首页

毕业论文

首页 毕业论文 问题

毕业论文用到企业数据

发布时间:

毕业论文用到企业数据

写论文的时候会有一些数据来体现出来,这也是一种议论文的书写方法。

会计专业毕业论文写采购要用到公司的数据支撑。据是会计毕业论文写作的重要资料,对数据的处理主要包括:详细列出有关数据,保留科学的有代表性的数据。对某些数据根据需要进行整理和运算。运用图表显示变化的规律和在不同变化条件下的数据状态。对数据进行必要的分析,得出正确的结论。

这是应该不违法毕业论文数据是不能乱写的。学生在做毕业论文时,对自己要解决的工程问题要建立数学模型,然后去做计算及仿真,有条件的话还要做试验验证计算的结果正确性

毕业论文拿不到企业数据

中小企业的数据在网上基本没有的,如果要找可以去某家公司做账。上市公司的报表数据因为需要披露,所以基本都可以查到,所以建议还是写有关上市公司的论文

中国知网也好,万方数据都有例子,甚至百度文库都有。

cnki网站上也有统计数据,企业数据的话一般是机密,国外的部分企业数据应该有文献可以找到。

如果是一般的财务数据,上市公司会披露的。

结合自己论文的需要来确定具体的企业,并对企业进行必要的分析。

扩展资料:

在查财务报表时,可以选择上市公司指定的信息披露报纸或刊物,目前证监会指定上市公司信息披露的报纸或刊物包括“七报一刊”,分别是:《中国证券报》、《上海证券报》、《证券时报》、《金融时报》、《经济日报》、《中国改革报》、《中国日报》和《证券市场周刊》。

目前实践中,很多上市公司选择了《中证券报报》、《上海证券报》和《证券时报》三大证券报为指定媒体进行信息披露。

除查看纸质媒体外,也可以到公司上市的交易所网站或者中国证监会指定信息披露网站“巨潮资网”进行方便的搜索查询。

中国证监会指定信息披露网站为“巨潮资讯网”,这里可以查询沪深两市的上市公司公告。

参考资料来源:百度百科——企业数据

呃,论文企业数据其实一般都得专业的数据库里面进行查找

1、官网网站,既然你要写某个公司,自然他是一个代表,说明也算是大型,典型企业,所以正规的官网总有的吧。如果是上市股份企业,自然他的财务报表经营情况网上也是公开能查到的。2、中经网,会有相应的统计数据3、数据库,比如维普,除了查论文,数据也是可以整理到的。4、国家统计局之类的,当然都是宏观层面的,写论文也是很好的材料。

毕业论文怎样引用企业数据

数据的末尾。首先用word打开要编辑的论文,这里使用word2013打开编辑,然后把鼠标移动到引用数据的末尾并点击一下。点击引用插入脚注也可以点击插入尾注然后就自动插入脚注了,并且按照文章中插入脚注自动编号,同时在末尾也插入有编号。最好插入带中括号的脚注。点击脚注框的右下角的箭头图标自定义标记输入点击插入。这样后面把脚注转换成插入文献就方便很多。直接双击脚注的编号就会自动移动到脚注尾部那里,这时就可以直接在在后面输入注明引用数据的来源了。

1、对于列出已发表的有影响的参考文献,一般不要引用未发表的数据、摘要、论文或其他间接材料。实在是需要引用这类材料的话,可以用括弧标注出来。如果是已被接收、将要发表的论文就可以引用,但要在将发表该论文的期刊名后注明/npress或Forthcoming(即将出版)。 2、投稿之前对照所引用文献的原始出处,认真检查参考文献那部分。投稿接受后,也需要对校样再做检查。 3、在检查的时候要确保在论文正文中引用的文献都确实列在参考文献部分中,也要确保列在参考文献部分的文章都确实在正文中被引用到了。

在文章中选择引用。参考文献按照其在正文中出现的先后以阿拉伯数字连续编码,序号置于方括号内。一种文献被反复引用者,在正文中用同一序号标示。一般来说,引用一次的文献的页码(或页码范围)在文后参考文献中列出。多次引用的文献,每处的页码或页码范围(有的刊物也将能指示引用文献位置的信息视为页码)分别列于每处参考文献的序号标注处,置于方括号后(仅列数字,不加“p”或“页”等前后文字、字符;页码范围中间的连线为半字线)并作上标。作为正文出现的参考文献序号后需加页码或页码范围的,该页码或页码范围也要作上标。作者和编辑需要仔细核对顺序编码制下的参考文献序号,做到序号与其所指示的文献同文后参考文献列表一致。另外,参考文献页码或页码范围也要准确无误。

本科毕业论文用到的数据

20个左右。毕业论文,泛指专科毕业论文、本科毕业论文(学士学位毕业论文)、硕士研究生毕业论文(硕士学位论文)、博士研究生毕业论文(博士学位论文)等。毕业生在教师的指导下运用所学得的知识分析和解决本门学科某1问题而写成的学术性论文,毕业论文是高等院校毕业生提交的1份有1定的学术价值的文章。它是大学生完成学业的标志性作业,是对学习成果的综合性总结和检阅,是大学生从事科学研究的最初尝试,是在教师指导下所取得的科研成果的文字记录,也是检验学生掌握知识的程度、分析问题和解决问题基本能力的1份综合答卷。

毕业论文数据量需要大约20000数据左右普通学校纯文科系的译仑文,本科生在8000-10000左右,硕士研究生在20000-30000左右,博士研究生在80000-100000左右,但各校之间仍有一定差异。这一具体要求必须联系领导确定。写一篇实证论文首先要具备本专业扎实的理论知识,有欠缺也不用担心,可以通过学习积累,同时多读多看,这一基本工作做好后;就会产生一些值得我们研究的选题或论题,许多作者就是这样得到自己的 idea,然后就需要根据确定的选题或论题进行文献收集,文献资料的收集方法很多,作者要根据自己的实际需要选择合适的方法,常用的方法有实验法,用问卷法等,然后提出一些假设,根据自己的选题和论题,用相关的理论和模型进行验证,写一篇实证论文简单来说就是这样一个流程和方法。

存货管理的本科生毕业论文在大学生联合库里可以看到。

存货管理的数据,可以从存货资产结构分布、存货资产质量、存货管理模式、存货周转情况四个方面进行切入分析。

也就是说需要存货资产结构分布、存货资产质量、存货管理模式、存货周转情况这四个方面的数据。

如何查找数据:

通过巨潮网进行数据查找。

首先搜索要查询的上市公司,代码或者简称都可以。

然后在上市公司的公告里去找季报、半年报和年报。

可以根据时间查询,年报一般是1到4月发布,3到4月会比较集中,一季报是4月发布,且晚于年报,半年报是7到8月发布,三季报是10月发布。

巨潮咨讯有个专门的定期报告的栏目,定期报告基本就是季报、半年报和年报。

毕业论文用到数据统计法

数理统计法在论文中要实际分析解决问题。

论文思路:

数学统计是使用数学统计分析方法解决实际问题的学科。它们是数学研究领域的一类分支,可以观察事物以确定基本规律这些规律是现象的根源,并利用统计数据作出预测。

数学统计已成为各种学科发展的一个重要因素,通过选择适当的统计分析方法,可以深入分析试验产生的元数据,从中提取模式,并将其用作监测活动的指南。通过数据分析,可以获得详细的产品信息,并在生产过程中严格控制多个不同的链接。要将数学统计学科应用于现实。

概率论与数理统计是随机数学的重要理论分支,具有深厚的实际应用背景,是数学建模的重要理论之一。

鉴于我国高校对应用型和创新型人才培养的实际需求,以该课程部分知识点的实际教学为例,介绍在“概率论与数理统计”课堂教学中,将数学模型思想融入课程,即将实际问题结合于理论知识,以达到使学生了解数学理论的实际应用,同时加深对基础知识的理解与记忆的目的。实践表明教学效果显著。

数理统计起源发展:

数理统计是伴随着概率论的发展而发展起来的一个数学分支,研究如何有效的收集、整理和分析受随机因素影响的数据,并对所考虑的问题作出推断或预测,为采取某种决策和行动提供依据或建议。

数理统计起源于人口统计、社会调查等各种描述性统计活动。

公元前2250年,大禹治水,根据山川土质,人力和物力的多寡,分全国为九州;殷周时代实行井田制,进行了土地与户口的统计;春秋时代常以兵车多寡论诸侯实力,可见已进行了军事调查和比较;汉代全国户口与年龄的统计数字有据可查;明初编制了黄册与鱼鳞册,黄册乃全国户口名册,鱼鳞册系全国土地图籍,绘有地形,完全具有现代统计图表的性质。

可见,我国历代对统计工作非常重视,只是缺少系统研究,未形成专门的著作。

在西方各国,统计工作开始于公元前3050年,埃及建造金字塔,为征收建筑费用,对全国人口进行普查和统计,到了亚里士多德时代,统计工作开始往理性演变。这时,统计在卫生、保险、国内外贸易、军事和行政管理方面的应用,都有详细的记载,统计一词,就是从意大利一词逐步演变而成的。

数理统计的发展大致可分为古典时期、近代时期和现代时期三个阶段。

缺失值的处理:缺失值是人群研究中不可避免的问题,其处理方式的差异可能在不同程度上引入偏倚,因此,详细报告数据清理过程中缺失值的处理方法有助于读者对潜在偏倚风险进行评价。例如,瑞舒伐他汀试验在统计分析部分详细说明了缺失值的填补策略,包括:将二分类结局中的缺失值视为未发生事件;将生物标志物和心电图测量中的缺失值进行多重填补(multiple imputation);为了证明缺失值处理的合理性和填补结果的稳定性,研究还比较了多重填补与完整数据(complete-case)分析的结果。2、数据的预处理:实施统计分析之前往往需要将原始数据进行预处理,如:对连续变量进行函数转换使其更接近正态分布,基于原始数据构建衍生变量,将连续变量拆分为分类变量或将分类变量的不同类别进行合并等。医学论文应报告处理原始数据的方法及依据,瑞舒伐他汀试验即在统计分析部分描述了对血液生物标志物的对数转换。3、变量分布特征描述:确定统计分析使用的变量,并针对每一个变量的分布特征进行描述,是决定研究选用何种统计分析方法的基础。医学期刊虽然普遍对此提出要求,但作者往往套用常用方法,如:连续变量符合正态分布时,采用均数(标准差)描述,否则采用中位数(四分位间距)描述;分类变量采用频数(百分比)描述等。事实上,应根据研究设计类型、统计分析目的和数据特征选择恰当的描述方法。例如,CKB选择采用年龄、性别和地区校正的均值和率来描述人群分布特征,而非简单的报告连续变量的均数和分类变量的构成比。4、主要分析(primary analysis):指针对研究结局的统计分析,是研究论文的核心证据。因此,医学论文应详细描述主要分析的实施过程和适用性。在试验性研究中,应明确统计分析数据集、试验效应指标、相对或绝对风险及其置信区间的计算方法、以及假设检验的方法。

论文数据方法有多选题研究、聚类分析和权重研究三种。

1、多选题研究:多选题分析可分为四种类型包括:多选题、单选-多选、多选-单选、多选-多选。

2、聚类分析:聚类分析以多个研究标题作为基准,对样本对象进行分类。如果是按样本聚类,则使用SPSSAU的进阶方法模块中的“聚类”功能,系统会自动识别出应该使用K-means聚类算法还是K-prototype聚类算法。

3、权重研究:权重研究是用于分析各因素或指标在综合体系中的重要程度,最终构建出权重体系。权重研究有多种方法包括:因子分析、熵值法、AHP层次分析法、TOPSIS、模糊综合评价、灰色关联等。

拓展资料:

一、回归分析

在实际问题中,经常会遇到需要同时考虑几个变量的情况,比如人的身高与体重,血压与年龄的关系,他们之间的关系错综复杂无法精确研究,以致于他们的关系无法用函数形式表达出来。为研究这类变量的关系,就需要通过大量实验观测获得数据,用统计方法去寻找他们之间的关系,这种关系反映了变量间的统计规律。而统计方法之一就是回归分析。

最简单的就是一元线性回归,只考虑一个因变量y和一个自变量x之间的关系。例如,我们想研究人的身高与体重的关系,需要搜集大量不同人的身高和体重数据,然后建立一个一元线性模型。接下来,需要对未知的参数进行估计,这里可以采用最小二乘法。最后,要对回归方程进行显著性检验,来验证y是否随着x线性变化。这里,我们通常采用t检验。

二、方差分析

在实际工作中,影响一件事的因素有很多,人们希望通过实验来观察各种因素对实验结果的影响。方差分析是研究一种或多种因素的变化对实验结果的观测值是否有显著影响,从而找出较优的实验条件或生产条件的一种数理统计方法。

人们在实验中所观察到的数量指标称为观测值,影响观测值的条件称为因素,因素的不同状态称为水平,一个因素可能有多种水平。

在一项实验中,可以得到一系列不同的观测值,有的是处理方式不同或条件不同引起的,称为因素效应。有的是误差引起的,称做实验误差。方差分析的主要工作是将测量数据的总变异按照变异原因的不同分解为因素效应和试验误差,并对其作出数量分析,比较各种原因在总变异中所占的重要程度,作为统计推断的依据。

例如,我们有四种不同配方下生产的元件,想判断他们的使用寿命有无显著差异。在这里,配方是影响元件使用寿命的因素,四种不同的配方成为四种水平。可以利用方差分析来判断。

三、判别分析

判别分析是用来进行分类的统计方法。我来举一个判别分析的例子,想要对一个人是否有心脏病进行判断,可以取一批没有心脏病的病人,测其一些指标的数据,然后再取一批有心脏病的病人,测量其同样指标的数据,利用这些数据建立一个判别函数,并求出相应的临界值。

这时候,对于需要判别的病人,还是测量相同指标的数据,将其带入判别函数,求得判别得分和临界值,即可判别此人是否属于有心脏病的群体。

四、聚类分析

聚类分析同样是用于分类的统计方法,它可以用来对样品进行分类,也可以用来对变量进行分类。我们常用的是系统聚类法。首先,将n个样品看成n类,然后将距离最近的两类合并成一个新类,我们得到n-1类,再找出最接近的两类加以合并变成n-2类,如此下去,最后所有的样品均在一类,将上述过程画成一张图。在图中可以看出分成几类时候每类各有什么样品。

比如,对中国31个省份的经济发展情况进行分类,可以通过收集各地区的经济指标,例如GDP,人均收入,物价水平等等,并进行聚类分析,就能够得到不同类别数量下是如何分类的。

五、主成分分析

主成分分析是对数据做降维处理的统计分析方法,它能够从数据中提取某些公共部分,然后对这些公共部分进行分析和处理。

在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。

主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。

最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。

如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现在F2中,用数学语言表达就是要求Cov(F1, F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P个主成分。

六、因子分析

因子分析是主成分分析的推广和发展,它也是多元统计分析中降维的一种方法。因子分析将多个变量综合为少数几个因子,以再现原始变量与因子之间的相关关系。

在主成分分析中,每个原始变量在主成分中都占有一定的分量,这些分量(载荷)之间的大小分布没有清晰的分界线,这就造成无法明确表述哪个主成分代表哪些原始变量,也就是说提取出来的主成分无法清晰的解释其代表的含义。

因子分析解决主成分分析解释障碍的方法是通过因子轴旋转。因子轴旋转可以使原始变量在公因子(主成分)上的载荷重新分布,从而使原始变量在公因子上的载荷两级分化,这样公因子(主成分)就能够用哪些载荷大的原始变量来解释。以上过程就解决了主成分分析的现实含义解释障碍。

例如,为了了解学生的学习能力,观测了许多学生数学,语文,英语,物理,化学,生物,政治,历史,地理九个科目的成绩。为了解决这个问题,可以建立一个因子模型,用几个互不相关的公共因子来代表原始变量。我们还可以根据公共因子在原始变量上的载荷,给公共因子命名。

例如,一个公共因子在英语,政治,历史变量上的载荷较大,由于这些课程需要记忆的内容很多,我们可以将它命名为记忆因子。以此类推,我们可以得到几个能评价学生学习能力的因子,假设有记忆因子,数学推导因子,计算能力因子等。

接下来,可以计算每个学生的各个公共因子得分,并且根据每个公共因子的方差贡献率,计算出因子总得分。通过因子分析,能够对学生各方面的学习能力有一个直观的认识。

七、典型相关分析

典型相关分析同样是用于数据降维处理,它用来研究两组变量之间的关系。它分别对两组变量提取主成分。从同一组内部提取的主成分之间互不相关。用从两组之间分别提取的主成分的相关性来描述两组变量整体的线性相关关系。

相关百科

热门百科

首页
发表服务