首页

毕业论文

首页 毕业论文 问题

氧化镍薄膜毕业论文

发布时间:

氧化镍薄膜毕业论文

首先我给你格式:封面 一,篇名: 1. 「篇名」包含「主篇名」与「副篇名」两部份.主篇名在前,副篇名在后,其间以「--」连接. 2. 主篇名统一名称为:「《⊙⊙⊙⊙》研析」.其中「⊙⊙⊙⊙」即为小论文中所讨论研析的书籍标题.副篇名自订,副篇名所指称的乃小论文议论之题旨. 3. 例如:《哈利波特—神秘的魔法石》研析--无奇不有的人性. 二,撰稿: 1. 若系小组作品,请注明所有小组成员名单.并於名字后面以()注明班级作号. 例如:张三(10605).李四(10208).王七(10504). 2. 严禁没有参与创作分工的同学做不实之挂名. 三,基本资料:含「作品名称」,「著作人」,「出版项」等. ……本文来自:公务员之家网() 网站介绍∶小陈老师的公务员之家,办的非常成功,极具口碑。在这里,你可以找到最具时事性的文章和最具代表性的各类文章,并且每一篇文章都是经过精心挑选而成的,完全可以免去写作的烦恼。在这里,拥有120多个实用范文栏目,非常值得已经成为公务员或即将成为公务员的朋友们学习和参考。详细出处参考: 你那个专业你自己应该清楚都学了些什么,然后才可以写相关的论文,否则我也帮不了你,下面我再给你范文,让你参考下:平面最终涂层 --------------------------------------------------------------------------------By Don Cullen 本文介绍,非电解镍镀层/浸金沉淀的特性。 PCB制造的最终涂层工艺在近年来已经经历重要变化。这些变化是对克服HASL(hot air solder leveling)局限的不断需求和HASL替代方法越来越多的结果。 最终涂层是用来保护电路铜箔的表面。铜(Cu)是焊接元件的很好的表面,但容易氧化;氧化铜阻碍焊锡的熔湿(wetting)。虽然现在使用金(Au)来覆盖铜,因为金不会氧化;金与铜会迅速相互扩散渗透。任何暴露的铜都将很快形成不可焊接的氧化铜。一个方法是使用镍(Ni)的“障碍层”,它防止金与铜转移和为元件的装配提供一个耐久的、导电性表面。PCB对非电解镍涂层的要求 非电解镍涂层应该完成几个功能: 金沉淀的表面 电路的最终目的是在PCB与元件之间形成物理强度高、电气特性好的连接。如果在PCB表面存在任何氧化物或污染,这个焊接的连接用当今的弱助焊剂是不会发生的。 金自然地沉淀在镍上面,并在长期的储存中不会氧化。可是,金不会沉淀在氧化的镍上面,因此镍必须在镍浴(nickel bath)与金溶解之间保持纯净。这样,镍的第一个要求是保持无氧化足够长的时间,以允许金的沉淀。元件开发出化学浸浴,以允许在镍的沉淀中6~10%的磷含量。非电解镍涂层中的这个磷含量是作为浸浴控制、氧化物、和电气与物理特性的仔细平衡考虑的。 硬度 非电解镍涂层表面用在许多要求物理强度的应用中,如汽车传动的轴承。PCB的需要远没有这些应用严格,但是对于引线接合(wire-bonding)、触感垫的接触点、插件连接器(edge-connetor)和处理可持续性,一定的硬度还是重要的。 引线接合要求一个镍的硬度。如果引线使沉淀物变形,摩擦力的损失可能发生,它帮助引线“熔”到基板上。SEM照片显示没有渗透到平面镍/金或镍/钯(Pd)/金的表面。电气特性 由于容易制作,铜是选作电路形成的金属。铜的导电性优越于几乎每一种金属(表一)1,2。金也具有良好的导电性,是最外层金属的完美选择,因为电子倾向于在一个导电路线的表面流动(“表层”效益)。铜 µΩcm 金 µΩcm 镍 µΩcm 非电解镍镀层 55~90 µΩcm 表一、PCB金属的电阻率 虽然多数生产板的电气特性不受镍层影响,镍可影响高频信号的电气特性。微波PCB的信号损失可超过设计者的规格。这个现象与镍的厚度成比例 - 电路需要穿过镍到达焊锡点。在许多应用中,电气信号可通过规定镍沉淀小于µm恢复到设计规格之内。 接触电阻 接触电阻与可焊接性不同,因为镍/金表面在整个终端产品的寿命内保持不焊接。镍/金在长期环境暴露之后必须保持对外部接触的导电性。Antler的1970年著作以数量表示镍/金表面的接触要求。研究了各种最终使用环境:3“65°C,在室温下工作的电子系统的一个正常最高温度,如计算机;125°C,通用连接器必须工作的温度,经常为军事应用所规定;200°C,这个温度对飞行设备变得越来越重要。” 对于低温环境,不需要镍的屏障。随着温度的升高,要求用来防止镍/金转移的镍的数量增加(表二)。3镍屏障层 65°C时的满意接触 125°C时的满意接触 200°C时的满意接触 µm 100% 40% 0% µm 100% 90% 5% µm 100% 100% 10% µm 100% 100% 60% 表二、镍/金的接触电阻(1000小时结果) 在Antler的研究中使用的镍是电镀的。预计从非电解镍中将得到改善,如Baudrand所证实的4。可是,这些结果是对 µm的金,这里平面通常沉淀 µm。平面可以推断对于在125°C操作的接触元件是足够的,但更高的温度元件将要求专门的测试。 Antler建议:“镍越厚,屏障越好,在所有情况中都是如此,但是PCB制造的实际情况鼓励工程师只沉淀所需要的镍量。平面镍/金现在已经用于那些使用触感垫接触点的蜂窝电话和寻呼机。这类元件的规格是至少2 µm镍。 连接器 非电解镍/浸金使用于含有弹簧配合、压入配合、低压滑动合其他无焊接连接器的电路板生产。 插件连接器要求更长的物理耐久性。在这些情况中,非电解镍涂层对于PCB应用的强度是足够的,但是浸金则不够。很薄的纯金(60~90 Knoop)在重复摩擦时会从镍上摩损掉。当金去掉后,暴露的镍很快氧化,结果增加接触电阻。 非电解镍涂层/浸金可能不是那些在整个产品寿命内经受多次插入的插件连接器的最佳选择。推荐镍/钯/金表面用于多用途连接器。5屏障层 非电解镍在板上有三个屏障层的功能:1)防止铜对金的扩散;2)防止金对镍的扩散;3)Ni3Sn4金属间化合物形成的镍的来源。 铜对镍的扩散 铜通过镍的转移结果将是铜对表面金的分解。铜将很快氧化,造成装配时的可焊性差,这发生在漏镀镍的情况。镍需要用来防止空板储运期间和当板的其他区域已经焊接时的装配期间的迁移扩散。因此,屏障层的温度要求是低于250°C之下少于一分钟。 Turn与Owen6研究过不同的屏障层对铜和金的作用。他们发现“...在400°C和550°C时铜渗透值的比较显示,有8~10%磷含量的六价铬与镍是所研究的最有效的屏障层”。(表三)镍厚度 400°C 24小时 400°C 53小时 550°C 12小时 µm 1 µm 12 µm 18 µm µm 1 µm 6 µm 15 µm µm 1 µm 1 µm 8 µm µm 无扩散 无扩散 无扩散 表三、铜穿过镍向金的渗透 按照Arrhenius方程,在较低温度下的扩散是成指数地慢。有趣的是,在这个试验中,非电解镍比电镀镍效率高2~10倍。Turn与Owen指出“...一个(8%)这种合金的2µm(80µinch)屏障将铜的扩散减少到一个可以忽略的地步。”6 从这个极端温度试验看出,最少2µm的镍厚度是一个安全的规格。 镍对金的扩散 非电解镍的第二要求是镍不要穿过浸金的“颗粒”或“细孔”迁移。如果镍与空气接触,它将氧化。氧化镍是不可焊接和用助焊剂去掉困难的。 有几篇文章是关于镍和金用于陶瓷芯片载体的。这些材料经受装配的极端温度达到很长的时间。这些表面的一个常见试验是500°C温度15分钟。7 为了评估平面非电解镍/浸金表面防止镍氧化的能力,进行了温度老化表面的可焊性研究。测试了不同的热/湿度和时间条件。这些研究已经显示镍受到浸金的充分保护,在长时的老化之后允许良好的可焊性(图一)。 镍对金的扩散可能是在某些情况中对装配的一个限定因素,如金热声波引线接合(gold thermalsonic wire-bonding)。在这个应用中,镍/金表面比镍/钯/金表面更次一些。Iacovangelo研究了钯作为镍与金的障碍层的扩散特性,发现µm的钯可防止甚至在极端温度的迁移。这个研究也证明在500°C温度15分钟内,没有俄歇电子能谱学(Auger spectroscopy)所决定的铜扩散穿过µm的镍/钯。 镍锡金属间化合物 在表面贴装或波峰焊接运行期间,从PCB表面的原子将与焊锡原子混合,决定于金属的扩散特性和形成“金属间化合物”的能力(表四)。7金属 温度°C 扩散率(µinches/sec.) 金 450486 铜 450525 钯 450525 镍 700 表四、PCB材料在焊接中的扩散率 在镍/金与锡/铅系统中,金马上溶入散锡之中。焊锡通过形成Ni3Sn4金属间化合物形成对下面镍的强附着性。应该沉淀足够的镍以保证焊锡将不会到达铜下面。Bader的测量表明不需要多过µm的镍来维持这个屏障层,甚至要经历超过六次的温度巡回。实际上,所观察到的最大金属间化合层厚度小于µm(20µinch)。 多孔性 非电解镍/金只是最近才成为一种普通的最终PCB表面涂层,因此工业程序可能对这种表面并不适合。现在有一种用于测试用作插件连接器的电解镍/金的多孔性的硝酸蒸汽工艺(IPC-TM-650 )9。非电解镍/浸金通不过这个测试。已经开发出一个使用铁氰化钾的欧洲多孔性标准,来决定平面表面的相对多孔性,结果是以单位每平方毫米的小孔数(pores/mm2)给出的。一个好的平面表面应该在100倍放大系数下少于每平方毫米10个小孔。结论 PCB制造工业由于成本、周期时间和材料兼容性的原因,对减少沉淀在电路板上的镍的数量感兴趣。最小镍的规格应该帮助防止铜对金表面的扩散、保持良好的焊接点强度、和较低的接触电阻。最大镍的规格应该允许板制造的灵活性,因为没有严重的失效方式是与厚的镍沉淀有关的。 对于大多数今天的电路板设计,µm(80µinches)的非电解镍涂层是所要求的最小镍厚度。在实际操作中,在PCB的一个生产批号中将使用一个范围的镍厚度(图二)。镍厚度的变化将是浸浴化学品特性的变化和自动起吊机器的驻留时间的变化结果。为了保证µm的最小值,来自最终用户的规格应该要求µm,最小为µm,最大为µm。 镍厚度的这个规定范围已经证明是适合于上百万电路板的生产的。该范围满足可焊性、货架寿命和今天电子产品的接触要求。因为装配要求是从一个产品不同于另一个产品,表面涂层可能需要针对每个特殊应用进行优化。References Mallory, G.(1990). Electroless plating. AESF Publications. Safranek, W.(1986). Properties of electrodeposited metals and alloys. AESF Publications. Antler, M.(1970, June). Gold-plated contacts: Effect of heating on reliability. Plating. Baudrand, D. (1981, Dec.). Use of electroless nickel to reduce gold requirements. Plating and Surface Finishing. Kudrak, E. et al. (1991, March). Wear reliability of gold-flashed palladium vs. hard gold on a high-speed digital connector system. Plating and Surface Finishing. Turn, . and Owen, . (1974, Nov.). Metallic diffusion barriers for the copper-electrodeposited gold system. Plating. Bader, W. (1969, Dec.). Dissolution of Au, Ag, Pd, Cu and Ni in a molten tin lead solder. Welding. Iacovangelo, C. New autocatalytic gold bath and diffusion barrier coatings. Cullen, D. (March 1997). TR-104. Wirebonding to electrolessly deposited metallic circuit board finishes. IPC Expo Proceedings. Don Cullen, is technology manager - electronics with MacDermid Inc., Waterbury, CT; (203) 575-5700. Contact him for the unabridged version of this article. (A 05/22/2001)

氧化镍薄膜有介电屏蔽作用。氧化镍薄膜阻变机理主要为金属细丝或空位细丝,引入PN结的夹层薄膜结构因形成界面缺陷可使开关比提高三个数量级到105,达到介电屏蔽作用。

氧化镍锂电负极毕业论文

化学电池化学电池将化学能直接转变为电能的装置。主要部分是电解质溶液、浸在溶液中的正、负电极和连接电极的导线。依据能否充 电复原,分为原电池和蓄电池两种 化学电池的种类 化学电池按工作性质可分为:一次电池(原电池);二次电池(可充电电池);铅酸蓄电池。其中:一次电池可分为:糊式锌锰电池、纸板锌锰电池、碱性锌锰电池、扣式锌银电池、扣式锂锰电池、扣式锌锰电池、锌空气电池、一次锂锰电池等。二次电池可分为:镉镍电池、氢镍电池、锂离子电池、二次碱性锌锰电池等。铅酸蓄电池可分为:开口式铅酸蓄电池、全密闭铅酸蓄电池。 1.锌锰电池 锌二氧化锰电池(简称锌锰电池) 又称勒兰社(Leclanche)电池,是法国科学家勒兰社(Leclanche,1839-1882)于1868年发明的由锌(Zn)作负极,二氧化锰(MnO2)为正极,电解质溶液采用中性氯化铵(NH4Cl)、氧化锌(ZnCl2)的水溶液,面淀粉或浆层纸作隔离层制成的电池称锌锰电池,由于其电解质溶液通常制成凝胶状或被吸附在其它载体上而呈现不流动状态,故又称锌锰干电池。按使用隔离层区分为糊式和板式电池两种,板式又按电解质液不同分铵型和锌型电池纸板电池两种。 干电池用锌制筒形外壳作负极,位于中央的顶盖上有铜帽的石墨棒作正极,在石墨棒的周围由内向外依次是A:二氧化锰粉末(黑色)------用于吸收在正极上生成的氢气(以防止产生极化现象);B:用饱和了氯化铵和氯化锌的淀粉糊作为电解质溶液。 电极反应式为:负极(锌筒):Zn +– 2e === Zn(NH3)2Cl2↙+2H+ 正极(石墨):2NH4+ === 2NH3 ↑+ H2↑ H2O + 2MnO2 + 2e === 2MnOOH+ 2OH- 总反应:Zn + 2NH4Cl + 2MnO2 === Zn(NH3)2Cl2↙+2MnOOH 干电池的电压大约为,不能充电再生。 2.碱性锌锰电池 20世纪中期在锌锰电池基础上发展起来的,是锌锰电池的改进型。电池使用氢氧化钾(KOH)或氢氧化钠(NaOH)的水溶液做电解质液,采用了与锌锰电池相反的负极结构,负极在内为膏状胶体,用铜钉做集流体,正极在外,活性物质和导电材料压成环状与电池外壳连接,正、负极用专用隔膜隔开制成的电池。 3.铅酸蓄电池 1859年法国普兰特(Plante)发现,由正极板、负极板、电解液、隔板、容器(电池槽)等5个基本部分组成。用二氧化铅作正极活性物质,铅作负极活性物质,硫酸作电解液,微孔橡胶、烧结式聚氯乙烯、玻璃纤维、聚丙烯等作隔板制成的电池。 铅蓄电池可放电也可以充电,一般用硬橡胶或透明塑料制成长方形外壳(防止酸液的泄漏);设有多层电极板,其中正极板上有一层棕褐色的二氧化铅,负极是海绵状的金属铅,正负电极之间用微孔橡胶或微孔塑料板隔开(以防止电极之间发生短路);两极均浸入到硫酸溶液中。放电时为原电池,其电极反应为: 负极:Pb + SO42-- 2e === PbSO4 正极:PbO2 + 4H+ + SO42- + 2e === PbSO4 + 2H2O 总反应式为:Pb + PbO2 + 2H2SO4 ====== 2PbSO4 + 2H2O 当放电进行时,硫酸溶液的的浓度将不断降低,当溶液的密度降到 时应停止使用进行充电,充电时为电解池,其电极反应如下: 阳极:PbSO4 + 2H2O- 2e === PbO2 + 4H+ + SO42- 阴极:PbSO4 + 2e === Pb + SO42- 总反应式为:2PbSO4 + 2H2O ====== Pb + PbO2 + 2H2SO4 当溶液的密度升到时,应停止充电。 上述过程的总反应式为: 放电 Pb + PbO2 + 2H2SO4 ====== 2PbSO4 + 2H2O 充电 4.锌银电池 一般用不锈钢制成小圆盒形,圆盒由正极壳和负极壳组成,形似纽扣(俗称纽扣电池)。盒内正极壳一端填充由氧化银和石墨组成的正极活性材料,负极盖一端填充锌汞合金组成的负极活性材料,电解质溶液为KOH浓溶液。电极反应式如下: 负极:Zn + 2OH- -2e=== ZnO + H2O 正极:Ag2O + H2O + 2e === 2Ag + 2OH- 电池的总反应式为:Ag2O + Zn ====== 2Ag + ZnO 电池的电压一般为,使用寿命较长。 5.镉镍电池和氢镍以及金属氢化物镍电池 二者均采用氧化镍或氢氧化镍作正极,以氢氧化钾或氢氧化钠的水溶液作电解质溶液,金属镉或金属氢化物作负极。金属氢化物电池为20世纪80年代末,利用吸氢合金和释放氢反应的电化学可逆性发明制成,是小型二次电池主导产品。 6.锂电池 锂电池是一类以金属锂或含锂物质作为负极材料的化学电源的总称通称锂电池,分为一次锂电池和二次锂电池。 7.锂离子电池 指能使锂离子嵌入和脱嵌的碳材料代替纯锂作负极,锂的化合物作正极,混合电解液作电解质液制成的电池。锂离子电池是1990年有日本索尼公司研制出并首先实现产品化。国内外已商品化的锂离子电池正极是LiCoO2,负极是层状石墨,电池的电化学表达式为(—) C6▏1mol/L LiPF6-EC+DEC▏LiCoO2(+) 8.氢氧燃料电池 这是一种高效、低污染的新型电池,主要用于航天领域。其电极材料一般为活化电极,具有很强的催化活性,如铂电极、活性碳电极等。电解质溶液一般为40%的KOH溶液。电极反应式如下: 负极:2H2 + 4OH- -4e=== 4H2O 正极:O2 + 2H2O + 4e=== 4OH- 总反应式:2H2 + O2 === 2H2O 9.熔融盐燃料电池 这是一种具有极高发电效率的大功率化学电池,在加拿大等少数发达国家己接近民用工业化水平。按其所用燃料或熔融盐的不同,有多个不同的品种,如天然气、CO、---熔融碳酸盐型、熔融磷酸盐型等等,一般要在一定的高温下(确保盐处于熔化状态)才能工作。 下面以CO---Li2CO3 + Na2CO3---空气与CO2型电池为例加以说明: 负极反应式:2CO + 2CO32--4e === 4CO2 正极反应式:O2 + 2CO2 + 4e=== 2CO32- 总反应式为:2CO + O2 === 2CO2 该电池的工作温度一般为6500C 10.海水电池 1991年,我国科学家首创以铝---空气---海水为材料组成的新型电池,用作航海标志灯。该电池以取之不尽的海水为电解质,靠空气中的氧气使铝不断氧化而产生电流。其电极反应式如下: 负极:4Al – 12e === 4Al3+ 正极:3O2 + 6H2O + 12e === 12OH- 总反应式为:4Al + 3O2 + 6H2O === 4Al(OH)3 这种电池的能量比普通干电池高20---50倍! 新型化学电池 (1碱性氢氧燃料电池 这种电池用30%-50%KOH为电解液,在100°C以下工作。燃料是氢气,氧化剂是氧气。其电池图示为 (―)C|H2|KOH|O2|C(+) 电池反应为 负极 2H2 + 4OH―4e=4H2O 正极 O2 + 2H2O + 4e=4OH 总反应 2H2 + O2=2H2O 碱性氢氧燃料电池早已于本世纪60年代就应用于美国载人宇宙飞船上,也曾用于叉车、牵引车等,但其作为民用产品的前景还评价不一。否定者认为电池所用的电解质KOH很容易与来自燃料气或空气中的CO2反应,生成导电性能较差的碳酸盐。另外,虽然燃料电池所需的贵金属催化剂载量较低,但实际寿命有限。肯定者则认为该燃料电池的材料较便宜,若使用天然气作燃料时,它比唯一已经商业化的磷酸型燃料电池的成本还要低。 (2) 磷酸型燃料电池 它采用磷酸为电解质,利用廉价的炭材料为骨架。它除以氢气为燃料外,现在还有可能直接利用甲醇、天然气、城市煤气等低廉燃料,与碱性氢氧燃料电池相比,最大的优点是它不需要CO2处理设备。磷酸型燃料电池已成为发展最快的,也是目前最成熟的燃料电池,它代表了燃料电池的主要发展方向。目前世界上最大容量的燃料电池发电厂是东京电能公司经营的11MW美日合作磷酸型燃料电池发电厂,该发电厂自1991年建成以来运行良好。近年来投入运行的100多个燃料电池发电系统中,90%是磷酸型的。市场上供应的磷酸型发电系统类型主要有日本富士电机公司的50KW或100KW和美国国际燃料电池公司提供的200KW。 富士电机已提供了70多座电站,现场寿命超过10万小时。 磷酸型燃料电池目前有待解决的问题是:如何防止催化剂结块而导致表面积收缩和催化剂活性的降低,以及如何进一步降低设备费用。 化学电源的重大意义: 化学能转换为电能的原理的发现和各式各样电池装置的发明,是贮能和供能技术的巨大进步,是化学对人类的一项重大贡献,极大地推进了现代化的进程,改变了人们的生活方式,提高了人们的生活质量。

正负极材料本身的毒性不大,但是粉尘会影响呼吸道,要带口罩,这个其实配料段的影响最大。配料,涂布,制片,卷绕,套壳,激光焊,注液,化成,pack类之中中套壳,激光焊,化成,pack类可能没什么毒性的,其他的有的有粉尘,有的有化学物质,如电解液,nmp等的影响,出于健康考虑的话可以申请去那几个工序。电池的性能参数主要有电动势、容量、比能量和电阻。电动势等于单位正电荷由负极通过电池内部移到正极时,电池非静电力(化学力)所做的功。电动势取决于电极材料的化学性质,与电池的大小无关。电池所能输出的总电荷量为电池的容量,通常用安培小时作单位。在电池反应中,1千克反应物质所产生的电能称为电池的理论比能量。电池的实际比能量要比理论比能量小。因为电池中的反应物并不全按电池反应进行,同时电池内阻也要引起电动势降,因此常把比能量高的电池称做高能电池。电池的面积越大,其内阻越小。电池的能量储存有限,电池所能输出的总电荷量叫做它的容量,通常用安培小时作单位,它也是电池的一个重要参数。原电池制成后即可以产生电流,但在放电完毕即被废。

特点如下:1. 氧化镍锂和氧化钻锂一样,为层状结构。2.作为锂电池的正极材料,尽管LiNiO2比LiCoO2便宜,容量可达130mAh以上 3.但是在一般情况下,镍较难氧化为+4价,易生成缺锂的氧化镍锂;4.另外热处理温度不能过高,否则生成的氧化镍锂会发生分解,因此实际上很难批量制备理想的LiNiO2层状结构。

总反应:Ni2O3 + Zn + H2O + 2OH - =2Ni(OH)2 + ZnO2 2-负极: Zn - 2e- + 4OH- = ZnO2 2- + 2H2O正极: Ni2O3 + 2e- + 3H2O = 2 Ni(OH)2 + 2OH- 希望可以帮到你

薄膜包衣毕业论文

糖衣片:糖衣片是指在素片上包裹糖衣以增加片剂稳定性或者掩盖药物气味或者口味的一种剂型。糖衣片的好处,增加制剂稳定性,掩盖不良药味,片面光洁美观。糖衣片的劣势在于使用大量蔗糖和滑石粉,一般包衣材料和素片重量相当,使得包出来的片子体积较大;同时因为使用了蔗糖,不利于糖尿病人等的服用。而且糖衣片容易出现花斑、霉变等情况。薄膜衣片:薄膜衣片是相对糖衣片而言,采用符合包衣要求的高分子物料,以有机溶媒溶解,包于片剂表面,当溶媒蒸发后,片剂表面形成一层膜,所得片剂包衣层大大减薄,体积较小。薄膜衣片的缺点:由于衣层薄,片剂原来的颜色不易完全掩盖起来,故不如糖衣美观。

在制备薄膜包衣液式控释膜时,选择适当的溶剂至关重要,因为溶剂的性质将直接影响到制备过程以及最终产品的质量。在选择溶剂时,需要考虑以下几个方面:1. 溶解性:选择的溶剂应能充分溶解高分子聚合物和其他成分,以便形成均匀的薄膜。此外,溶剂应具有良好的溶解能力,以便快速制备溶液并避免加热或过度搅拌。2. 挥发性:溶剂挥发速度会影响薄膜的形成速度和结构。挥发速度适中的溶剂可以在包衣过程中形成均匀的薄膜,且易于控制。过快挥发的溶剂可能导致包衣不均匀,而过慢挥发的溶剂可能导致薄膜干燥时间过长。3. 与聚合物的相容性:溶剂应与聚合物具有良好的相容性,以确保薄膜的性能。不相容的溶剂可能导致薄膜的结构不稳定,影响其控释性能。4. 安全性和环保性:选择的溶剂应具有低毒性、低燃点和低环境影响。在可能的情况下,优先选择水性溶剂,以减少对环境和操作人员的影响。5. 经济性:在保证质量的前提下,应选择成本低、易于获取的溶剂。6. 对被包衣物质的影响:溶剂不应与被包衣物质发生反应或影响其稳定性。特别是在制备药物控释膜时,需要确保溶剂对药物活性成分无损害。综上所述,选择溶剂时需充分考虑溶解性、挥发性、相容性、安全性、环保性、经济性以及对被包衣物质的影响等因素,以确保制备出高质量的薄膜包衣液式控释膜。

吹塑薄膜毕业论文

吹塑薄膜与用扁平机头挤出的薄膜相比,有如下优点。(1) 设备简单,投资少,收效快。如生产幅宽为4m的薄膜,用吹塑法机头直径为500mm,用扁平机头需宽度为4200mm的模唇,尺寸庞大,机头设计、加工难度大,造价昂贵。(2) 挤出薄膜再经牵伸和吹胀,获得双向拉伸变形,使薄膜的力学强度有所提髙,薄膜的纵向和横向强度较均衡。(3) 机台的利用率高,即同一台设备可生产多种规格的产品,有些薄膜的幅度可达10m以上。(4) 挤出吹塑所得的薄膜呈圆筒形,用于制成包装袋时可道焊接线,使制袋容易。 (5) 生产过程中无废边料,无需切除边料,使成品率较高,降低了制品成本。 (6) 操作简单,工艺控制容易。因此,在塑料薄膜中,约80%是吹塑法生产的。但与挤出平膜、双向拉伸膜和压延膜相比,吹塑薄膜的主要缺点是薄膜厚度均匀性较差,挤出线速度低(因受冷却的限制,卷取线速度不快),使产量不够高。吹塑薄膜的一般规格为:厚,折径100 ~6000mm。

聚乙烯纳米材料的发展前景及现状。这个,您的,任务书可以给我,/吧

价格合理!信工毕业 就会单片机

不是文采不可以!只是你实习真正学到东西了吗

光学薄膜类毕业论文

光学薄膜行业市场参与者较多

使用“企查猫”企业大数据平台,以“光学薄膜”为关键词,通过查询企业名称、品牌、经营范围、企业简介中涵盖“光学薄膜”的企业,筛选注册资本在1万元以上的企业,得到以下数据。

根据企查猫查询数据显示,我国光学薄膜行业历年新注册企业数量呈现不断上升的趋势。截至2022年11月,中国光学薄膜行业注册企业共有3741家,其中2021年新注册企业数量创历史高峰,达449家。总体来看,中国光学薄膜行业企业参与者不多,但近年来热度较高,新进入企业数量快速提高。

代表性企业销量规模增长良好

2018-2021年,中国光学薄膜行业主要企业光学薄膜产品销量基本呈现良好的增长势头,销量规模持续扩大。其中,销量规模增速最快为东材科技,2019年其销量规模为万吨,2021年为万吨,三年间销量规模增长了3倍,主要系2021年公司收购山东胜通,新增4万吨光学膜产能,并借助良好的市场顺利实现销售。长阳科技、裕兴股份2019-2021年销量规模复合增速分别达到以及。

注:由于口径统计差异,双星新材2018-2019年以“聚酯薄膜”口径统计销量、长阳科技2018年以“反射膜及背板基膜”合并统计销量,与光学薄膜口径有差异,故不纳入相关数据。

2018-2021年,激智科技光学膜业务整体销量规模整体较为平稳,2021年达到亿平方米,同比增长;斯迪克从2019年的亿平方米增长至2021年的亿平方米,三年间销量规模复合增速达到。

注:斯迪克统计口径为“功能性薄膜材料及电子级胶粘材料销量”。

光学薄膜市场规模扩张较快

结合双星新材公告及tbTEAM数据,2019年,中国光学薄膜行业市场规模约354亿元。光学薄膜下游行业主要是消费电子产品,目前中国电脑出货量约是全球出货量的2/3,而根据Counterpoint公布的2021年度全球手机产量数据,中国贡献了全球手机产量的67%,中国已成为全球消费电子制造大国,因此中国光学薄膜行业市场规模增速应高于全球增速的增速。结合中国光学薄膜行业代表性企业营收规模增长情况,初步测算,2021年中国光学薄膜行业市场规模约为425亿元。

行业投融资热度较高

光学薄膜行业属于新材料行业中的膜材料行业,由于统计口径限制,在烯牛数据中筛选膜材料行业进行搜索,可见2017-2022年,我国膜材料行业投融资规模处于波动增长的状态。总体来看,投融资事件数量较多,行业的投融资热度较高。截至2022年12月13日,本年度投融资事件共36起,本年度投融资数量水平维持高位。

注:2022年数据截至2022年12月13日。

未来市场规模复合增速超10%

目前,中国已经成为全球最大的消费电子产品生产国、出口国和消费国,随着中国人均收入水平的不断提高,消费者对液晶电视、手机、电脑等消费类电子产品品质要求不断提升,更新换代频率加快,长远看需求依然强劲。而伴随着5G技术、物联网技术的发展,穿戴式产品、家庭居住等新型智能硬件产品迅猛发展,光学薄膜产品下游产品范围不断延伸,新型应用场景的不断丰富,也将带动显示光学薄膜的下游市场需求增长。此外,随着国内产品国产替代的步伐加快,预计2022-2027年,中国光学薄膜行业市场规模增速仍高于全球平均水平,复合增速约,2027中国光学薄膜行业市场规模约769亿元。

—— 更多本行业研究分析详见前瞻产业研究院《中国光学薄膜行业发展前景与投资战略规划分析报告》

1. 制备技术:目前,光学薄膜制备技术主要包括物理气相沉积(PVD)、化学气相沉积(CVD)、溅射技术、分子束外延(MBE)等。各种技术在制备过程中具有各自的特点与优势,如溅射技术在高温与低温薄膜制备中具有较好的应用前景。2. 发展前景:(1)新材料的开发:随着科学技术的不断发展,新型光学薄膜材料的研究将不断推进,包括低损耗、高抗损伤、高抗腐蚀性等具有优越性能的材料。(2)制备工艺的创新:为满足不同应用场景的需求,制备工艺将更加多样化,包括原子层沉积(ALD)、纳米材料沉积等新型制备技术。(3)应用领域的拓展:光学薄膜在光学仪器、通信技术、激光技术、光伏技术等领域具有广泛的应用前景。随着技术的发展,光学薄膜将在更多领域得到应用,如生物医学、航空航天等。(4)绿色制造:随着环保意识的增强,光学薄膜制备过程中的环保问题将受到越来越多的关注。绿色制造技术将成为光学薄膜制备领域的一个重要发展趋势。

光学薄膜技术是一门交叉性很强的学科,它涉及到光电技术、真空技术、材料科学、精密机械制造、计算机技术、自动控制技术等领域。光学薄膜是一类重要的光学元件,它广泛地应用于现代光学光电子学、光学工程以及其他相关的科 学技术领域。它不仅能改善系统性能(如减反、滤波),而且是满足设计目标的必要手段。光学薄膜可分光透射,分光反射,分光吸收以及改变光的偏振状态或相位,用作各种反射膜,增透膜和干涉滤光片,它们赋予光学元件各种使用性能,对光学仪器的质量起着重要或决定性的作用。

科学家曾经预言21世纪是光子世纪。21世纪初光电子技术迅速发展,光学薄膜器件的应用向着性能要求和技术难度更高、应用范围和知识领域更广、器件种类和需求数量更多的方向迅猛发展。光学薄膜技术的发展对促进和推动科学技术现代化和仪器微型化起着十分重要的作用,光学薄膜在各个新兴科学技术中都得到了广泛的应用。

一、光学薄膜的制造技术

光学薄膜可以采用物理气相沉积(PVD)、化学气相沉积(CVD)和化学液相沉积(CLD)三种技术来制备。

1、物理气相沉积(PVD)

PVD需要使用真空镀膜机,制造成本高,但膜层厚度可以精确控制,膜层强度好,目前已被广泛采用。在PVD法中,根据膜料气化方式的不同,又分为热蒸发、溅射、离子镀及离子辅助镀技术。其中,光学薄膜主要采用热蒸发及离子辅助镀技术制造,溅射及离子镀技术用于光学薄膜制造的工艺是近几年才开始的。

热蒸发

光学薄膜器件主要采用真空环境下的热蒸发方法制造,此方法简单、经济、操作方便。尽管光学薄膜制备技术得到长足发展,但是真空热蒸发依然是最主要的沉积手段,当然热蒸发技术本身也随着科学技术的发展与时俱进。 在真空室中,加热蒸发容器中待形成膜的原材料,使其原子或分子从表面气化逸出,形成蒸汽流,入射到固体(称为衬底或基片)表面,凝结形成固态薄膜的方法。

热蒸发的三种基本过程:由凝聚相转变为气相的相变过程;气化原子或分子在蒸发源与基片之间的运输,即这些粒子在环境气氛中的飞行过程;蒸发原子或分子在基片表面的沉积过程。

溅射

溅射指用高速正离子轰击膜料表面,通过动量传递,使其分子或原子获得足

够的动能而从靶表面逸出(溅射),在被镀件表面凝聚成膜。

与蒸发镀膜相比,其优点是:膜层在基片上的附着力强,膜层纯度高,可同时溅射不同成分的合金膜或化合物;缺点是:需制备专用膜料靶,靶利用率低。

溅射的方式有三种:二级溅射、三级/四级溅射、射频溅射。

离子镀

离子镀兼有热蒸发的高成膜速率和溅射高能离子轰击获得致密膜层的双优效果,离子镀膜层附着力强、致密。离子镀常见类型:蒸发源和离化方式。

特点:

a、膜附着力强。这是由注入和溅射所致。

b、绕镀性好。原理上,电力线所到之处皆可镀上膜层,有利于面形复杂零件膜层的镀制。

c、膜层致密。溅射破坏了膜层柱状结构的形成。

d、成膜速率高。与热蒸发的成膜速率相当。

e、可在任何材料的工作上镀膜。绝缘体可施加高频电场。

粒子辅助镀

在热蒸发镀膜技术中增设离子发生器—离子源,产生离子束,在热蒸发进行的同时,用离子束轰击正在生长的膜层,形成致密均匀结构(聚集密度接近于1),使膜层的稳定性提高,达到改善膜层光学和机械性能。

离子辅助镀技术与离子镀技术相比,薄膜的光学性能更佳,膜层的吸收减少,波长漂移极小,牢固度好,该技术适合室温基底和二氧化锆、二氧化钛等高熔点氧化物薄膜的镀制,也适合变密度薄膜、优质分光镜和高性能滤光片的镀制。

2、化学气相沉积(CVD)

化学气相沉积就是利用气态先驱反应物,通过原子、分子间化学反应的途径来生成固态薄膜的技术。

CVD一般需要较高的沉积温度,而且在薄膜制备前需要特定的先驱反应物,在薄膜制备过程中也会产生可燃、有毒等一些副产物。但CVD技术制备薄膜的沉积速率一般较高。

3、化学液相沉积(CLD)

CLD工艺简单,制造成本低,但膜层厚度不能精确控制,膜层强度差,较难获得多层膜,还存在废水废气造成的污染问题,已很少使用。

二、光学薄膜的种类

用光学功能薄膜制成的种类繁多的光学薄膜器件,已成为光学系统、光学仪器中不可缺少的重要部件。其应用已从传统的光学仪器发展到天文物理、航天、激光、电工、通信、材料、建筑、生物医学、红外物理、农业等诸多技术领域。

分为 : 基本光学薄膜、控光薄膜、光学薄膜材料

1、基本光学薄膜

基本光学薄膜是指能够实现分光透射、分光反射、分光吸收和改变光的偏振状态或相位,可用于各种反射膜、增透膜和干涉滤波片的薄膜,它赋予光学元件各种使用性能,对保证光学仪器的质量起到决定性的作。

减反膜(增透膜)

减反膜是用来减少光学元件表面反射损失的一种功能薄膜。它可以有单层和多层膜系构成。单层膜能使某一波长的反射率为零,多层膜在某一波段具有实际为零的反射率。在应用中,由于条件和应用对象不同,其所用的减反膜的类型与诸多因素有关,例如基片材料、波长领域、所需特征及成本等。

a、单层减反膜

为减少光的反射消耗,增大光线的透射率,常在玻璃的表面上沉积一层减反膜。其原理是光的干涉现象。只要膜的折射率小于玻璃基片的折射率,就能都实现光的减反射作用。

b、多层减反膜

多层减反膜主要是为了改进单层减反膜的不足,进一步提高减反膜的效果,因而采用增加膜层层数的措施。

反射膜

反射膜的作用与减反膜相反,它是要求把大部分或几乎是全部入射光反射回去。如光学仪器、激光器、波导管、 汽车 、灯具的反射镜,都需要沉积镀制反射薄膜。反射膜有金属膜和介质膜两种

a、金属反射膜

金属反射膜具有很高的反射率和一定的吸收能力。金属高反射膜仅用于对膜的吸收损耗没有特殊要求的场合。

b、介质反射膜

金属高反射膜的吸收损失较大,在某些应用中,如多光束干涉仪、高质量激光器的反射膜,就要求沉积低吸收、高反射的全介质高反射膜。

2、控光薄膜

控光薄膜分为阳光控制膜、低辐射率膜、光学性能可变换膜三种 。

、阳光控制膜

在玻璃上镀上一层光学薄膜,使玻璃对太阳光中的可见光部分有较高的透射率,而对太阳光中的红外部分有较高的反射率,并对太阳光中的紫外线部分有很高的吸收率。将它制成阳光镀膜幕墙玻璃,就能保证白天建筑物内有足够的亮度等等

、低辐射率膜

在玻璃的表面镀制一层低辐射系数的薄膜,称为低辐射率膜,俗称隔热膜,它对红外线有较高的反射率。

、光学性能可变换膜

光学性能可变换膜是指物质在外界环境影响下产生一种对光反应的改变,在一定外界条件(热、光、电)下,使它改变颜色并能复原,这种变色膜是一类有广阔应用前景的光学功能材料。

3、光学薄膜材料

、金属和合金

金属和合金是较为广泛的薄膜,具有反射率高、截止带宽、中性好、偏振效应小以及吸收可以改变等特点,在一些特殊用途的膜系中,它们有特别重要的作用。

、化合物(电介质)

化合物是有重要用途并广泛应用的光学薄膜,主要有:卤化物、氧化物、硫化物和硒化物。

、半导体

半导体材料在近红外和远红外区透明,是一类重要的光学薄膜材料。在光学薄膜中使用最普遍的半导体材料是硅和锗。

三、光学薄膜研究的趋势

综合国内外光学及光学薄膜的研究现状,光学薄膜的研究呈现以下几个发展趋势:

1、继续重视对传统光学仪器中光学薄膜应用的研究和开发,提高薄膜的光学质量,研究大面积镀膜技术及其应用;

2、开发与新型精密光学仪器及光电子器件要求相适应的光学薄膜及其材料的制备方法,以满足现代光学、空间技术、 军事技术和全光网络技术日益迫切的需要;

3、开发极端光谱条件下的光学薄膜,如超窄带密集型波分复用滤波片,软X射线膜,高功率激光膜等的制备技术;

4、开发与环境保护息息相关的“绿色光学薄膜”,实现光能与人类 健康 需要的相互协调;

5、研究光学薄膜的材料物理、成膜过程的原位观察,实现镀膜过程的自动控制和超快速低温镀膜。

时至今日,光学薄膜已获得很大的发展,光学薄膜的生产已逐步走向系列化、 程序化和专业化,但是,在光学薄膜的研究中还有不少问题有待进一步解决, 光学薄膜现有的水平还需要进一步提高。科学家曾预言21世纪是光子世纪,而光学薄膜作为传输光子并实现其各种功能的重要载体,必然会在光学、光电子学及光子学获得突破性发展的同时,得到进一步的繁荣和发展。

登录点击《涂布材料库》查阅更多产品资料:

相关百科

热门百科

首页
发表服务