的是一组有序对,有序对中的数据分别表示了样本,相似度。其基本的应用理论是依据不同的对象数据予以应用。

4数据挖掘在软件工程中的应用

对克隆代码的数据挖掘

在软件工程中最为原始的是对克隆代码的检查测试。就其方式而言有文本对比为基础,标识符对比为基础。前者是利用系统中程序代码包含的语句进行判断。该方法在后期改进过程中主要是对字符串匹配效率进行提升。实际应用过程中是通过相关函数匹配对效率进行优化。

软件数据检索挖掘

该方法同样是软件工程中原始的挖掘需求之一。该方法在应用时主要有以下三个步骤。

①数据录入。其实质是对需要检索的信息录入,并结合到使用者需要在数据中查找使用者需要的数据。

②信息查找过程。确认了用户需要查找的信息后,系统将依据信息内容在数据库中进行查找,并分类罗列。

③信息数据导出与查看。用户可以依据自身需要将数据导出或者是在线查看。数据在导出时会形成相应的记录,客户再次进行查找时就会更加的方便与快捷。而将数据导出则需要利用到相关的软件。

应用于设计的三个阶段

软件工程有许多关于软件的资料,资料通常是存放于代码库中。数据运用可以提升工作效率。软件工程每一次循环都会产生大量的数据。基于软件工程生命周期可以将其分为分析设计,迭代的开发,维护应用三个阶段。

面向项目管理数据集的挖掘

软件开发工作到目前已经是将多学科集中于一体。如经济学,组织行为学,管理学等。对于软件开发者而言,关注的重点除过技术方面革新外,同时也需要科学规范的管理。除过对于版本控制信息挖掘外,还有人员组织关系挖掘。对于大规模的软件开发工作而言,对人力资源的有效分配与协调也是软件工作领域需要面对的问题。例如在大型系统开发过程中,往往会有许多人参与其中,人员之间需要进行沟通交流。交流方式包括了面对面沟通,文档传递,电子信息等。通过对人员之间的关系进行挖掘,有利于管理工作开展。员工群体存在的网络是社会网络。通过人员合理组织与分配,将会影响到项目进度,成本,成功的可能性。而对该方面实施研究通常采用的是模拟建模。

5结束语

软件工程技术在生活中许多领域都有广泛的应用,数据挖掘作为其中的一项技术,其重要性及作用随着技术发展而表现的越加明显。为了保证挖掘技术的可靠性与高效,与其它工程技术有一定融合性。数据挖掘在实际应用工作中体现出了巨大的经济效益,因此应该大力推进其应用的范围,并拓展其应用的深度与层次。

参考文献

[1]李红兰.试论数据挖掘技术在软件工程中的应用综述[J].电脑知识与技术,2016(34).

[2]雷蕾.关于数据挖掘技术在软件工程中的应用综述究[J].电子测试,2014(02).

[3]孙云鹏.数据挖掘技术在软件工程中的应用综述[J].中国新通信,2015(15).

毕业论文开题数据挖掘

数据挖掘在软件工程技术中的应用毕业论文

【 摘要 】计算机技术在发展,软件也发展的越来越复杂,而系统开发工作也显得更加重要。信息技术的广泛应用会产生大量数据,通过对数据进行挖掘,分析其存在的规律,对实现数据资源的有效利用意义重大。本文就数据挖掘技术在软件工程中的应用作简要阐述。

【 关键词 】数据挖掘技术;软件工程中;应用软件技术

随着信息技术发展而快速发展,但是其可控性并不是特别强。软件在应用过程中会产生大量数据,数据作为一种宝贵的资源,有效的利用可以带来价值增值。作为软件开发行业,数据挖掘技术应用则实现了数据资源的有效利用,通过对其中规律进行研究,为软件工程提供相应指导,并且对于系统故障能够有效处理,成本评估的有效性也能够提升。

1数据挖掘技术应用存在的问题

信息数据自身存在的复杂性

软件工程所包含的数据可以分为两个类别,结构化与非结构化。在非结构化数据中软件代码发挥着重要作用。而对结构化数据产生影响的则是软件版本信息。结构与非结构化数据二者之间联系非常密切。实现数据有效利用就需要通过一定技术找出其中的规律。数据挖掘技术则刚好满足需求。利用该技术对结构与非结构化数据进行整合,提升其使用的有效性。

在评价标准方面缺乏一致性

数据挖掘技术在生活中的应用比较广泛,通过该技术应用能够更好的对实际情况进行评价,从而对结果进行优化。但是由于没有统一标准,导致了软件信息复杂。而在表述方式方面自身又存有差异性。信息获取者无法有效的对信息进行应用及对比。而信息缺乏统一标准的原因就在于评价方式不一致。

2数据挖掘技术在软件工程中的应用

数据挖掘执行记录

执行记录挖掘主要是对主程序的路径进行分析,从而发现程序代码存有的相关关系。其实质是通过对相关执行路径进行分析,并进行逆向建模,最终达到目的。作用在于验证,维护,了解程序。记录挖掘的过程通常是对被分析的系统进行初步插装,之后是记录过程,该过程在执行上一步程序后,对应用编程接口,系统,模块的状态变量记录,最后是对所得到的信息进行约简,过滤,聚类。最终得到的模型能够表达系统的特征。

漏洞检测

系统或是软件自身都会存在漏洞,漏洞自身具一定的隐蔽性,由于人的思维存在某些盲区,无法发现漏洞的存在,就需要借助于某些软件。检测漏洞的目的就在于找出软件中存在的漏洞及错误,并对其进行修复,从而保证软件质量与安全。将数据挖掘技术应用于软件检测,首先要确定测试项目,结合到用户需要,对测试内容进行规划,从而确定测试方法,并制定出具体方案。测试工作环节主要是对数据进行清理与转换,其基础在于漏洞数据收集,通过对收集与采集的信息进行清理,将与软件数据有关联同时存在缺陷的数据筛选出来,而将剩余无数据清理,对丢失项目采取相应措施补充,将其属性转换为数值表示。之后是选择适当的'模型进行训练与验证,该环节要结合到项目实际的需要选择挖掘方式,通过对不同数据结果进行分析与比较找到最适合的方式。之后则是重复应用上述方法,对软件存在的漏洞进行定位与检测。并将与之对应的数据收集于软件库,在对漏洞进行描述的基础上分类,最后将通过挖掘得到的知识应用到测试的项目中.

开源软件

对于开源软件的管理由于其自身的开放,动态与全局性,需要与传统管理软件进行区别对待,一般情况下,成熟的开源软件对于软件应用记录较为完整,参与的内容包括了错误报告,开发者活动。参与开发的工作人员会处在动态变化之中,存在动态变化的原因就在于软件的开放性。同时对于软件中动态性特征的挖掘,可达到对开源软件进行优质管理的目标。

版本控制信息

为了保证参与项目人员所共同编辑内容的统一性,就需要对系统应用进行控制。软件开发工程应用中,开发工作管理与保护都会通过版本控制系统来实施。并且其应用方式主要是对变更数据挖掘,找出不同模块及系统存在关系,并对程序中可能会存在的漏洞进行检测。此类技术的应用,使得系统后期维护成本被有效的降低,而对后期变更产生的漏洞也有一定的规避作用。

3数据挖掘在软件工程中的应用

关联法

该方法作用在于寻找数据中存在的相关联系与有趣关联。而体现的关联规则有两个明显的特征。①支持度;②信度。前者表示在某个事物集中,两个子集出现的概率是相同的。而后者则表明了某事物在事物集中出现的概率,而另一事物也会出现。

分类方法

该方法主要是应用于分类标号与离散值的操作。该方法的操作步骤是,首先要建立相应的模型,对数据进行描述,并利用模型对其进行分类。在分类方法选择方面,常用的有判定树法,贝叶斯法,支持项量机法等。判定树法应用的基础是贪心算法。

聚类方法

该方法常用的有划分方法,基于密度,模型,网格的方法与层次方法。聚类分析输入的是一组有序对,有序对中的数据分别表示了样本,相似度。其基本的应用理论是依据不同的对象数据予以应用。

4数据挖掘在软件工程中的应用

对克隆代码的数据挖掘

在软件工程中最为原始的是对克隆代码的检查测试。就其方式而言有文本对比为基础,标识符对比为基础。前者是利用系统中程序代码包含的语句进行判断。该方法在后期改进过程中主要是对字符串匹配效率进行提升。实际应用过程中是通过相关函数匹配对效率进行优化。

软件数据检索挖掘

该方法同样是软件工程中原始的挖掘需求之一。该方法在应用时主要有以下三个步骤。

①数据录入。其实质是对需要检索的信息录入,并结合到使用者需要在数据中查找使用者需要的数据。

②信息查找过程。确认了用户需要查找的信息后,系统将依据信息内容在数据库中进行查找,并分类罗列。

③信息数据导出与查看。用户可以依据自身需要将数据导出或者是在线查看。数据在导出时会形成相应的记录,客户再次进行查找时就会更加的方便与快捷。而将数据导出则需要利用到相关的软件。

应用于设计的三个阶段

软件工程有许多关于软件的资料,资料通常是存放于代码库中。数据运用可以提升工作效率。软件工程每一次循环都会产生大量的数据。基于软件工程生命周期可以将其分为分析设计,迭代的开发,维护应用三个阶段。

面向项目管理数据集的挖掘

软件开发工作到目前已经是将多学科集中于一体。如经济学,组织行为学,管理学等。对于软件开发者而言,关注的重点除过技术方面革新外,同时也需要科学规范的管理。除过对于版本控制信息挖掘外,还有人员组织关系挖掘。对于大规模的软件开发工作而言,对人力资源的有效分配与协调也是软件工作领域需要面对的问题。例如在大型系统开发过程中,往往会有许多人参与其中,人员之间需要进行沟通交流。交流方式包括了面对面沟通,文档传递,电子信息等。通过对人员之间的关系进行挖掘,有利于管理工作开展。员工群体存在的网络是社会网络。通过人员合理组织与分配,将会影响到项目进度,成本,成功的可能性。而对该方面实施研究通常采用的是模拟建模。

5结束语

软件工程技术在生活中许多领域都有广泛的应用,数据挖掘作为其中的一项技术,其重要性及作用随着技术发展而表现的越加明显。为了保证挖掘技术的可靠性与高效,与其它工程技术有一定融合性。数据挖掘在实际应用工作中体现出了巨大的经济效益,因此应该大力推进其应用的范围,并拓展其应用的深度与层次。

参考文献

[1]李红兰.试论数据挖掘技术在软件工程中的应用综述[J].电脑知识与技术,2016(34).

[2]雷蕾.关于数据挖掘技术在软件工程中的应用综述究[J].电子测试,2014(02).

[3]孙云鹏.数据挖掘技术在软件工程中的应用综述[J].中国新通信,2015(15).

正常不应该算抄袭的,只能说是借鉴吧!有共同的地方也属于正常现象。

同一个观点每个人表述方法不一样, 一般来说不算抄袭,但是已经发表,也看到你说有一个点的思路雷同, 这就不能确定了,若果是已经既定、公示的理论,就没事比如1+1=2,大家都知道,就没必要明示。

寿险行业数据挖掘应用分析寿险是保险行业的一个重要分支,具有巨大的市场发展空间,因此,随着寿险市场的开放、外资公司的介入,竞争逐步升级,群雄逐鹿已成定局。如何保持自身的核心竞争力,使自己始终立于不败之地,是每个企业必须面对的问题。信息技术的应用无疑是提高企业竞争力的有效手段之一。寿险信息系统经过了多年的发展,已逐步成熟完善,并积累了相当数量的数据资源,为数据挖掘提供了坚实的基础,而通过数据挖掘发现知识,并用于科学决策越来越普遍受到寿险公司的重视。数据挖掘数据挖掘(Data Mining,DM)是指从大量不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、有用的信息和知识的过程。其表现形式为概念(Concepts)、规则(Rules)、模式(Patterns)等形式。目前业内已有很多成熟的数据挖掘方法论,为实际应用提供了理想的指导模型。CRISP-DM(Cross-Industry Standard Process for Data Mining)就是公认的、较有影响的方法论之一。CRISP-DM强调,DM不单是数据的组织或者呈现,也不仅是数据分析和统计建模,而是一个从理解业务需求、寻求解决方案到接受实践检验的完整过程。CRISP-DM将整个挖掘过程分为以下六个阶段:商业理解(Business Understanding),数据理解(Data Understanding),数据准备(Data Preparation),建模(Modeling),评估(Evaluation)和发布(Deployment)。商业理解就是对企业运作、业务流程和行业背景的了解;数据理解是对现有企业应用系统的了解;数据准备就是从企业大量数据中取出一个与要探索问题相关的样板数据子集。建模是根据对业务问题的理解,在数据准备的基础上,选择一种更为实用的挖掘模型,形成挖掘的结论。评估就是在实际中检验挖掘的结论,如果达到了预期的效果,就可将结论发布。在实际项目中,CRISP-DM模型中的数据理解、数据准备、建模、评估并不是单向运作的,而是一个多次反复、多次调整、不断修订完善的过程。行业数据挖掘经过多年的系统运营,寿险公司已积累了相当可观的保单信息、客户信息、交易信息、财务信息等,也出现了超大规模的数据库系统。同时,数据集中为原有业务水平的提升以及新业务的拓展提供了条件,也为数据挖掘提供了丰厚的土壤。根据CRISP-DM模型,数据挖掘首先应该做的是对业务的理解、寻找数据挖掘的目标和问题。这些问题包括:代理人的甄选、欺诈识别以及市场细分等,其中市场细分对企业制定经营战略具有极高的指导意义,它是关系到企业能否生存与发展、企业市场营销战略制定与实现的首要问题。针对寿险经营的特点,我们可以从不同的角度对客户群体进行分类归纳,从而形成各种客户分布统计,作为管理人员决策的依据。从寿险产品入手,分析客户对不同险种的偏好程度,指导代理人进行重点推广,是比较容易实现的挖掘思路。由于国内经济发展状况不同,各省差异较大,因此必须限定在一个经济水平相当的区域进行分析数据的采样。同时,市场波动也是必须要考虑的问题,一个模型从建立到废弃有一个生命周期,周期根据模型的适应性和命中率确定,因此模型需要不断修订。挖掘系统架构挖掘系统包括规则生成子系统和应用评估子系统两个部分。规则生成子系统主要完成根据数据仓库提供的保单历史数据,统计并产生相关规律,并输出相关结果。具体包括数据抽取转换、挖掘数据库建立、建模(其中包括了参数设置)、模型评估、结果发布。发布的对象是高层决策者,同时将模型提交给应用评估子系统.根据效果每月动态生成新的模型。应用评估子系统可以理解为生产系统中的挖掘代理程序,根据生成子系统产生的规则按照一定的策略对保单数据进行非类预测。通过系统的任务计划对生产数据产生评估指标。具体包括核心业务系统数据自动转入数据平台、规则实时评估、评估结果动态显示、实际效果评估。规则评估子系统根据规则进行检测。经过一段时间的检测,可利用规则生成子系统重新学习,获得新的规则,不断地更新规则库,直到规则库稳定。目前比较常用的分析指标有: 险种、交费年期、被保人职业、被保人年收入、被保人年龄段、被保人性别、被保人婚姻状况等。实践中,可结合实际数据状况,对各要素进行适当的取舍,并做不同程度的概括,以形成较为满意的判定树,产生可解释的结论成果。

相关百科

热门百科

首页
发表服务